From ec3457026eef496ad487acd761e069d7fde38045 Mon Sep 17 00:00:00 2001
From: agentmess
Date: Tue, 22 Oct 2024 16:50:32 +0000
Subject: [PATCH] deploy: 2a57023a14d9bcaec278ce1a6d7d1368a93590e9
---
Key MRI Concepts.html | 606 +++++++++++++++++++++++++++++
MRI Signal Equation.html | 2 +-
Spin Physics.html | 2 +-
_sources/Key MRI Concepts.md | 77 ++++
_sources/MRI Signal Equation.ipynb | 2 +-
_sources/Spin Physics.ipynb | 2 +-
objects.inv | Bin 780 -> 801 bytes
searchindex.js | 2 +-
8 files changed, 688 insertions(+), 5 deletions(-)
create mode 100644 Key MRI Concepts.html
create mode 100644 _sources/Key MRI Concepts.md
diff --git a/Key MRI Concepts.html b/Key MRI Concepts.html
new file mode 100644
index 0000000..e4f17f5
--- /dev/null
+++ b/Key MRI Concepts.html
@@ -0,0 +1,606 @@
+
+
+
+
+
+
+
+
+
+
+
+ Key MRI Concepts and Equations — Principles of MRI
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Skip to main content
+
+
+
+
+
+
+ Back to top
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
Key MRI Concepts and Equations
+
+
+
+
+
+
+
+
+
+
+Key MRI Concepts and Equations
+SEE ALSO MRI Math Concepts
+MRI Math Concepts
+
+Spin Physics
+Larmor Frequency
+M0
+Polarization
+
+\[M_{XY}(\vec{r},t) = M_{XY}(\vec{r},0) e^{-t/T_2(\vec{r})}\]
+
+\[M_Z(\vec{r},t) = M_Z(\vec{r},0)e^{-t/T_1} + M_0(\vec{r})(1- e^{-t/T_1(\vec{r})})\]
+
+
+Contrast
+T2/T2*
+T1
+spoiled GRE contrast
+
+\[S \propto M_0 \sin(\theta) \exp(-TE/T_2) \frac{1- \exp(-TR/T_1)}{1- \cos(\theta) \exp(-TR/T_1)}\]
+Inversion Recovery
+$\(S_{IR} \propto M_0 \exp(-TE/T_2) (1 - 2\exp(-TI/T_1) + \exp(-TR/T_1) )\) $
+
+
+RF Pulses
+flip angle
+SAR
+TBW = BW_RF T_{RF}
+Slice thickness
+slice shifting
+
+
+Spatial Encoding
+k-space
+
+\[\vec{k}(t) = \frac{\gamma}{2\pi} \int_0^t \vec{G}(\tau) d\tau\]
+
+\[M_{XY}(\vec{r}, t) = M_{XY}(\vec{r}, 0) e^{ -i 2 \pi \vec{k}(t) \cdot \vec{r} }\]
+
+\[\begin{split}\begin{align}
+s(t) & = \int_\mathrm{Volume} M_{XY}(\vec{r},t) \ d\vec{r} \\
+ & = \int_{\textrm{Volume}} M_{XY}(\vec{r},0) \exp(-i2\pi \vec{k}(t) \cdot \vec{r}) \ d\vec{r}
+ \end{align}\end{split}\]
+
+\[s(t) = \int m(\vec{r})\ e^{-i 2 \pi \vec{k}(t) \cdot \vec{r}} \ d\vec{r}\]
+
+\[s(t) = \mathcal{F}\{m(\vec{r}) \} |_{\vec{k} = \vec{k}(t)}$ = M(\vec{k}(t))\]
+
+
+Image Characeristics
+SNR
+FOV/resolution - in general, in Cartesian sequence
+
+
+
+Fast Imaging
+Scan times
+effective TE
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/MRI Signal Equation.html b/MRI Signal Equation.html
index d81e740..a45c85b 100644
--- a/MRI Signal Equation.html
+++ b/MRI Signal Equation.html
@@ -495,7 +495,7 @@ Idealized Signal Equation
In many situations, an idealized signal equation is useful, particularly for understanding image formation. The idealized signal equation neglects relaxation, RF coil profile, and off-resonance, but we will add them in later.
-This is simllified using the concept of k-space:
+This is simplified using the concept of k-space:
\[s(t) = \int m(\vec{r})\ e^{-i 2 \pi \vec{k}(t) \cdot \vec{r}} \ d\vec{r}\]
From this idealized formulation, it is easiest to see that the signal is the Fourier Transform of the transverse magnetization in the subject:
diff --git a/Spin Physics.html b/Spin Physics.html
index e411f0b..d0dccde 100644
--- a/Spin Physics.html
+++ b/Spin Physics.html
@@ -608,7 +608,7 @@ Relaxation Equations