forked from shawwn/llama
-
Notifications
You must be signed in to change notification settings - Fork 7
/
interactive.py
executable file
·168 lines (147 loc) · 5.62 KB
/
interactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the GNU General Public License version 3.
from typing import Tuple
import os
import sys
import torch
import fire
import time
import json
import torch.distributed as dist
from pathlib import Path
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
from llama import ModelArgs, Transformer, Tokenizer, LLaMA
def setup_model_parallel(seed: int) -> Tuple[int, int]:
if 'LOCAL_RANK' in os.environ:
# Environment variables set by torch.distributed.launch or torchrun
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
world_rank = int(os.environ['RANK'])
elif 'OMPI_COMM_WORLD_LOCAL_RANK' in os.environ:
# Environment variables set by mpirun
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
world_rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
else:
import sys
sys.exit("Can't find the evironment variables for local rank")
torch.distributed.init_process_group(backend="nccl", rank=world_rank, world_size=world_size)
initialize_model_parallel(world_size)
torch.cuda.set_device(local_rank)
# seed must be the same in all processes
torch.manual_seed(seed)
return local_rank, world_rank, world_size
def load(
ckpt_dir: str,
tokenizer_path: str,
local_rank: int,
world_rank: int,
world_size: int,
max_seq_len: int,
max_batch_size: int,
) -> LLaMA:
start_time = time.time()
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
assert world_size == len(
checkpoints
), f"Loading a checkpoint for MP={len(checkpoints)} but world size is {world_size}"
ckpt_path = checkpoints[world_rank]
print("Loading")
checkpoint = torch.load(ckpt_path, map_location="cpu")
with open(Path(ckpt_dir) / "params.json", "r") as f:
params = json.loads(f.read())
model_args: ModelArgs = ModelArgs(
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
)
tokenizer = Tokenizer(model_path=tokenizer_path)
model_args.vocab_size = tokenizer.n_words
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = Transformer(model_args)
torch.set_default_tensor_type(torch.FloatTensor)
model.load_state_dict(checkpoint, strict=False)
generator = LLaMA(model, tokenizer)
print(f"Loaded in {time.time() - start_time:.2f} seconds")
return generator
def main(
ckpt_dir: str,
tokenizer_path: str,
temperature: float = 0.7,
# top_p: float = 0.95,
top_p: float = 0.0,
top_k: int = 10,
repetition_penalty: float = (1 / 0.85),
max_seq_len: int = 2048,
max_gen_len: int = 2000,
max_batch_size: int = 1,
seed: int = 1,
count: int = 1,
eos_w: float = 1.0,
):
local_rank, world_rank, world_size = setup_model_parallel(seed)
device = torch.device("cuda:{}".format(local_rank))
if world_rank > 0:
sys.stdout = open(os.devnull, "w")
print("\n")
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
print(json.dumps(dict(
seed=seed,
temp=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
max_seq_len=max_seq_len,
max_gen_len=max_gen_len,
eos_w=eos_w,
)))
print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
generator = load(
ckpt_dir, tokenizer_path, local_rank, world_rank, world_size, max_seq_len, max_batch_size
)
while True:
tensor = torch.ones(max_seq_len) * -1.0
tensor = tensor.to(device)
if world_rank == 0:
prompt = input("Prompt >>> ")
while not prompt:
print('Prompt should not be empty!')
prompt = input("Prompt >>> ")
prompt = prompt[:max_seq_len]
for i, c in enumerate(prompt):
tensor[i] = ord(c)
for rank_recv in range(1, world_size):
dist.send(tensor=tensor, dst=rank_recv)
print('Sending prompt to Rank {}\n'.format(rank_recv))
else:
dist.recv(tensor=tensor, src=0)
mask = tensor >= 0
tensor = tensor[mask]
prompt = ''.join([chr(int(x)) for x in tensor])
i = 0
while i < count or count <= 0:
i += 1
print(f"\n============== sample {i} =================\n")
width = 0
def callback(text):
nonlocal width
text = text.replace('\n', '\n\n')
chars = []
for i, c in enumerate(text):
if c == ' ' and width >= 60:
chars.append('\n')
width = 0
else:
width += 1
chars.append(c)
if c == '\n':
width = 0
text = ''.join(chars)
print(text, end='', flush=True)
start_time = time.time()
text, num_gen_tokens = generator.generate(
[prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p, top_k=top_k, repetition_penalty=repetition_penalty, token_callback=callback, eos_w=eos_w
)
print(f"\n============== end sample {i} =================\n")
sec = time.time() - start_time
print(f"{num_gen_tokens} tokens generated in {sec:.2f} seconds, average tokens/sec: {num_gen_tokens / sec:.2f}")
if __name__ == "__main__":
fire.Fire(main)