-
Notifications
You must be signed in to change notification settings - Fork 6
/
TCNN_model_paper.py
238 lines (190 loc) · 11.4 KB
/
TCNN_model_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding:utf-8 -*-
# Author:凌逆战 | Never
# Date: 2021/12/6
"""
"""
import torch
import torch.nn.functional as F
import torch.nn as nn
class Chomp1d(nn.Module):
def __init__(self, chomp_size):
super(Chomp1d, self).__init__()
self.chomp_size = chomp_size
def forward(self, x):
return x[:, :, :-self.chomp_size].contiguous()
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, causal=False):
super(DepthwiseSeparableConv, self).__init__()
# Use `groups` option to implement depthwise convolution
depthwise_conv = nn.Conv1d(in_channels, in_channels, kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=in_channels, bias=False)
pointwise_conv = nn.Conv1d(in_channels, out_channels, kernel_size=1, bias=False)
if causal:
self.net = nn.Sequential(depthwise_conv,
Chomp1d(padding),
nn.PReLU(),
nn.BatchNorm1d(in_channels),
pointwise_conv)
else:
self.net = nn.Sequential(depthwise_conv,
nn.PReLU(),
nn.BatchNorm1d(in_channels),
pointwise_conv)
def forward(self, x):
return self.net(x)
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, dilation):
super(ResBlock, self).__init__()
self.TCM_net = nn.Sequential(
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=1),
nn.PReLU(num_parameters=1),
nn.BatchNorm1d(num_features=out_channels),
DepthwiseSeparableConv(in_channels=out_channels, out_channels=in_channels, kernel_size=kernel_size,
stride=1,
padding=(kernel_size - 1) * dilation, dilation=dilation, causal=True)
)
def forward(self, input):
x = self.TCM_net(input)
return x + input
class TCNN_Block(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, init_dilation=3, num_layers=6):
super(TCNN_Block, self).__init__()
layers = []
for i in range(num_layers):
dilation_size = init_dilation ** i
# in_channels = in_channels if i == 0 else out_channels
layers += [ResBlock(in_channels, out_channels,
kernel_size, dilation=dilation_size)]
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class DConv2d_block(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, output_padding):
super(DConv2d_block, self).__init__()
self.DConv2d = nn.Sequential(
nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
output_padding=output_padding),
nn.BatchNorm2d(num_features=out_channels),
nn.PReLU()
)
self.drop = nn.Dropout(0.2)
def forward(self, encode, decode):
encode = self.drop(encode)
skip_connection = torch.cat((encode, decode), dim=1)
DConv2d = self.DConv2d(skip_connection)
return DConv2d
# input: (B, 1, T, 320) T为帧数,320为帧长
class TCNN(nn.Module):
def __init__(self):
super(TCNN, self).__init__()
self.Conv2d_1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=(2, 5), stride=(1, 1), padding=(1, 2))
self.bn1 = nn.BatchNorm2d(num_features=16)
self.prelu1 = nn.PReLU()
self.Conv2d_2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2, 5), stride=(1, 2), padding=(1, 2))
self.bn2 = nn.BatchNorm2d(num_features=16)
self.prelu2 = nn.PReLU()
self.Conv2d_3 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=(2, 5), stride=(1, 2), padding=(1, 1))
self.bn3 = nn.BatchNorm2d(num_features=16)
self.prelu3 = nn.PReLU()
self.Conv2d_4 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=(2, 5), stride=(1, 2), padding=(1, 1))
self.bn4 = nn.BatchNorm2d(num_features=32)
self.prelu4 = nn.PReLU()
self.Conv2d_5 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=(2, 5), stride=(1, 2), padding=(1, 1))
self.bn5 = nn.BatchNorm2d(num_features=32)
self.prelu5 = nn.PReLU()
self.Conv2d_6 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(2, 5), stride=(1, 2), padding=(1, 1))
self.bn6 = nn.BatchNorm2d(num_features=64)
self.prelu6 = nn.PReLU()
self.Conv2d_7 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=(2, 5), stride=(1, 2), padding=(1, 1))
self.bn7 = nn.BatchNorm2d(num_features=64)
self.prelu7 = nn.PReLU()
self.TCNN_Block_1 = TCNN_Block(in_channels=256, out_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.TCNN_Block_2 = TCNN_Block(in_channels=256, out_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.TCNN_Block_3 = TCNN_Block(in_channels=256, out_channels=512, kernel_size=3, init_dilation=2, num_layers=6)
self.DConv2d_7 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 1),
output_padding=(0, 0))
self.bn7_t = nn.BatchNorm2d(num_features=64)
self.prelu7_t = nn.PReLU()
self.DConv2d_6 = nn.ConvTranspose2d(in_channels=128, out_channels=32, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 1),
output_padding=(0, 0))
self.bn6_t = nn.BatchNorm2d(num_features=32)
self.prelu6_t = nn.PReLU()
self.DConv2d_5 = nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 1),
output_padding=(0, 0))
self.bn5_t = nn.BatchNorm2d(num_features=32)
self.prelu5_t = nn.PReLU()
self.DConv2d_4 = nn.ConvTranspose2d(in_channels=64, out_channels=16, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 1),
output_padding=(0, 0))
self.bn4_t = nn.BatchNorm2d(num_features=16)
self.prelu4_t = nn.PReLU()
self.DConv2d_3 = nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 1),
output_padding=(0, 1))
self.bn3_t = nn.BatchNorm2d(num_features=16)
self.prelu3_t = nn.PReLU()
self.DConv2d_2 = nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=(2, 5), stride=(1, 2),
padding=(1, 2),
output_padding=(0, 1))
self.bn2_t = nn.BatchNorm2d(num_features=16)
self.prelu2_t = nn.PReLU()
self.DConv2d_1 = nn.ConvTranspose2d(in_channels=32, out_channels=1, kernel_size=(2, 5), stride=(1, 1),
padding=(1, 2),
output_padding=(0, 0))
self.bn1_t = nn.BatchNorm2d(num_features=1)
self.prelu1_t = nn.PReLU()
self.dropout = nn.Dropout(p=0.3, inplace=True)
def forward(self, input):
Conv2d_1 = self.prelu1(self.bn1(self.Conv2d_1(input)[:, :, :-1, :].contiguous()))
print("Conv2d_1", Conv2d_1.shape) # [64, 16, 5, 320]
Conv2d_2 = self.prelu2(self.bn2(self.Conv2d_2(Conv2d_1)[:, :, :-1, :].contiguous()))
print("Conv2d_2", Conv2d_2.shape) # [64, 16, 5, 160]
Conv2d_3 = self.prelu3(self.bn3(self.Conv2d_3(Conv2d_2)[:, :, :-1, :].contiguous()))
print("Conv2d_3", Conv2d_3.shape) # [64, 16, 5, 79]
Conv2d_4 = self.prelu4(self.bn4(self.Conv2d_4(Conv2d_3)[:, :, :-1, :].contiguous()))
print("Conv2d_4", Conv2d_4.shape) # [64, 32, 5, 39]
Conv2d_5 = self.prelu5(self.bn5(self.Conv2d_5(Conv2d_4)[:, :, :-1, :].contiguous()))
print("Conv2d_5", Conv2d_5.shape) # [64, 32, 5, 19]
Conv2d_6 = self.prelu6(self.bn6(self.Conv2d_6(Conv2d_5)[:, :, :-1, :].contiguous()))
print("Conv2d_6", Conv2d_6.shape) # [64, 64, 5, 9]
Conv2d_7 = self.prelu7(self.bn7(self.Conv2d_7(Conv2d_6)[:, :, :-1, :].contiguous()))
print("Conv2d_7", Conv2d_7.shape) # [64, 64, 5, 4] (B, 1, T, 320)
reshape_1 = Conv2d_7.permute(0, 1, 3, 2) # [64, 64, 4, 5] (B,C,帧长,帧数)
batch_size, C, frame_len, frame_num = reshape_1.shape
reshape_1 = reshape_1.reshape(batch_size, C * frame_len, frame_num)
# print("reshape_1", reshape_1.shape) # [64, 256, 5]
TCNN_Block_1 = self.TCNN_Block_1(reshape_1)
TCNN_Block_2 = self.TCNN_Block_2(TCNN_Block_1)
TCNN_Block_3 = self.TCNN_Block_3(TCNN_Block_2)
reshape_2 = TCNN_Block_3.reshape(batch_size, C, frame_len, frame_num)
reshape_2 = reshape_2.permute(0, 1, 3, 2)
print("reshape_2", reshape_2.shape) # [64, 64, 5, 4]
DConv2d_7 = self.prelu7_t(self.bn7_t(F.pad(self.DConv2d_7(torch.cat((self.dropout(Conv2d_7), reshape_2), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_7", DConv2d_7.shape) # [64, 64, 5, 9]
DConv2d_6 = self.prelu6_t(self.bn6_t(F.pad(self.DConv2d_6(torch.cat((self.dropout(Conv2d_6), DConv2d_7), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_6", DConv2d_6.shape) # [64, 32, 5, 19]
DConv2d_5 = self.prelu5_t(self.bn5_t(F.pad(self.DConv2d_5(torch.cat((self.dropout(Conv2d_5), DConv2d_6), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_5", DConv2d_5.shape) # [64, 32, 5, 39]
DConv2d_4 = self.prelu4_t(self.bn4_t(F.pad(self.DConv2d_4(torch.cat((self.dropout(Conv2d_4), DConv2d_5), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_4", DConv2d_4.shape) # [64, 16, 5, 79]
DConv2d_3 = self.prelu3_t(self.bn3_t(F.pad(self.DConv2d_3(torch.cat((self.dropout(Conv2d_3), DConv2d_4), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_3", DConv2d_3.shape) # [64, 16, 5, 160]
DConv2d_2 = self.prelu2_t(self.bn2_t(F.pad(self.DConv2d_2(torch.cat((self.dropout(Conv2d_2), DConv2d_3), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_2", DConv2d_2.shape) # [64, 16, 5, 320]
DConv2d_1 = self.prelu1_t(self.bn1_t(F.pad(self.DConv2d_1(torch.cat((self.dropout(Conv2d_1), DConv2d_2), dim=1)),[0, 0, 1, 0]).contiguous()))
print("DConv2d_1", DConv2d_1.shape) # [64, 1, 5, 320]
return DConv2d_1
if __name__ == "__main__":
# x = torch.randn(64, 32, 8192)
# model = TCNN_Block(in_channels=32, out_channels=64, kernel_size=3, init_dilation=3, num_layers=6) # 输出 (64, 1, 8192)
x = torch.randn(64, 1, 5, 320)
model = TCNN()
# x = torch.randn(64, 32, 256)
# model = DepthwiseSeparableConv(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=4, dilation=2,
# causal=True)
y = model(x)
print("output", y.shape) # output torch.Size([64, 1, 8192])