forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwins2mmseg.py
87 lines (74 loc) · 2.69 KB
/
twins2mmseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
from collections import OrderedDict
import mmcv
import torch
from mmcv.runner import CheckpointLoader
def convert_twins(args, ckpt):
new_ckpt = OrderedDict()
for k, v in list(ckpt.items()):
new_v = v
if k.startswith('head'):
continue
elif k.startswith('patch_embeds'):
if 'proj.' in k:
new_k = k.replace('proj.', 'projection.')
else:
new_k = k
elif k.startswith('blocks'):
# Union
if 'attn.q.' in k:
new_k = k.replace('q.', 'attn.in_proj_')
new_v = torch.cat([v, ckpt[k.replace('attn.q.', 'attn.kv.')]],
dim=0)
elif 'mlp.fc1' in k:
new_k = k.replace('mlp.fc1', 'ffn.layers.0.0')
elif 'mlp.fc2' in k:
new_k = k.replace('mlp.fc2', 'ffn.layers.1')
# Only pcpvt
elif args.model == 'pcpvt':
if 'attn.proj.' in k:
new_k = k.replace('proj.', 'attn.out_proj.')
else:
new_k = k
# Only svt
else:
if 'attn.proj.' in k:
k_lst = k.split('.')
if int(k_lst[2]) % 2 == 1:
new_k = k.replace('proj.', 'attn.out_proj.')
else:
new_k = k
else:
new_k = k
new_k = new_k.replace('blocks.', 'layers.')
elif k.startswith('pos_block'):
new_k = k.replace('pos_block', 'position_encodings')
if 'proj.0.' in new_k:
new_k = new_k.replace('proj.0.', 'proj.')
else:
new_k = k
if 'attn.kv.' not in k:
new_ckpt[new_k] = new_v
return new_ckpt
def main():
parser = argparse.ArgumentParser(
description='Convert keys in timm pretrained vit models to '
'MMSegmentation style.')
parser.add_argument('src', help='src model path or url')
# The dst path must be a full path of the new checkpoint.
parser.add_argument('dst', help='save path')
parser.add_argument('model', help='model: pcpvt or svt')
args = parser.parse_args()
checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu')
if 'state_dict' in checkpoint:
# timm checkpoint
state_dict = checkpoint['state_dict']
else:
state_dict = checkpoint
weight = convert_twins(args, state_dict)
mmcv.mkdir_or_exist(osp.dirname(args.dst))
torch.save(weight, args.dst)
if __name__ == '__main__':
main()