Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HRNet

Deep High-Resolution Representation Learning for Human Pose Estimation

Introduction

Official Repo

Code Snippet

Abstract

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at this https URL.

Citation

@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x1024 40000 1.7 23.74 73.86 75.91 config model | log
FCN HRNetV2p-W18 512x1024 40000 2.9 12.97 77.19 78.92 config model | log
FCN HRNetV2p-W48 512x1024 40000 6.2 6.42 78.48 79.69 config model | log
FCN HRNetV2p-W18-Small 512x1024 80000 - - 75.31 77.48 config model | log
FCN HRNetV2p-W18 512x1024 80000 - - 78.65 80.35 config model | log
FCN HRNetV2p-W48 512x1024 80000 - - 79.93 80.72 config model | log
FCN HRNetV2p-W18-Small 512x1024 160000 - - 76.31 78.31 config model | log
FCN HRNetV2p-W18 512x1024 160000 - - 78.80 80.74 config model | log
FCN HRNetV2p-W48 512x1024 160000 - - 80.65 81.92 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x512 80000 3.8 38.66 31.38 32.45 config model | log
FCN HRNetV2p-W18 512x512 80000 4.9 22.57 36.27 37.28 config model | log
FCN HRNetV2p-W48 512x512 80000 8.2 21.23 41.90 43.27 config model | log
FCN HRNetV2p-W18-Small 512x512 160000 - - 33.07 34.56 config model | log
FCN HRNetV2p-W18 512x512 160000 - - 36.79 38.58 config model | log
FCN HRNetV2p-W48 512x512 160000 - - 42.02 43.86 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x512 20000 1.8 43.36 65.5 68.89 config model | log
FCN HRNetV2p-W18 512x512 20000 2.9 23.48 72.30 74.71 config model | log
FCN HRNetV2p-W48 512x512 20000 6.2 22.05 75.87 78.58 config model | log
FCN HRNetV2p-W18-Small 512x512 40000 - - 66.61 70.00 config model | log
FCN HRNetV2p-W18 512x512 40000 - - 72.90 75.59 config model | log
FCN HRNetV2p-W48 512x512 40000 - - 76.24 78.49 config model | log

Pascal Context

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W48 480x480 40000 6.1 8.86 45.14 47.42 config model | log
FCN HRNetV2p-W48 480x480 80000 - - 45.84 47.84 config model | log

Pascal Context 59

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W48 480x480 40000 - - 50.33 52.83 config model | log
FCN HRNetV2p-W48 480x480 80000 - - 51.12 53.56 config model | log

LoveDA

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x512 80000 1.59 24.87 49.28 49.42 config model | log
FCN HRNetV2p-W18 512x512 80000 2.76 12.92 50.81 50.95 config model | log
FCN HRNetV2p-W48 512x512 80000 6.20 9.61 51.42 51.64 config model | log

Potsdam

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x512 80000 1.58 36.00 77.64 78.8 config model | log
FCN HRNetV2p-W18 512x512 80000 2.76 19.25 78.26 79.24 config model | log
FCN HRNetV2p-W48 512x512 80000 6.20 16.42 78.39 79.34 config model | log

Vaihingen

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 512x512 80000 1.58 38.11 71.81 73.1 config model | log
FCN HRNetV2p-W18 512x512 80000 2.76 19.55 72.57 74.09 config model | log
FCN HRNetV2p-W48 512x512 80000 6.20 17.25 72.50 73.52 config model | log

iSAID

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
FCN HRNetV2p-W18-Small 896x896 80000 4.95 13.84 62.30 62.97 config model | log
FCN HRNetV2p-W18 896x896 80000 8.30 7.71 65.06 65.60 config model | log
FCN HRNetV2p-W48 896x896 80000 16.89 7.34 67.80 68.53 config model | log

Note: