Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CCNet

CCNet: Criss-Cross Attention for Semantic Segmentation

Introduction

Official Repo

Code Snippet

Abstract

Contextual information is vital in visual understanding problems, such as semantic segmentation and object detection. We propose a Criss-Cross Network (CCNet) for obtaining full-image contextual information in a very effective and efficient way. Concretely, for each pixel, a novel criss-cross attention module harvests the contextual information of all the pixels on its criss-cross path. By taking a further recurrent operation, each pixel can finally capture the full-image dependencies. Besides, a category consistent loss is proposed to enforce the criss-cross attention module to produce more discriminative features. Overall, CCNet is with the following merits: 1) GPU memory friendly. Compared with the non-local block, the proposed recurrent criss-cross attention module requires 11x less GPU memory usage. 2) High computational efficiency. The recurrent criss-cross attention significantly reduces FLOPs by about 85% of the non-local block. 3) The state-of-the-art performance. We conduct extensive experiments on semantic segmentation benchmarks including Cityscapes, ADE20K, human parsing benchmark LIP, instance segmentation benchmark COCO, video segmentation benchmark CamVid. In particular, our CCNet achieves the mIoU scores of 81.9%, 45.76% and 55.47% on the Cityscapes test set, the ADE20K validation set and the LIP validation set respectively, which are the new state-of-the-art results. The source codes are available at this https URL.

Citation

@article{huang2018ccnet,
    title={CCNet: Criss-Cross Attention for Semantic Segmentation},
    author={Huang, Zilong and Wang, Xinggang and Huang, Lichao and Huang, Chang and Wei, Yunchao and Liu, Wenyu},
    booktitle={ICCV},
    year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
CCNet R-50-D8 512x1024 40000 6 3.32 77.76 78.87 config model | log
CCNet R-101-D8 512x1024 40000 9.5 2.31 76.35 78.19 config model | log
CCNet R-50-D8 769x769 40000 6.8 1.43 78.46 79.93 config model | log
CCNet R-101-D8 769x769 40000 10.7 1.01 76.94 78.62 config model | log
CCNet R-50-D8 512x1024 80000 - - 79.03 80.16 config model | log
CCNet R-101-D8 512x1024 80000 - - 78.87 79.90 config model | log
CCNet R-50-D8 769x769 80000 - - 79.29 81.08 config model | log
CCNet R-101-D8 769x769 80000 - - 79.45 80.66 config model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
CCNet R-50-D8 512x512 80000 8.8 20.89 41.78 42.98 config model | log
CCNet R-101-D8 512x512 80000 12.2 14.11 43.97 45.13 config model | log
CCNet R-50-D8 512x512 160000 - - 42.08 43.13 config model | log
CCNet R-101-D8 512x512 160000 - - 43.71 45.04 config model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) config download
CCNet R-50-D8 512x512 20000 6 20.45 76.17 77.51 config model | log
CCNet R-101-D8 512x512 20000 9.5 13.64 77.27 79.02 config model | log
CCNet R-50-D8 512x512 40000 - - 75.96 77.04 config model | log
CCNet R-101-D8 512x512 40000 - - 77.87 78.90 config model | log