-
Notifications
You must be signed in to change notification settings - Fork 0
/
tap_dynamics_st.c
877 lines (731 loc) · 24.6 KB
/
tap_dynamics_st.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/* -*- linux-c -*-
Copyright (C) 2004 Tom Szilagyi
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <ladspa.h>
#include "tap_platform.h"
#include "tap_utils.h"
/* ***** VERY IMPORTANT! *****
*
* If you enable this, the plugin will use float arithmetics in DSP
* calculations. This usually yields lower average CPU usage, but
* occasionaly may result in high CPU peaks which cause trouble to you
* and your JACK server. The default is to use fixpoint arithmetics
* (with the following #define commented out). But (depending on the
* processor on which you run the code) you may find floating point
* mode usable.
*/
/*#define DYN_CALC_FLOAT*/
typedef signed int sample;
/* coefficient for float to sample (signed int) conversion */
/* this allows for about 60 dB headroom above 0dB, if 0 dB is equivalent to 1.0f */
/* As 2^31 equals more than 180 dB, about 120 dB dynamics remains below 0 dB */
#define F2S 2147483
#ifdef DYN_CALC_FLOAT
typedef LADSPA_Data dyn_t;
typedef float rms_t;
#else
typedef sample dyn_t;
typedef int64_t rms_t;
#endif
/* The Unique ID of the plugin: */
#define ID_STEREO 2153
/* The port numbers for the plugin: */
#define ATTACK 0
#define RELEASE 1
#define OFFSGAIN 2
#define MUGAIN 3
#define RMSENV_L 4
#define RMSENV_R 5
#define MODGAIN_L 6
#define MODGAIN_R 7
#define STEREO 8
#define MODE 9
#define INPUT_L 10
#define INPUT_R 11
#define OUTPUT_L 12
#define OUTPUT_R 13
/* Total number of ports */
#define PORTCOUNT_STEREO 14
#define TABSIZE 256
#define RMSSIZE 64
typedef struct {
rms_t buffer[RMSSIZE];
unsigned int pos;
rms_t sum;
} rms_env;
/* max. number of breakpoints on in/out dB graph */
#define MAX_POINTS 20
typedef struct {
LADSPA_Data x;
LADSPA_Data y;
} GRAPH_POINT;
typedef struct {
unsigned long num_points;
GRAPH_POINT points[MAX_POINTS];
} DYNAMICS_DATA;
#include "tap_dynamics_presets.h"
/* The structure used to hold port connection information and state */
typedef struct {
LADSPA_Data * attack;
LADSPA_Data * release;
LADSPA_Data * offsgain;
LADSPA_Data * mugain;
LADSPA_Data * rmsenv_L;
LADSPA_Data * rmsenv_R;
LADSPA_Data * modgain_L;
LADSPA_Data * modgain_R;
LADSPA_Data * stereo;
LADSPA_Data * mode;
LADSPA_Data * input_L;
LADSPA_Data * output_L;
LADSPA_Data * input_R;
LADSPA_Data * output_R;
unsigned long sample_rate;
float * as;
unsigned long count;
dyn_t amp_L;
dyn_t amp_R;
dyn_t env_L;
dyn_t env_R;
float gain_L;
float gain_R;
float gain_out_L;
float gain_out_R;
rms_env * rms_L;
rms_env * rms_R;
rms_t sum_L;
rms_t sum_R;
DYNAMICS_DATA graph;
LADSPA_Data run_adding_gain;
} Dynamics;
/* RMS envelope stuff, grabbed without a second thought from Steve Harris's swh-plugins, util/rms.c */
/* Adapted, though, to be able to use fixed-point arithmetics as well. */
rms_env *
rms_env_new(void) {
rms_env * new = (rms_env *)calloc(1, sizeof(rms_env));
return new;
}
void
rms_env_reset(rms_env *r) {
unsigned int i;
for (i = 0; i < RMSSIZE; i++) {
r->buffer[i] = 0.0f;
}
r->pos = 0;
r->sum = 0.0f;
}
inline static
dyn_t
rms_env_process(rms_env *r, const rms_t x) {
r->sum -= r->buffer[r->pos];
r->sum += x;
r->buffer[r->pos] = x;
r->pos = (r->pos + 1) & (RMSSIZE - 1);
#ifdef DYN_CALC_FLOAT
return sqrt(r->sum / (float)RMSSIZE);
#else
return sqrt(r->sum / RMSSIZE);
#endif
}
inline
LADSPA_Data
get_table_gain(int mode, LADSPA_Data level) {
LADSPA_Data x1 = -80.0f;
LADSPA_Data y1 = -80.0f;
LADSPA_Data x2 = 0.0f;
LADSPA_Data y2 = 0.0f;
unsigned int i = 0;
if (level <= -80.0f)
return get_table_gain(mode, -79.9f);
while (i < dyn_data[mode].num_points && dyn_data[mode].points[i].x < level) {
x1 = dyn_data[mode].points[i].x;
y1 = dyn_data[mode].points[i].y;
i++;
}
if (i < dyn_data[mode].num_points) {
x2 = dyn_data[mode].points[i].x;
y2 = dyn_data[mode].points[i].y;
} else
return 0.0f;
return y1 + ((level - x1) * (y2 - y1) / (x2 - x1)) - level;
}
/* Construct a new plugin instance. */
LADSPA_Handle
instantiate_Dynamics(const LADSPA_Descriptor * Descriptor, unsigned long sample_rate) {
LADSPA_Handle * ptr;
float * as = NULL;
unsigned int count = 0;
dyn_t amp_L = 0.0f;
dyn_t amp_R = 0.0f;
dyn_t env_L = 0.0f;
dyn_t env_R = 0.0f;
float gain_L = 0.0f;
float gain_R = 0.0f;
float gain_out_L = 0.0f;
float gain_out_R = 0.0f;
rms_env * rms_L = NULL;
rms_env * rms_R = NULL;
rms_t sum_L = 0.0f;
rms_t sum_R = 0.0f;
int i;
if ((ptr = malloc(sizeof(Dynamics))) == NULL)
return NULL;
((Dynamics *)ptr)->sample_rate = sample_rate;
((Dynamics *)ptr)->run_adding_gain = 1.0;
if ((rms_L = rms_env_new()) == NULL)
return NULL;
if ((rms_R = rms_env_new()) == NULL)
return NULL;
if ((as = malloc(TABSIZE * sizeof(float))) == NULL)
return NULL;
as[0] = 1.0f;
for (i = 1; i < TABSIZE; i++) {
as[i] = expf(-1.0f / (sample_rate * (float)i / (float)TABSIZE));
}
((Dynamics *)ptr)->as = as;
((Dynamics *)ptr)->count = count;
((Dynamics *)ptr)->amp_L = amp_L;
((Dynamics *)ptr)->amp_R = amp_R;
((Dynamics *)ptr)->env_L = env_L;
((Dynamics *)ptr)->env_R = env_R;
((Dynamics *)ptr)->gain_L = gain_L;
((Dynamics *)ptr)->gain_R = gain_R;
((Dynamics *)ptr)->gain_out_L = gain_out_L;
((Dynamics *)ptr)->gain_out_R = gain_out_R;
((Dynamics *)ptr)->rms_L = rms_L;
((Dynamics *)ptr)->rms_R = rms_R;
((Dynamics *)ptr)->sum_L = sum_L;
((Dynamics *)ptr)->sum_R = sum_R;
return ptr;
}
/* Connect a port to a data location. */
void
connect_port_Dynamics(LADSPA_Handle Instance,
unsigned long Port,
LADSPA_Data * DataLocation) {
Dynamics * ptr = (Dynamics *)Instance;
switch (Port) {
case ATTACK:
ptr->attack = DataLocation;
break;
case RELEASE:
ptr->release = DataLocation;
break;
case OFFSGAIN:
ptr->offsgain = DataLocation;
break;
case MUGAIN:
ptr->mugain = DataLocation;
break;
case RMSENV_L:
ptr->rmsenv_L = DataLocation;
*(ptr->rmsenv_L) = -60.0f;
break;
case RMSENV_R:
ptr->rmsenv_R = DataLocation;
*(ptr->rmsenv_R) = -60.0f;
break;
case MODGAIN_L:
ptr->modgain_L = DataLocation;
*(ptr->modgain_L) = 0.0f;
break;
case MODGAIN_R:
ptr->modgain_R = DataLocation;
*(ptr->modgain_R) = 0.0f;
break;
case STEREO:
ptr->stereo = DataLocation;
break;
case MODE:
ptr->mode = DataLocation;
break;
case INPUT_L:
ptr->input_L = DataLocation;
break;
case OUTPUT_L:
ptr->output_L = DataLocation;
break;
case INPUT_R:
ptr->input_R = DataLocation;
break;
case OUTPUT_R:
ptr->output_R = DataLocation;
break;
}
}
void
run_Dynamics(LADSPA_Handle Instance,
unsigned long sample_count) {
Dynamics * ptr = (Dynamics *)Instance;
LADSPA_Data * input_L = ptr->input_L;
LADSPA_Data * output_L = ptr->output_L;
LADSPA_Data * input_R = ptr->input_R;
LADSPA_Data * output_R = ptr->output_R;
const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f);
const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f);
const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f);
const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f));
const int stereo = LIMIT(*(ptr->stereo), 0, 2);
const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1);
unsigned long sample_index;
dyn_t amp_L = ptr->amp_L;
dyn_t amp_R = ptr->amp_R;
dyn_t env_L = ptr->env_L;
dyn_t env_R = ptr->env_R;
float * as = ptr->as;
unsigned int count = ptr->count;
float gain_L = ptr->gain_L;
float gain_R = ptr->gain_R;
float gain_out_L = ptr->gain_out_L;
float gain_out_R = ptr->gain_out_R;
rms_env * rms_L = ptr->rms_L;
rms_env * rms_R = ptr->rms_R;
rms_t sum_L = ptr->sum_L;
rms_t sum_R = ptr->sum_R;
const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float ef_a = ga * 0.25f;
const float ef_ai = 1.0f - ef_a;
float level_L = 0.0f;
float level_R = 0.0f;
float adjust_L = 0.0f;
float adjust_R = 0.0f;
for (sample_index = 0; sample_index < sample_count; sample_index++) {
#ifdef DYN_CALC_FLOAT
sum_L += input_L[sample_index] * input_L[sample_index];
sum_R += input_R[sample_index] * input_R[sample_index];
if (amp_L > env_L) {
env_L = env_L * ga + amp_L * (1.0f - ga);
} else {
env_L = env_L * gr + amp_L * (1.0f - gr);
}
if (amp_R > env_R) {
env_R = env_R * ga + amp_R * (1.0f - ga);
} else {
env_R = env_R * gr + amp_R * (1.0f - gr);
}
#else
sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S);
sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S);
if (amp_L) {
if (amp_L > env_L) {
env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga);
} else {
env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr);
}
} else
env_L = 0;
if (amp_R) {
if (amp_R > env_R) {
env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga);
} else {
env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr);
}
} else
env_R = 0;
#endif
if (count++ % 4 == 3) {
#ifdef DYN_CALC_FLOAT
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
#else
if (sum_L)
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
else
amp_L = 0;
if (sum_R)
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
else
amp_R = 0;
#endif
#ifdef DYN_CALC_FLOAT
if (isnan(amp_L))
amp_L = 0.0f;
if (isnan(amp_R))
amp_R = 0.0f;
#endif
sum_L = sum_R = 0;
/* set gain_out according to the difference between
the envelope volume level (env) and the corresponding
output level (from graph) */
#ifdef DYN_CALC_FLOAT
level_L = 20 * log10f(2 * env_L);
level_R = 20 * log10f(2 * env_R);
#else
level_L = 20 * log10f(2 * (double)env_L / (double)F2S);
level_R = 20 * log10f(2 * (double)env_R / (double)F2S);
#endif
adjust_L = get_table_gain(mode, level_L + offsgain);
adjust_R = get_table_gain(mode, level_R + offsgain);
/* set gains according to stereo mode */
switch (stereo) {
case 0:
gain_out_L = db2lin(adjust_L);
gain_out_R = db2lin(adjust_R);
break;
case 1:
adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
case 2:
adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
}
}
gain_L = gain_L * ef_a + gain_out_L * ef_ai;
gain_R = gain_R * ef_a + gain_out_R * ef_ai;
output_L[sample_index] = input_L[sample_index] * gain_L * mugain;
output_R[sample_index] = input_R[sample_index] * gain_R * mugain;
}
ptr->sum_L = sum_L;
ptr->sum_R = sum_R;
ptr->amp_L = amp_L;
ptr->amp_R = amp_R;
ptr->gain_L = gain_L;
ptr->gain_R = gain_R;
ptr->gain_out_L = gain_out_L;
ptr->gain_out_R = gain_out_R;
ptr->env_L = env_L;
ptr->env_R = env_R;
ptr->count = count;
*(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f);
*(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f);
*(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f);
*(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f);
}
void
set_run_adding_gain_Dynamics(LADSPA_Handle Instance, LADSPA_Data gain) {
Dynamics * ptr = (Dynamics *)Instance;
ptr->run_adding_gain = gain;
}
void
run_adding_Dynamics(LADSPA_Handle Instance,
unsigned long sample_count) {
Dynamics * ptr = (Dynamics *)Instance;
LADSPA_Data * input_L = ptr->input_L;
LADSPA_Data * output_L = ptr->output_L;
LADSPA_Data * input_R = ptr->input_R;
LADSPA_Data * output_R = ptr->output_R;
const float attack = LIMIT(*(ptr->attack), 4.0f, 500.0f);
const float release = LIMIT(*(ptr->release), 4.0f, 1000.0f);
const float offsgain = LIMIT(*(ptr->offsgain), -20.0f, 20.0f);
const float mugain = db2lin(LIMIT(*(ptr->mugain), -20.0f, 20.0f));
const int stereo = LIMIT(*(ptr->stereo), 0, 2);
const int mode = LIMIT(*(ptr->mode), 0, NUM_MODES-1);
unsigned long sample_index;
dyn_t amp_L = ptr->amp_L;
dyn_t amp_R = ptr->amp_R;
dyn_t env_L = ptr->env_L;
dyn_t env_R = ptr->env_R;
float * as = ptr->as;
unsigned int count = ptr->count;
float gain_L = ptr->gain_L;
float gain_R = ptr->gain_R;
float gain_out_L = ptr->gain_out_L;
float gain_out_R = ptr->gain_out_R;
rms_env * rms_L = ptr->rms_L;
rms_env * rms_R = ptr->rms_R;
rms_t sum_L = ptr->sum_L;
rms_t sum_R = ptr->sum_R;
const float ga = as[(unsigned int)(attack * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float gr = as[(unsigned int)(release * 0.001f * (LADSPA_Data)(TABSIZE-1))];
const float ef_a = ga * 0.25f;
const float ef_ai = 1.0f - ef_a;
float level_L = 0.0f;
float level_R = 0.0f;
float adjust_L = 0.0f;
float adjust_R = 0.0f;
for (sample_index = 0; sample_index < sample_count; sample_index++) {
#ifdef DYN_CALC_FLOAT
sum_L += input_L[sample_index] * input_L[sample_index];
sum_R += input_R[sample_index] * input_R[sample_index];
if (amp_L > env_L) {
env_L = env_L * ga + amp_L * (1.0f - ga);
} else {
env_L = env_L * gr + amp_L * (1.0f - gr);
}
if (amp_R > env_R) {
env_R = env_R * ga + amp_R * (1.0f - ga);
} else {
env_R = env_R * gr + amp_R * (1.0f - gr);
}
#else
sum_L += (rms_t)(input_L[sample_index] * F2S) * (rms_t)(input_L[sample_index] * F2S);
sum_R += (rms_t)(input_R[sample_index] * F2S) * (rms_t)(input_R[sample_index] * F2S);
if (amp_L) {
if (amp_L > env_L) {
env_L = (double)env_L * ga + (double)amp_L * (1.0f - ga);
} else {
env_L = (double)env_L * gr + (double)amp_L * (1.0f - gr);
}
} else
env_L = 0;
if (amp_R) {
if (amp_R > env_R) {
env_R = (double)env_R * ga + (double)amp_R * (1.0f - ga);
} else {
env_R = (double)env_R * gr + (double)amp_R * (1.0f - gr);
}
} else
env_R = 0;
#endif
if (count++ % 4 == 3) {
#ifdef DYN_CALC_FLOAT
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
#else
if (sum_L)
amp_L = rms_env_process(rms_L, sum_L * 0.25f);
else
amp_L = 0;
if (sum_R)
amp_R = rms_env_process(rms_R, sum_R * 0.25f);
else
amp_R = 0;
#endif
#ifdef DYN_CALC_FLOAT
if (isnan(amp_L))
amp_L = 0.0f;
if (isnan(amp_R))
amp_R = 0.0f;
#endif
sum_L = sum_R = 0;
/* set gain_out according to the difference between
the envelope volume level (env) and the corresponding
output level (from graph) */
#ifdef DYN_CALC_FLOAT
level_L = 20 * log10f(2 * env_L);
level_R = 20 * log10f(2 * env_R);
#else
level_L = 20 * log10f(2 * (double)env_L / (double)F2S);
level_R = 20 * log10f(2 * (double)env_R / (double)F2S);
#endif
adjust_L = get_table_gain(mode, level_L + offsgain);
adjust_R = get_table_gain(mode, level_R + offsgain);
/* set gains according to stereo mode */
switch (stereo) {
case 0:
gain_out_L = db2lin(adjust_L);
gain_out_R = db2lin(adjust_R);
break;
case 1:
adjust_L = adjust_R = (adjust_L + adjust_R) / 2.0f;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
case 2:
adjust_L = adjust_R = (adjust_L > adjust_R) ? adjust_L : adjust_R;
gain_out_L = gain_out_R = db2lin(adjust_L);
break;
}
}
gain_L = gain_L * ef_a + gain_out_L * ef_ai;
gain_R = gain_R * ef_a + gain_out_R * ef_ai;
output_L[sample_index] += ptr->run_adding_gain * input_L[sample_index] * gain_L * mugain;
output_R[sample_index] += ptr->run_adding_gain * input_R[sample_index] * gain_R * mugain;
}
ptr->sum_L = sum_L;
ptr->sum_R = sum_R;
ptr->amp_L = amp_L;
ptr->amp_R = amp_R;
ptr->gain_L = gain_L;
ptr->gain_R = gain_R;
ptr->gain_out_L = gain_out_L;
ptr->gain_out_R = gain_out_R;
ptr->env_L = env_L;
ptr->env_R = env_R;
ptr->count = count;
*(ptr->rmsenv_L) = LIMIT(level_L, -60.0f, 20.0f);
*(ptr->rmsenv_R) = LIMIT(level_R, -60.0f, 20.0f);
*(ptr->modgain_L) = LIMIT(adjust_L, -60.0f, 20.0f);
*(ptr->modgain_R) = LIMIT(adjust_R, -60.0f, 20.0f);
}
/* Throw away a Dynamics effect instance. */
void
cleanup_Dynamics(LADSPA_Handle Instance) {
Dynamics * ptr = (Dynamics *)Instance;
free(ptr->rms_L);
free(ptr->rms_R);
free(ptr->as);
free(Instance);
}
LADSPA_Descriptor * stereo_descriptor = NULL;
/* tap_init() is called automatically when the plugin library is first
loaded. */
void
__CONSTRUCTOR tap_init() {
char ** port_names;
LADSPA_PortDescriptor * port_descriptors;
LADSPA_PortRangeHint * port_range_hints;
if ((stereo_descriptor =
(LADSPA_Descriptor *)malloc(sizeof(LADSPA_Descriptor))) == NULL)
exit(1);
stereo_descriptor->UniqueID = ID_STEREO;
stereo_descriptor->Label = strdup("tap_dynamics_st");
stereo_descriptor->Properties = 0;
stereo_descriptor->Name = strdup("TAP Dynamics (St)");
stereo_descriptor->Maker = strdup("Tom Szilagyi");
stereo_descriptor->Copyright = strdup("GPL");
stereo_descriptor->PortCount = PORTCOUNT_STEREO;
if ((port_descriptors =
(LADSPA_PortDescriptor *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortDescriptor))) == NULL)
exit(1);
stereo_descriptor->PortDescriptors = (const LADSPA_PortDescriptor *)port_descriptors;
port_descriptors[ATTACK] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[RELEASE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[OFFSGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[MUGAIN] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[STEREO] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODE] = LADSPA_PORT_INPUT | LADSPA_PORT_CONTROL;
port_descriptors[RMSENV_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[RMSENV_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODGAIN_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[MODGAIN_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_CONTROL;
port_descriptors[INPUT_L] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO;
port_descriptors[INPUT_R] = LADSPA_PORT_INPUT | LADSPA_PORT_AUDIO;
port_descriptors[OUTPUT_L] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO;
port_descriptors[OUTPUT_R] = LADSPA_PORT_OUTPUT | LADSPA_PORT_AUDIO;
if ((port_names =
(char **)calloc(PORTCOUNT_STEREO, sizeof(char *))) == NULL)
exit(1);
stereo_descriptor->PortNames = (const char **)port_names;
port_names[ATTACK] = strdup("Attack [ms]");
port_names[RELEASE] = strdup("Release [ms]");
port_names[OFFSGAIN] = strdup("Offset Gain [dB]");
port_names[MUGAIN] = strdup("Makeup Gain [dB]");
port_names[STEREO] = strdup("Stereo Mode");
port_names[MODE] = strdup("Function");
port_names[RMSENV_L] = strdup("Envelope Volume (L) [dB]");
port_names[RMSENV_R] = strdup("Envelope Volume (R) [dB]");
port_names[MODGAIN_L] = strdup("Gain Adjustment (L) [dB]");
port_names[MODGAIN_R] = strdup("Gain Adjustment (R) [dB]");
port_names[INPUT_L] = strdup("Input Left");
port_names[INPUT_R] = strdup("Input Right");
port_names[OUTPUT_L] = strdup("Output Left");
port_names[OUTPUT_R] = strdup("Output Right");
if ((port_range_hints =
((LADSPA_PortRangeHint *)calloc(PORTCOUNT_STEREO, sizeof(LADSPA_PortRangeHint)))) == NULL)
exit(1);
stereo_descriptor->PortRangeHints = (const LADSPA_PortRangeHint *)port_range_hints;
port_range_hints[ATTACK].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_LOW);
port_range_hints[RELEASE].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_MIDDLE);
port_range_hints[OFFSGAIN].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MUGAIN].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[RMSENV_L].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[RMSENV_R].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODGAIN_L].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODGAIN_R].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_DEFAULT_0);
port_range_hints[STEREO].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER |
LADSPA_HINT_DEFAULT_0);
port_range_hints[MODE].HintDescriptor =
(LADSPA_HINT_BOUNDED_BELOW |
LADSPA_HINT_BOUNDED_ABOVE |
LADSPA_HINT_INTEGER |
LADSPA_HINT_DEFAULT_0);
port_range_hints[ATTACK].LowerBound = 4.0f;
port_range_hints[ATTACK].UpperBound = 500.0f;
port_range_hints[RELEASE].LowerBound = 4.0f;
port_range_hints[RELEASE].UpperBound = 1000.0f;
port_range_hints[OFFSGAIN].LowerBound = -20.0f;
port_range_hints[OFFSGAIN].UpperBound = 20.0f;
port_range_hints[MUGAIN].LowerBound = -20.0f;
port_range_hints[MUGAIN].UpperBound = 20.0f;
port_range_hints[RMSENV_L].LowerBound = -60.0f;
port_range_hints[RMSENV_L].UpperBound = 20.0f;
port_range_hints[RMSENV_R].LowerBound = -60.0f;
port_range_hints[RMSENV_R].UpperBound = 20.0f;
port_range_hints[MODGAIN_L].LowerBound = -60.0f;
port_range_hints[MODGAIN_L].UpperBound = 20.0f;
port_range_hints[MODGAIN_R].LowerBound = -60.0f;
port_range_hints[MODGAIN_R].UpperBound = 20.0f;
port_range_hints[STEREO].LowerBound = 0;
port_range_hints[STEREO].UpperBound = 2.1f;
port_range_hints[MODE].LowerBound = 0;
port_range_hints[MODE].UpperBound = NUM_MODES - 0.9f;
port_range_hints[INPUT_L].HintDescriptor = 0;
port_range_hints[INPUT_R].HintDescriptor = 0;
port_range_hints[OUTPUT_L].HintDescriptor = 0;
port_range_hints[OUTPUT_R].HintDescriptor = 0;
stereo_descriptor->instantiate = instantiate_Dynamics;
stereo_descriptor->connect_port = connect_port_Dynamics;
stereo_descriptor->activate = NULL;
stereo_descriptor->run = run_Dynamics;
stereo_descriptor->run_adding = run_adding_Dynamics;
stereo_descriptor->set_run_adding_gain = set_run_adding_gain_Dynamics;
stereo_descriptor->deactivate = NULL;
stereo_descriptor->cleanup = cleanup_Dynamics;
}
void
delete_descriptor(LADSPA_Descriptor * descriptor) {
unsigned long index;
if (descriptor) {
free((char *)descriptor->Label);
free((char *)descriptor->Name);
free((char *)descriptor->Maker);
free((char *)descriptor->Copyright);
free((LADSPA_PortDescriptor *)descriptor->PortDescriptors);
for (index = 0; index < descriptor->PortCount; index++)
free((char *)(descriptor->PortNames[index]));
free((char **)descriptor->PortNames);
free((LADSPA_PortRangeHint *)descriptor->PortRangeHints);
free(descriptor);
}
}
/* tap_fini() is called automatically when the library is unloaded. */
void
__DESTRUCTOR tap_fini() {
delete_descriptor(stereo_descriptor);
}
/* Return a descriptor of the requested plugin type. */
const LADSPA_Descriptor *
ladspa_descriptor(unsigned long Index) {
switch (Index) {
case 0:
return stereo_descriptor;
default:
return NULL;
}
}
__INIT_FINI(tap_init, tap_fini);