This document is a subset of the Mojo documentation.
[TOC]
Mojom is the IDL for Mojo interfaces. Given a .mojom
file, the
bindings
generator can
output bindings for any supported language: C++, JavaScript, or
Java.
For a trivial example consider the following hypothetical Mojom file we write to
//services/widget/public/mojom/frobinator.mojom
:
module widget.mojom;
interface Frobinator {
Frobinate();
};
This defines a single interface named Frobinator
in a
module named widget.mojom
(and thus fully qualified in Mojom as
widget.mojom.Frobinator
.) Note that many interfaces and/or other types of
definitions (structs, enums, etc.) may be included in a single Mojom file.
If we add a corresponding GN target to
//services/widget/public/mojom/BUILD.gn
:
import("mojo/public/tools/bindings/mojom.gni")
mojom("mojom") {
sources = [
"frobinator.mojom",
]
}
and then build this target:
ninja -C out/r services/widget/public/mojom
we'll find several generated sources in our output directory:
out/r/gen/services/widget/public/mojom/frobinator.mojom.cc
out/r/gen/services/widget/public/mojom/frobinator.mojom.h
out/r/gen/services/widget/public/mojom/frobinator.mojom-shared.h
etc...
Each of these generated source modules includes a set of definitions representing the Mojom contents in C++. You can also build or depend on suffixed target names to get bindings for other languages. For example,
ninja -C out/r services/widget/public/mojom:mojom_js
ninja -C out/r services/widget/public/mojom:mojom_java
would generate JavaScript and Java bindings respectively, in the same generated output directory.
For more details regarding the generated outputs please see documentation for individual target languages.
Mojom IDL allows developers to define structs, unions, interfaces, constants, and enums, all within the context of a module. These definitions are used to generate code in the supported target languages at build time.
Mojom files may import other Mojom files in order to reference their definitions.
Mojom supports a few basic data types which may be composed into structs or used for message parameters.
Type | Description |
---|---|
bool |
Boolean type (true or false .) |
int8 , uint8 |
Signed or unsigned 8-bit integer. |
int16 , uint16 |
Signed or unsigned 16-bit integer. |
int32 , uint32 |
Signed or unsigned 32-bit integer. |
int64 , uint64 |
Signed or unsigned 64-bit integer. |
float , double |
32- or 64-bit floating point number. |
string |
UTF-8 encoded string. |
array<T> |
Array of any Mojom type T; for example, array<uint8> or array<array<string>> . |
array<T, N> |
Fixed-length array of any Mojom type T. The parameter N must be an integral constant. |
map<S, T> |
Associated array maping values of type S to values of type T. S may be a string , enum , or numeric type. |
handle |
Generic Mojo handle. May be any type of handle, including a wrapped native platform handle. |
handle<message_pipe> |
Generic message pipe handle. |
handle<shared_buffer> |
Shared buffer handle. |
handle<data_pipe_producer> |
Data pipe producer handle. |
handle<data_pipe_consumer> |
Data pipe consumer handle. |
handle<platform> |
A native platform/OS handle. |
pending_remote<InterfaceType> |
Any user-defined Mojom interface type. This is sugar for a strongly-typed message pipe handle which should eventually be used to make outgoing calls on the interface. |
pending_receiver<InterfaceType> |
A pending receiver for any user-defined Mojom interface type. This is sugar for a more strongly-typed message pipe handle which is expected to receive request messages and should therefore eventually be bound to an implementation of the interface. |
pending_associated_remote<InterfaceType> |
An associated interface handle. See Associated Interfaces |
pending_associated_receiver<InterfaceType> |
A pending associated receiver. See Associated Interfaces |
T? | An optional (nullable) value. Primitive numeric types (integers, floats, booleans, and enums) are not nullable. All other types are nullable. |
Every Mojom file may optionally specify a single module to which it belongs.
This is used strictly for aggregaging all defined symbols therein within a common Mojom namespace. The specific impact this has on generated binidngs code varies for each target language. For example, if the following Mojom is used to generate bindings:
module business.stuff;
interface MoneyGenerator {
GenerateMoney();
};
Generated C++ bindings will define a class interface MoneyGenerator
in the
business::stuff
namespace, while Java bindings will define an interface
MoneyGenerator
in the org.chromium.business.stuff
package. JavaScript
bindings at this time are unaffected by module declarations.
NOTE: By convention in the Chromium codebase, all Mojom files should
declare a module name with at least (and preferrably exactly) one top-level name
as well as an inner mojom
module suffix. e.g., chrome.mojom
,
business.mojom
, etc.
This convention makes it easy to tell which symbols are generated by Mojom when
reading non-Mojom code, and it also avoids namespace collisions in the fairly
common scenario where you have a real C++ or Java Foo
along with a
corresponding Mojom Foo
for its serialized representation.
If your Mojom references definitions from other Mojom files, you must import those files. Import syntax is as follows:
import "services/widget/public/mojom/frobinator.mojom";
Import paths are always relative to the top-level directory.
Note that circular imports are not supported.
Structs are defined using the struct keyword, and they provide a way to group related fields together:
struct StringPair {
string first;
string second;
};
Struct fields may be comprised of any of the types listed above in the Primitive Types section.
Default values may be specified as long as they are constant:
struct Request {
int32 id = -1;
string details;
};
What follows is a fairly comprehensive example using the supported field types:
struct StringPair {
string first;
string second;
};
enum AnEnum {
YES,
NO
};
interface SampleInterface {
DoStuff();
};
struct AllTheThings {
// Note that these types can never be marked nullable!
bool boolean_value;
int8 signed_8bit_value = 42;
uint8 unsigned_8bit_value;
int16 signed_16bit_value;
uint16 unsigned_16bit_value;
int32 signed_32bit_value;
uint32 unsigned_32bit_value;
int64 signed_64bit_value;
uint64 unsigned_64bit_value;
float float_value_32bit;
double float_value_64bit;
AnEnum enum_value = AnEnum.YES;
// Strings may be nullable.
string? maybe_a_string_maybe_not;
// Structs may contain other structs. These may also be nullable.
StringPair some_strings;
StringPair? maybe_some_more_strings;
// In fact structs can also be nested, though in practice you must always make
// such fields nullable -- otherwise messages would need to be infinitely long
// in order to pass validation!
AllTheThings? more_things;
// Arrays may be templated over any Mojom type, and are always nullable:
array<int32> numbers;
array<int32>? maybe_more_numbers;
// Arrays of arrays of arrays... are fine.
array<array<array<AnEnum>>> this_works_but_really_plz_stop;
// The element type may be nullable if it's a type which is allowed to be
// nullable.
array<AllTheThings?> more_maybe_things;
// Fixed-size arrays get some extra validation on the receiving end to ensure
// that the correct number of elements is always received.
array<uint64, 2> uuid;
// Maps follow many of the same rules as arrays. Key types may be any
// non-handle, non-collection type, and value types may be any supported
// struct field type. Maps may also be nullable.
map<string, int32> one_map;
map<AnEnum, string>? maybe_another_map;
map<StringPair, AllTheThings?>? maybe_a_pretty_weird_but_valid_map;
map<StringPair, map<int32, array<map<string, string>?>?>?> ridiculous;
// And finally, all handle types are valid as struct fields and may be
// nullable. Note that interfaces and interface requests (the "Foo" and
// "Foo&" type syntax respectively) are just strongly-typed message pipe
// handles.
handle generic_handle;
handle<data_pipe_consumer> reader;
handle<data_pipe_producer>? maybe_writer;
handle<shared_buffer> dumping_ground;
handle<message_pipe> raw_message_pipe;
pending_remote<SampleInterface>? maybe_a_sample_interface_client_pipe;
pending_receiver<SampleInterface> non_nullable_sample_pending_receiver;
pending_receiver<SampleInterface>? nullable_sample_pending_receiver;
pending_associated_remote<SampleInterface> associated_interface_client;
pending_associated_receiver<SampleInterface> associated_pending_receiver;
pending_associated_receiver<SampleInterface>? maybe_another_pending_receiver;
};
For details on how all of these different types translate to usable generated code, see documentation for individual target languages.
Mojom supports tagged unions using the union keyword. A union is a collection of fields which may taken the value of any single one of those fields at a time. Thus they provide a way to represent a variant value type while minimizing storage requirements.
Union fields may be of any type supported by struct fields. For example:
union ExampleUnion {
string str;
StringPair pair;
int64 id;
array<uint64, 2> guid;
SampleInterface iface;
};
For details on how unions like this translate to generated bindings code, see documentation for individual target languages.
Enumeration types may be defined using the enum keyword either directly within a module or nested within the namespace of some struct or interface:
module business.mojom;
enum Department {
SALES = 0,
DEV,
};
struct Employee {
enum Type {
FULL_TIME,
PART_TIME,
};
Type type;
// ...
};
Similar to C-style enums, individual values may be explicitly assigned within an enum definition. By default, values are based at zero and increment by 1 sequentially.
The effect of nested definitions on generated bindings varies depending on the target language. See documentation for individual target languages
Constants may be defined using the const keyword either directly within a module or nested within the namespace of some struct or interface:
module business.mojom;
const string kServiceName = "business";
struct Employee {
const uint64 kInvalidId = 0;
enum Type {
FULL_TIME,
PART_TIME,
};
uint64 id = kInvalidId;
Type type;
};
The effect of nested definitions on generated bindings varies depending on the target language. See documentation for individual target languages
An interface is a logical bundle of parameterized request messages. Each
request message may optionally define a parameterized response message. Here's
an example to define an interface Foo
with various kinds of requests:
interface Foo {
// A request which takes no arguments and expects no response.
MyMessage();
// A request which has some arguments and expects no response.
MyOtherMessage(string name, array<uint8> bytes);
// A request which expects a single-argument response.
MyMessageWithResponse(string command) => (bool success);
// A request which expects a response with multiple arguments.
MyMessageWithMoarResponse(string a, string b) => (int8 c, int8 d);
};
Anything which is a valid struct field type (see Structs) is also a valid request or response argument type. The type notation is the same for both.
Mojom definitions may have their meaning altered by attributes, specified with a syntax similar to Java or C# attributes. There are a handle of interesting attributes supported today.
-
[Sync]
: TheSync
attribute may be specified for any interface method which expects a response. This makes it so that callers of the method can wait synchronously for a response. See Synchronous Calls in the C++ bindings documentation. Note that sync methods are only actually synchronous when called from C++. -
[Default]
: TheDefault
attribute may be used to specify an enumerator value that will be used if anExtensible
enumeration does not deserialize to a known value on the receiver side, i.e. the sender is using a newer version of the enum. This allows unknown values to be mapped to a well-defined value that can be appropriately handled. -
[Extensible]
: TheExtensible
attribute may be specified for any enum definition. This essentially disables builtin range validation when receiving values of the enum type in a message, allowing older bindings to tolerate unrecognized values from newer versions of the enum.Note: in the future, an
Extensible
enumeration will require that aDefault
enumerator value also be specified. -
[Native]
: TheNative
attribute may be specified for an empty struct declaration to provide a nominal bridge between Mojo IPC and legacyIPC::ParamTraits
orIPC_STRUCT_TRAITS*
macros. See Repurposing Legacy IPC Traits for more details. Note support for this attribute is strictly limited to C++ bindings generation. -
[MinVersion=N]
: TheMinVersion
attribute is used to specify the version at which a given field, enum value, interface method, or method parameter was introduced. See Versioning for more details. -
[Stable]
: TheStable
attribute specifies that a given mojom type or interface definition can be considered stable over time, meaning it is safe to use for things like persistent storage or communication between independent version-skewed binaries. Stable definitions may only depend on builtin mojom types or other stable definitions, and changes to such definitions MUST preserve backward-compatibility through appropriate use of versioning. Backward-compatibility of changes is enforced in the Chromium tree using a strict presubmit check. See Versioning for more details on backward-compatibility constraints. -
[Uuid=<UUID>]
: Specifies a UUID to be associated with a given interface. The UUID is intended to remain stable across all changes to the interface definition, including name changes. The value given for this attribute should be a standard UUID string representation as specified by RFC 4122. New UUIDs can be generated with common tools such asuuidgen
. -
[EnableIf=value]
: TheEnableIf
attribute is used to conditionally enable definitions when the mojom is parsed. If themojom
target in the GN file does not include the matchingvalue
in the list ofenabled_features
, the definition will be disabled. This is useful for mojom definitions that only make sense on one platform. Note that theEnableIf
attribute can only be set once per definition.
When the bindings generator successfully processes an input Mojom file, it emits corresponding code for each supported target language. For more details on how Mojom concepts translate to a given target langauge, please refer to the bindings API documentation for that language:
Regardless of target language, all interface messages are validated during deserialization before they are dispatched to a receiving implementation of the interface. This helps to ensure consitent validation across interfaces without leaving the burden to developers and security reviewers every time a new message is added.
If a message fails validation, it is never dispatched. Instead a connection error is raised on the binding object (see C++ Connection Errors, Java Connection Errors, or JavaScript Connection Errors for details.)
Some baseline level of validation is done automatically for primitive Mojom types.
Mojom fields or parameter values (e.g., structs, interfaces, arrays, etc.) may be marked nullable in Mojom definitions (see Primitive Types.) If a field or parameter is not marked nullable but a message is received with a null value in its place, that message will fail validation.
Enums declared in Mojom are automatically validated against the range of legal values. For example if a Mojom declares the enum:
enum AdvancedBoolean {
TRUE = 0,
FALSE = 1,
FILE_NOT_FOUND = 2,
};
and a message is received with the integral value 3 (or anything other than 0,
1, or 2) in place of some AdvancedBoolean
field or parameter, the message will
fail validation.
*** note NOTE: It's possible to avoid this type of validation error by explicitly marking an enum as Extensible if you anticipate your enum being exchanged between two different versions of the binding interface. See Versioning.
There are a host of internal validation errors that may occur when a malformed message is received, but developers should not be concerned with these specifically; in general they can only result from internal bindings bugs, compromised processes, or some remote endpoint making a dubious effort to manually encode their own bindings messages.
It's also possible for developers to define custom validation logic for specific Mojom struct types by exploiting the type mapping system for C++ bindings. Messages rejected by custom validation logic trigger the same validation failure behavior as the built-in type validation routines.
As mentioned in the Primitive Types section above, pending_remote
and pending_receiver fields and parameters may be marked as associated
. This
essentially means that they are piggy-backed on some other interface's message
pipe.
Because individual interface message pipes operate independently there can be no relative ordering guarantees among them. Associated interfaces are useful when one interface needs to guarantee strict FIFO ordering with respect to one or more other interfaces, as they allow interfaces to share a single pipe.
Currently associated interfaces are only supported in generated C++ bindings. See the documentation for C++ Associated Interfaces.
*** note NOTE: You don't need to worry about versioning if you don't care about backwards compatibility. Specifically, all parts of Chrome are updated atomically today and there is not yet any possibility of any two Chrome processes communicating with two different versions of any given Mojom interface.
Services extend their interfaces to support new features over time, and clients want to use those new features when they are available. If services and clients are not updated at the same time, it's important for them to be able to communicate with each other using different snapshots (versions) of their interfaces.
This document shows how to extend Mojom interfaces in a backwards-compatible way. Changing interfaces in a non-backwards-compatible way is not discussed, because in that case communication between different interface versions is impossible anyway.
You can use the MinVersion
attribute to indicate from which
version a struct field is introduced. Assume you have the following struct:
struct Employee {
uint64 employee_id;
string name;
};
and you would like to add birthday and nickname fields. You can do:
struct Employee {
uint64 employee_id;
string name;
[MinVersion=1] Date? birthday;
[MinVersion=1] string? nickname;
};
By default, fields belong to version 0. New fields must be appended to the
struct definition (i.e., existing fields must not change ordinal value)
with the MinVersion
attribute set to a number greater than any previous
existing versions.
The value of MinVersion
is unrelated to ordinals. The choice of a particular
version number is arbitrary. All its usage means is that a field isn't present
before the numbered version.
*** note
NOTE: do not change existing fields in versioned structs, as this is
not backwards-compatible. Instead, rename the old field to make its
deprecation clear and add a new field with a new MinVersion
number.
Ordinal value refers to the relative positional layout of a struct's fields
(and an interface's methods) when encoded in a message. Implicitly, ordinal
numbers are assigned to fields according to lexical position. In the example
above, employee_id
has an ordinal value of 0 and name
has an ordinal value
of 1.
Ordinal values can be specified explicitly using **@**
notation, subject to
the following hard constraints:
- For any given struct or interface, if any field or method explicitly specifies an ordinal value, all fields or methods must explicitly specify an ordinal value.
- For an N-field struct or N-method interface, the set of explicitly assigned ordinal values must be limited to the range [0, N-1]. Interfaces should include placeholder methods to fill the ordinal positions of removed methods (for example "Unused_Message_7@7()" or "RemovedMessage@42()", etc).
You may reorder fields, but you must ensure that the ordinal values of existing fields remain unchanged. For example, the following struct remains backwards-compatible:
struct Employee {
uint64 employee_id@0;
[MinVersion=1] Date? birthday@2;
string name@1;
[MinVersion=1] string? nickname@3;
};
*** note NOTE: Newly added fields of Mojo object or handle types MUST be nullable. See Primitive Types.
There are two dimensions on which an interface can be extended
Appending New Parameters To Existing Methods : Parameter lists are treated as structs internally, so all the rules of versioned structs apply to method parameter lists. The only difference is that the version number is scoped to the whole interface rather than to any individual parameter list.
Please note that adding a response to a message which did not previously
expect a response is a not a backwards-compatible change.
Appending New Methods : Similarly, you can reorder methods with explicit ordinal values as long as the ordinal values of existing methods are unchanged.
For example:
// Old version:
interface HumanResourceDatabase {
AddEmployee(Employee employee) => (bool success);
QueryEmployee(uint64 id) => (Employee? employee);
};
// New version:
interface HumanResourceDatabase {
AddEmployee(Employee employee) => (bool success);
QueryEmployee(uint64 id, [MinVersion=1] bool retrieve_finger_print)
=> (Employee? employee,
[MinVersion=1] array<uint8>? finger_print);
[MinVersion=1]
AttachFingerPrint(uint64 id, array<uint8> finger_print)
=> (bool success);
};
Similar to versioned structs, when you pass the parameter
list of a request or response method to a destination using an older version of
an interface, unrecognized fields are silently discarded. However, if the method
call itself is not recognized, it is considered a validation error and the
receiver will close its end of the interface pipe. For example, if a client on
version 1 of the above interface sends an AttachFingerPrint
request to an
implementation of version 0, the client will be disconnected.
Bindings target languages that support versioning expose means to query or
assert the remote version from a client handle (e.g., an
mojo::Remote<T>
in C++ bindings.)
See C++ Versioning Considerations and Java Versioning Considerations
By default, enums are non-extensible, which means that generated message validation code does not expect to see new values in the future. When an unknown value is seen for a non-extensible enum field or parameter, a validation error is raised.
If you want an enum to be extensible in the future, you can apply the
[Extensible]
attribute:
[Extensible]
enum Department {
SALES,
DEV,
};
And later you can extend this enum without breaking backwards compatibility:
[Extensible]
enum Department {
SALES,
DEV,
[MinVersion=1] RESEARCH,
};
*** note
NOTE: For versioned enum definitions, the use of a [MinVersion]
attribute
is strictly for documentation purposes. It has no impact on the generated code.
With extensible enums, bound interface implementations may receive unknown enum values and will need to deal with them gracefully. See C++ Versioning Considerations for details.
It's possible to rename versioned structs by using the [RenamedFrom]
attribute.
RenamedFrom
module asdf.mojom;
// Old version:
[Stable]
struct OldStruct {
};
// New version:
[Stable, RenamedFrom="asdf.mojom.OldStruct"]
struct NewStruct {
};
If there are multiple components depending on the same mojom target within one binary,
the target will need to be defined as mojom_component
instead of mojom
.
Since mojom
targets are generated source_set
targets and mojom_component
targets
are generated component
targets, you would use mojom_component
in the same cases
where you would use component
for non-mojom files.
*** note
NOTE: by default, components for both blink and non-blink bindings are generated.
Use the disable_variants
target parameter to generate only non-blink bindings.
You can also generate a source_set
for one of the variants by defining
export_*
parameters for the mojom_component
target.
Below is the (BNF-ish) context-free grammar of the Mojom language:
MojomFile = StatementList
StatementList = Statement StatementList | Statement
Statement = ModuleStatement | ImportStatement | Definition
ModuleStatement = AttributeSection "module" Identifier ";"
ImportStatement = "import" StringLiteral ";"
Definition = Struct Union Interface Enum Const
AttributeSection = <empty> | "[" AttributeList "]"
AttributeList = <empty> | NonEmptyAttributeList
NonEmptyAttributeList = Attribute
| Attribute "," NonEmptyAttributeList
Attribute = Name
| Name "=" Name
| Name "=" Literal
Struct = AttributeSection "struct" Name "{" StructBody "}" ";"
| AttributeSection "struct" Name ";"
StructBody = <empty>
| StructBody Const
| StructBody Enum
| StructBody StructField
StructField = AttributeSection TypeSpec Name Ordinal Default ";"
Union = AttributeSection "union" Name "{" UnionBody "}" ";"
UnionBody = <empty> | UnionBody UnionField
UnionField = AttributeSection TypeSpec Name Ordinal ";"
Interface = AttributeSection "interface" Name "{" InterfaceBody "}" ";"
InterfaceBody = <empty>
| InterfaceBody Const
| InterfaceBody Enum
| InterfaceBody Method
Method = AttributeSection Name Ordinal "(" ParamterList ")" Response ";"
ParameterList = <empty> | NonEmptyParameterList
NonEmptyParameterList = Parameter
| Parameter "," NonEmptyParameterList
Parameter = AttributeSection TypeSpec Name Ordinal
Response = <empty> | "=>" "(" ParameterList ")"
TypeSpec = TypeName "?" | TypeName
TypeName = BasicTypeName
| Array
| FixedArray
| Map
| InterfaceRequest
BasicTypeName = Identifier | "associated" Identifier | HandleType | NumericType
NumericType = "bool" | "int8" | "uint8" | "int16" | "uint16" | "int32"
| "uint32" | "int64" | "uint64" | "float" | "double"
HandleType = "handle" | "handle" "<" SpecificHandleType ">"
SpecificHandleType = "message_pipe"
| "shared_buffer"
| "data_pipe_consumer"
| "data_pipe_producer"
| "platform"
Array = "array" "<" TypeSpec ">"
FixedArray = "array" "<" TypeSpec "," IntConstDec ">"
Map = "map" "<" Identifier "," TypeSpec ">"
InterfaceRequest = Identifier "&" | "associated" Identifier "&"
Ordinal = <empty> | OrdinalValue
Default = <empty> | "=" Constant
Enum = AttributeSection "enum" Name "{" NonEmptyEnumValueList "}" ";"
| AttributeSection "enum" Name "{" NonEmptyEnumValueList "," "}" ";"
NonEmptyEnumValueList = EnumValue | NonEmptyEnumValueList "," EnumValue
EnumValue = AttributeSection Name
| AttributeSection Name "=" Integer
| AttributeSection Name "=" Identifier
Const = "const" TypeSpec Name "=" Constant ";"
Constant = Literal | Identifier ";"
Identifier = Name | Name "." Identifier
Literal = Integer | Float | "true" | "false" | "default" | StringLiteral
Integer = IntConst | "+" IntConst | "-" IntConst
IntConst = IntConstDec | IntConstHex
Float = FloatConst | "+" FloatConst | "-" FloatConst
; The rules below are for tokens matched strictly according to the given regexes
Identifier = /[a-zA-Z_][0-9a-zA-Z_]*/
IntConstDec = /0|(1-9[0-9]*)/
IntConstHex = /0[xX][0-9a-fA-F]+/
OrdinalValue = /@(0|(1-9[0-9]*))/
FloatConst = ... # Imagine it's close enough to C-style float syntax.
StringLiteral = ... # Imagine it's close enough to C-style string literals, including escapes.
Mojom Message Format : Describes the wire format used by Mojo bindings interfaces over message pipes.
Input Format of Mojom Message Validation Tests : Describes a text format used to facilitate bindings message validation tests.