-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2.ResNet_LSHL2_BCE.py
303 lines (259 loc) · 11.8 KB
/
2.ResNet_LSHL2_BCE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:lkaming
@File:2.ResNet_LSHL2_BCE.py
@Time:2022/10/6 20:40
"""
import time
import torch.nn as nn
import torch.optim as optim
from core import ramps
from core.config import *
from core.eval import validate, cal_f1
from core.utils import parameters_string, load_pretrained, create_model, save_checkpoint, AverageMeterSet, fix_BN_stat, \
cal_for_batch
from data_prepare import *
from losses.L1 import L1
from losses.L2 import L2
from losses.LSH import LSH
from teacher_model.ConvMixer import ConvMixer_768_32
def adjust_learning_rate(optimizer, epoch, step_in_epoch, total_steps_in_epoch):
lr = args.lr
epoch = epoch + step_in_epoch / total_steps_in_epoch
# LR warm-up to handle large minibatch sizes from https://arxiv.org/abs/1706.02677
if args.lr_rampup != 0:
lr = ramps.linear_rampup(epoch, args.lr_rampup) * (args.lr - args.initial_lr) + args.initial_lr
# Cosine LR rampdown from https://arxiv.org/abs/1608.03983 (but one cycle only)
if args.lr_rampdown_epochs:
assert args.lr_rampdown_epochs >= args.epochs
lr *= ramps.cosine_rampdown(epoch, args.lr_rampdown_epochs)
if args.lr_reduce_epochs:
reduce_epochs = [int(x) for x in args.lr_reduce_epochs.split(',')]
for ep in reduce_epochs:
if epoch >= ep:
lr /= 2
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(train_loader, model, model_t, class_criterion, criterion_kd, optimizer, epoch):
global global_step
start_time = time.time()
meters = AverageMeterSet()
Sig = torch.nn.Sigmoid()
# switch to train mode
model.train()
if args.fix_BN_stat:
model.apply(fix_BN_stat)
# teacher model select eval mode
model_t.eval()
end = time.time()
for batch_idx, (inputs, labels, age_genders,_) in enumerate(train_loader):
inputs, labels, age_genders = inputs.to(dtype=torch.float32), labels.to(dtype=torch.float32), \
age_genders.to(dtype=torch.float32)
# measure data loading time
meters.update('data_time', time.time() - end)
# adjust_learning_rate(optimizer, epoch, batch_idx, len(train_loader))
inputs, labels,age_genders = inputs.cuda(), labels.cuda(),age_genders.cuda()
feat_s, logit_s = model(inputs, age_genders, is_feat=True)
with torch.no_grad():
feat_t, logit_t = model_t(inputs, age_genders, is_feat=True)
feat_t = [f.detach() for f in feat_t]
# cls + kl div
loss_cls = class_criterion(logit_s, labels)
f_s = feat_s[-1]
f_t = feat_t[-1]
if args.distill == 'lshl2_s':
loss_kd = criterion_kd(f_s, f_t, logit_t, labels)
else:
loss_kd = criterion_kd(f_s, f_t)
loss = args.gamma * loss_cls + args.beta * loss_kd
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
global_step += 1
# cal_acc
output = Sig(logit_s)
acc, _ = cal_for_batch(output.data, labels, args.thre)
meters.update('lr', optimizer.param_groups[0]['lr'])
meters.update('loss', loss.item())
meters.update('class_loss', loss_cls.item())
meters.update('kd_loss', loss_kd.item())
meters.update("acc", float(acc), inputs.size(0))
# measure elapsed time
meters.update('batch_time', time.time() - end)
end = time.time()
if batch_idx % args.print_freq == 0:
logger.info(
'Epoch: [{0}][{1}/{2}]\t'
'Loss {meters[loss]:.3f}\t'
'Class {meters[class_loss]:.4f}\t'
'KD {meters[kd_loss]:.4f}\t'
"Acc {meters[acc]:.4f}\t".format(epoch, batch_idx, len(train_loader), meters=meters))
logger.info("*TRAIN Acc {:.3f} ({:.1f}/{:.1f})".format(meters['acc'].avg, meters['acc'].sum / 100, meters['acc'].count))
# if writer is not None:
# writer.add_scalar("train/lr", meters['lr'].avg, epoch)
# writer.add_scalar("train/loss", meters['loss'].avg, epoch)
logger.info("--- training epoch in {} seconds ---".format(time.time() - start_time))
return meters
if __name__ == '__main__':
global_step = 0
# general
args = get_args_parser()
# change setting for KD
args.beta = 0.5
args.pretrained_s = "pretrained/feat_pretrained/checkpoint.final.ckpt"
# set random_seed
seed_everything(args.seed)
# data prepared
start = time.time()
datas, label, ex_feat = CategoryDataset.make_data_loading(args.data_path)
if args.wandb:
import wandb
anony = "must"
def class2dict(f):
return dict((name, getattr(f, name)) for name in dir(f) if not name.startswith('__'))
run = wandb.init(project='KD_20class',
name="LHSL2_KD_" + datetime.today().strftime('%Y-%m-%d %H:%M:%S'),
config=class2dict(args),
group='LHSL2_KD',
job_type="train",
anonymous=anony)
# debug enable
if args.debug:
datas = datas[:10]
label = label[:10]
ex_feat = ex_feat[:10]
args.epochs = 2
# save experiments config and log
filename = os.path.basename(__file__).split(".")[1]
set_save_path(args, filename)
write_settings(args)
# checkpoint path
checkpoint_path = args.save_path + "/checkpoint"
if not os.path.exists(checkpoint_path):
os.makedirs(checkpoint_path)
args.checkpoint_path = checkpoint_path
# args.save_path
logger = get_logger(args.save_path, "main")
# data split
all_data = CategoryDataset.make_data_split(datas, label, ex_feat)
# train_data prepared
train_dataset = CategoryDataset(all_data["train_data"][0], all_data["train_label"], all_data["train_data"][1])
train_loader = CategoryDataset.create_train_loader(train_dataset, args=args)
val_dataset = CategoryDataset(all_data["val_data"][0], all_data["val_label"], all_data["val_data"][1])
val_loader = CategoryDataset.create_eval_loader(val_dataset, args=args)
logger.info(f"=> Loading Finish,waste: {time.time() - start} seconds")
# teacher model prepared
# logger.info(f"=> creating teacher model '{args.arch_t}'")
model_t = ConvMixer_768_32(20).cuda()
logger.info(f"=> Create Teacher Model '{type(model_t).__name__}'")
logger.info(parameters_string(model_t))
model_t = load_pretrained(model_t, args.pretrained_t, None, logger,DataParallel=False)
# TODO: shuffle_last_conv_classifier,how it work?
model_t.eval()
weight, bias = model_t.get_classifier_weight()
t_dim = weight.shape[1]
logger.info('=> teacher feature dim: {}'.format(t_dim))
logger.info('=> teacher classifier weight std: {}'.format(weight.std()))
if args.std is None:
args.std = weight.std()
if args.hash_num is None:
args.hash_num = 4 * t_dim
# create student model
model_s = create_model(args.stu_arch, args.num_classes, DataParallel=False, student_dim=t_dim,
force_2FC=args.force_2FC, change_first=True)
logger.info(f"=> Create Student Model '{args.stu_arch}'")
logger.info(parameters_string(model_s))
model_s = load_pretrained(model_s, args.pretrained_s, args.stu_arch, logger,DataParallel=False)
logger.info('=> creating {} for knowledge distillation'.format(args.distill))
if args.distill == 'l1':
criterion_kd = L1()
elif args.distill == 'l2':
criterion_kd = L2()
elif args.distill == 'lsh':
logger.info('=> LSH: D:{} N:{} std:{} LSH_loss:{}'.format(t_dim, args.hash_num, args.std, args.class_criterion))
criterion_kd = LSH(t_dim, args.hash_num, args.std, with_l2=False, LSH_loss=args.class_criterion)
elif args.distill == 'lshl2':
logger.info(
'=> LSHl2: D:{} N:{} std:{} LSH_loss:{}'.format(t_dim, args.hash_num, args.std, args.class_criterion))
criterion_kd = LSH(t_dim, args.hash_num, args.std, with_l2=True, LSH_loss=args.class_criterion)
else:
raise NotImplementedError(args.distill)
# logger.info("=> creating student model '{}'".format(type(model_s).__name__)
criterion_kd = criterion_kd.cuda()
logger.info('=> creating {} for class criterion'.format(args.class_criterion))
if args.class_criterion == 'BCE':
class_criterion = nn.BCEWithLogitsLoss()
else:
raise NotImplementedError(args.class_criterion)
if args.finetune_fc:
paras = model_s.feat_fc.parameters()
else:
paras = model_s.parameters()
optimizer = optim.AdamW(paras, lr=args.lr, weight_decay=args.weight_decay)
# optionally resume from a checkpoint
if args.resume:
assert os.path.isfile(args.resume), "=> no checkpoint found at '{}'".format(args.resume)
logger.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
global_step = checkpoint['global_step']
args.best_F1 = checkpoint["best_f1"]
model_s.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
logger.info("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
if 'lsh' in args.distill:
if args.bias == '0':
logger.info('=> init LSH bias by 0')
elif args.bias == 'median':
logger.info('=> init LSH bias by median')
criterion_kd.init_bias(model_t, train_loader, args.print_freq, use_median=True)
elif args.bias == 'mean':
logger.info('=> init LSH bias by mean')
criterion_kd.init_bias(model_t, train_loader, args.print_freq, use_median=False)
else:
raise NotImplementedError(args.bias)
logger.info('=> evaluate teacher')
args.cal_F1 = 0
t_pred_val, t_label_val,_ = validate(val_loader, model_t, logger, args)
acc, F1, F1_all = cal_f1(t_pred_val, t_label_val, 0.5)
logger.info(f'=> Accuracy_val_gross:, {acc}, F1_val_gross:, {F1}, F1_val_all:, {F1_all}')
# early stop
# todo: tonight d0
for epoch in range(args.start_epoch, args.epochs):
# train for one epoch
train_meters=train(train_loader, model_s, model_t, class_criterion, criterion_kd, optimizer, epoch)
pred_val, label_val,val_meters = validate(val_loader, model_s, logger, args)
acc, F1, F1_all= cal_f1(pred_val, label_val, 0.5)
logger.info(f'=> Evaluate Student Accuracy_val_gross:, {acc}, F1_val_gross:, {F1}, F1_val_all:, {F1_all}')
if args.wandb:
wandb.log({f"KD Epoch": epoch + 1,
f"KD avg_train_loss": train_meters["class_loss"].avg,
f"KD avg_val_loss": val_meters["loss"].avg,
})
is_best = F1 > args.best_F1
if is_best:
args.best_F1 = F1
torch.save(model_s.state_dict(), args.checkpoint_path + "/bst_F1.pt")
logger.info('\t')
logger.info("=> save bst F1 model")
# resume training
if args.checkpoint_epochs and (epoch + 1) % args.checkpoint_epochs == 0:
save_checkpoint({
'epoch': epoch + 1,
'global_step': global_step,
'arch': args.stu_arch,
'state_dict': model_s.state_dict(),
'best_f1': args.best_F1,
'optimizer': optimizer.state_dict(),
}, is_best, checkpoint_path, epoch + 1, logger)
save_checkpoint({
'epoch': epoch + 1,
'global_step': global_step,
'arch': args.stu_arch,
'state_dict': model_s.state_dict(),
'best_f1': args.best_F1,
}, False, checkpoint_path, 'final', logger)
logger.info("*"*30)
logger.info("best_f1 {}".format(args.best_F1))