-
Notifications
You must be signed in to change notification settings - Fork 97
/
Copy pathreport.py
111 lines (81 loc) · 4.28 KB
/
report.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3.9
# MIT License
# Copyright (c) 2023 Hoel Kervadec
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
from pathlib import Path
import numpy as np
def main(args) -> None:
print(f"Reporting on {len(args.folders)} folders.")
main_metric: str = args.metrics[0]
best_epoch: list[int] = display_metric(args, main_metric, args.folders, args.axises)
for metric in args.metrics[1:]:
display_metric(args, metric, args.folders, args.axises, best_epoch)
def display_metric(args, metric: str, folders: list[str], axises: tuple[int], best_epoch: list[int] = None):
print(f"{metric} (classes {axises})")
if not best_epoch:
get_epoch = True
best_epoch = [0] * len(folders)
else:
get_epoch = False
for i, folder in enumerate(folders):
file: Path = Path(folder, metric).with_suffix(".npy")
data: np.ndarray = np.load(file)[:, :, axises] # Epoch, sample, classes
averages: np.ndarray = data.mean(axis=(1, 2))
stds: np.ndarray = data.std(axis=(1, 2))
class_wise_avg: np.ndarray = data.mean(axis=1)
class_wise_std: np.ndarray = data.std(axis=1)
if get_epoch:
if args.mode == "max":
best_epoch[i] = np.argmax(averages)
elif args.mode == "min":
best_epoch[i] = np.argmin(averages)
val: float
val_std: float
if args.mode in ['max', 'min']:
val = averages[best_epoch[i]]
val_std = stds[best_epoch[i]]
val_class_wise = class_wise_avg[best_epoch[i]]
else:
val = averages[-args.last_n_epc:].mean()
val_std = averages[-args.last_n_epc:].std()
val_class_wise = class_wise_avg[-args.last_n_epc:].mean(axis=0)
assert val_class_wise.shape == (len(axises),)
precision: int = args.precision
print(f"\t{Path(folder).name}: {val:.{precision}f} ({val_std:.{precision}f}) at epoch {best_epoch[i]}")
if len(axises) > 1 and args.detail_axises:
val_cw_std = class_wise_std[best_epoch[i]]
assert val_cw_std.shape == (len(axises),)
# print(f"\t\t {' '.join(f'{a}={val_class_wise[j]:.{precision}f}' for j,a in enumerate(axises))}")
print(f"\t\t {' '.join(f'{a}={val_class_wise[j]:.{precision}f} ({val_cw_std[j]:.{precision}f})' for j,a in enumerate(axises))}")
return best_epoch
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Plot data over time')
parser.add_argument('--folders', type=str, required=True, nargs='+', help="The folders containing the file")
parser.add_argument('--metrics', type=str, required=True, nargs='+')
parser.add_argument('--axises', type=int, required=True, nargs='+')
parser.add_argument('--mode', type=str, default='max', choices=['max', 'min', 'avg'])
parser.add_argument('--last_n_epc', type=int, default=1)
parser.add_argument('--precision', type=int, default=4)
parser.add_argument('--debug', action='store_true', help="Dummy for compatibility.")
parser.add_argument('--detail_axises', action='store_true',
help="Print each axis value on top of the mean")
args = parser.parse_args()
print(args)
return args
if __name__ == "__main__":
main(get_args())