From b62e1ffc2672ea3eaee1f44ba9b89d6fdb788f2b Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 28 Feb 2024 15:34:54 +0100 Subject: [PATCH 01/24] Make sensor downsampling consistent with rest of package. --- lensless/hardware/sensor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lensless/hardware/sensor.py b/lensless/hardware/sensor.py index 08d8fa46..9ef4bb82 100644 --- a/lensless/hardware/sensor.py +++ b/lensless/hardware/sensor.py @@ -319,7 +319,7 @@ def downsample(self, factor): self.pixel_size = self.pixel_size * factor self.pitch = self.pitch * factor - self.resolution = (self.resolution / factor).astype(int) + self.resolution = np.round(self.resolution / factor).astype(int) self.size = self.pixel_size * self.resolution self.image_shape = self.resolution if self.color: From 223f6a2918db8e4839fbbf0aa75e99642ca256d4 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 28 Feb 2024 15:38:53 +0100 Subject: [PATCH 02/24] Add support for multimask training. --- configs/train_unrolledADMM.yaml | 1 + configs/train_unrolled_multimask.yaml | 23 ++++++ lensless/eval/benchmark.py | 30 ++++++- lensless/recon/recon.py | 6 +- lensless/recon/rfft_convolve.py | 10 ++- lensless/recon/trainable_recon.py | 10 ++- lensless/recon/unrolled_admm.py | 16 ++-- lensless/recon/utils.py | 31 ++++++- lensless/utils/dataset.py | 115 +++++++++++++++++++++++++- scripts/recon/train_unrolled.py | 52 ++++++++++-- 10 files changed, 267 insertions(+), 27 deletions(-) create mode 100644 configs/train_unrolled_multimask.yaml diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index 0c7e8e47..ecddc234 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -10,6 +10,7 @@ start_delay: null # Dataset files: dataset: /scratch/bezzam/DiffuserCam_mirflickr/dataset # Simulated : "mnist", "fashion_mnist", "cifar10", "CelebA". Measure :"DiffuserCam" + huggingface_dataset: null celeba_root: null # path to parent directory of CelebA: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html psf: data/psf/diffusercam_psf.tiff diffusercam_psf: True diff --git a/configs/train_unrolled_multimask.yaml b/configs/train_unrolled_multimask.yaml new file mode 100644 index 00000000..ff639b5c --- /dev/null +++ b/configs/train_unrolled_multimask.yaml @@ -0,0 +1,23 @@ +# python scripts/recon/train_unrolled.py -cn train_unrolled_multimask +defaults: + - train_unrolledADMM + - _self_ + +# Dataset +files: + dataset: bezzam/DigiCam-Mirflickr-MultiMask-1K + huggingface_dataset: True + downsample: 1.6 + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + +alignment: + # when there is no downsampling + topright: [80, 100] # height, width + height: 200 + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 10 + diff --git a/lensless/eval/benchmark.py b/lensless/eval/benchmark.py index c0dffd6e..13c3912b 100644 --- a/lensless/eval/benchmark.py +++ b/lensless/eval/benchmark.py @@ -32,6 +32,7 @@ def benchmark( batchsize=1, metrics=None, crop=None, + alignment=False, save_idx=None, output_dir=None, unrolled_output_factor=False, @@ -58,6 +59,8 @@ def benchmark( Directory to save the predictions, by default save in working directory if save_idx is provided. crop : dict, optional Dictionary of crop parameters (vertical: [start, end], horizontal: [start, end]), by default None (no crop). + alignment : dict, optional + Similar to crop. Dictionary of alignment parameters (topright: [height, width], height: pix). Expects ``recon_width`` in ``dataset``. By default None (no alignment). unrolled_output_factor : bool, optional If True, compute metrics for unrolled output, by default False. return_average : bool, optional @@ -73,6 +76,11 @@ def benchmark( assert isinstance(model._psf, torch.Tensor), "model need to be constructed with torch support" device = model._psf.device + if hasattr(dataset, "psfs"): + multipsf_dataset = True + else: + multipsf_dataset = False + if output_dir is None: output_dir = os.getcwd() else: @@ -107,7 +115,14 @@ def benchmark( model.reset() idx = 0 with torch.no_grad(): - for lensless, lensed in tqdm(dataloader): + for batch in tqdm(dataloader): + if multipsf_dataset: + lensless, lensed, psfs = batch + psfs = psfs.to(device) + else: + lensless, lensed = batch + psfs = None + lensless = lensless.to(device) lensed = lensed.to(device) @@ -118,13 +133,15 @@ def benchmark( # compute predictions if batchsize == 1: + # TODO : handle multipsf + assert not multipsf_dataset model.set_data(lensless) prediction = model.apply( plot=False, save=False, output_intermediate=unrolled_output_factor, **kwargs ) else: - prediction = model.batch_call(lensless, **kwargs) + prediction = model.batch_call(lensless, psfs, **kwargs) if unrolled_output_factor: unrolled_out = prediction[-1] @@ -134,7 +151,14 @@ def benchmark( prediction = prediction.reshape(-1, *prediction.shape[-3:]).movedim(-1, -3) lensed = lensed.reshape(-1, *lensed.shape[-3:]).movedim(-1, -3) - if crop is not None: + if alignment is not None: + prediction = prediction[ + ..., + alignment["topright"][0] : alignment["topright"][0] + alignment["height"], + alignment["topright"][1] : alignment["topright"][1] + alignment["width"], + ] + # expected that lensed is also reshaped accordingly + elif crop is not None: prediction = prediction[ ..., crop["vertical"][0] : crop["vertical"][1], diff --git a/lensless/recon/recon.py b/lensless/recon/recon.py index a5179927..8ef393e4 100644 --- a/lensless/recon/recon.py +++ b/lensless/recon/recon.py @@ -285,6 +285,7 @@ def __init__( else: raise ValueError(f"Unsupported dtype : {self._dtype}") + self._convolver_param = {"dtype": dtype, "pad": pad, **kwargs} self._convolver = RealFFTConvolve2D(psf, dtype=dtype, pad=pad, **kwargs) self._padded_shape = self._convolver._padded_shape @@ -445,8 +446,9 @@ def _set_psf(self, psf): psf : :py:class:`~numpy.ndarray` or :py:class:`~torch.Tensor` PSF to set. """ - assert len(psf.shape) == 4, "PSF must be 4D: (depth, height, width, channels)." - assert psf.shape[3] == 3 or psf.shape[3] == 1, "PSF must either be rgb (3) or grayscale (1)" + assert ( + psf.shape[-1] == 3 or psf.shape[-1] == 1 + ), "PSF must either be rgb (3) or grayscale (1)" assert self._psf.shape == psf.shape, "new PSF must have same shape as old PSF" assert isinstance(psf, type(self._psf)), "new PSF must have same type as old PSF" diff --git a/lensless/recon/rfft_convolve.py b/lensless/recon/rfft_convolve.py index 34cca96a..c5178491 100644 --- a/lensless/recon/rfft_convolve.py +++ b/lensless/recon/rfft_convolve.py @@ -52,10 +52,12 @@ def __init__(self, psf, dtype=None, pad=True, norm="ortho", **kwargs): # prepare shapes for reconstruction - assert len(psf.shape) == 4, "Expected 4D PSF of shape (depth, width, height, channels)" - self._use_3d = psf.shape[0] != 1 - self._is_rgb = psf.shape[3] == 3 - assert self._is_rgb or psf.shape[3] == 1 + assert ( + len(psf.shape) >= 4 + ), "Expected 4D PSF of shape ([batch], depth, width, height, channels)" + self._use_3d = psf.shape[-4] != 1 + self._is_rgb = psf.shape[-1] == 3 + assert self._is_rgb or psf.shape[-1] == 1 # save normalization self.norm = norm diff --git a/lensless/recon/trainable_recon.py b/lensless/recon/trainable_recon.py index 6ff9f722..7cd48735 100644 --- a/lensless/recon/trainable_recon.py +++ b/lensless/recon/trainable_recon.py @@ -9,6 +9,7 @@ from matplotlib import pyplot as plt from lensless.recon.recon import ReconstructionAlgorithm from lensless.utils.plot import plot_image +from lensless.recon.rfft_convolve import RealFFTConvolve2D try: import torch @@ -191,7 +192,7 @@ def unfreeze_post_process(self): for param in self.post_process_model.parameters(): param.requires_grad = True - def batch_call(self, batch): + def batch_call(self, batch, psfs=None): """ Method for performing iterative reconstruction on a batch of images. This implementation is a properly vectorized implementation of FISTA. @@ -200,6 +201,8 @@ def batch_call(self, batch): ---------- batch : :py:class:`~torch.Tensor` of shape (batch, depth, channels, height, width) The lensless images to reconstruct. + psfs : :py:class:`~torch.Tensor` of shape (batch, depth, channels, height, width) + The lensless images to reconstruct. Returns ------- @@ -209,6 +212,11 @@ def batch_call(self, batch): self._data = batch assert len(self._data.shape) == 5, "batch must be of shape (N, D, C, H, W)" batch_size = batch.shape[0] + if psfs is not None: + # assert same shape + assert psfs.shape == batch.shape, "psfs must have the same shape as batch" + # -- update convolver + self._convolver = RealFFTConvolve2D(psfs.to(self._psf.device), **self._convolver_param) # pre process data if self.pre_process is not None: diff --git a/lensless/recon/unrolled_admm.py b/lensless/recon/unrolled_admm.py index d428ac17..8c923ddb 100644 --- a/lensless/recon/unrolled_admm.py +++ b/lensless/recon/unrolled_admm.py @@ -159,18 +159,18 @@ def reset(self, batch_size=1): self._eta = torch.zeros_like(self._U) self._rho = torch.zeros_like(self._X) - # precompute_R_divmat + # precompute_R_divmat [iter, batch, depth, height, width, channels] self._R_divmat = 1.0 / ( - self._mu1[:, None, None, None, None] - * (torch.abs(self._convolver._Hadj * self._convolver._H)) - + self._mu2[:, None, None, None, None] * torch.abs(self._PsiTPsi) - + self._mu3[:, None, None, None, None] + self._mu1[:, None, None, None, None, None] + * (torch.abs(self._convolver._Hadj * self._convolver._H))[None, ...] + + self._mu2[:, None, None, None, None, None] * torch.abs(self._PsiTPsi) + + self._mu3[:, None, None, None, None, None] ).type(self._complex_dtype) - # precompute_X_divmat + # precompute_X_divmat [iter, batch, depth, height, width, channels] self._X_divmat = 1.0 / ( - self._convolver._pad(torch.ones_like(self._psf[None, ...])) - + self._mu1[:, None, None, None, None] + self._convolver._pad(torch.ones_like(self._convolver._psf))[None, ...] + + self._mu1[:, None, None, None, None, None] ) def _U_update(self, iter): diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index 897328aa..e09cd233 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -300,6 +300,7 @@ def __init__( gamma=None, logger=None, crop=None, + alignment=None, clip_grad=1.0, unrolled_output_factor=False, # for adding components during training @@ -417,6 +418,10 @@ def __init__( ) self.print(f"Train size : {train_size}, Test size : {test_size}") + if hasattr(train_dataset, "psfs"): + self.multipsf_dataset = True + else: + self.multipsf_dataset = False self.train_dataloader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, @@ -470,6 +475,7 @@ def __init__( ) self.crop = crop + self.alignment = alignment # -- adding unrolled loss self.unrolled_output_factor = unrolled_output_factor @@ -590,7 +596,16 @@ def train_epoch(self, data_loader): mean_loss = 0.0 i = 1.0 pbar = tqdm(data_loader) - for X, y in pbar: + for batch in pbar: + + # get batch + if self.multipsf_dataset: + X, y, psfs = batch + psfs = psfs.to(self.device) + else: + X, y = batch + psfs = None + # send to device X = X.to(self.device) y = y.to(self.device) @@ -600,7 +615,7 @@ def train_epoch(self, data_loader): self.recon._set_psf(self.mask.get_psf().to(self.device)) # forward pass - y_pred = self.recon.batch_call(X.to(self.device)) + y_pred = self.recon.batch_call(X, psfs=psfs) if self.unrolled_output_factor: unrolled_out = y_pred[1] y_pred = y_pred[0] @@ -619,7 +634,16 @@ def train_epoch(self, data_loader): y = y.reshape(-1, *y.shape[-3:]).movedim(-1, -3) # extraction region of interest for loss - if self.crop is not None: + if self.alignment is not None: + y_pred = y_pred[ + ..., + self.alignment["topright"][0] : self.alignment["topright"][0] + + self.alignment["height"], + self.alignment["topright"][1] : self.alignment["topright"][1] + + self.alignment["width"], + ] + # expected that lensed is also reshaped accordingly + elif self.crop is not None: y_pred = y_pred[ ..., self.crop["vertical"][0] : self.crop["vertical"][1], @@ -771,6 +795,7 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): save_idx=disp, output_dir=output_dir, crop=self.crop, + alignment=self.alignment, unrolled_output_factor=self.unrolled_output_factor, ) diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 772f718b..3ea548dd 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -14,7 +14,7 @@ from abc import abstractmethod from torch.utils.data import Dataset, Subset from torchvision import datasets, transforms -from lensless.hardware.trainable_mask import prep_trainable_mask +from lensless.hardware.trainable_mask import prep_trainable_mask, AdafruitLCD from lensless.utils.simulation import FarFieldSimulator from lensless.utils.io import load_image, load_psf from lensless.utils.image import is_grayscale, resize, rgb2gray @@ -22,6 +22,10 @@ from lensless.hardware.utils import capture from lensless.hardware.utils import display from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full +from datasets import load_dataset +from huggingface_hub import hf_hub_download +import cv2 +from lensless.hardware.sensor import sensor_dict, SensorParam def convert(text): @@ -955,6 +959,115 @@ def __getitem__(self, index): return img, lensed +class DigiCamMultiMask(DualDataset): + def __init__( + self, + huggingface_repo, + split, + display_res=None, + sensor="rpi_hq", + slm="adafruit", + rotate=False, + downsample=1, + alignment=None, + **kwargs, + ): + + self.dataset = load_dataset(huggingface_repo, split=split) + self.rotate = rotate + self.display_res = display_res + + # download all masks + mask_labels = [] + for i in range(len(self.dataset)): + mask_labels.append(self.dataset[i]["mask_label"]) + mask_labels = list(set(mask_labels)) + self.psfs = dict() + + # deduce downsampling factor from measurement + self.downsample_lensless = downsample + lensless = np.array(self.dataset[0]["lensless"]) + if self.downsample_lensless != 1.0: + lensless = resize(lensless, factor=1 / self.downsample_lensless) + sensor_res = sensor_dict[sensor][SensorParam.RESOLUTION] + downsample_fact = sensor_res[0] / lensless.shape[0] + + # deduce recon shape from original image + self.alignment = dict(alignment) + if alignment is not None: + self.alignment["topright"] = ( + int(self.alignment["topright"][0] / downsample), + int(self.alignment["topright"][1] / downsample), + ) + self.alignment["height"] = int(self.alignment["height"] / downsample) + if self.alignment is not None: + original_aspect_ratio = display_res[1] / display_res[0] + self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) + + # simulate all PSFs + for label in mask_labels: + mask_fp = hf_hub_download( + repo_id=huggingface_repo, filename=f"masks/mask_{label}.npy", repo_type="dataset" + ) + mask_vals = np.load(mask_fp) + mask = AdafruitLCD( + initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), + sensor=sensor, + slm=slm, + downsample=downsample_fact, + flipud=rotate, + ) + self.psfs[label] = mask.get_psf().detach() + assert ( + self.psfs[label].shape[-3:-1] == lensless.shape[:2] + ), "PSF shape should match lensless shape" + + super(DigiCamMultiMask, self).__init__(**kwargs) + + def __len__(self): + return len(self.dataset) + + def _get_images_pair(self, idx): + + # load image + lensless_np = np.array(self.dataset[idx]["lensless"]) + lensed_np = np.array(self.dataset[idx]["lensed"]) + + # convert to float + if lensless_np.dtype == np.uint8: + lensless_np = lensless_np.astype(np.float32) / 255 + lensed_np = lensed_np.astype(np.float32) / 255 + else: + # 16 bit + lensless_np = lensless_np.astype(np.float32) / 65535 + lensed_np = lensed_np.astype(np.float32) / 65535 + + if self.downsample_lensless != 1.0: + lensless_np = resize( + lensless_np, factor=1 / self.downsample_lensless, interpolation=cv2.INTER_NEAREST + ) + + if self.alignment is not None: + lensed_np = resize( + lensed_np, + shape=(self.alignment["height"], self.alignment["width"]), + interpolation=cv2.INTER_NEAREST, + ) + elif self.display_res is not None: + lensed_np = resize(lensed_np, shape=self.display_res, interpolation=cv2.INTER_NEAREST) + + return lensless_np, lensed_np + + def __getitem__(self, idx): + lensless, lensed = super().__getitem__(idx) + if self.rotate: + lensless = torch.rot90(lensless, dims=(-3, -2), k=2) + + # return corresponding PSF + mask_label = self.dataset[idx]["mask_label"] + return lensless, lensed, self.psfs[mask_label] + + def simulate_dataset(config, generator=None): """ Prepare datasets for training and testing. diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index 4ad8493e..aba35bf9 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -43,6 +43,7 @@ from lensless.utils.dataset import ( DiffuserCamMirflickr, DigiCamCelebA, + DigiCamMultiMask, ) from torch.utils.data import Subset from lensless.recon.utils import create_process_network @@ -92,6 +93,7 @@ def train_unrolled(config): test_set = None psf = None crop = None + mask = None if "DiffuserCam" in config.files.dataset: original_path = os.path.join(get_original_cwd(), config.files.dataset) @@ -190,6 +192,27 @@ def train_unrolled(config): log.info(f"PSF dtype : {psf.dtype}") log.info(f"PSF norm : {psf.norm()}") + elif config.files.huggingface_dataset is True: + + train_set = DigiCamMultiMask( + huggingface_repo=config.files.dataset, + split="train", + display_res=config.files.image_res, + rotate=config.files.rotate, + downsample=config.files.downsample, + alignment=config.alignment, + ) + test_set = DigiCamMultiMask( + huggingface_repo=config.files.dataset, + split="test", + display_res=config.files.image_res, + rotate=config.files.rotate, + downsample=config.files.downsample, + alignment=config.alignment, + ) + first_psf_key = list(train_set.psfs.keys())[0] + psf = train_set.psfs[first_psf_key].to(device) + else: train_set, test_set, mask = simulate_dataset(config, generator=generator) @@ -197,7 +220,8 @@ def train_unrolled(config): crop = train_set.crop assert train_set is not None - assert psf is not None + if not hasattr(test_set, "psfs"): + assert psf is not None # reconstruct lensless with ADMM with torch.no_grad(): @@ -207,7 +231,12 @@ def train_unrolled(config): for i, _idx in enumerate(config.test_idx): - lensless, lensed = test_set[_idx] + if hasattr(test_set, "psfs"): + # multimask + lensless, lensed, psf = test_set[_idx] + psf = psf.to(device) + else: + lensless, lensed = test_set[_idx] recon = ADMM(psf) recon.set_data(lensless.to(psf.device)) @@ -221,7 +250,17 @@ def train_unrolled(config): save_image(lensless_np, f"lensless_raw_{_idx}.png") # -- plot lensed and res on top of each other - if config.training.crop_preloss: + cropped = False + if test_set.alignment is not None: + top_right = test_set.alignment["topright"] + height = test_set.alignment["height"] + width = test_set.alignment["width"] + res_np = res_np[ + top_right[0] : top_right[0] + height, top_right[1] : top_right[1] + width + ] + cropped = True + + elif config.training.crop_preloss: assert crop is not None res_np = res_np[ @@ -232,8 +271,10 @@ def train_unrolled(config): crop["vertical"][0] : crop["vertical"][1], crop["horizontal"][0] : crop["horizontal"][1], ] - if i == 0: - log.info(f"Cropped shape : {res_np.shape}") + cropped = True + + if cropped and i == 0: + log.info(f"Cropped shape : {res_np.shape}") save_image(res_np, f"lensless_recon_{_idx}.png") save_image(lensed_np, f"lensed_{_idx}.png") @@ -383,6 +424,7 @@ def train_unrolled(config): post_process_unfreeze=config.reconstruction.post_process.unfreeze, clip_grad=config.training.clip_grad, unrolled_output_factor=config.unrolled_output_factor, + alignment=test_set.alignment if hasattr(test_set, "alignment") else None, ) trainer.train(n_epoch=config.training.epoch, save_pt=save, disp=config.eval_disp_idx) From ceb5d2091d315f622e73cdc903a65db07c044ef8 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Wed, 28 Feb 2024 15:54:49 +0100 Subject: [PATCH 03/24] Add notebook to visualize alignment. --- notebooks/align.ipynb | 183 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 183 insertions(+) create mode 100644 notebooks/align.ipynb diff --git a/notebooks/align.ipynb b/notebooks/align.ipynb new file mode 100644 index 00000000..881e1ca7 --- /dev/null +++ b/notebooks/align.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Reconstructed Image')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFKCAYAAABb6Yu9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9e9BlV1Xnb619zv066ZAOmJAQHgGDvBwHnCCIgiBG4wPKQBRBBxNAUBQcBXSgLEDUMqJSQ6n4mBk1ViE1SgTMjFP4AJVSERFndHwThBGUBEJIQh7d3z17rfljrbX3Oufer9PdaQztfLvr9L3fueexzz57r996L1JVxX7bb/ttv+23/fYv3Pju7sB+22/7bb/tt/8/2z4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/223/bbfrtb2j4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/223/bbfrtb2j4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/32/0H70Ic+BCLCVVdddXd3Zb/tt9b2AWi/7dmuuuoqEFHbhmHAfe97X1xxxRX4p3/6p7u7eye9/fRP//TdTqDv7j783u/9HogIV1999d3Wh/32/08b7u4O7LfP/PYDP/ADeNCDHoTDhw/jj//4j3HVVVfhD/7gD/CXf/mXOHDgwN3dvZPWfvqnfxpnn302rrjiiv+v+7Df9tu/VNsHoP12p+2rvuqr8OhHPxoA8C3f8i04++yz8drXvhbXXHMNnvGMZ9zNvbt72m233YaDBw/e3d3Yb/vtlG77Krj9dtztCU94AgDgAx/4wGz/3/7t3+Lrvu7rcK973QsHDhzAox/9aFxzzTUb599000347u/+bjzwgQ/Ezs4O7ne/++Gbv/mbccMNN7RjPvaxj+F5z3sezj33XBw4cACPfOQj8Uu/9Euz64Rd48d//Mfxn//zf8aFF16InZ0dfMEXfAHe+973zo697rrr8JznPAf3u9/9sLOzg/vc5z742q/9WnzoQx8CADzwgQ/EX/3VX+H3f//3m8rxSU96EoCuivz93/99fPu3fzvufe974373ux8A4IorrsADH/jAjWf8/u//fhDRxv43vvGNeMxjHoPTTz8d97znPfElX/Il+K3f+q077UOM23d913fh/ve/P3Z2dvDgBz8Yr33tayEiG+N7xRVX4NChQzjrrLNw+eWX46abbtroy7G2eJa///u/x7//9/8ehw4dwjnnnINXvvKVUFV8+MMfxtd+7dfizDPPxHnnnYfXve51s/N3d3fxqle9ChdddBEOHTqEgwcP4glPeAJ+93d/d+Nen/jEJ/DsZz8bZ555Zuv7n//5n2+1Xx3rfNtvn7ltXwLab8fdgmjf8573bPv+6q/+Cl/8xV+M+973vnj5y1+OgwcP4ld/9Vdx6aWX4td+7dfwtKc9DQBw66234glPeAL+5m/+Bs997nPx7/7dv8MNN9yAa665Bh/5yEdw9tln44477sCTnvQkXHvttXjRi16EBz3oQXjzm9+MK664AjfddBP+w3/4D7P+vOlNb8KnPvUpfOu3fiuICD/6oz+Kpz/96fiHf/gHjOMIALjsssvwV3/1V3jxi1+MBz7wgfjYxz6G3/7t38Y//uM/4oEPfCBe//rX48UvfjHOOOMMfN/3fR8A4Nxzz53d59u//dtxzjnn4FWvehVuu+224x6317zmNfj+7/9+fNEXfRF+4Ad+AKvVCu95z3vwzne+E1/xFV9x1D7cfvvteOITn4h/+qd/wrd+67fiAQ94AP7oj/4Ir3jFK/DRj34Ur3/96wEAqoqv/dqvxR/8wR/g277t2/Dwhz8cb33rW3H55Zcfd3+X7Ru+4Rvw8Ic/HD/yIz+C3/iN38AP/dAP4V73uhd+7ud+Dk9+8pPx2te+Fr/8y7+Ml73sZfiCL/gCfMmXfAkA4JZbbsF//a//Fc961rPw/Oc/H5/61Kfw8z//87jkkkvwJ3/yJ3jUox4FABARPPWpT8Wf/Mmf4IUvfCEe9rCH4dd//de39v1Y59t++wxvut/22x7tF3/xFxWA/s7v/I5+/OMf1w9/+MN69dVX6znnnKM7Ozv64Q9/uB37ZV/2Zfp5n/d5evjw4bZPRPSLvuiL9HM+53Pavle96lUKQN/ylrds3E9EVFX19a9/vQLQN77xje233d1dfdzjHqdnnHGG3nLLLaqq+sEPflAB6Gd91mfpjTfe2I799V//dQWg//2//3dVVf3kJz+pAPTHfuzHjvq8n/u5n6tPfOIT9xyHxz/+8TpN0+y3yy+/XC+44IKNc1796ldrXl7vf//7lZn1aU97mtZatz730frwgz/4g3rw4EH9+7//+9n+l7/85VpK0X/8x39UVdW3ve1tCkB/9Ed/tB0zTZM+4QlPUAD6i7/4i3s9vqqq/u7v/q4C0De/+c0bz/KCF7xgds373e9+SkT6Iz/yI23/Jz/5ST3ttNP08ssvnx175MiR2X0++clP6rnnnqvPfe5z275f+7VfUwD6+te/vu2rteqTn/zkjb4f63zbb5/ZbV8Ft9/utF188cU455xzcP/73x9f93Vfh4MHD+Kaa65paqgbb7wR73znO/GMZzwDn/rUp3DDDTfghhtuwCc+8QlccskleP/739+85n7t134Nj3zkI7dyqKGy+p//83/ivPPOw7Oe9az22ziO+M7v/E7ceuut+P3f//3Zed/wDd8wk8ZCRfgP//APAIDTTjsNq9UKv/d7v4dPfvKTJzwOz3/+81FKOaFz3/a2t0FE8KpXvQrM82W3TVW3bG9+85vxhCc8Afe85z3b+N5www24+OKLUWvFu971LgA2dsMw4IUvfGE7t5SCF7/4xSfU79y+5Vu+ZXbNRz/60VBVPO95z2v7zzrrLDz0oQ9tYx/HrlYrACbl3HjjjZimCY9+9KPxZ3/2Z+24t7/97RjHEc9//vPbPmbGd3zHd8z6cTzzbb99Zrd9Fdx+u9P2hje8AQ95yENw88034xd+4Rfwrne9Czs7O+33a6+9FqqKV77ylXjlK1+59Rof+9jHcN/73hcf+MAHcNlllx31fv/3//5ffM7nfM4GoX74wx/efs/tAQ94wOzvAKMAm52dHbz2ta/FS1/6Upx77rn4wi/8QjzlKU/BN3/zN+O88847hhGw9qAHPeiYj122D3zgA2BmPOIRjzih89///vfjL/7iL3DOOeds/f1jH/sYABub+9znPjjjjDNmvz/0oQ89ofvmthznQ4cO4cCBAzj77LM39n/iE5+Y7fulX/olvO51r8Pf/u3fYr1et/15TKPvp59++uzcBz/4wbO/j2e+7bfP7LYPQPvtTttjHvOY5gV36aWX4vGPfzy+8Ru/EX/3d3+HM844oxnBX/ayl+GSSy7Zeo0lETmZbS+pRFO1+e/6ru/CU5/6VLztbW/Db/7mb+KVr3wlrrzySrzzne/E53/+5x/TfU477bSNfXtJL7XWY7rmsTYRwZd/+Zfje7/3e7f+/pCHPOSk3m9b2zbOxzL2b3zjG3HFFVfg0ksvxfd8z/fg3ve+N0opuPLKKzccWY6l3d3zbb+dvLYPQPvtuFoQji/90i/FT/3UT+HlL385PvuzPxuAqckuvvjio55/4YUX4i//8i+PeswFF1yAv/iLv4CIzKSgv/3bv22/n0i78MIL8dKXvhQvfelL8f73vx+PetSj8LrXvQ5vfOMbARybKmzZ7nnPe271MFtKaRdeeCFEBH/913/djO7b2l59uPDCC3Hrrbfe6fhecMEFeMc73oFbb711JgX93d/93VHP+3S2q6++Gp/92Z+Nt7zlLbPne/WrXz077oILLsDv/u7v4vbbb59JQddee+3suOOZb/vtM7vt24D223G3Jz3pSXjMYx6D17/+9Th8+DDufe9740lPehJ+7ud+Dh/96Ec3jv/4xz/evl922WX48z//c7z1rW/dOC645q/+6q/Gddddh1/5lV9pv03ThJ/8yZ/EGWecgSc+8YnH1d/bb78dhw8fnu278MILcY973ANHjhxp+w4ePHjc7soXXnghbr75ZvzFX/xF2/fRj3504/kuvfRSMDN+4Ad+YMNtOksLe/XhGc94Bt797nfjN3/zNzd+u+mmmzBNEwAbu2ma8DM/8zPt91orfvInf/K4nutktpCS8nO+5z3vwbvf/e7ZcZdccgnW6zX+y3/5L22fiOANb3jD7LjjmW/77TO77UtA++2E2vd8z/fg67/+63HVVVfh277t2/CGN7wBj3/84/F5n/d5eP7zn4/P/uzPxvXXX493v/vd+MhHPoI///M/b+ddffXV+Pqv/3o897nPxUUXXYQbb7wR11xzDX72Z38Wj3zkI/GCF7wAP/dzP4crrrgC73vf+/DABz4QV199Nf7wD/8Qr3/963GPe9zjuPr693//9/iyL/syPOMZz8AjHvEIDMOAt771rbj++uvxzGc+sx130UUX4Wd+5mfwQz/0Q3jwgx+Me9/73njyk5981Gs/85nPxH/8j/8RT3va0/Cd3/mduP322/EzP/MzeMhDHjIzsD/4wQ/G933f9+EHf/AH8YQnPAFPf/rTsbOzg/e+9704//zzceWVVx61D9/zPd+Da665Bk95ylNwxRVX4KKLLsJtt92G//N//g+uvvpqfOhDH8LZZ5+Npz71qfjiL/5ivPzlL8eHPvQhPOIRj8Bb3vIW3Hzzzcc1ZiezPeUpT8Fb3vIWPO1pT8PXfM3X4IMf/CB+9md/Fo94xCNw6623tuMuvfRSPOYxj8FLX/pSXHvttXjYwx6Ga665BjfeeCOAuXR4rPNtv32Gt7vPAW+/faa3cD9+73vfu/FbrVUvvPBCvfDCC5tr8gc+8AH95m/+Zj3vvPN0HEe9733vq095ylP06quvnp37iU98Ql/0ohfpfe97X12tVnq/+91PL7/8cr3hhhvaMddff70+5znP0bPPPltXq5V+3ud93oYLcbhhb3OvBqCvfvWrVVX1hhtu0O/4ju/Qhz3sYXrw4EE9dOiQPvaxj9Vf/dVfnZ1z3XXX6dd8zdfoPe5xDwXQ3KGPNg6qqr/1W7+l/+bf/BtdrVb60Ic+VN/4xjduuGFH+4Vf+AX9/M//fN3Z2dF73vOe+sQnPlF/+7d/+077oKr6qU99Sl/xilfogx/8YF2tVnr22WfrF33RF+mP//iP6+7u7mx8n/3sZ+uZZ56phw4d0mc/+9n6v/7X/7rLbtgf//jHZ8defvnlevDgwY1rPPGJT9TP/dzPbX+LiP7wD/+wXnDBBbqzs6Of//mfr//jf/yPrS7sH//4x/Ubv/Eb9R73uIceOnRIr7jiCv3DP/xDBaD/7b/9t9mxxzrf9ttnbiPVJBfvt/223/bbZ1h729vehqc97Wn4gz/4A3zxF3/x3d2d/XYS2z4A7bf9tt8+Y9odd9wx8zasteIrvuIr8Kd/+qe47rrrtnoi7rdTt+3bgPbbfttvnzHtxS9+Me644w487nGPw5EjR/CWt7wFf/RHf4Qf/uEf3geff4VtXwLab/ttv33GtDe96U143eteh2uvvRaHDx/Ggx/8YLzwhS/Ei170oru7a/vt09DuVgB6wxvegB/7sR/Dddddh0c+8pH4yZ/8STzmMY+5u7qz3/bbfttv++1fsN1tcUC/8iu/gpe85CV49atfjT/7sz/DIx/5SFxyySUtpch+22/7bb/tt3/d7W6TgB772MfiC77gC/BTP/VTACzg7P73vz9e/OIX4+Uvf/nd0aX9tt/2237bb/+C7W5xQtjd3cX73vc+vOIVr2j7mBkXX3zxRnT0tiYi+Od//mfc4x73OKH0Kfttv+23/bbfTqypKj71qU/h/PPP30gYfLztbgGgG264AbXWjYJf5557bsv3lduRI0dmKVP+6Z/+6YSzCu+3/bbf9tt+u+vtwx/+cCvJcqLtlHDDvvLKK/Ga17xmyy/3BjBgBcIAQkGXhjR9in+zfYQBwAjCDoAdEFYAVmDsMGEgoJAZx4gESoIKgVAFSACqEFS/mgBQEPk2KMCKyoAQQQkQVggpKgsqCcACZYWyAgQoA2Rf4bsgCkwVkCk2glRGrYSpKmpVTCoQAYRsqwxoAYiBgYAxNgYGtmcaYS+8AGCx+6ISqAKYAJoAqmp98WNH3wqsb8V/Y/9bAfjpqD4i4vs17df2G6ECWEOx9t8nUIwkFABBZ/cgzLXEku45tfcLzGRhsvEQBmqxTdjHKR0D7g9VClAGoDDAZLsLAaPamBYFithNZReoa6BOwJE1sK7AkQpMgkVv+1PYLRnkplcG+biSjwtDfM8K7O+L2hXYz8FszLWNdYyi+igRqm82+tp6ZtfYfHe553HVeJuzoUVBn0+ZiMQcmACs/e/jav1B+7uJSZe75hON1JYl1Ob0CJv3xc/VAijZJmT92lVbY+06NXU8Pzr6msy33egvsJhUn1mOxTF/gPnb3Oh6arHeaXFcGvrjTom1rd0tAHT22WejlILrr79+tv/666/fWp/lFa94BV7ykpe0v2+55Rbc//73B8AYwP6P2uIE5gBEs0Ua/4AgB4OD0I7a5B0AMMTmvPrkhQMKEQQMgQBq1wkAQbWJXQWYCBAmAwlWO6YAKk4mCFDyXqY5qwpAyLBOtV2b0oFK2voFAojQ+sFiRLM4AR3UCCezHVfgz6fRb0VYAcmvBZ0DjKATnegFISYPoUBRMAefGPsgbrG+KxQTkN6UHRngE9dnB6GlglXSvqBVcV473n9QAqoTnUmB6g8TgNgexC/K8LHy5y/k4xfvWP39+EYxP/z5tltTBZ16dsIPh4YYx6CxNhLU5mwADLc5a78HgRhA0DQi4uM7tfEkMDRBfIwVJZC3/RXqMJXf4LxlJiQToyU++DSeU7BNLNtsaXzby6Ytv4sBD6f3ov5u2ecxp461rsQczw80ez2UkMbWRhuNbdr+vEjas20bjWNpywc9OW0DNNMdYlzy3fL6Wr7COO8ITix7/LLdLQC0Wq1w0UUX4R3veAcuvfRSAGbXecc73rHV339nZ2dWAC0aNyghJ2CU5tJ8SNmXVQzZAEZxACowqWhQxSCKgRQFaguX1KQgEogqJgeNDmZ+BzJKZj8HRdcZN0eiEKrGmSsZd2Y4BlIjkqqAVkAE0Mm+a1VIBaooRG2r2oleW5MVbf0obCEyGfgwmXQEB6sgtCR+Dd2cjFmSqZgzpDFxqI2D+jtB+4zxDmAQBOEjJ5X9WJmR0fx9s0918Vt8b7KG/6BkjECbEwEgMFBqnfSxCAmHY+zi+pke1/mm1cZdqgHcdrIxlywyQ9THoM8l269Nngk63Il9n3m8oKCEkAoJa99vLBODYk6DoYBrDLQzW6lf2OhhH+c8FDFHMsmNflLqmsZ4HysIBXgsqWdGPQefYAIcM6yP/h6pziUgWdLMDB6K+YIKJi8/eP6+3JfXfttx50ByNEnk09223TMPSZAvYBOITka721RwL3nJS3D55Zfj0Y9+dEvtf9ttt+E5z3nOMV/DBop8CXayRYmLzOqcvEiMiIaqg5wLFRQFBmjj8kiNK4Sr4yh4ROqLjCgkIWqTmGESDomr51hMNCJAGaiDNhWR9NMgCogodIPQKUQUVRRV0AEobSDbXxb7AnjgKrqgCyW4R6ckwVHG5IvPkFjaeem34uObJ3KWXOKcAZ1uFHSCW6D+HH1qLxdFnvQBhJkDz/e092CbBMjCDlw7IVI4QQrw8f6NahJPSJEMOz8InWlgydWVBFn7S5j2RJ70ROpPLU1Sz6Da5ZU+Tv0YDZnb4SNAnBtwUH96dEVmZ8Oqgw/8l7GtG9tjDJp9ylEeJoAnt3gnWdARdKYmmJ5G/O9ML5cHJreFtNG0A9RPCwaFxJg4SHrf3gcJQqCLbSm+589tYsFy/+wB9h7DzCxFm5sJjr8tpZXl4xxvWw5NLjt4Mkst3m0A9A3f8A34+Mc/jle96lW47rrr8KhHPQpvf/vbNxwTjtZikANqkBZVl4tMnZOJHqHrrrNdpBBhgGIg20dq6giFujCjYAcXIW2qOQLAzl6rqqnOfPmTK6iVxW1BwMSmHxcYYEgijAZAThwdFEjsBxFgSgC0bYItmfQ1ABXTiZMCUjpXp65DZwegTMRdmJpdX9P1M9e2rIm5XLvAtoCzrCLKNGBTAZQXagDZkoYs13+2CzSVDPfvFMCcAIbjeO6SHjkRi9/IDU+y9u+1E8I7ayGJMMRh21oFJdWi2YPib+ueNpAEDLQDcmIOZJoYfzMUtb2xDizk1w+5Z6k6JexNCrftjbm2wclTB6D4rtG5O6OMeRJsM/LR/DBbg2gq0hrMlMwZte2Ake5xZ/2J79so/lGeK263jRmO+bwk+sfTgu4tGYHpBK6V23It3hVQ29ZOyVQ8t9xyCw4dOgTgPBBWGNwWNIIdaAIAbLjCnhAgFMeOYKxcCtohYMWKFRQjVRQyXkrUnA5MBSeoKpigzcBqxDzu56ZcFSgEQnbsBMWaBGsG1sW2IwVYD24U95nTAKi6sFQBnlyNsFD1HK0FwK6QgJbMIWGnACsGVgoM4tx+AFG6RlavxDXzdxeomjquSYyYL4LMidn3/nYmECbozD5U/W84x5/vt/ye25KJDaI6AdiFST/r+HQmQNxITQMwFmCHbYxKcccLdSkxbA1OaWUyB4RpAtZi+vBd3462QG0OkkMQYfKxmMuJS4t7yD3qv4ZNxyaNOmAF+xWylcGNQJKLQUhG0ZdQ34n/GmeoW4NkJoudQBsAcqk7Mz3Nc+TOLr2kqpnrSMfQFioZTjZ7q0XjBrltOXKbpJP7lKW67G3jbam+yuCT5+k2Ru9YW75urEmgz/8ZAB9ny/3O/asAbr75Zpx55pkncNXeTgkvuL3bnFcM82lFKB86yesG9OAz46UxCgTMBGYFuVVTQ6JBF+HVv5CSSzmd4xJV2w/bqeQkgJyokhvEFVj7tiuESp0shARQ0TnQbDSVPdZH55StxQRZp/3BIVaaS08az5COQ/pcTtz8fblwMvhkJ4bevyCRnNZo5+QzQymJD18yvstFEdcPbi/6lT28Jk0Sp7rU6Q+nTqiac4SDMWcpyqUknQ3c/Lljji3fRT6G21vOVslMQjJ161fp8yO/i2Cz5nO6S/5AAfs9u56gN3ZYsr1d+uzqOpn14zjatsdZEuwYoL0ufywAFH/miVIwn8Cg+cTYk4VZ9H85yXKftkk/lJ5LNpmm5SnRpbq4/Im06H2zX5LRLNZuKxadg96dteUr+3S0UxqAyNmOIDZon/3VKhQDFKO/olCAdJKoZsNhAoq5R4sr/s3W4xy6AqJkL9EvrwFQShCZTzfRTvjWMGN4uA0bUSSIEqoSVG3G2LUUWsVniboTAuaIke6UDfxLcFinv5lcalF0DyHn8BWdeGbbStxuyUElRnN2Tu5XnrjdlmzOHUFQgwuPRRgu2iYVUQPibdLXNkkr7rOUvvJiC7sOpwUZrdFERVN9hipPpUtAAULZiZHQ6V7Gp7j/nPgEq7SEp23ULc6Q2bWwuE8AuW02y00zYL8wwgGhOzsE+HR2TbZc+a5p/JdQKgST+KPlybYk8lmsjv3LAVbfnY7h9DeTg7Ryp/Y192mGTPP7L8CT/bc25v4cRD4nEmAR0GyR+bKZmG9bUycA9e06Mf/C8Qi+5nlGs7pkNC2usWzL/n46gOiUBqBQM6iDSnVlRFYmcOPrYpnOCWIDIIIZ6BlgFrfd2HVA2jzFINSBx201TdLR6FfIZl3NNKlgt6px4uLqNAZ0MPBSpnQyB+LZFh4HC7Ylls7ReNQwvFbnitboB4t2N+Pmno1N4rlUE2SGL9b0ktHN9GSOm3OrRWcwbbw2mUudnbUEvW32ZLRrziWTNk5kRKOSjU28d1CXktZOe7W6Z1x1APLBCNtC1rwsmfS8L/+2SVHZR4D83M1R7A4Fe5OoDu0m94etKc//uFO+f/jl2R3DScIBjd1nb0n476zFdPbjNb7HT4HYirl78x7Ef3ldJCYhmKvmjEBG+BWAktvLGrPh49kmdIxxeqiF9Ea+dpqtz0FIFqdmdmL599HmJ3CXFJ3tGrO1k0DTHXRtjjvNijXf+xVMyFwuz33dB6CtrQ+ctfyKI4YiNNrhANuJILGCCpmBmgEuMLEAnf0lcscC1c4Jo0+sxlFIn5gBQD1gkrELwSR23JoJlanzl7n7gRpB+UME29KORg9mv1G/FPmPcfkAn/ieGdRYJLpli98zoc/cfn6k+dvRrQuuey/GvyCdMgPEuE4AYOfoN/sW/Yr97ISPir1rLf2gxjVH/9VscRLOBiH9YP7eMwAtG6ffKPWq21/mEU+69Y3mt7Dcv0kaIrQg7EU5DkjbfdDCVDuoJ+hzoyDxYh45F71hOV4OegD6tkFZSjLbDCU5EjJfPw7VBN0JGBrwUZ4v6qKI31ScA1FgJjfni26TwBavJuZIxCDF7zlWbDlEsuXvEwWfJVaHvbc4YCp3jCVC8wjdxlzmgOblOlquqWPhP461neIARJ2azlZEH9p5EJ66PciUFBYb4/af0iPhyf2TicSDPBUQbdxWk55UW3xBuFGJmsquqmICtcDLNYA1qDkvVHHdfaU+k2ezQ5PYceKvnLhzQxFkqmocfBhpCZuKluW6i1Gdw/t2or+c5Lr47KSwq4TIz+qO85Te2Hw1x1+02Pbq0+y+PtyFLEOEOpENrpH9QVvMkEuroXrLRCQAfblQM0jmz7mrgMEEozSyT/680p4mRjQ+t8E/t28hwQb4lDbGAvg4BgPSXQ06/2twWMGoUBKoG7+CmLdBjzkE9NCBZVfzljma/BLzb3FuYghmLzZR6uaxGD/rfKybKnU2dMsZmn+ME2QhfdniaCEXSCrqAJstzxWxSUvsXc6Nk0HIA3iWDkE5Fg7S53ZXE4eeiJrKO2LOgqna1s99AJq1BEDxaoNqNPCpPvDaYn9scQoKk7knDwANBB4Ads+dcKNRn7wUhAhGvJnctVvRpCNydij8hyrMWy48pNYOSBJ9D/Yw3mrTG0hf3bFwshhyHMMj7Kq+OD0WxzFcJ5O7zC0t9frxCNuAIGmtNq5jx3dX+SCMkZam359h/PreNC72xzBlQM395FiMPgaZmHGiYk296uq2kHwyuC0BZgm6/bcu+zQZjwkaKSyi92S/sVKLYZm3vZe/zW31uZ3VMZ0lUO9Rfwbx0TXwsTUi4KbbUnACoMbtI2mGgxAHMd5mykqP2AYl78/HlrTl8ys8O4irRINf03nfgsnoa8pvmF+MinEeG51Ydi4mSRyWWKG0NOMUQgJGsv4i99EPvyvqtmVbCmyFPOTCdyrsBwI8xhEt+DySNQVLFIz1TGOQ7pP3naxYoFMcgIBm/dPMd3fH3uCje0qp4DsJTAQqZIAzALoCtAGQcz/wOVjRpPYgWoXUDH5phoUXGyVuYhfmqlvb1EuERGCeCsFxAZ2tRDo8fy4p4LKlhRt9cB+L9lnYP+H70+VnazVdI3NFmTbkc2r6XOaHQ7pevkZMfvuklhsugFo2iOh8OPLf2REh0zSgqwghZtNhRktfNCNBzmxwZKSQTWBZqlIC9JZSYj5KASNinAY+2GV/GlYFiUtDmdr5NQLKNF03gNxoTvzSx6wgBVCnMSzorg3m5i0YIAmEdJ5FADYtJ7g3YYybE+Oab5uBZRvHgj2OywCUJiWzrcGWqcInkrAR1DCX6vL6mfMSgETBGnbcLJqFXN6Gtd288QgECy4PfkHhweeWOqsAYFaw6IxeZFOu6PahOJGWzWQMX9MlzAho9ivEumeb0xakq4BQ0jqSg4uNQbabZmiOeZ8dnO5KO8UBKNiQJQ86tU9Cd8MeQBhQjNNjBrEBEA8EGgEdARkAHbQxSAS0BFOa3GBI7GWTswSWJscgb0LEa3SCMFcjKWYJqQLAskUyU9Fl2wuQYt+23/3PUD2N2tc4J4lgOZqZPEb35hz2fNQzMc4AtKU7if6Q7w+7Wfg3ohHMJd5mFX0mI8tjsDgmCEKo2TjUOrI4N2FDpQ6+TQWr/bUJMMtmsdnSC5ixrLrovGW7aBz7xlMFkdhGyzO4RPqeUMMFjC9THHmQtY98gXmMDt6tcE8X6s4Wk8+ViUyIUEVTa5J/nw36NgDKEyAfs3Q8SHM51KRxvjqVbGO+F1VPIMQUsVR2oLTRms8zA7J4odSwSMNb1kGIlHqmDLK1zqJtLPKztvVD6LnrcOLS0BKrC3Xw4QHNthnvBs5IKcFiCgFznBI1J6gEvnmt5+9Bkk5mO8UBaJtI0HlxxQRxZ0PTlVLTkVrcj31SgWWyLp4iZ9AWQEfq6pJqfGKT75Vamh0mwUCdcI7OwQ8w3arp5ruxt7GN+W0uKX/etw2I9Bi+t+dO65u69BNCV3D42a14efulWr4s9sckrcAs63CWnAJsevqe2GOf/Q2S280U4TiylCyy7nsJhtHnOE4wj9EB7Jlp8mMpLVT018Nu4AmVSmOKyceMXCKI347K1sbcKWiRx8Gixo3jJVBS2tflBAhlZbQeihpZr3vGg96pbGkKO9Hof/d3gwZCpMZQ5WBOodST9Kwx7gHOs2HIL2dpC1oCzVEM/qEQEELLZqF+To5jm62XxZppDJifLxqq8vkxULPRtguEhyqoJREm3x0MQehzI8Fw2GBi/qi6pJgeK6ujo+szGpEndNoday4y1Q+wZxp8bSONTwNuv14wSkJADSCCZVnZBkBtXNE1G/8qUvGc3JbfVKfeGY6C17EEo76+3QbEDAMZBwVhgFjbvOulFeKN2gXsq7RJaDp0bpLPjEMBt4QoM1Z5yblt0+Holn1Ha+nSMymBEjznhet9WDKicY1tTOmScc3R1xJSAwGTkltv7GpdtA+PrOJ/5dwVXZU5+dGhRMrPlWnMsp/RumqvDzXBOdBqai5loCm1srDigxW8AvlYZVXUhL2knmULwAnOJjafjHFT6BzN2vzoT5qzvttzR24FRpeEbNIEQTMQDgiKJLzaRt+uVW2uJkmkxPPR/H0P2ollqJWyeqmp4/Lnct/yZR1lHWTGYUPpsQCavD9jWmg+A4CqH9doRAM/2gw6RnpHtEltCDSzKZb041IayqzyMsau5YYMgPU+kCzGHx2AolzKoIuLx7omNI1Oe8aEIu0ZZI7fudvbvp+MdmoDEAFNyRkTJM/ONnG0/akEy0I9xEaeFNRmjrItXo5rKSAiEGGIho88py6wBauSZTWIkJ1u+8h2i8RbSJqd7YDje7VLArxk/maeQv57pZ4yJrj6mOxHUcFvSBDA/N7RQj1kiz3yLFNbE7HorL/d9wrIAan2JGHXWF69L8R89lxvHX092sJRUVdLOEPh79v6mgM0kypRO2GfcaxHbfZGGAwlhjK7GIo52gel3+Sc2lWW76b71BkIxd4MQxWRvNT6kEuScBot9ni4uHieRxGwrLDvoqbG5Rgb73OjfTGt88RcSkDLF7IEkj2ARbPooItPoBHfWZ0tsdRTlvXejg9gaGs1jF1EzemkqQlEXcRzg1MDCls8xb0kI2tGy56xUPVuWwcb9kRXnTWwCxDSOQBl77ec3b6NXYyDX0+jz+l+AjQ1KvotZ/3Jn0uV911tpzYAhW4JgM3M2KSBR6TNUcATgSpKUUhRyKCog4IGU72FVZ5YbR56ctGWAUFsYpKoZS/wtyIgCJmL9RHfrOCaYA1t6fHt8MWqas4T6TmOoW2TTPL+PCwRAhH1cbJ6oDFNZMw5qy3QCFANQFmCmy7uo+hSSagc41/ERC1phKCrJgOQAnwYpso0Q3l3pkfrgzjBnWc8X4LPktPE4lPTnrknfBDyDIxwot6VJkvgX9qdKN0niLsWoBaFFoKU8LR0ip/eJDlViOtG2ZCOW3H/OZMzl49iT8BNLmHSk5p2dhnN0B5aQIUZ/+MQCUAKPi8tvTZO+cHDvpntmts4gyXgLLmdOG+ba2X+TGNG6FJJY7B03p0IpA6JaIac8aorGYoMTlv8BSsDVRmqQFFtGtRWV0owYwSj+zkLwfxt+aPHOgWarY3qfH3PnAV9nVOyJc9csWeLwx1cROcCeALt5WtYUqgjODntlAYgXtmIm97VOZNwhxYFC2FQxiCxtglgdi8kk3aMEGiTYZuGhLoeXKIGEIVvm3PH/nKFGJUUu8TYVXWX63kaSJvH21i6aMcGPMuWCV98zylhMhfbPoMzow4+4hdr3kw+6+rifNI5415SX3i2Bb/d841Fmp2s8qjQtkDttuogZmPVwSu7D/exjHzPS3BMjzCjVcvFFBkwWv0fgRPlSJrKs2tlaJrnGJyPS3CprSgIEcjnmrCgFoYUoBaTnCVeRGNsKCVCVUQBuQ5APWi0+7hRew89yqrDjuU9jL/RniNGklwLwKzNNLU04eSifEuGosLo9IxK0pYtt20vZVvrD4sZR7CUhtLhmeZufRb/bUC4LS1tjQkZXWMRHuqJ/3QNCLr9B40UzbqeHyH3a7alschDFbYv5xFmknAe6pIfMAKtw+wY/XX1R5d6Qn3YI/ByC9BMlz1p7dQGoFYj2UgUeyU3UjF3y6oYhLBCwSg9BqgV/6KuIou8b5GQlGDST9PFMlw8FwMiCo7dJtSk5IGmtlkQKnXVTWvbVmBmF4+t5XWbVVDLhdZogXM6MxVbIiLRz0YjaN5voU1t0SwOIn2NfiD1pR/qnDdvMrGtvks6L4hpSFBZEuktYL7XJsrPEv2eqTr8B2KAi0ttgihlC7hyL6xWIS/khJ1LBj0AYk4U7P0SKUAEYXt2JoWGJyZZ7E/zTShRXwrgSdxbW5xz5/RcmsapQ22vaxrAE/0RD0HoEpSxBxXkJeeZxGLcqL/rmB/hzq9pfyPkS45nCUJ5Ui4HLlP95W/5c7k8MoexZelkwWp56PJ2GZA3U+B2loShMz5B5yd3erF8zj0eAUCTNJd+SfkyeU1lIGjzjdIQ+1qHT2Xh3jfAbyTz+wBwJkc3hns5Zns+3Am0UxqAjO8zJU/xxcQsYFFfSEAhwgjCSKG+MBAiF0FNrWZgAxFUSclKFM1OYMBmq6XpTV2UFf8dkl2GaY91sZz6J/4il4R2eaWYpEHMMpcVv6lfKDyemgiu8x5SWmR5hjauDciaT1uobTFveUpNRKH1zf6VxVQH7L3VtDj6Moy/CJEbcK/WCCXBkjUG+BRfxBOZbUbMPE8oqM6uRHixFeeYM+LxfKHGWb6X3FMj5J5vQAmq9h0uATWCSEAEg0Y5iLmqrce3DW3GmfWxemIVO5bTuJIzHz1TQpNPXWtARBaHRDrre2RYBhkzItIlolDdBDhJe7GzVzR/EUvJZ5sklMWUo7Utkz+/g2g563RJ+9aYp1TqV8i36OMRF6f+o60FMX64JbD1SwQdiG5mr9CGzc4c5nXWrp/XZTpnpo71+xPBVHUxv11ai8XemUb7MnO2SM8ZLTOIXfF88topDUCTSOPwmmukhiknIrypJRJs+T7drgNhqGeV1MktiPBAQTswZZxkW3W1WoZqgZ1fAZ0UqD2Wgjde0XJlLfdl9vHYX29eszFBYmFl8Mn2oA3K6PuzobPMf5oT0rQwclXY9jQ1OLbuGJyv1kFwM/mmYunH1ZmBtPzTKHWLRh6DCK8M4tJcRwkmcTA875+CB4uLKhpKrgIVhlZ2K1NpzESuA7VU14QdAdh8g23cGKhEWBNjAnuGZuoDmPL/mTBPLchz0Oz9FuBjQab2WRF5NibU5MzRFaJJ9m/j2+1qBJIwNpDbgQTF11UYsRv3z5hJwEugDaeENjD5x21s/hJoMoAtfw8xVxfH655/zuZDtp0IOgAdbeUp0JlNRyoSJ/SkLq0C7MGyzSqweOTlEmzSqfM+3BDJtnCGCNqWf25pd2JzdKN04Zm05oxDK3jpG7ntKju3ZLoSqcTCjFCPk04drZ3SANTSfyCVhaZEljh5X5E5A5jBwYicVTjt+k+IeN0fbfWAosy2ehSXRVB3yWtmqVVT9LS6QN63IBiRXLPv3/b9BMYB8wwEy0wmmXMKYgFFcjtF0z1n9RGwyfWYoZ5m121kTrkF6IWCZwmSBmj9X6jYcp409gmeSfyc+7enyYt5XlrAZOMcDKtwLpPJA/bUJB8mDIVQlMHuLqTVMpSHRyPQXfrjmtve2FK3394PwZPemsMLF20SGMjtg9uIqRLUQclGNNLs9PQ5kbtt8O+yVQqMNwR0mSf6ufCOczFWnBmz2B87eoIV9JsIva6U9/VOXdEzrxVb3jd77nTecgLvJT3dCU2MNZLjWOKyxxLXomQ8aKumG+uoJuI/oduIsE111b/P1ORqoFVKV5UjAUccv9zyOp/1VRNgpi28FVuRviCY2t1Scs71PN8DgEIdfrLaKQ1AWUTv8Xz2BlXLTA+6VjN4VwIm13EX0k6oBSDPzKlsKrkYagVBiE0J4zdSJhCzZ501jyUr40NNRYe4tr+2sEOcHN5hs+VFtrQHtQkfBCP1JXNp+dh83W547hSk2xfIsylkD6ueDRyY32+eHaGTwCCDYTvpPmZ2dr8yEGSxw1Rkds4ed8nhAaFCEsuVVXxjNYlIFUUVTL2OaAaUbAFaQuHyHQQ9JMDtTAIeGGVQcLHvI6vp56FOEMLbzilPkoZ6vryw4wSMxBnd3SXsQnNLFbVvXTmX3bdDYhV/lyEOE6p7xM2Ci/27+NpazukWcJnBZpskswShJSAhnbPt3G3bMSyuvZW0ezRCEw/UNxCgQu5lG8CjUNE2b/I6WuIvMF+jjOaEa6xCkloC8JZOB/n8xmh7/yKWqDrDsI4pRem9ONqR607JUaldK22KsGuH683JCUc9tQGILPgu9NNdqeN8tQeLqruktIqA7rViHISlz+AQXQkAkhoOIT3ZZlmC7Ti7rytGNDy1+hZEK8AH6Gvk06FPXbY8kTYAJZ4Nm4tDtpwfx5RGvLqswgiX4VC7sYvukdetk+wMGnFGmD/nIZYdxszuFgRSnZ+PhaJOhhXrdgQQCiirTItm4Bc2TrZw3xeK8LaoXSrpKq7IECAYHd72spvHmDofBA6gK+LBzZYI16iZoIItWFcJ1XVckXGDJIiNIrJHsPcpA1DktQa6ao5me3KQ73x/PLPA7ELKFS0JQFTuo7mqalK0GlPCnUg2FaQTy5aeKFPd5WBlziQmYUbwDGC5Mba/gPlEO3ktI4WvfwG1vH0EgChWvMxOie9LHA5cC9fwtvlvMWZ2bfR8jotrAD7nwuNtAKT4XC9uPSjzoFd1odhU0gaiUsNvMsvHWYHbU9aeLEfsUxuAIBYboZsMEIG7uOw/qI+8oDOZNRZ342JMAhIPCon1MUExkaevVyOHpXGMANLkmyCoagbr7FNDi95vrI+9FulxtG0pcrK4vpddN4NPBsklfQDQSLydk1VtjEj/Wh18IgN4bgFCfXLbNaJ4dFf9t9zR6OxF3GG++CYiTOxEEQRSjzAig6IAG44FmbnZGAOFuaIqUFzNmixDGNGDlENCymqWkO6Abvoo2q+Nqo3hoZbs1tUeCiNmyuCUqbmg23r63g7MwfSEG3F2HqfWvw5C8dZC2SL+Do1h08YVt2BI/8zqzFb6PLjp0h0UAFtn4TUZ6sXZDMggsQSf5eeS2i65pQCi/Pte211t2+5NaPZThb9nV9Uv8bNg/ujRmpZC0JjpkkA9bDqm5g5JBbMKE5pvElJQkoRCnVfb391NP1y3lUwTYP2zXsXKs9VZUNzt5bilyD3aqQ1AHnTaFj+hLzOPZWjZc/zFkVNYdXfYlgWAuo1mluJdbKuiqCIeDsAgv69x0gQUWC0gVaxVPAudg1KaMMERNvtLXlSzZzv+4Wgg4xM3or7DVXPJVC5vv5SKtoHPvHViFuqv+DvAJzJbd8XZ3M8mJnfns4CIsQknkpJ6rKlXLbaIgImBNWtXnTm32PTp3JmOpSoiADFse9avHLTZVV9DI/rZJdzHLQ9sIrrNOCyWUzDuKxzAaUHMNj+oq3eLWgZojdHJrgPBFplfXlT/7el1Ymy7lNjfaMiP3SUhJpD6JmltRHxP9T5WTXM4cTlUMEtIGr3coFZ7gc5yYm6bsB01++RtNtj0uyy+31Xd9zYQa66lGhEabgZWaNIzx9pbCmp5ayui9scvpa/n5UVyaYyW5cAlHSmYO4yQ23MSXctOCKo9Fs9uE7J2Z1oiiqx60Y+T1U5tAJokkaJObCoDVTxHEhvCD0FawgjiEktwyALtgMMwQgF/yS0tv0IjD70GUKnX2zGX7EnFAKgopuAmtHMrW421y5l5F1oLIKQk+fg6yY4J0ZbrMv+2/DuvAyAyGHTIQOOqTVfcPca6FaN7YlE7O/aHzYfRIbDbgrpdSdzLK6TStatIuyOG2XOMI/WzxQhkA1tfhO3dqL3fpqfV6EkwOBmmgqalkD0nRHnAHHcANRtL2MjU6/5UJqyZsKsWjNo6hgAp6k4x7e42VyvEVXnZ0rUUGnT2De1/9VHvYMXuIIERlqKKO/2eNDleJA68JQSNm3Ln1luPloQ7LpoDz5Yd5/k1Z2CzBBik77Ll+rz4+0SYvW3I4e9bI80IqTGirTqfH9PuGcrpPWyseYs5KXMpyOZCAhHfz85QUQBPSPZLd1bfWABu4SXGGIWr/5wFDCkp1myXx09WO7UBaK0QDZ9ItG3irvccVLHjnKVpW4Iw+Sxxo2Ek0Iz5C5eaQgKKCSEiIHcBkuYZ56SSjPhNpGZnyml68+KBfeao56OtAVp8bmPGgHmanYiajjbncOaMZFxzeR/Mfsueb+yumDz7pZch7yq4Cm0TOVK1xr85exuT3OwbeSNwGj6B+XtF/j113y8A0hUHpq7QcHpsyvj87F4SxQcPwARUJ1RG1sWdOnpJ8O5JlUP2qFNnKJrxJiQIvzfD5hEpeTZm9Mq4DYDQEFEpwCZAOWCvw19PqNPfb6eRlL53+DFSImiZEYgsDdMI6EjQkUDkRMhj5FrqQklMDPVnVHLOe86lbE5WWezfxvGE+L5088rgs9R9KqxkekP99NDR4eWEz/3I19vWFOj+zDEYsTn9yTW8Sj8vGKHAhBysHH9HKe3YwiTA5GEk6LI/kIDfx2vmeh0qOFp0WYFSbeMK0KTApOBqNlz2hwqNRkVHMW66iHgpJ6ed2gA0ZR8rbz74tYQO3rk/nySxcAjOWWoXnQUmOUVarkg7EpxcAIZoBK7CQ4W64V1JISRdxRbdS9wXi+t4ZX5IfGYiebytEszFNy204G4iG3DOf6qY23PntgP7tCnYPd66n5oZ/cuM5+6w0Z6N0Hg/afE2nc2NRDMhWSFdrZNY8X9ucneur715nSfNIXg2jMXgKkwVwWJjVZzT1+rbBC9PkdVW86az/VnkSYBEOjteSBsYw4l/zClWQJh6fsEIOBGzRUqT+QzWSyMPUbB8DkBxzy59wsckj1FkwyYrrMgAeZqq4mpBU9loo695JDKzkmlzTuHTVJzaxz7WXjsvE/2lRLQNgPK62gJCMxCJY5eS1V7gc7QFN5sG8VDojAPp/PjOrRnNSJdomgnfWlkF7RlKQoPB6Pa1GL8Y75CA4IxUToKcXc5DYmIx8BkmoExocUsBjuwzKTLQdymoW5BPNgDxnR9yfO37v//7zfssbQ972MPa74cPH8Z3fMd34LM+67Nwxhln4LLLLsP1119/gnfbwgrJfGtqFcCiu4ul28mTu9kHnGuIFzhRj3kQDgN3f/mVIiV/t/tU0s4F5i3NOHKjbWGv44FjY/juVJW9EL/D1ZgHM75zxBkAM4KVmSkgwKY7RjMKBhQMGPzTjJFhlCzttwHsXBJjQKGCoRSUUlCYUciq0EbMCZKk1DfGLhhrMHYRqY3gNiZtPl8VitAhkFr2C5IKEpcQdKEuc2YhQEbWtuEIoJY91vZLLqSnMawbRGOA2YNoOQdDfxKTyF9W2J8mElTqNsJWYiITQxfPTPowt5bqfpjkcT9Rbj7IQwYfsw7lCP8O3r0Cqvi54gGQUaKBUZQxCFmlWA+GbTkEqW8WzOu2Cu7zeaRNrr55qtJinmZmKX/utYby35lTcwaiUdylnWl5vaXkteeiysdoQls3ls1mxeKiWUJcdCWAZwVgJ20rtSzjg8SmKFVbJdNgeuMRJ/WKywocVnOTz3W4Qs0cjx8q+UEIoxJWan1YQb22kHpMWc9g2WdMsCwnDzY+LRLQ537u5+J3fud3+k2Gfpvv/u7vxm/8xm/gzW9+Mw4dOoQXvehFePrTn44//MM/PHkd8EkZnF+P2u5vIhiX5SQPIJoxSX69TKRREuEWtESEM05r0Z/8e3B+2xinrKU45pZQJJe7J6DpiaP0dNw3Sz99vXYZB4BLMgErhAGhcouseuxg1D3gogi02Vm0ufnareeuBt1Jnb0vJnNZxHpJvJfCdNDO8Ws4KCigPU1Pc0mh7lDShihev6Z3mX4P9X3z8kJnupcqk04PdVZ0r7H6ITU4tQmJxO4rAImDAaPZIzPF8muFzad4b7KH22ZAsEmL2dwR1rfuHtzPsP6R1b9yu5SplJPXHPUxaOAT3xMqE6PZ2DJTE9z3DJNjQJctr53lGgqwyTpGpGMy6MjivPyZXlP7PBZVQxM7YgEHmsZncDcLk4A/Z1QhbdONMEuJtS14PGOu+LqOZK/Ni9clH9emZRNmuxBxwu6gBfAVTGieb/1RO0Nvs5SaRkC3DuaJt08LAA3DgPPOO29j/80334yf//mfx5ve9CY8+clPBgD84i/+Ih7+8Ifjj//4j/GFX/iFJ6cDPhci5YQtAluYJRaQvxFyzs1S5Pc5FcSrZVvwF5nU+wD1ycGYq4Cx/J64WwG66gXzSRdrTNLnsT5zXEykq6fiOdo9tB8egnT0wY4PCOiKMjjfE0WwwpMtyF/3X+uGy4jYsVIW2gApRq+ipcFs2QaCXJqrswHeCuGLZk6sPfrIzsmp7qsf1QYRnQDGs+dFn2lgZpwzACHtz4AUABDeadvYBV18aTTPORqllKemuehlKpJ5T8HQuNTwDAwFXL+2ndFT7PZkSKF+Ix8eszHVQhAmEKVZoNJUhk22o87ItFp6IQQMDkbB6ce6CUbQH4nRJVHvylxnuASeNKfbBN1m/8HimOVLyNfD4phj5fIiqnOWiyhRdgK60UU3+tVeLTqDq33RzWhAnNaYLx9vCcaZ+1BM5JIu9dCAzAu3ye47SEIboqBqFQMyTQgaEFnmo1dLR5fjYo6P0j4tAPT+978f559/Pg4cOIDHPe5xuPLKK/GABzwA73vf+7Ber3HxxRe3Yx/2sIfhAQ94AN797nfvCUBHjhzBkSM98OmWW2650z4oTNe/djfWiCQeyF9sMC6wFxwqhFDBBSMreT7FdRw8yAEuJ/Nrb3G5iBJbqmq2Juics85rKM2ZY5eI/JrCFvk8ODBGjZ/mhp4azU8F0AtOdN+0nsSSE9nOYWu65ZrkFClH8gCMiNePTAlTu17PM0Do5YaBIJvWcoKfsBCV9rffz21/FdJowpJvy4lDs/pqm2khx8GE+T9Kh9fZW9q7WS5Cu2MrvxDcdNwke1G5uq04XA/oQbEBwrlchb07ndHseB/sN3Dos9EmRWVz+wZTS0AKiKv+EuhKuxCCIQstlJYOQACaXTUSYYYnoC4nyjYgyosgZw/N52zTRy+vke+V0TlfI4uKx8TppQspdY4zBii8lWR+aKMlQKsU3BhESfNM0W1oTq+a1Ml9izERGI3rpoAF7vl5YB8S4zwafjbisIUmzBNb9Ui/YGSOmTG+k3bSAeixj30srrrqKjz0oQ/FRz/6UbzmNa/BE57wBPzlX/4lrrvuOqxWK5x11lmzc84991xcd911e17zyiuvxGte85rNH3jBbSxagNCuzw12wBh8MXCaP8G8BKeSpZ/gogOA4BwdAe7JhPmbzx1YLpg0ISc/fEinZkZvuV6PqfnCNXtD1/nuoq+NaEuMDMKfuWZb19z2SbtFOPlSOkfd8BlAEoGlESNks767ZPd75LIYMVA9at+27qgNdIJrT5BDLXPKTYAhKjPas2SmM51bAk8GoKZCQk8z1Bf90fnCxuEyzDtydoM04aQ/MSUAGprTQb/ism8BQMt79r8TSWFACnnsiLo2QFxFo8i1bVhtHSF1G4wWsoBQTye1NOfJvBjLjWFagg8tTshDu9yfVXbbwCnWbfTRaQH1l4n8OvZu6pyiukgy1xsYF1r7hRZMKSfGt9sRIxGuM7QONlmFGXazSKAbtasojUF2yIlYtCVwRT809qV7pSdsQ1l8Lcecy0yy3MlIHU876QD0VV/1Ve37v/23/xaPfexjccEFF+BXf/VXcdppp53QNV/xilfgJS95Sfv7lltuwf3vf3/rfX7hwMZMigXq4I+WrDNJQPECsy51pn6L67uKN9QJ+batLVd9nowzJXD/OYzF27DreFpevyH1xfOHeD5TH1J/jviclWRIfcq2ml4Iex48ahpjbgG4du8eUgq3FoWNKaIKwtetx/UHAEVW65z0JxLTkP/eZabiyyMzw0HKA6w0PdNeY3wUOubH928xp+ZX3nJN6ioUDfZTS598AJp+11NJa3NozxnuApoU2Tm7trEDshQZ7zbeZoyfgFHJpB+lyBRBKGz58CjSOedncDqrgDlsUFf5kBPSwj7Hgulz4h9quLo5mNG17S8hg08GGsbGy2sSvk96cWSODAMU1wU58OidJ1EF0PPgoBtSomOKOfjkfDd+WPZ0W9Hc8WCl3VmDyUCmq77Rk6W75BI/tLWewKZpc6OfYWagbfafOY1YvorQeizdbGJV7h7DsB1L+7S7YZ911ll4yEMegmuvvRZf/uVfjt3dXdx0000zKej666/fajOKtrOzg52dnc0fQoSJibog8O0lOpiEyJo5jBwlrHk+LSmP72vpepYqgKPRn73pUmsnAjjRZhxT2oJjyetiqVJH+rsZ6dNGfoRubMve25HVOSegp8oMsCrYlnBUGlcVTGldXNk4sfyE1uwVmPtBl3rQgk/jCnlsE13YYLSXTxSfsjhv6fac1ZezRvPN7sOmhEfpiETa9b5IFLuNRsBKjIf1IKTGHrM0h8cYg8zldoYCECXXGlnqGCi6bKfud+gXYzXhjIBuoiK0iHpm9JIn/kgsAEVclSSV0RLbMtMWLyW/6jyO2x4Gc6YrKpYGo9WK6/l+DQcVQg8Qxx4t3P1CdOF0Y42L6iY36osn1PsDd5XySudbSEBwKWdWXM4v1wAo/+bPGPfI+Q6pJNwktBxzA9wMQV26ikeZa106c1nQAyIiaP9ktU87AN166634wAc+gGc/+9m46KKLMI4j3vGOd+Cyyy4DAPzd3/0d/vEf/xGPe9zjjv/iSzZ9C6Hfju79DwW6bjom0BKAEmUM4GkANFOUb7l5/sxU/yS2pc4/bpXXQzCNzWYaixVLaWHZ7X5l8r0BHEBUoOnndKcC0xaHZ9w8+4FdyfoT0QfW47maPrzbupquJ/IJPr/3nPITaO9TFEojYKstKD93fkX59c8BaNP8sPW1biC5j3Z2U1QYFQ8K3QyK5gqrDiwRmxGXDSCKi2zjmZZzwuDP8hiSEsjLj4SRhqiCfSuQrm4WkyYav6emdq7a14GwgU0NLhy2PzQGDVuXgxqPtdxiUi7HMIsH6QGz00MAYOSIhPbTm+bNGc9ckmRry2WEczGsuCkU3dNp8QyeFkfcbdJ3NRfr4iAdsXmgLXjn/Qq7UUhIWRgrZOMfJT5mGSqQ1noe/8U6sNcYsna308bImUQUuUFOXjvpAPSyl70MT33qU3HBBRfgn//5n/HqV78apRQ861nPwqFDh/C85z0PL3nJS3Cve90LZ555Jl784hfjcY973Il5wOUVFhOPtnC2aeLq4uW0pomQ5JOzoWAJPplaZxDMXFzeF/1YouJJaNu6HNOnJcb038dFd/J4La/p+cbRI3dsb/zWMdt8tbrE082XNgQ9lDWGpH9Su0a2tQTXD0TMyjyRTwedINSbOs5G36nTkm2u7/lzG++RT9k21v0KNEf2IFytGiI6x5wCThsFdR2Suc3bXXqm72AkAq63sVabEl+MPzB/3wTzIhS1mCMWRSHFyGqEwQFGZK46U9hYTkC3qQTBdXwlH/d8/gS3ly7XTmb3M/jkCcqLLR/nfa0uOhd1Dp/RnG5Y+7oPW2/YrzY4jzyks74tqHZEqucJlZ/B378UA2Z1BGyOdJIAUPr5hCS5RLfIM52E0ExJrcYm1bRjKGl1YxL4ZM0xROLzIjvVdKVvVJqiFq8Wmf11Y6BOvJ10APrIRz6CZz3rWfjEJz6Bc845B49//OPxx3/8xzjnnHMAAP/pP/0nMDMuu+wyHDlyBJdccgl++qd/+sRuxvPPtgR9fDbcPfMkBzonIH23xHl7gM8GjcvX25CbF8csgelkvcd0/9Z1567yWohb82LfEnzI/7N4EPbzcmrO7K8WwvmciwqPN24gNB+c6Edt4BMwY98nn+4ExQBGtkAZ8NR0VvXAzjkURIu9jL5wg5DGfl0cG689Ajq3gfN8X4APdR1KY1H9xsgnOfhouMEKlASg7skHDhrX6yoRLBZr7pAQv3CTErskGc4iPZ8XUEDEILIZbwXUAoD6OAVz3xxw0DloAZptBWyEMXLIZZsq/PzmXb4NgIJb2gY+yzW8DYDStSK8YdDu+QkHn4oOPNIWe3rpy8WQQSev67aOdQME23EpuKdlXvf7R3G4GmPtgAnvOxK4ZBrXnKSyes/7VNSOD0kp0oo1WjjTFFruwYj96ql34NnrO3PZA79jWLa5Jp54I9VjMsN9RrVbbrkFhw4dAu6BPhmWAJEnVkyIZcqBxKWEPrQC84mZKdGc3d0ORAtwu1MAuystuBxOnJHfuyUa9HsFMx6xPNsyL8zXuAndPQdUBqAuposHndb23SJWFhXrYXngCgZYPFGs/8m5+zWANdRj/ivWPlgHoDgNigOYMGDtIapriOdHUMs/4edsMtXRFB0LomBa7M90w/rUt13ftr2yfH0GwEwe2EmQMIgUcn94PzreibDFYAh5glvLLZgdKiwDgfr1PW0OIg6ou8YmyEJOVtqfK3IZR/Y3ByCw1bAhAbGAxgmlVBBXMElTtcVcYhjoWNJdG5c1+ZR2VVNly8U4UVoqefBytoLclhLOsNhyBDAtNl9n5GlmxgqMnmqG/H61ApNYYcrJAXTWr6X+MvcrRGdezqhgKjRJUr4Iw+hSACqKHQAHxLbTBNhRYMdVcaMDD8Omy1iAldt1QmM7AdglYJfdlTs+qXe5DS31ANVgqFnJSoULUCYGrxl8hIBdgk7UEs727Bm0IF2xjm313oYbcfPNN+PMM8/EXWmndi64JVeSJ2QGgKwAdlXdjLtKXEKWqtkXn/YAkHYr9S8bhClfM4NO9o45SS3WRnjAzPCPkyS36FIOtBTMhzAInEFQTLiIBrI79MiA7k4QEBcJC7WRyK6Oy2vcee8m8hvGa1tEaFeWdDc43Jm6TWYWqChXEM+aAROAJ4htzG6889T7zMxmOhiLextPQ/EOGCA292UK4pt/BDvHidYvdg40iKEqe5Bq1CaNJ9E0wuE9aG9nPqZdPcltNFoWvgRThBYF6ZkqIpFrqdq4foKtASRJuoREJP0ZJ2AWZBlc+ExCWU7ADECxNks6dslM6pZzsj5RAK7ojg++Xls5FUUrIW5rl/r7CfFumTy40RRHhxz1rH4gJQTILEmTfL17mrO19/7ELQYkiSdLaXF+ZmxhQMI+vhFGFvOjOu9D6Gs9zyG4FCXFvCArcSs/b0zgvJT9PMghl9e86+2UBqDwuGmLfdmWbG40mn+GcS4AyDUhHYByho04lxdMXL7HNqlsyfGdjJYXCTBLUEixoGH33raGbVp2LLa5HxPNJJaoMiNpEoahMkhbrx9iFXOULPGckLsFqLtyqqXQGZy7V8Czmzk3neAmBjM8vHIOsyCq/mip7/bZ+kqudiD4QjOZKQcPxzkhFXYi35nugnkxNkHSsjlSkROb0L83Q3DoWNgWMtikHtNZxYuL9xkTZ85ZdRgPQhKyTgTbdpBkeIyPE1hSS8qas+NGgp8IK1aoSVpraX0P57yWAy7mlfe3CStO7ODc9QzRge0M4ZIJyxxA1k7k78v1rdi4bg+dmLmj+HujJjPPOcdMBBZ9yv1afm/HZNDySa1poHwAqpoUFiAYQAQfV/b5EhkmwOnxUr+Wtyb/o+EgmRSlQIsXatOLHYC9fpEwoRaGVPKMJZ0J7AHWdgNt67tANl7GibdTHoBmhd0yxxV/5++02OKnBDZQ46DaYnIAyqxvC+yKtgS45eLYtuCW++bd2oqXy0s14U765IuUKY1YlARIOr/mclh6CbZ5zR4bhshcEIbJiMXpaUuVBoAHEBegUDe2wsBHnJhBFVTJEn+qTfRdANKoU/Bd9tQR7xPlEeIJcp2geM0gbfNCSZsDQujOQ8UQaqVBOsgoMFP5Z3oTRAKElo8rFn8jlrDvzRGmZeykhlRKpn/nqEgpi5smapPkt+gdsu0tCwlNsmNAC0HcL3qwwe8SQRvPuBr8Wv6WVVp25Hz3rLISwBWhKaqfsnQxn2fIj7UEp/jMaB+qK/+7xbU07k9nH5vriyxg07NhKBGoqgs7zpVkUXiO95sTIJgMQndg3EJLOtOpaRrrTJLL9rAaNIi6ttYChLv0A6DZj/LtZo+cxjQYn+ao4PeMvoXDpQEyYyKGEBvDonD1rf1ul441Ni8Gf7LaKQ1AJTF2dTmx8+pcTqoMQDExkugemWd7wSY0RwUUNDWdAnNjZm5Z8ln+tgV8otu0+Hu5f+OxBI1bVU8GmTn7FkXt/czahGZw9rsYV++rQHvA6Rx8CiIfc0hCPazUzONMpj7aWvLaHyAWoo1j5lmNN6R0J5dbkLNT2WNa9uwJ2gy9YE8fRKH/7jEfbZGiL3CJ1Zw4/Rw/Bf87PKhqAdYuvIT6kuKd+kmi5As6ZdRzQ506OrXaq45u5LEpsXOGSY0JCLjQ5vEXsoySgpighT3DAYFU3ZFEXWVmrMKskB6iTETPXbFcKjHvgg9r4AP0/IcKSO3j2c5NnHwb/G0AtCTs3PHGCOhCpMreZ+n9xRGFGIXd7cI9T0wdp6g16doBNDFhueCCsfC/ZyCa+50Z0swRON1oaXXSTzXmCvW52bIWZOGY+txberA1WhA0jOZjTbOBj3sx1mSZ5g+DsMa82DvadXP5lQChZQbFu95OaQDiNIcAtBxHDHuRGnrqpRSEfl6I7exyJ4W6LTkOZK/a8NfPrtwtziGzJ9uA505avky0PMcD67JbcOjlY4LGxG3nUSKSLhGyUrJHwLyhfFMlVGWIDCANFVwADrdJGFIS+8RUXzVSDQ2JyAP6yW235PdGGzyiCC8Vl6e6wq2nKrWXUBEZzxT9UciM3mTSlgXfqam5EqAE6Cpm9KQBSAy+HR8yYKesDWDgrseUCEd+cQmEiByWhUBsE1O89Ha/ZRBS/+7ISD7CcffudB3usDZKsySoXt9DWQDKZMMqsbKkvxEAqK37cd1waYg5lAFo6ZjR1LmKpE/qTAbYmaK9xmlJuFOLnGdh/4f3vad1WiyyAKHWb3Lg8czuipZMeJcZNVIe7Wn3SX0GOhrm1Znv6RnNtaBNrKamVZO02Qa+q98CMBIAwW0/s1RG6daNcUvPFNkp8njmzO/BLAGdqZyIsYZpHpTyqPVHnmsYumfrcRO2o7RTGoDg3H8r2ERznOmZsNG5y8wlxPyrQPXVFZHbFDYfLCRx3WSYFozGCTddfOZ1kI+Z0bp47uCgqE+8kHBKgIsPkv3uwYgwsFDfBAAJN8KFdlwHnYgM0i09JGdD1UFHAWi2dSTkZDfYs6uGLGu2ffYr5+xw7VRT8bEtHgplt1ECgNRDasjBp5dmaNnQExPNSTKMkhPFl+IAI86DGtGt6l5UiUvNqzZcaseQJlQsMaqI6dQpGAjtoJPQ0rrffQ7n3ocxhEEOjIi2sgiDgJkboLECQw3XkKBP4WfXZ1JIQAKZg0X6GkQzPKVytorlBM0Boc1rd8t1Z9xAntjAPPKfgKJdYox5seTxOkOlILIiFuFj0HKxOQh10UI7ji0vNruqf7Q0BWmhMXo5luija0wGRUtRlCuhqiYe16X3AOtWVFJTD3QLJvp+JIYo6KGga4gaXdEci8fuiu/rmNJzJuqWQShmzcmUgk5pAKp5woSqnToAteHUuXQAYC4qJ7/bcDZIdLKBUPYC1fQdmGeiPVktr8lY8LMI5/hK6dn9+QcCRiek7PqMcCCgABXtU0tcVGKYdMQEkJdjjnHqkdI9Q1n2jrG+2PltX9g6VI3okz1ZlDEgDknAwMTSwoR8E47g6s7dZjsBkZlWnKqYzYdm4xKcZSFy1Z1tnBY1gBYxb7m6rPzDgB69FDLC5CAfSR8Z7oKc3kcUbluRYkX2fMHpCEeMjXZXWdZZ31qFpZpDf8NRII91BxCGF5Qzvw9nQrQ9W3PdVie8Mq/0as9i1wnXXkXnqiNBw3I75gmc9ZQJqAF0I2YcG79F5LSfQz5nwJ4FnDoZDJNLaALMzd5HSkOR1JmLQsDoasEa0k+7UOrbEoCa7hpoMRsBPjyXxAKnxrRF0lHySdWkEgebKCIJMkBiH6twBOEEaq1nCXDivFBdxtyN86dQCzs9KMSIEiuTz6tM22L9ZbiL13ky2ykNQGvtHECBLz6guevH3F4mQFSgA1Co2wKEFi3mXMTPhDogLpcddraFCm27XrQl0wVsrlHkvwMJ0Z+jbcEtwkNPwBiUMYCdaMMlHJ6daBwj2jEm+aAFxFkQ5DxSOnTEPUVmdl+I/lJbIS0UlQ2EbIEIiuvH23P6g9jx8a9bmYzjo0YPRI3Y9NLcwbWhB+3RHMBbbgZ/5gjTGdTHDFF0L0iPSwzOobZIfzaiEpKQet+KkhEdtgVutrQI7jNl5UTuKsue2t7VcDaXGEUJJL22UgQGxnuw5lFYzF7lFyjswJxsIwWEwR0zqALqjEDEF3VXbetDlKaXYjFAE2Few+dEG6XPxpJjE4TiGJecItiyEV7W2WXCzhFCZGgoIrljjJiSvcmxMQyKI7xQIy4Xb9yA0G/Q1NWMlmk1G59g1wjQjySkBQ400udLs0NG0tBiklIwKE39ryalN+k9hsKZxsgBR2Fs4gBtzBK01kiknK4TczweoNeRCuaU45FOOvgApzgAacXcc7WiSZItPgb2e850v5HpYMvoErpjzgrzidQ4bD9tQDfMBo7tZQIK7jn/vWy0+B5EvRkcFweH2I7EDVESt5W4gTOlzofLKjPcZuEwIi6ep8DS5umWWNPg0HMRhPa7q/Sij0Tu6usK7FDqlZjsaosTfoUovmbjrQj3cAGgrm8gF2uJ1CQ4V4X0xRdSmf3dnZMMMgciDEwYnHCFtJj8+tq1lZ14+eIu5MTZgV2JDYBg0uPA7O7mBaqESSNA1EbMSmVoK/cuXqylW9bs4vHMwSN1hZxLRM6Rm0QYUrATaQIKqWd+9xILAh+3zumqarOftiwGagGlNVRoJ0KBaMsWazUfs9znk32oJq20tECZgURIMV2lpd4/VlMfFw1pyObI4LzX4HNEiXCEAoQXz9i4wwAe72OII4F0s/K6/ki8wKpMi4L/C1BlmLefc7ES+9UZHe8PUZfw+lCqazesD632T3DF3j0lgEVR1ebARIqJxIrYkUAKm9bBxz1oX6h5sy5g42HvYjulASjLhDL1BTSrP08dfMINeJaiJ66T2lLq2Yzr7y0YuOX6id+WeJG6fFSASvPVObhOB0D9c+8tbCfkC6DP7JjgfU6ZaityVQMFpAOgVhRbpaAQQzQ837oueE4M2VUSyXBJxl0rnACGjSi9AzvGVVYwddDoW9SnN/kBLScaFNAaMTVk+nPVmQoinFQGkMVfoIM4gzCCWyr8cNsN9WW3mRAmEIov8iAeQTPtb+sDswMI23gGbLd0NtKN/60Mcrwrn6c6I0I6S54aMtGAFIlF6okWOtg34uZvBu4NBvUkskFvtQf+TjSPsA9X4dbHaMcCQkedl3ucE4uK0vpTYFV79gp7530NNRW8gxJrdrSIHB5oEjSAZieppNhtHJlfZK6Dmi/Qtigz0mz/bHE+mostokne7XI+75oqLR2rSIAr6AHBPh8iwa64Gyy5lLtBjOKa/j4jCHZS9WBuB+Ck3wupWxHuODN3l5PaTm0AApJoYJMz4hLI9eIxqPFudPly0sKIrxGKMKZtmbom3nOoq6MrqTt7rtU7e5Hq/WpxJ97vnExx1v90fAs5aQ9l3maAdbQBqMdIBCWNJVvUWTIeoGqBZ6wGQAq2NCztGX0kXNqpnooG5J5KGgGnzq+pEwmx79W5cXJUiDE1ycNWHauVokZaQD15IrtrKkFEIWR5zSz9vDbut0nACNfhIE6c3qmrsWBSw+Bg1FR5aEPY5gZrSFUGOMTu2ef6FqYAZ3RjhQS3Tk0fooFsTKhKHUCh4KoQ6YG3xUF5gFoBOcSxyVEhAJKC6eoU1Zw90BiEIN4VZpOayCSfLHFszLUZ85I+twFNfN9G3Lcw1c1ZAAZALG579U6STRVM6fxmP1dTGbHnuYuthE0ToT4WByaLeeqSuiauIj3DtudbttYHfzyfq00l6NJICFAtR63/ngN+FehJXN1TgSuaM1WEBSj5OaqzeB/1R4G4GrUCkxCmSlgLsFZFVcIkUQ9p+ZK76vfTAzu9ndoAtOTM4uVzJziZu8hza3l+ZhwChLalospSUBwXOcgCdDLXc6LPFfYGBPHLC3lL/41wIhXaC/DpElDYehjmhNDGQuGE2uU+KgCzp4ZhKDu5VlMDSDgUgGaeYK2qqbgUJN1A3MVCNe8c6Vx2Xnyh9lJylVX0l8IJ25wUqhvTJ5DlUFMBxJ9RezY6eF9hvD/WauDIDhol3KVZPPuwes0UI9EVliFa3O6TPS3bYtXOc4MJVMxwYcDl2YSFLB8ZOUEgQMgi0M3wb1yTUlIbuougTICKOpD4GHNnUGxM0pzwwWQyNSWLF5pTm1NVwxmlq3ctX6rFE23Ndpzn3zYCnRdF2ygm14JLo7l6IEuDfjgJmtt0MOhAl2qDmAezFqqteHaTwrO6uJ/PDkixzbKKx4HbPOPaA/inLp4ZiYENBjKdptKHIsAn1tRGzI52ABKPTQx1YyGzP+ZrFbI+hxMVo4OYVEKtjCrkuf3U5xN1j8VkygoAmnMO2wjQXW+nNgBlbqrpV9AXQzVC7rR4NrcA9LQ71TekCYQ54ATXG/viWjkmR7FZ2fROW+acgqD4DWexd8B8kacxmGkH/IuCIM4JmlrIDJzsMSJQbpdp6UvU1GzEDBVTtynZAhAnBkWQMusqxNkwFX8AApS5EQYFICIQNZVREKAgKPHw3fip/V1pL2pHQWib1BMJE6UlkI0I/gIGayTrBEIGA8zOk13JGUacB1M2utXLQIed8im0OzQEwDuBzZ6A1cVPYm7qYMv51cEzQFdUPQsEUF2KpFCVMZI60dUrLTGXjVR1/Y15e4WKKrwNqXHZI4CBxLzg2Iv+RV4ypeZgUH3WsF9vQ/rRxbacv7FI2hy1/nUxxedHiJNNpI+Ld5k6ninb/5uk5oS8BgMT78UBiEhRScBM7jBCzaXbPNQVhQQjKcaiWEFahmrk7uTv8fc2wFw2nx9RCoLYHy0AD329hpq4v78u5aiHhkzVNq3ooQLU3btZ7R3HCIYmzaeKJRmtQBVFFe1pxUT6u6j9vXSVerzQ5ZbQ9iS0UxuAQv+lmCOBv/BAk6il3lz3/VBy0TYMb8uWmaB4HRmAdHFcTl211DhstG0MRt6fUS7vXzIhsTAbC2YPa+TU17gbYMNFl9zd2SaaHWQTuBgAKdkkJXRHD1+h8zQtfp5GiWj1/gQFc3BxopGZ9B5VpOnRrBckPYVpvFpygh9OxDFE3dEWLVdkqKO0vYE+kPbNrt5UIjAbzwCTiEJ6anr1oJVO6Mg/xS3NLY7DWWphVwvG3HDqwGKSJ6t5ALbwAFU/16gRObGmcC6YFC1XkITEFWUvzH4m8HeqprYyW5Y5coxiKknV7qDRwJ7t1Ra4e7IPWSQY3QCdoHR9GP2FUqeOCyNsSKDQFJTcJBSg+VNy2LQEhcRDCbqEUB14tHabrgIN7Pt7skEg9xC0fvlDsLlnM4nfx4c2pmw845KpjeddgnLQGp9mbb5iU1ZowJDu17IX6Bw8QvKJLN5h74rrDurvFWh2sUHnzGgkPJ1EDbCr2ri5ZGWZXqg9Z4f/DW4iv+jFINy1dmoD0IbHSmpBXNQ4/+LjF+o48fNbyp3FpcJeEMOe52Hsy/NymcByQhPC5o3SSfk9L387GpORASviZpQsrxPMI2tAhCmKq960cWay7L25BBlJikRqDAvGRfi62X4DqOBKrSPhmt1aZLSEc8HNw6uiQDFi7urc7RiRZ6GnhDGuFlbqwKWTIJ5moBc37Es7b4j+xvmLd8b+VOFyPahiBXZi5GDkQF2ZvDxBN/JW77CSFYNQZrN/MUOKZTyo5OPsXPwAweBjUohQWVGcgEzk5Rvcz5bIY3dcaqVCTVpXUZdaArq5MRWN8lBOE6s9+JKcNlOfZtnJAdy5612x9P+Zr2vEdjYXGc0FL4EPMbXxNExQ80wjP0cCNAFVAVGFVWQ16bOAMEIxqvUn1G5w4sk18ZmhvaBgNu2ZC9t8Sl7pEFFUsjGMSbEn+CTmNK4hwfnEsXmSpWHaxRyHC1k8kGqXXjTxFfAhVOrqN0nahnAMiflbHbxGX4uhqszMcUUHr+q2RFVTyTXX+hndpPRnXpkbLx0nq53aABSjvKU19ZkCpTqNd851xoHoXNKZ0XbMgSffNr+7xpVgDkIK5yQbx4xNhmJbtt9t73cr05EmiYOQMJudg4CVeoChG+Q5dL4NUqjP/nytMJypZxkQL17mxKYqeeLW/CCLfqWIWXNxFndpF6yA5n4NhNorFwL2AFV3bgiVnvUwsjsDEMGoEaEUirBIFr8tcK5XNrIATcZAhBVH/RWPC0IAtkBLxcSENQt2STGwYl16wtOJAGaFskIKLB8bU+NsmajF6BQxb73ILcixqT0r2N252V3U1ev+SFfVVM9c3MffRoaBnhGiWJ/MFiHGiLnBpHHdQXh9rg5k28QWX7crwOEKrJnMQ845aEMxnzMRuDK4moHRwGdgag48vtsFEftd1X0bVVHV0MDAsbr60BiJUTpgZg/WIMSzlZCIe5fUw4U/PMAUk29r6YQ91lcL6wnGVDqfqL5EmrqO8s3T9wAr+LFi4xphIHFtTcSF/BphHuuq2k5rwmMR8RmvIwDI7xldadcIaVEEqtRoQZVON+Yj2R/MHme5xvcloNa2DctSuGhCRgKsJHluSDZLPW0e/qVtcq9XEZwNsU8+v2g4FrSObgOl5UPlbUbrl3c3qhdEV1ztUkVNFaGWnJI9Jqek04yT9snon01Gca48wDuAiaQn6JlnyO1GX1JTBQ1q8VQrqKepAbrdJ3K/+UM2ikVg9v6CPH2QWsCdi6cW7R6u2s1QAstf12O5+7s1qWcEY6CCkRmr4q7XTPZJpgpSIkghjEwYuGJgNXtRMXVRheWiEzIbmxTLeIBCgd9OGHsMlLo6RN0jjoUwaLisG/CbBOSgonBjvFEShlOVIDzaSUQhG5tCcLuWtLEv2ol08AYx/yssqwOzAWpRWKE86mA9VasVU4lcwi1d+illJgGF51moMuN1Du3VElR6xU2mYIx6Pd14Pk+KMfMCBdASEUQT39eWkKvhhMJ+aPdq6YQUzQbXJAEH+fYpfTraDZyLDINNrJ0wVrW1lCZcApbg98LxZoPD9WfMCXJnaz5dIwrOTWp22eA94hQGWiLUYDwicLuIYhQDpKrF7I1bJZ2TBzR7tVMegDbcqr3F7vYeY44sCLz6f0tMyLjQOArMBa4MREAnf+18n1DsKDhL5R592aZmzcdk9mcJTgB6FHYHC8DAZ+2HFwAihMm/R16qkNjgaTrM9BA54Ao4RLYWxeqLnBXs2YardKN+ZwCiYqep01akGEmwo4IVxImhuPeROnjEc2izfYC4ccPFVXisChYBeaZZRg/V7EUbbOCi4k3Ec5tRnrADwooYK7KUJCP1uB1zjzUXZzChFoIUoBR1ABIc8UJeEvE/VDCxSQOVCFMBKhs4marQAEibLsVtQQJQDdsNg8lrrZBPCRejRDQRMBsnFlcXQtHjuOx1sYPOQNrinAbqzBioG+8jo7WBnzuABNdPisEBsYshhBo5f7i4xFPAzKa+LdTuZephV+tQWituCzITmnHj4kyDupHNJCQvEhHP7l1oedIUzaa1ZAgVbnhnTzUFk34Eism3AJ+4XMvO7gAUtjtbFi6Nx8DFWgzi0qpZprW5jT9MQBrqucCw7h2FnoInGAc/vmV9DwbCQbRgLsmxz5FYWqHyEweseE5W9bCKJeHJj5B/O7mgdGoDUHbMANrYNK+exNEo+gtvsR3+0snPiUtkYAl8QLrFktnJ57RFnlrM2SDgsSC3AgoW++Kd53dP+cdYlfl3+xLcHgDPlmC1aAaf8UxhRfBQM499Ye1+YiEJqXJ7DqIuAdlRPWAtAG+A2ubqrRWAUQkrdXmpuYG3aCKAuq68mUAVnlEgVx6ijXeQ5Z/8puJvsylYrrcDRNghy4RgObG4PbfZDDxS3oM2qJhrtYGSe7gxef48RuFiRJkLKhPWhTAxYeKevdq4UL+e62MHseBV0rDYFHMr936HCihy5IV7fQCDGaG5u9dTV5YUopaMNgmUbf6HitAIs9vxiNxw7VHz2uO6zFHDVYRUrN4QM4gLBi4oIQGVJLklALJ79bfjBTtM0gQAMc9L9Roe5EYrVd1wFQ6iHO9fMOf+NVRrMYax3tFzGFoWAO0MrPRZkz+DdphPjXbVSV57YWDLxFkWGzpYkGsrw2O2uZrHfeI5JdTXmBGi8L2aBdv323Rc9P63WmDVGJ+gi6wE0QKQBZ1vcsLLpnvsP/F2agPQ0ic6wEbda8SNvPFCVdFq5mRuoQHX4vKcNlrsWzI6eQu9N9C5tqzP3Tgxz+WgxvG3pr7OjvWDNlxZ4xj3IaP2Z//CETRpXDI3HbwFiRLUPNFiwMSzIGhUTnT5JlJwawBCOCyY1DIWwciKFZvUMSpjlFClWeyOalhsxNQDBKxUGugUTVIJ0LN4a347JkMVJzDcZKAYMnIAYuyAsAPGDjEKs6v4eoIbC1514tmIrrm0G2CZ9EdNRcgYyQBIigFQKWR2InYiBzHwEaM8uRheB6Aet7JWapUr1SkrAWBhM9ALsCOKlXSDvTnXuDSo4lyzpzqKd++qoHAaMZsIeamNbi/QNlltnAkO0sporiSufmMuGLlgKAXkiKehUgt3ezV5VF3qMILp6lFSr58UsqtZMSKroIShamE3absz8Pjfawc/U4W6tAp7F5b6yFWnrpeM/GxHbc2TQTo3mX/LzGFH3K5iE0sIWpVQVdBL0ZtKujjgQPszImyErvpuDgvRuN9mgk2vokBYV4sH2QrBXa9t7ZgnJVxNXaBUQFR8LdLiJnGHYK/3Aai3TKyDOKcJWh39NxNe9vkUc2dpC1rakbIUFMfk77I4T2FqjzAWNi4qTliAXzuX0OJ/wknAOCP3NItggOU8yC4tvpoiF1oT85lATnSLq0piYwcdK0FuK5I8qVXw1cZBFlRiCNuEVQfBRnDiWdxgP/h9VkTYUcKKzKiubg3XhMomhSgG8XPhiTlhQZj2LASiAuIIzIRLaKbhF+3uz2kUEwAxVmBPw+OxQA5A6iAHhsXixuAUNlUcwwE1zB4mQa2ZUd0TbmJqiUu1AMSRfcCD/yafqk1tZpJkuFFEbJICltmBnWioqSVHNTvajo+pZQi3p2TS2by2d2HOFMzapJ8Y8F72IaS/kBg9/gtWKZNQ3JmCO2B5Kv+BGKNvRKaCNEmZgJBeQs6dudw5cYQBYm1BuMHMRImIZvJq6zqM6iHhZ0m/SQEJPC0mTjExYyoKKbqpDs+gkREttxYtmrk6oEVV7yU0tI2hSlhrMZfyGmBfoVWbU0oc3ySVwLy8xNElfgFaMOrgxIcVXocKbdwZsLg9tc8JphHRiFFp1w8QkvQgjE7lTh4InfoAFC2ofoyTf20p2tHFXV2cmgULI1Zz6SefnwWR3BpHiTRvYwLlScToITJxwRBcyDMLuJK41dEJwhAuOrGQSdFcc/Jqcc8WVatFTwQMLq9bBDW5Lcj+3mF3l1WLlK5Ebd7arfypU7E0I0hOqHzRiASht5IEI8LxgLACe5kCn+utu/0ZzQPO87EpWi618PZqEhAFyKETLGpd7BU+JVSJ4XhAWKFgBGNE8ezXHo3knLF5kZnTxlDIQKgwZLCJRMVS1owM86AjwhFylU5RrMmOsWON2LWA1Ept7rCEqopaclUDcM+ijchYAYQalCEYyaTKUQwIvQatzXeCwZfaXGqLgQTsdeZ75nAj8VBB0QGNIjvh7tVwCSDG4EGyJaRgMqgcQNiBASPEM3aHGzoBwmJpkhrd1l5TSzzgVCzlkiXsk1ZOwd4heoE77XMyr7fN+kT+1rVZyex5qUIopT6qvhhFO5ItASivVeTv4pxdIMXiuNw01qSNEdQKN64rwFW7g4loW+KR5SHWYSsr74x1K2/v92N0z9tCZgNuWe3jMIplEql2qGkg4t033eyMQ85onEHprrdTG4BygR4gsQP2Z9gQim+t6XxI0+522XClXvkWJH45xzLjFAuiSVMOPAXur++EKN515mqMo1G0SMdGeAE4d964lMTFbvimRu8UgLDlW4Nx4lEVc/CgyxGEkUwiGNxjooLc9dZFd5b2jAzCKFZSwDh7QRFTS61dRcfw/HlkNp9BCAOxe7IZwYN2rt6WA/lT+ij7sxJC1QZESh0iT6RDapw5HCBn3LXz3O5QEfYfAx5CcfBZoZiRHWEf6Op9ZvE4HGkeG8U3LYoDDOwAOALFYQBHSLHLwGEyVUh1Y/E0hBeW+V+7ZQNcDcCsUipbBnIt5hqOYpwq1NBMw3pRPU+dOZLY3DY1HMGe1QJoi0v2UUO1tm/N0QCu0oOHgWqoUt3KZoYu+ySXPBHeeXY8k7taq6kT4QwEkAgmyD223ANTFOySdhUCVUURAbXAl6DpHscWrzbZUzJJzJoLoLEpPqsoZkcLgB2cgKvnVjPugDxghvyCFMsuST3xt4NOIy5YmE4Sd9XmI/VFHukbPCOBpcdhV7eJO4D03H9BVyJxQQ0akp9bu7ZvULe1JVyEd7cimJIe9GDeUaUD5IyYxuc+AG1vAUDAfJy4Sz6tKqgfuk3lhnSJkIAGGIEJAMoMUD4/XnxN3zMTBYUTGzuZxN51JXgeqt4RDc6qPVQsBD9AMJ8f7bvOZ6P6xSRiSMzVtQyKUdWAYQQGpSYFlLCpqJXfplZZM9QyFqHfgws1htqIvLi0BcxUQWb3sNEQMmmAXX3WGUeDAPVnMXVblwBbSnqgG1ERiWMMiOwAApMno4Tpzouam/MYz0oFTMVcsMkAyLDXVBITwTMgcHPJNocvwlBsDGkAdlixguKIKnagOEKC2/1drdk9i1ySBHtSVmZ79mKlHUp4wImR9QFRPq4Y4VcY5WHLKEduUylEGFGxgmAkYwwKCEV7ndrI6WZeX57Tj6LguUEFqJhKNoDGVUSiBVI5MQo2PsQ9tVMueRBu04Azeq4uVDLwManHXeiVQVUsyWYFuAq0EkS65GVJcM0+WFWakJK9nZdrONalsTB93SgirU/3tuTwhnN+yBYvdwofTE+IapFFIQApSzvsEy3UcZS4ygCp5jXh+wUgYc+METbeyHARwQl9yTeSr4sN8wOJ03ho2kANbJR6uDeFLXcj7Uq0vC8bGZaU88Tb0rRxp+1d73oXnvrUp+L8888HEeFtb3vb7HdVxate9Src5z73wWmnnYaLL74Y73//+2fH3Hjjjfimb/omnHnmmTjrrLPwvOc9D7feeuuJ9X5bIGdwBNTTHCmhRSRHsOEyy1GWfJZlGCKvVk5cEHM3F6LLoBR/x7xlsaBYmnxb29aKCEVRIUtZ64mc1H9X49Lycbu+rfP55J8KmhRlUpQJGNbAuEsY1gReA7wm0ESgNUF2GbJbIBNDnfB0hk0hKl6vxitwoqKooKhgEMHoAaG5dIKQeNyFb6yoRSGDQItazlM34lvtobRJsaqgQp4N2ROEIsz0hHCsdl87k290hUFX2KEdnMYrnMYrHCgrHBhGHBhHHBhWWBXbxjJiKAPGMmA1DNgZCnaGggOlYOXbWApKKShcMLAdO/KIsYzYGVY4bRhxcDXgjFXBwdWAgyvG6SPj9IFxWiGcxnBJiVwNSRjd+y6cH4rbUVbEOMCE0wrjjFJwj2HAoTLg0DDi0DDgzGHAPYYBZ/CAgzTgAEYcwIADYBwA4YASDsDtQmRxQMwCci+zqowqjMm3CjNAiw5m10PBBLZNGVXNK40mnyfVNl5sVBlS2ZJd1oKpFtSJIZOV8YAYhx21bYswigwYasEgtpXKKEIGhGIGNBFLCzWpBcWudT7V5x6Ps6WPpjJWMfuK+pbSCygE2qKB4+Qw3iUjHpo+FT3rA3WDLRbHwL3KaLTPYpnliQuixlYBu0coWi0qUNjdtKkVZ8tbAYmccK2Ghn3ShJRWjJo3oTpDOX8GB6FwIGr9XxLRJfjk7eS145aAbrvtNjzykY/Ec5/7XDz96U/f+P1Hf/RH8RM/8RP4pV/6JTzoQQ/CK1/5SlxyySX467/+axw4cAAA8E3f9E346Ec/it/+7d/Ger3Gc57zHLzgBS/Am970puPrTDbMIH06E7MtSQKhi/PhoJAZmphSywJ0eYu2BKDMlW3j0JoUFesD2xdRbw5fLToOczZw69OhAYjFWIQKkpo7p2tXWiAbRyCBGVVMnxy5ojSyr1nCG1Yyzk0AEbNfsJB737iHlQc1mMTTN2UrmVDITe6saT73MtiZLyvo6Xnmz9mVoj3uKAVfsicUpXifDPPlKg30BiKMhSxVDZna0Ap0kVUZLeKZDVzlRSZ9IDh+jhgZRgRyKASVjPCPLNglwpoUu4iaO+qFxsg96RhUDIhXXsG2SaVsUkMz5Euoo8gzfhOK+liqj6ACzZAQ2iANIbnni7PEqNRzg6nFTWlzKMF8jSgQJa6bJEqhdYoYGS9+6PFb5mfSIpfanCao27k8ma0a+KiE9C+ImCBjaaRNk5BylkugCwY9I4Y9mwKRUdrHReHplFwt11RnsUo1PmMtadok/YaY9N6pmBv998jaYfFr/t7Fg0fV7T9+7SBle9ETwEEodoR22pIitqQGRpPcA9ErVbbEsy1za4DTXiO53Bfv8ORJPwBAqnrCVyQivPWtb8Wll14KwKSf888/Hy996Uvxspe9DABw880349xzz8VVV12FZz7zmfibv/kbPOIRj8B73/tePPrRjwYAvP3tb8dXf/VX4yMf+QjOP//8O73vLbfcgkOHDgHnAa69mbNFi7fGMOKyciIziHERXO37IGgJDzNPs6yAinS7zJ2ssSn1VMzn6BKsmr1ha5splX3f0jq6rdFsIbVqrmoBmEwFZWAMw4DVYBz+igesuKDQgDKUpmIRIUxi3KdVNzaCQMLgWqC1eJp3S/UuYOyC2/NZRL5goGpjXxSrIhhYMapgcI8winxbGko1SXFE9hkA1H20YrO3wejlF0ZSjINiXJmqLwq2jVxQyLy5ENIHuGVAKA6cFYI6KGhU0CCgQSEDQCNhGMwpgQabSMKKiRW7bPafI6S4gwSfIsEdqNiFYBeKXTVV3SSKdRVIFXOQ8HFENfXbjgxYoWBFAwa3UzEAqIVOVqmouxW6FuhUwbWaCkvMzbsxOFQhRVBZLOBSLfBSYVnJBXCCVCDC2PWEl2ulLilVhogZyw1rbW5R45pdHed1j4gZQh4yTJYEVMMJw4NwSUwiZ5fOtSpqpGueJkAnVP+3xoRdTDiCyfLtQRD+mMGvxzrL6ylWB/lMUSZ39UQ3BjcvI59JQpauZHI1XBBmBnowjp83qPvPS2faYt1RWn8mzjQvCdo1LQTvEmjSZPuqIJ3avBZ0p4pMT/Za7nDNOYp5wK3InWMADM4YNtWqFExasCsDdrVgrWYL0hmNWUKebrkZAbgeN998M84888y9endM7aTagD74wQ/iuuuuw8UXX9z2HTp0CI997GPx7ne/G8985jPx7ne/G2eddVYDHwC4+OKLwcx4z3veg6c97Wkb1z1y5AiOHDnS/r7lllvsS1YgxhhqkjB8Jgp5zi7qErQ7N2FVLd/UUDvjmDV7xo9tvpIlh7JNQF0C0NJetNmCtOYXnds22WrZgt/U2RWat5gStFqKEiPdbrthBVcxGwpcF63w/HGR+NIDToPj9Tuwc3zhxUaASUVkDgiFIgszA2pBqB6EYoRY48pAd0Imf5r4h/ZcNkKhhHMgATXnh1Wx9GRlVMtgEADEBaWQhy+F5ARzklCPxidTFZKDEI8KHQAdDXx4hMW7DAZA69BkcJS1NhAjrRhUUKSCPICFqnHmlSqkmhygPECL6ePZYacg7FOljYkoQ0QwcUUtAtmt0HW1mJKkIjWzPyPqXVaPJSISc1JQbslMqxjzELZCUtP+RsZtdQ9Lc2M2EFJ4zAgVL3VgGRCYrG6UUjEX7KJQFkiB5yEzS4QUY/yY0bI4GwE39t1iU+aaZlPmWjLakIS31SzaJJshXVBfcE1icUIQhpPwGgF3EIklGfaP5n6XbLSqCXgWa1aoqc91Aura/qZq+CUSRRPnZy7jffZc7QtOl/xx2F3fWhCvqtnTxFzoK2mHmq0XznfMABSfJ08KOqkAdN111wEAzj333Nn+c889t/123XXX4d73vve8E8OAe93rXu2YZbvyyivxmte8ZvOHJpdixgrR1H8LL+Wolw4HmIEsQt+kA/R8SuggFEOdyX7cbgksS5BZQsXR5Jb5Ay0ln2gBhfn7HqJyqD0UvTwwYBPRFz1VizYn9/lUBxwLFjSVziSEWtXr2fhgKvWg1HTb8JULoBsADKqd4XQjaSF4VdTUXaCp31ruMN8X0BctXA9MoRb5xtzFmgkHBmA1EsqKMOwoymDZGAa35fDApg4nNGlv8F6rA1ApCh4AHgEeFTQQ1GsD8OhBvGxBjS2+JgCICJPbHFgErXZAtfBPRrWCcAQIFwvqpQGDMgqNJonSYGDJ7j1IDNYCrQIqAmLBRC4rqGBSq4qk4iUBqQJEEBLznoSC1TLjRZyVVoJMJsGGo0oY+6W5hbMbrT09k4+66gBQ/03JQEgLN0CyyEqCcnWvM2cjRJtquM+BYHK4SQC7UOyCvQR7XxMCU8sq+hrdtlpmSyJqizfxyAEpPNryby1GwltUVJS+tmYqO0qAld2YY4u63JNC1gBPoZazdFIh8WdmN54na06OaoEJVakz2GHn5vZcCtVqHq4Qy+nnKvWemmVJwZb0hdK+PUf7uNsp4QX3ile8Ai95yUva37fccgvuf//79+izbJSbtgDQ0JmXzkl3iYdcBReJ+4IjAeavYBvIbJsgSwCKc/N18+uct5iCcVTmRJYbZquvOUfEaf4ZjJLApA+WakZIIYBNw27BgFbSwaLpqemSTQVHzQYhXhIgEokZb9rHoT9b51arAlTVlSnzllVr4VYQwBM2IPi+TnTinJBiCKuRsFoxdk4jlNMIwwoYBqAUQins9WHY9aqddDU1P5naiCyrDngAymjXYJd6aGSjOwDWsGxllc3oT9654u7nlSoGJVQWrIhAqICYfGLJBjznMw0oxFixOTkMZcTAjKEwuJC5nHsVNi4K9rieNaoZ0mlCnSqqhNRj+evEpSBSl36ETNKfCDzBnQgiu0WoOtk9DZ2YtlF2+5/Dv5Bt6jYwCUBigrrnDjcJw2QYFQP5FmCZprL4GzYiSdgFNdV2k2aQCxf2tmTuYp219bf0WGiv3hd7LBTP/jC7YmQOZaBndEXnbIOINxBCXnBuGkggNHXZntOczjqPeLboP2NTJZcfJxi3UU2jE/HThD62VS0X5BEirNvgGRB2OpMVmsu7BEGJHp2cdlIB6LzzzgMAXH/99bjPfe7T9l9//fV41KMe1Y752Mc+NjtvmibceOON7fxl29nZwc7Ozt43XoyVpkkdv+dEoQXd5lPENpE+H/MkoMUtlnaeJl2k4xsQpH1LjiZyi2735tlLulnsi5ux38NPy8/BhBaM1iQ4henk1QibOecap2kJjQtAMXFt7VjuT+qR6GIgFffKzxb9DCIQACLodpwMMpI00eYk2t1R42r2POEnl9VwZDacgcA7BD7AoNN9W7najAlcPHFm1NxBqJiCw45M1uZmLUwW++NOTUNxEPKa51HWeAqHiqgmxpFDDciJBxnspUG4SUrFKxIxDRiYsSoDxmFEKSPGoWAY2GxODJdewzZVwUMFF/usZUKdJkzTGpNMyfxAEK02fqKYBBirYqiEMhk3Hjk0Qw3aHMHVHEY8uU8b63inFq4WKjjbIuupO1vZuKPXkKrcBRC0ueCcOFIOPJ+RXfk632KuxdpM/GZeEnMnpHyJlsEA88+I0s1LzW2GPaLT/47PDEBLXrHVQ6Cm71JfieEoEaCTFDQAuhou06PZI6Qtzg3v3eb5HYwVDO4qLJNFO7MxGPnKwQpEWZOwvi0H8uS0kwpAD3rQg3DeeefhHe94RwOcW265Be95z3vwwhe+EADwuMc9DjfddBPe97734aKLLgIAvPOd74SI4LGPfezx3ZDTZ6J2Asy1Vb4JmXgfdsSiLfh6Fju2tL701zIHkAxqwNxjLp+zfM1z/fa217l4yRkRc8tzyed60ME+OXuYp8kNlkKHWm43RdFOBCLinsh05KIEVsbk3K6QV/xMqX+W0mKQlckJlvid4y5xjKnb+nN2S9PcLNqhp0uErbcM0AjwysAHpxfo6Qw5nVFXxRwGPHGmGcsd5JzDbyDk4CFF3b5jUhMKwJ4JmzjyxMH16x4USj25aoVi4uA4zZGjMlkeMOYGTIQCkCcEKr6NBVRG8DgAYwGtGDxwq2ytFdBRwaMAYwXGCTgygcY1eHcXtGuTsorVuxFRrNXVLe5AYBVGyd1/jUtTEUzaq6qKRvZtTw5EpviCB+2GdKPFN2e5yTcu2hKkFlj8UVWG+Pja0JveKAfK5hkSBHgvVix7isXvOS59K4lUnzn5xzvTl1MYjWHEgjUF8bFzpLRACO0EZXYtoEdiyey2SIctaU3sDxLXmOj0vLFvyUDbnSKM2a+l+SG3gVDPZB9/19mg3Y0AdOutt+Laa69tf3/wgx/E//7f/xv3ute98IAHPADf9V3fhR/6oR/C53zO5zQ37PPPP795yj384Q/HV37lV+L5z38+fvZnfxbr9RovetGL8MxnPvOYPOBmLV56oIYufkP6zf9moHs1u+50qQbOaqSQosPJbuGCD0XHuKU3fXBg+bqC+aTJgLX1+ZYzaq8x0M7t2HP2VCpBrGMwjBunVI/ebDVR5ndwiWoKwu8xA1P43cYtZ52fq8jyONgrUv+uzWu1T3Jp3/trC7jprg2UBiJceYlMXVYGMvvMWCDuhUAjow7m5kwBQNSf1VLdOKiSZa+uxQrLwW0ZwoqJ1FLZKMx7DzFu7mihPQjUOE3FGqbqWBNhrfb35EBniTxHENmGMkJKwTQMoKGAhwE6DtCBoUMxAIJJFVZRVKBcQTSBeAK7HYIAV62Zl5Wquhs0u3OX/R0VWS3Vn00aUSvdbMXaLBNGd5Yx8BLyAGXtKY6iJEWXDGB9oZCaYm6gZf8Q8qqkVCGorskNqccTqaIXKKxbFU9ze0l4rWbtwxJLjEPQTe5yCRp5cWn6nv8WB6ZcniG4QI0Lx2m+0Jw7pPRTbksSn58hP2feYh0trxe+Fc5Xoa+xughPmbONsY7jzl3ezMfvRYyOvx03AP3pn/4pvvRLv7T9HbaZyy+/HFdddRW+93u/F7fddhte8IIX4KabbsLjH/94vP3tb28xQADwy7/8y3jRi16EL/uyLwMz47LLLsNP/MRPHH/vswi5lEm3UHWGu12rS0DS/86xwMbJzrdlAFxM/mw0zwCUdbdL8FqCWO/4pnVk4yFo8ZnnTxsPW7p1If8YQTDj/YhwEugEeXCCyp6ShT2ZI7kHB1GCMYp8ccEx9QnbZanoZn+GCLSL/QLBCIE5A2D2WyjbAoRCadcVApQypZDHo9hzB/kK20QrlgZt+fas/LZJSJUBJkUlQYvFjXgmCCbpyUuCpsQ9LeUPoNUyHa+p4AiAwwrsikk/u8HnMxvI8AjSEaAVtKwgZYAMBTIWWJqKAhoKqNmBYMZrgjk+cAXRGlGTR60WNXS3QCduoFo9y4AlaxUIWyBw0MnIzaYKrNlLccMlNliuMII5SggVTOFmLRZXYiWfTZq05J+xlvKb14ZRkghy2HssBinyzy0ln6WcMG+ZAcx8WqzHphbeQKL8uQe3OiP9ydkgHBjqkoVUmKHUb5wLDKFzu+RrRnycgswvyfqS/8wB87kQQKYS5P+1bEKEvoICexf2vX6FkMy6AhSQNPL5uJPT7lIc0N3VWhzQuc6qWxGTozrPE9lLOwBgR4ADk32eVi3lTiBxzNOc1y1UZh0wrMUkXyYvjfPzeVntlgGtX2nb9AvOKTZsSkRZtJI8Ve2aUWQt9rS8aEQYB8IwMMbBbA8DmzGci50xweIGplpQpVgyTQ9QtY3MLiHhctC1xQZ1fWE2VXqUioaDnwgGVewAOABKAcAWMx699hDS2SIsAEYmrEbFgQOE1RmEcjoDp9lGO4yyKhhGwjgyBq9uOgJWkoG9GB2T529zpwKIx64Y+JBWsFaMaul3ij+hgLBLhDsYuJ2Bm1hxMyluhuI2FRzR2oBnUvESIYyiI1hHMI0g2gGVFcADir+L1TBgLAVjYYzF+kcEL2BntqBpXVGnNdbrCevdNdZHKnbv2MXu7i4O7x7G7etdHJ52sV6voXUC1hN0qqBpgmWc1UAP0KSQauBzRAm7WjApQ7x8L7m/oZphx2ojFYKOjGlgyGoARgZWBVyA1UAY2QJ9zaPU1qZOinoEkDsU0xHFkd2K3d0J0zRB6gTFLhRrCHZRsYvqPlt9BW2ukCXg5H3NB2DjzG1XWq7moODF4jUKmUEwopYZaCmoQ62iTjHUUxZItbGe+kY1PENjHVBzvMnS29GcDfKGdFyDS8rSpj2/xS0SDoOx1gGWoWLJrXdXIkK4vGuTi+aju/7MiwP6F2/NMKjzsckzEA4+mlLpqM8f2eScgDnfsxSsMqex5Eay9DPnKTbxYo6PinlP0tE5E+Mi4ebRW4v8afcrvq/CUsBE2vxKYWEhT4lvXbBQHVOX1MavkTOCtvDUvxqjR27ktAtEOeRwUxZWEPeEnCoKnQSo1rc1umonA49BWfGzwtZijWG0dK0AhDBUy8wAdy8mNU6b2e0TA/fCau7qPBQ2GyGLGe1VIFKtoqYCIsa1slb/tOdTgpdy8JJ8oWVp0oDX42EDXiWbNQOPGGhE4RHEI6isoFysP2Uwl3FirwprwZR+SyvgxmKxV6UAg8K0eIwyEMougF2FHCFgTRiOEOQIAzXKVEiytNiMtiwVbGmrlM07T92xwN9Iq/3ENlZm+wFoJK9nZu7ppVgGh6FYtVlz9jF1oJDnKWjqKM8k4S0qoFaoB5/mFRTWxDzDN9ctjvL33i3rNKI5nPm8ai6O8T2maNOBJRhQByGZgFpNEnLQD2/cPv6mmWiS4uK5lss9nilTi0xPxA9qTDT1EWzXi7xgwuhecPkZemXh7KHaZeZjJkJ32k5tAFpOscwKJBaCKWVoRqibwjtrLlTml5knQRwbx2RbR84XF78vhfOKOa+Bxfd+taV4o4m9EbS4hCyzN4SMY13q8B86d+SqOWJM7ES5MJgHVCeARghtkamrHXo2Ers+SdSgMbfluG8ElebpGn3jMOKTen4yA1Rhc88Vd/uurjpk9PxhTFb4DCV8h2xVhdxleTv9GgIDoQnQiUCDZW8QT7LKZPEqxAVcGKUUjCOBC4zQ+4quIpYdoAqqx/FYYKnnu/Pg3MjuZcSWGoNTYLahKFxn3mGE4vnnhjKilAHEgxeyc36Y/ByEU1Zf7swmAdm7JqBaAOtQHVgHQjkCS0M2EobDBuqijKkaLZyqeceZSggR7mOu2x7jpVIQQZnGcETwrruyD+Z8ICtGGQp4sAqpNFi2ich3N5C9RVVXzZItOiqKWhhUBDxYOiFAoXXwuRqK1gxAMeG3uSXYROsrJztrHysMZSqQNQnpJwXMMcMoQDhq2KRPPrFdRQDoNEcABH0g5OWb7WWM+bGYHbdJJTKdCbxUuAYwEaOAtwblkZl5A8rtTj0AvI/mnPDc9XZqA9DSXSR/pvkU0vIAl6S1j/3ylCX4IP0dL65g+2RohMI/Y1qWdM6S10g9xObU8iPVrUkKgOt8TeW1EuATumeo1xBxHt2zH8BTqFQmEBUwDSAaQMUCYIhd6gjuvs5vFkSiG7ktLkhDdHJ3UxPYLD9bUVPVUfEFCgchmIhknCEhEq4E4WMmL/fMxnXDo7lj3asBshJQPc6lrC34lBlYw8pHrNkyeR9waW8n7CbuvBCxPuoceRVYfZZJUCfxgmHiwaU+vi7pWKkJfw0aQbh2rVKKgc+KMYyMsYym7hwG+83BfyIDSXs+tHjGqHOmBM8obRIFVcufZmo5I+bKwOBJSNmdLXarYqoKXgumKCSjhJYVm2BxsmJF4UQMgFR8PhIFopoLe2HIQJCRoKtic8alHaaCEQUjWWYKc86Id+tBzx7lXYpgGICoM2AZ0E0VqLDg4qlZ3bbnBpgT525H6cR4W76Eo7Wg1ksWMq2t6ImGeiVRkSheFCVvIVvwj9udwummOxVsupgvtS7RMv0QmDAT0k5Fm552HNnaAnrKX8mBtK0mUL5bfHZXquMby2Nr/3oAKEY+G2+CWfStqW61v8zQE+fLAXMQyQMfUk5MnDDzUzpqCWSb4vQ8unsOQJn/iaWUH5Q2Hywfmg4XUkR8woyTCS6bQ7XikoVnLR7Iq774BOYS4KuN41PR5q4rpJFkGPCYDyjMPuSlt6EWwU/iGZqdiCsplD01AczuYpmK2by2ikK9hEF4WYWagRVeX0nNi03NnkGs/T2ryX0DgJWYqk7VCvGNg0nEQgY+w8BgNgVV9WAaKoQ6GCPbU6vbSezlxdnVlgUWDLjDpkYqRJABkJGBnYJhHLEaDIDKYK7X5Mk7xcURVUtFI9RnjQKAl5E2YzKBq6BUsazha7G+BRB4vj4eBGUsWE8FvCpWb8ZTIa3ZAEsiBZWQWdm80Fw4NQCwxNADoINnOxgIujKbD3FP7lrAKBpFJVyVGipZ/7R0MYLCVl2WigH95HnRKlXPV5elnmxd3bYqO7M3X2fHLv/0NlNW2WfLGcSdG4g+aCY+rnrb6Hv+7vPcF+pSilk+0/IZ4jnjkwioxbaw91TtdyQNkuh1nzL4ROqhug3uYoxPnrSzrZ3aAARsZwu2gE8QpKWskU/bjOTfvE3jdBs3ka81zwiQfSLQzrfFucI8DC1US7rxUKkDoc6hxcPEegDQXEKhHXERRn83eJLVoxmbmqQXIJulbEfKXMBulCQAJL1OCxmxjKzKjaOt6GWzPW1CGDY5VoZaVHwUq2uZr8nILrMa+BVyTzCTKqzgFjXthzjYqqoFzK41rSMj2CMqDsAesRTCShQH1HIEwstCDEVR2PhQU7MVlFItaedg3LnVi1Gg1fKJmkqEUf2aABSEXSbUgVBHI9hlVVDGATSOsDT9Ps7qTIwDUHj8AV39hWJ4UFhRIBgrsPJSGzwCukZ715N4vsxKoIlBNdhjBnQwG9ckTZUcEoeoOxk4W6WR7bsYCIkDkAwMHUwtysVyw5lHoWWzM5d0mKTlKlzzRoz4IstADrdlVZ+fxqxYxIq5bmT127G3u8apZyjLMlUAabZFZaph8zvk+Dhmmb9jfp/u0bn8ZWnXiZ6E1Br8IwiYHICyvUedQVPtPlotpWsmfBsgM5ch04GflnbqAxDmQJJbCO+8ZV/2d1FsDnfe4vpd9catXHTna2zahGJpk0eLe6vXGgpVVkxXy1jcPXb87MiHH9kilwiaAahNqC6pwFVPKxBGWEG6HXIvuHA+cHsPKYPF08MwQVDdi0g6qLGXHIA4p0VohvLau2A1uiwDMjUdEqM499uCSrWDuUkDQXQZRAVD1OXhAYU9X1uE+is82BKYoJbjSty5SyxbQWQd3nFMGgvhyFCxHhlrFHO5LmafGQpjZDTgHSCYtJgBvSqmShBx6c1LUYiYp+FKgAOuogkiQQysPYM2Vgx2EOKRLSmqu7KTn6CeiVrVZ6a7j0dqoDJYiYeBDEBXk2KoFVgT1IVIUQJ7XadayWr/aMFUBy8HwCAJR/VYP+HmbclKK7GVZXcXdRRYah8mCBUDE/UEqmKpIpgZg4bnI3uRNbRgZ22J5kLiUkTBwShwF/kFp40VqK2n/TNzXZ+OlsPMM3jEvsztdgCKjHb96HCcCSYT6FZk+x7PHG7j05ar555Ucq2Em+qqb5FwIWsIRGDzNj9aqJCrc5CtETafN5750zPWpzYABSfgYkvoPENtfTSxNv+dj8tTKx+baX6oGOLYHrvisRPoDsmzF7+4M82Oc85+1kuxh4uU8Dlp3TYAasrjMH6pq/E9rgeevJPUHScoPW/n1MjzvtmyCu+lDquVrJrkREBo3ttiIQOewr1aphEWqwYKZnfJ7olWbOjcaOMri6iA2TzCdnjAUAavMWPqP1RfXGxZonc91cxagV0lS6TqwzY6O1iK4shKsTspdkWxFkFFsczeHniqTO7opWAMYBGoKKpWQMmqaAJGnMNGpYRVgbkuk1oQJxGE2Zw6ygDl0jMxtDUubkOyaBBxj70onUzk2QcKUEbFqih22JxpdpQxsqJU9XglK50wDYxpKKBBLF3PYM4BNAxuBPVkYSrGHDgT0bQFaqXLBQY+lu2ATV1HBCmMSgUVJjET7F1B/fmc4CKkUbE4IW3AIx78mrwJ/e4rL4NQQc74hPdl3ratzmNpS4J6rO1o7Clm35tESV2iBUJNH/ZLwFLpipfb6JFAFV3jEFddKvRcgGzOeMouATntCxBiAXp5yCWwUHqMTESQjsnP9ukD+1MagCIwPwXoA4RZfjKg0+aIzcneahlYtgn88Tp4di1tXEpFD9SaT3Fqk0nS3xOAI/DiX4gEJN0N06QXv1JL1VCbNLNhLsoANBMFpV3HUnF4IKSrzDxtpQEEVQgKCNViN/ypo3chqQDGxFockwUQ2hxW4+Bd3RIR9qR9QU0w4ltdMopjbdyMsElhiLH6AI/gMpqXGts2kBFOVIFOwLoC5EZ28vxrkwBHxOIeRNEK5ZWiWBfFehfYXcFByAJFd2G1jJgYWtTyvkGNSMM9HMQkvDppy4OnYlJLYTYbE1lAq7iDg7g6c42CqmbY18kz76m65CktcNZKggsmr1tkOe4Y40DYGYADg+IAK1ZUsRLC6KUzqhhwVveem8hqMRUqKGQSMHN8kgWxMpnjgnpiVDdvkHvyabjZF5gLfYlkowW1FFQ2SQkoII1os7D/WRogFbgnVjAN2rI0xMIoCpOENIKkGSPce6+ty3AKztvxthMhoEuGcPmZm60ZU391Ip6Z1vhbsdTOxLNSW2/bSH4sbwF6rA9HocN5z6qXWtdc86iBTxBOl7I164IY88ip3IsTGfejt1MagMz91mhSMNBwM8ZMjYsOQhM6vc4pYbLkEy2Dz1ytFkkateWkwuJalPZnnmmeAWH5K/WTA0Ub6GwBn2UodNyU0rVVIEqYyBbBFJIXGfwGCCpVDOTxLHCuTQHWnkRUw7XGJ6ul0Ff30PJjw2VX/BrxjtiyRkfwOEfJiJBaByO2VCwDQIly2INJQSt2tacT8VoAXZs0VsAYpGIQy2vHof9RT2s5KeoEyKSYJsF6bW7JTWIC4YhLM3AAYRgrKTACWkWxngTTVK2gnHvAgSxfw8Ae90IWhDkVxgpe9jpcnEXN9qIT1POJKRnoTqSu+vLxKYwVM1ZDwc5I2BkIBwpwgAUrsHmb6eQ2FM8i7R5nkxPsSgNGKNakGEgsdZlzzVHNldjGK+wHMXfIHVM6IfRsBu2fOR4o9XBKaPEM1woVgVS0GCoS89wj6RJ2z7jtcVMaFtIeeBxZMOY5SI6nzbiy42xZrbC8717Xizg1SnuyBNPzegyoxug4DMUx2WQgmNMhAM3DOxMs3eiSKQQthsuk2ZY7qw2JT4YEmL3H21jvTCVPjkR0SgMQ2AmEj3EjyvFSfJxEjZ6Ht1sMbU54iH7a1lfRVExt01lqnrh9BKbmV2jX0dnvOWfA/G75T05ABLTI2aUNKE51ka7tbnMk4iqM24b3uxMb45iZpmanYicUFQCkp4rUNK7BM5EqCtVEtCyIMvAz3o2yAWEwYKrqnByjJON2GSwLwGpgrEbzThvYDN1UjWGTsDGxsQKDMgatVt9JqwXQwiLSzWOPPRYwvIEG895jwZoF68IYioCLQMjq+ahWVJlQa4VMFg9Uq6nk2nPDJldlghRLYrouXlzTx0zIpE0RclVezx6tXFAJqO7lBjbj/sADVmXATilYMVmlS6DFIbGXWOB4sx5fRR7bVAYFD4oyqrmmD8AwWgXWyOxQtWJSwVQq1gqsWXssEFw1JoncqI05I6Zl5IIDwnUeDi7u/9+K8FGrMeSSIwGtXLfa+RPYVdiZwwqj/pIzP9aWCWhux0pEAwKWqYe3SUX9ehE1k/nBHkbd/NGcttR2fI77yvRoBgVO0+KWYe6d5bQhIGLVmj2xRYUHCKU75USSs7YNiADL5XLX26kNQOndmypoxqBbc9v9xnzT9vPsUhk0lqq1LL3k/G7RlpkRlrE/hJ4yPavxNo5Sn+jNkT82V13QYrLEqQWzisM2ryzQsyhQPDOBaZV6BP9I5hI7kmKg6sTFOKOQcswBjJpvUoCLSTPwKgU9cI3cE6ozW5buxh5JW0ZpBszVuTDg9goLqjTV0zDad2LnGyNtDsE5eoFSbUxIgOngUXhCFVatVJp6TApDSwUXr69TqgeIues3KqpOWOuEXbUSB6K1pRwKcotUiqAWcndYq5J6hARHQNhVxVoZa/WM00RQLeZWjmLaEZhdRcoALSOGsoOBd8A82HMTIGrlvC3rhNsNgwkgRmXGNApqSBEUGWQIIxWsMIJIUFz1av8mrKlid20RN1QFa1WzZWWjuTt9cACDmleivfwOfm1kNFywndgmLp1ITePjErUUewihkA1CfTEgssOZknpyYFoqybc3I+yZU4seLAHjziSqOGbp5L2XJDBXRYR6PRje0kBIF2fpxt69nrT1QF0aynzrjIv2P8z3vX+CejfDfhFqUc0XyLLYgjneByC099+cOqRzBkRGpwv5iycXHAjNqWwb8IdAHNNu+XeATwBQNhAup3fwbUsZp+9rog3ay1bfH2ATrtfhe1mMJaUBc8k5P1+TMNAklSKeE466CiUAcwdk+fBcahHqBI4kbEhesC5+l5TZgMUzHKQONWbRObv2iO79pM7rEYBi0fUc6WQcgOJvHuyhFGYUl6qeu009u7RJHuIlArCGmc3E19hghK6yYCIjmAA8MNKrhlJPmMmqFouiFZMIdlUaWJZwi3YVFEoPxkR4JZGpvXaVcESBXRGsxcZQnABYSXADeqEC5REYRvCwAg8HQLyChrEfCtXqcU/mfTipYlCHCQakEKbR0+mwX78wBhpMAvPqmyIWlzXBAJawRhUGY7KM36ImqYGbl1obGETgQcwh+xZxZKaOZLMzgVCKgTn7ZFKCZc5AJN0xVZ1mKV/smiVJQuEiMSWZYSklbDab47pBRDNZPxYJKI7bBl53JkXR7Gig23xyOptYNdts0NtkrtgR1Y5lCUL2a5d0GpnhDkAyu2J6rG2seP5+ctu/CgCC2aV7ELLvH2DEeCT/zh2A4B46LbAdaKnWljyOpM9lrGueMFlFlxOU5lcX15hnfYojl5M6OiiAGCfvzGEv6ZFRLuiE5xkUn9UBSgWEMda6wuORgNNYsNKCwQNDw63Z6v8Yga9qkfKTc8VanF/l6gZwlwocdCw7D7kgRy0KntjKQhsGKJgsC8FqBFYr/xzJElquGONoiTmZbEQnVUuzdcTS+Ag5EBWFFLHcaAXgNaFUJ5SFvIS2ubqb7cc94VQtG7O/SLN7WVods2ek9D/UgYPV09KwuyGDuq3DvQYnUawF2K3UsmILeWYEsgwKhRRU/PpcwGNBGe15I/+dgYKBIFWbC1XXqDqhoILVCxl4OQmbFsbxFi0oqhhFQWplu638oLEf4o4MNHm8TrU6Tut4f4BlpIA5aRDsuc2ZgS0uqBE2L/VB1Dz7APXsETYPfEgxxfwkZy6CQU//siKjy53b5IdtpGG5+vJqPTYpattV9/6ciR7IUlBmN4HmJ9ggcilrbIPHGfzRHvA3I14+mVtLtp58gY07LH+g5YEntf3rAKCQhBaI0MJmyEvUhgQKIFTSVlytT89cVTRAKdP6DEJ5H5C5mPBq0fmcWJyzmdRvOQn86KiFvexM8qKwIEVncpxtYp87Vu9HMLinkTk4GUc8kGIU8zwqRGYXgRigA8bdKhk3TubNZlKQZxggNiKKzigTXGBDSAsmnkWKGMdIW3hMGAfGOBJWO7btrNDKaw+D2zTYVUKiwGR1embxlQyTyFi7zXWyvouhL5SAI6q4XQS3VsFpU8XOVLAzKcYqqJO9D3Yf/oEIAxOmwsBgRfrMu49AGgDhJETNPsUxDh6Aa3EYwHoyJ4HKBK2RYZtQtKJwBQ0Vg0xgFQwQDKwY4YG5PrEtSapgPU2YZEKVNYpOLdmnSnifmcpU3C5l6YbMFiSVAVUwFTAqClFoHz3JrHhaI7Rq1OHGb+7xA7h4aXMPRi1cIB4pS26EVMDGSUJyCuLXHQsUxZ1TBLUwpPj7EmdyfKJn5+RMDo8m/cy3vJ5OxI6UQWzZ9upFl12yVctnWIKpXnk07pSfL99RgZkzW9aqMaffFGgOBm3c/ephp1gSs1kdoyX0He0571o79QFoydQo3ANrIYFQ4jKCaPsCi3fTkvdpl6bEpauF08lWfiHgxmrx2J7u1b/senSa0OFsATyzu2pfPzFxkgDFBVH4E5xKQ5J6fjL1iU5W4ssGRX0gjDqro4cxpWR8P8VikTZvK9hjgCyjQwmO16lvZDvoKkHzMLN4m15qmQmW4WA0zp93AN5R8AFFWSl4B1bttLiLNAASgq7hbttiNoQCWGCSf7oBTtbAuprqsJo4g0nNGYAnxrgmDEfYJK0CHGCYHQwVxIpxIBwAg5gwMQNVe9oaGQA1a58QWxE3UXdNl15Bo6q7bwOTEHbd8UGlApVQasWAtZXkHgq47AI8gB3YBzXQE6moVSC7E2Q9Qac1uO6CZfJ4nj5JNSZ5ZYi45DYQeMXGGPsc4SIow4ixFExDwTgUrNcVwySo1Tz/IKFss3lCnjfQktRGCqWYbN1upJ7dIqQnGyufwmo5+sJ9uLJgKgZCVX0stYcORHxMr1NztJb6c1JVSMdCiLdLDmH1iSNsdZOrts0VigGUBLtxbO514EN1shEMNtiYsPA4bRlm1RdCuFkHKEWwUJSwqbp4rHzXCI9dUr+T005tAMqIj/nUS1YVAElK8RflIRONY1W4hisEDtd6Ve3ZV/Itl5xKlnX6q4qeLEFozpXlJDw9PHObRnh2w341MptWREcXdEkP/lwNRNi91TTuxR6TY+7aIcIQTD1WyB0rOOJLImDS+qAeMS/Uk4dGklJDchsCc76JPFQh/cBE04GBkaAjgJVAVxWyM0APKDCiVwIFIJUwFCs/Y1mtxRbe2lRxRJ1rriqYINjViuqUuU4VulYMa2DniNWuWY3mhLFi8bp1isFFujIwRmZLHSOAVrJEnVosaacW87ALgqnSypWbPCBNIqxkgayTZ+pXAESCsQiGMkHLhILJ809MPoGLS1NqdYAqME2Kaa3QtQKTWmYDUbN7wTNLkNctCtdnsGVVGF1FVixxqZYJq8KQdYGuB2B3DVpPKFVaBm00KYYBGnxLLJ56yh4NYusBtRQMiAUhq1jQb3U7nGkh1FzRycq+R/WfNWTxb1tiq21tG6HM+/LKPda2XHC+b+tlnKlr8BFMaaxAC98wYDWnhAGEAV7ht9GBzcs3ihGMcvXlKmihg72PmQXfBkKAGxPTlUOfHyyMlxPxd5rp1JHjGL2jtVMbgLh/Bvcfqh04Bwr0KStBX9noXmiHPOauqa5yIcOWQBhzcPNbtBaKgi7RLGGKtpzdOZ+YelEQ7c4XWm/R/5A6wvEi37lNRZ/BRqDcRBvJQdvFLCVOoSiGZsb9wKcBikHInBR8QNUBqKV1gYDJVW5e5iAIsfqnMdVkNWVGczrgFYF2YFLQjmIYLWnoisgSQTjQFmKsqGLXFwlTkKkK1gmqFSKmqlpXweQvcyKCrgV82HLiWX47q/8jUrA7MQ5PpgIcCrzv5mQQkoCwuXGrFogwJmWsPUuCqL17VsaggnEQ7FTF2iWgSQgiRnAFxo3SGmajKoJKFcprCApotPFnn6TCFjNUeYBSxQRzLqBJQBNAYnnvBjBWkaNNbUVIKRY4SuxZrV3wHQqkMFbrAt0dgGEN3l1jmCp2q6JOZDnwhNyz0WxHSsVjgDzuCynJJQPsqrw+RxkkliIJpGCxFEkEhkgBajWAJvKijT07QJcJjnVNBDGN2Z9XAW055jgAaXmJ+JxdInbkNd9BqCaW1VJzCVYw71hCthPPb5FtzHkosu9PIy85Gp/QmIiWPsHd5LtaBam/dpkRwCpd2mx8xhTvAxDQUhpYRl1YwUInkll4iLHP9hJQ94yLl2sR/g4fatxfziwLbArzS6mrJe/cmNRLtYCd3bsVAGYdPxYzaQNTtmcfin1y8Tup3YMoMjVTe+EW1+rBl4SewxTBmVthMbg3Fbln1UBkdqAGzEZ4Jtf9M0wdV/za5LFLNtVTMKOr7JgZQ2ylYBwYq3HAMBaMKzanhMFUYySwSHpX800ASkgHMGlnoupSR4XqGioTRAXVY3dQAdmtUM9TJ5OgThN2dwccPlJwyw7h4AHGaSvGzqgYB0Ep4s4r5NJyJEW1tWypYzyND1mGgpZ8VQRDNYlrVYHDlXC4Eo4oY9c5f0YU0YOVj6mAVgWKZS8YPPPkOACTCEYZMIjgiCgmUchEno1C0eJ3YI4MxbNta3KaqM4QVHgwsS8QRsHo2RuIK8rkgM0ECEOFUNXsPRriNrNrE+zdVoV5RKplNidWsApKk66dmyYBOdMgyijC4ImAiRfzPnPox9psHXV5IustgPlMP1bJKghL6sucl7yTbi5FFJtHE3oyq3hzuVfbACgah+TjjBko6JUxVSYiOYXjdHJ2RmhST47cD8YYLpnprH/7KrhFo/jPCanXUwPQxxoET6gYagHfByOkE4Bd7SlcKHnIAXN+BovPgJaYOMv4oH6FfCX7nhVu+e+jtQKX9vw52YGnFLL4En+uuE3Eqg8NgBTsUhBzxGLY1uLUyO1APliDI3shclf0HvG9dtlAHFiY2EGezebDIWH10gV2nGIgxgjLojxgQNGCAV5XBoQVEQZ3XDCmwWJ6lAkoChkIwwgvPW7qjKIRfW+EXFQgVZthfZoAwWSlqCeB1IojuxNuv6Pg9FUAEOG0FbBaWQ62woSBGWMpVkG1KJQGs/N6rSIaGcNA4KJYccEKFTsQnF6B09eK2yfgjjXhjgm4vRIOK2MdkoR7+hF7SpvYiN0eRIAKRn8XxW1+u0SoXFosFDRsbuapxl5aQ7WAXfKCmuprImANxq4qJi0emKtAAVitILpxLwQSk/ZIrVQ7XHUbGRXgc5jcYcbshxajFTnijOFSFI5UqLYNUqClYCrcs2VoWEi3RcgcS4tVFYm3lmJCEN84NlbwXtdiF9+9L0tMa13MUs82cSlGKj579uxeqXZ+57zl2zZtT/TQtT6W1UJghbwy5+1nLuMIZ7QpvoXdrUtqEal1MtupDUBroI2zGPq3PJ3pTUXG2LXHaQzUp0hUC1gDOFLdwLdkP7yFWJwzaefptuRW9ubkOicVYBXM1DY+bDmlBwefVM7HVGY+HYXcC4rQAgQHdNViyzzlhIpcN2dlswVaagMeGmw/mFDIHAfEQUHhmXlh+utKHufi/u7qYpjCawc106u28eKWwr+A6wCuBWUdqXg8rb+ESgbmESbqtXjctZwLJq5uTFcMIijV45NcAhM1NVwVk5poXXG42oCICg6vK247zDgwMk5fEQ74tjMqdgosG8FAODAW7IwF46igwUCH3CW5rAqGHUYZASqCSgUTCdaiOG0tOH0N3LEGbt8l7KyB24VxhxbskuW+G4bRKr/SAPEYIPNVLObB6OlqFISqVntIYS7dwmLu5Gp0shZL1ApmU8N5lm0V88KrrhbcnQS7k2CaLMuDxSNahVMZYHFOymA3aLN6lVrPotxUrwp7x+7uHVpobSvH+GcmNoCi4mo69Wq51XPMkWWRkKzWPj6VdF9x4eSTV+eSdVRsrt5l481deSn3B03XjVXbr8v+dw/ZtfXATuqDDmRKsXzyTAvC2zPvZApvOEcjuEE7KFLsawRym4OBtDe2i6AfnvXjhJiBvdupD0AudoT3WptmLh2ErSE8EpuxTjtBbvFAWcm6x3zPwz+fXvMJs/cryhJQb8egAADQp3ah+VIK0ZgiSp4MHMI+1IBOzchOJIAbhwuL2XmoWt4yghNVIFwFqUlHRvCMkXb7UNyHCZMnrNTEGUMV5AGQVnAuuCk3UKeaRCQFVAtobVkPaqWWdh4hHbrYysLm4UeMkQtWPGDNPdv3APXNpNuoP2TVN+39r8ntRwIjylWxrsDta2C1S9gpsI0JOw5Op+8wdlbAsEMobBLbMAzgnQHDaYzVyrJXKwnWsGDWYWKMk2LcBcYjAO+SFZMTk3yUDHCL+0NXYayFWyyTxSapz9cCyABCRSGxsuZcfB6oqfgLMLG9K88oavyrKHSCOTCsBVgLdBKoGEBPqp7a33W7npUtRpQdDMnLr5tQ4N/FmAOSHv0fyUjFVUDh8BN21ZhDlRSECuYJRAN6TaS72mZKK8zX3pJ91HT8tuO2fY+PpVSRm41GzxMCUHv67vkm6NTBydoGLxySz5KdxZZ92nY6oYu0CaQui+azgOUDWJ5L8tBDmwHLEbyr7dQGIM9lE0GEnOZFYwKoz48S4O+SEiQWCFrFA7lzBNmYqkvJZ28wocV2NG5CZ99m+WldNRhqRiPk6lkO5hhKCE9LM4CTWmE687w28ZFg9hDA1HI97kgAHcAhKTAh3MGa0TlUgGxp+wtZVmu4Ko4Bj4UxV2Kd+bpbsOtEBRPYNi1Y14LdyihrBmrBFIGPLum19a6AZ56zeKTCGMTyxllqIcEIwaCCwQNOAQMgG0iLO6litrgj7u48ecWCsQAjE1asODAwDqwU6x3CuhYchEtDPKKsVqADA4aDA1anF6x2gHEUgCsGYeyKOQqUSTEcUZTI17RmL31tWRKMmTb35114qprBahEJFEOoFD3Oh8hipBQ+F9TzFBQvKeF65lqNE1OxGk9VCVUUUi2xapVqGRagmNgyKYdul2wEQTSCMaJoMXuSwGxoSm7L7pwcyeSzl0BSvVYRWf+iHx7rI+oZJVwGEF2bpIbIYpBVWSfCeceqXK63INMZhLLKDtgEoTgvf277nikELY6y37LqPe6etSqhiJkwb7OrKlp6SMBeQWhpehecs9bqdM3hj3hu+pk9Q/TZHMN3oZjcAcHlWJysduoDENqYNhAK77cGPM55hd98BAkHN60KW1AOTHIn4CMw4StP3/ht71NnwjMWfMqWu2Drb5ECKFyrFWicyUBmtA4A5tQpdfUTA/awcX03XBcfCNWU9VrJIu99UFU9qzNHbI2pNqXAUuD4CjJnK3NYYE9OyWQuxEpWSTXctIUsONP0/2xeUOSeZZXtfGUUoebpCJpLelHSntGdUdyzG4PbbgZS57LjfACe/Zs8go9UgUmbui+KxNYC1AGo1Qd2tERGQxmx2lmhnLaD8YwRB+4x4MDpBasDBkBEE0ZZo9QKXguGtaC4d1IlYD0w1rVApJgNRhgSGa2rE/RamyRanYFQMd5ZXd1pAcduZ2FTCTJb1VEWtEwWWkOSnVwCFZDnygOZNDoywOx56WgEaATpCgUrDDpYATpXv4kaTAjBXe/NzV+F3QbpUgyRefQ0RtEq4tRa3AnCXLRjQpEweo6AJUCcSFtKNmF4TwtkKwHeBkDL66YFp/k4XZyT13S+X5eM2prF/Km30ZX4u6qbDZbiUDtKYJ4tWQpaqoOyCjL3JGRqoEJShu8TfQ+b7bih7F3vehee+tSn4vzzzwcR4W1ve9vs9yuuuAKtqqVvX/mVXzk75sYbb8Q3fdM34cwzz8RZZ52F5z3vebj11luPv/dJPm1ZDzCfWvAxb2V1pIOPprnALiGFDeloLaZzcChr33J27M22hCrseeTm8Zv3bwlRCThCwGECDhNhl/ry4rCPVVhJguoZnVUxScVaKnZlwm6tOOLf11oxacVaPTEl1KNSPBccB50I4LCCWDIAWmDlswczlBvxJ4yFzHjuxFELdcJewl7hYOLvxeKxcmR8rjfJnhgVHqQYBlxTuY0kJgGxuW+v2NySd8qAldcXKr6Z8s9UXcOawWsGHSHoYaDeAUx3ALt3EHYPE3Z3GbtTwa6MmGgFGQ+Ad07DeNpBHDj9IE47eBCnn3E6zjh4Os44eBrOOHgAZxzcwcGDI047veDAgYKdAwN2dkasTlthdWCF1c6IcbVCKQMYo9XWEbYA1nWF7FbUIxXrw4Ld3Yr12lL8WDohwoQCoQEoVu57GAvGccDOOGJV/h977xuyXXbVB//W2nufc933MxPtWCajmIq1H2ow1mJFB0FSI4kaCtZ8kRarbVEqE0EDVhRbjNYGpNDSYu2XEoWaL4WKNIg1tiQixtoGRNQSMBSk1FFefZMx89zXdc7ea70f1lr77Ovc1/38mXnGOnm7H85zX3/Odc4+5+y917/f+q2CKRfknI1NnBIst4ORyQRUZqsSWzLjMGVczRPuXc24urrCdH2FcvWUbYd7KPM18nyFXA7GV5dnIB1AaQbnGcgzJM+oecaaZ5zShCVNWFNB5YyVM6rDz7UrODDG7Op/RW3cAh4z2W/b7Bjn+qO30TrZxz/28+0ulXK/X/j49wRc+17uz2fHCtqhSw7C8UgXV4NLS0lfZiKuYKzw0NU2qf43Vq2RWnkPAB978uQsn2iPbQG9/PLL+Ct/5a/g7/29v4dv/uZvvrjP13/91+P9739/fz/P89n3f/tv/238/u//Pj70oQ9hXVf83b/7d/Gd3/md+MAHPvB4nQlLJ5Rvva3XkH8v2AJ0HkIYD2HH8Dfhn34Eb9yu7YfJJbVk/3D3g/8u0/7CqYY3SoZGM7PcYx9NN/dvXBOhsz80tRumEK9gSoA2qDJUA6Hj0FA2MIK626yxesDY6F7Yc2aMn9Nh2K6VqziLlwY811xKjTxh0a1OcQ3aSj9bXEChQGrmqtGNB8ysMU+K9eRPUkVWxQQXTsF8rQCDsZJa3R2HZDPI8mBhOQ9FFNwAbZHj5LGL5r7wzKjNyltXtewNohmJZ0x5wiEXHArhalKUsoJZsUKAZowNlCw5M3FCWizviZYMLJ5T5OaklS5wdgPdlB0lcqLZuG64Q4T8WqyIXSANg0bJtDDYcxgs/QxGIUNBZmKQSSNIKVjzjJVmNJrBmJC0gCWBGm0xpMiiF+3xPZGGBsbKhEapW2RwJCTBSpyzoQy8UJ30ZNosUZ7atg0VensujPr76Oy6e899u0vA3CWQLhxX96JjL0IuHYPOvg0BFLbQiIN66PozLlR7+n0AvU6DwoSROMIjOKxueWN0OJjiXOjY93f5bV5Je2wB9A3f8A34hm/4hgfuM88znnvuuYvf/Y//8T/wC7/wC/hv/+2/4a/9tb8GAPhX/+pf4Ru/8Rvxz/7ZP8Pnfd7nPXpnQgApOqhD4cwFvoVxmah7Ds6DeoMV1E1gOjOuH2DVjG3UV4bO3TkI7xJEj9g626hfaEBhFd29Rc3KLkvs7qfpcbFkY1M8v0Fhi7iE5jSkXI9uSWP6YBvLbsFINmsn8npYDSll4RZyt14oZSaAFriBTzDqGxXPCm/oMYWUMCkjQ6ABJSX02I2IlaJWpx8hMDIUE2VoJpBYMbYDW85MbfZX3TwmFSQBcjMhZPfQ3JUKmNvKGWc0A7Waa7DWZMJIEkQzFAXg4kSdDSkpUmpQTsiSkBNQ2WJnwaeWlgQr++0mIEzIhoZEXshKSSCBoSIAGoQ04f4hL7tAffwCdm+0meuwVkGLram55JDATFboLzG4JGBKkDKB8gTiCZVmAAWEYiauGHEpFu3UR1pNyKo4jiviO2SjynJ+wjfbhvnnbjszg0A9hytiIpGMKn3/cbaEpX9ppm3n2ATDaIfcbncJm0vzd2ebhPsTAM5ch9FTHX5ze86PYmCUJ4+s/O6tIN3WNY0DQkyBU9doZLsv522Ml4VVR2d7nYWOXmV7TWJAH/7wh/Hss8/iz/25P4ev/dqvxT/5J/8En/M5nwMA+OhHP4rP/uzP7sIHAL7u674OzIz/+l//K/7m3/ybj36igHr6c40clpFklAcrKb5vsa7qFksBbP/QxhGL9GOL+ks28SjOnpTuoOgEmO5LbApn2bACxuoLbRCvMuD5Pf5aYbEhcsAq2eBTCFTbYA1Z7jZ0wCURmUWUAM1kxdWSadHkAojcTygweK6yBalBXthNtQ9tq8PD1ncVrI2xpoY1JSvK1oyYNKcEZvaA6yZ41K8FsJIJc1IkTShQXGexEIRXNq2wvyK2aFK1sgYssOqxgFlV4paVGEJLc0JbFOsqONWG49pwszRcNcVBgEUYk1ocK5EC3EBJkFiN2BSKooxJE2YkHDRhkYS1MlpO5p70+yzi0FyN8awAb6mVnehVDYlX2NycROGeNSFaq6Iugro21HXFWitatQxrFaDBymtrSpCSQSVDywSkGUgTiCYIFYAyBAkkDF09X2c1BnLlBlmbkb+Kc/aFqUXinHGW3EpC7rFSzxELq7cZlNxZy0Ph2Ra+2/NGcb4QPtgKutuSOrde9vP3LgVyjNaEIy3SNfeK6KU1IVLWt4Lj+1880kpBu37bRDZravT4xfwIP/eta6bznc+2QMw9zCJ8/PbEBdDXf/3X45u/+ZvxhV/4hfjEJz6BH/zBH8Q3fMM34KMf/ShSSnjxxRfx7LPPnnciZzzzzDN48cUXLx7zdDrhdNrIH1566SV74SoQDU+vPw/Z4m4dlBDCaRBAig1LL7IF9UYmi0cXGQ/SC/YJcQMQ4BU2I4TxQDM21+FYH16xGUqhHYcFtOljgmB50kBrwI0QDctIPNGNnOXYpHcP7fakVTaknLI/DDHXG6vn5BjkF+oILCVUUlieijNvN1sUKyfU1LDkhNnJMqcczM3WTwV6ZVA47YwyoyQDExzYFx7/T911VUXQakNrFbJ4cFAMKLFUY1UwHIDbvw2WuLo21LVhWS159bhU3KwV86qYK4xZXBVWv7WAoMjJisKJCjSz5Q55VrQKG0qtMZaJTSiIorKRmwoRhJPna1FPNgSMPcHKHyRkNisIMQ5ciNVasa4Ny7piqba1KtBq2oqS5RmBMyhN4JTBPEPSBOXJgQiWl6RBP+TWb3UhAjKXqcXp3IGmCaQCdR4y1ewKTeulzG0uamf5Nu4+HTwONko3Aphx7F+ePZfFlD/7M4TbeCTavR8X5Ev7xHHH7+86f3x/KThgvRrhEbR7/dDVQYFbLPk+L86qA3TTijaN9EyIXlrpRnuM+vbkIAivgQD6lm/5lv76LW95C770S78UX/RFX4QPf/jDeNvb3vaKjvm+970P733ve+/8/qJAhz2AoDtyxWBbqF3AJGzCxldgWwT7kR9VQDxovzGUGG1E8z/suA/eT7GhLQFjc2BgoyAa5pSkTVDFdDRSXGcdpkGYkAskuJvG2QuiYLNpb06pSIoaQTg2TZBckDVPUFQZqPXFsn6lWXE1q3YKL7fNBs3mhDUzTi6A5pxxKIo5K0pi5OT9IYtndNJLR6SouxlMLlp8hByw0GpDWxvWtWJdKtqNoDn44iiCpTasop5VbghAo3EWtFPD6Vhx/2ZFvlkx36wox4rpJJbnc7Dkz8xAToyULFGN2VCKEzOKl87mnKDJKowuiSBFsU6KpQnWBjR/gCbECBmC8KlG3hQTuweWnETXhU9T1KpY1oabuuJUF5xaxaoD7opgPHcpI6WMnCakXICUIWzZHwITIA0ZognN0XptsEEUBiypJJaQzMlLkQtECyIXjFS9IKSh5Zo4QK4Z3LwK3D0YMOw0bC16/Sp8CbTb9jPp0uvbv+FuvcTeG2dDd82c/TaOeXs+h4yIaNK5iHpEIRS6r893jQOPQmgMfp9d+yWr5y5rJyy8J9Necxj2X/yLfxF//s//efzu7/4u3va2t+G5557DH/7hH57tU2vFH//xH98ZN/qBH/gBvOc97+nvX3rpJbzpTW+yN8O40HEb7qEtItgeDNANkLCK+rG68vNKLZP9gwspcFd8SHb77vd5sKU0/noEqka8Z79DFRhQQNFZ2xsDKzuaLVk8ILFziJEJHmO7hpdUCPcJ7GAOFmACmgso6e46G7AGFAgLx4A4VAGtAMQ5ggkQJqxsNC5IAqmMVsSC1aLISpiEkCbgQGbpJLa8ndQdISYAoxQBM1vNoeSuMRVobViXhtO6YjlV1NSwYsWChqINNwScoKhiLH3CRp0vkqCVUE+K5dhwOjacbiqWm4rlpmGdBXJgoDA4E6acQOzoPCYUGENBygwqGVgS2sTgGThOwHoSLCdBWgW5KponoiYyxm4OGLaaxUcakGWznNDQXYetAuuqWFbBaW04VsGpKVZRRME6YhOCXDKkWFVWzRngZEAQGPS+qhclVDaGBjL+uUj4RoIpF5pc2VBoUtMziDyCZ5oPC5BUrJSEmoUUODBTBuPfUEcIEWfZCrjF8H60mbrHk42THsPrvRC6LUjYezPuBexdfJdESJivgwBykMheLF2y9vaf9zZaOeMys7eA+o/3Cu0lwXiX4jtaTq++veYC6H/9r/+FP/qjP8Lnfu7nAgCef/55fPKTn8THPvYxfPmXfzkA4L/8l/8CEcFXfuVXXjzGPM+3kHS9+UJqKCGL/XQ322gN7X4T91BgsVSCg3pI7/jRXW0/QO8WQOfD3ylqsOUB3D7hg0ORo+Iz9uTWTsPhOhM7sAXWE7AkoHnxMk3ksSJ14SIOWWfAs/HVBQbIqERMmRawNsvah9HlqGtd4qtFD456gBxNLNCvJsCIjPyyEWPhZsgsSSARcMuY1RyGKSVMKeEANr44t3Ash9K0igZzMXFilJIwJcJEMKBFFSxTw3FJWPKKNVWsChz9RuoJoAS06m47slyligSpBF4APQnkZkW7v6B9+oh2SGgZkFygzj5AIBSBWTxE4JQMrZiSZbpOGbIk8ASUojgdBSk38KkiLYK2KrTBCD6dYVoZpoV6UqglePozaXavpapZeKeK5VhxOjWcFsFpVazqZdA4g1IGlwwuRgUk2RgZKHn+h6Kz9gc9jte0MzaMZPfaCh0mo2uJ/Aa1sdRSciLTsKrNgiCawFQhvIKpINGKTAmRpbS5fNzFisFr4UM7AMQPbvu5eUk4XBJIoz1ye27eNWsvCqGIA7CiQxE3Ogjg/OXFXsU1X3SBxc2gR9l538dL236faHul+dW1xxZAn/70p/G7v/u7/f3//J//E7/xG7+BZ555Bs888wze+9734l3veheee+45fOITn8A//If/EH/pL/0lvOMd7wAAfPEXfzG+/uu/Ht/xHd+Bf/Nv/g3WdcW73/1ufMu3fMvjIeCi+f3qddEfVXb4DrG8x3jYf39322tRDxZAadDlTIsjjP7f8WKov5aHd+MBXR6R+64wdxp+MsoxwMu7cDb3HHsWffRB3a/XlEDNJw+bVmwLn12FMR7blqVado3TvnNkyKtVAiVYLEhI/TOHe6vFc6hZZdaVxTXjEHDOTJAMyQYoMifM7tLKThqaGFAyl2IlQ7GVAkyJMJP1Wdhjf2xOplUVp5YAj0OI/675CieAuQTZXUMClKpIawMfK3B/gb6c0TJhJcUiBSfJSI2BmUGF0HJCSxnCTg+bEhJnFEqYAEPp1WYlKtyPL2p5W1CAiUz4EIGcZNRQIA51b7B4SlPIKpBTQzs2rMeKdmqQ1S1JR+QQWWVT5QRNjJqsxHZjqxkEMjh6FWe9IEJy6iSwE986lN+EvhvE7l0mMdYDkoao7EhULf+KHAGIAkVBo4aMjEwJmRKaV5wlnzu2lDOyl3CLZfCh6+zZ7NjvtRdIl6yh21aMXJxtdx1X/dBu/YQ+Gu/HQoJyW5jul/4QwPH5res+k5X7tWj0xFxUVy+cdX+dl4TxK2+PLYD++3//7/jrf/2v9/fhGvu2b/s2/ORP/iR+8zd/Ez/90z+NT37yk/i8z/s8vP3tb8eP/uiPnlkwP/MzP4N3v/vdeNvb3gZmxrve9S78y3/5L1/ZFYQZEO61/Zi5dK92Y1GBzeP2yAL+kgB60D5xLjvR7VOo/yJ0v22/V/zICRszeLAUFBM2lO01ZSBl9No3pml7jMc12RCFTQUk3A0z0gAnCJI25MbI2pyL1FBl6vsxxDPlbeNkLjZO6u4Yu8iesA1LLV2bYGHGJBvZbFbgCoTFXYPM1Ova5QQkVkeZWoAcrP0+kMOOtzHCqBN7DpS57prfOD4xWgXIcf2NGS0RxPx9SAmYSXFQQWkNvKzQY8JSGMfEYDY3V1VFUkPtVTJBVNlYpZuy5f94TSZLi7FYSK0RH3FrNREoJSCZVcfIBmRoAFXAJOUKWRWyNNSbinpc0W5WyLIa4g8AcwIltufMMIGXqJOqxs0ishINiRKYM1iz5QNxODvRc7qEqrlrmXq9oerjIGFzv2ZlFCFk8iRgzYAUSKuoLUMkuZvPS3wMc4yx5WyFuzmma9BCXm4xg0ZxdWkhvqREPoqguXS+8e3esvDBTrIdYpSmdxzxUq/j+m/9jPxXkaLRy3PvXZHRr9HVP3bkAZ16Au2xBdBb3/rWDne91P7Tf/pPDz3GM8888/hJpw9rIYjiKcVn4+b3/IFetke+13st4ZI1tLU2CBi92DlrpqNscOeYaI+Wi7Rr3o3kFg9GCyj7a19vNmp3+5ERiQZKyj7TobAc942QFEhipJ6kyahkmDrjhCWdWqwpElcl8pgaWUVRaOf0G8GpJnAERYFFbWFkbpiZcSDBgQkHYmT2aq1+zeaGda3cb7HqVhSMiZCT1clhBKM0e34TA1mRi6KuBPY4jDKhJYZkhh4Y+ZoxXyU8dWBczYx5IuRCLuANjdcoYeWElpIVk0uG8FsS46SEIxkH3UkUa43NSomLGOfaRIak48KgOQMlgZOThDaCrICgoS2eZLs2yPGEdnNCvX+DdjwB62LKAhM0FU8QFSvpky3uh75ZMTuiDGgBU4FSQaKCxMUoeZRBQpCsqE1QW0WTFWiLJd5XhWZASJG8Ci+IkNT4+lL18t4w0zs1RmpsBK2gQQmL2bJ5B2Ib9KpHbONcG4tGYvh7aYG+yzJ6kBUxnnM4dVhBI8z2EQNZg6596z7cckOeLU/jnmFD7YVsdCZWnH3s+bURQq9vLrh929+r3d+g6xmHzoOjLGPbawJ7u2QcyJcAB/FuL3i24+wHlg5He4xx2lvEwQLx5zKlV+uVsxNS/zwK9pEPXA5R4xxjJrAMHmtU/V5QjQwJJS4B1Jm1hZ16B8bxZslxVqxOU3O0opk+G7YoaggZeWpz1NesFUcQTmAcQbgRwiRGoqpkA5rElip1VzszzgPjoeSTmrWWDMI8kaHBkBVpAtYFkNVYq0FWCbWxCSA6ZEzXE66emnHvqQlXTxXce2rC/FTBfG+y7WpCucrgQ4LOjFYSlNkg1gosAhwbcKyKU1UsVSzm5AR3TMZlNzMwFwJPDMwZKObGI/XSe1VQtaE1gawV9bRgPZ6wHo9oxyN0OUGrM/em5IXpjBQ1FUYqCcmTUHVKm4mMAsgENBNAxAVJC5JmJEvmAYlazlhjWPJsA1XLFQo4foLxvKmYe5Wr5QQpeU3eSL71WKADvrvtHerIiE29BN15/CXykm8hNNj9HD63xi63/edhn8QxcC5FHtSNh/Q6jj5e+2XHTXwzrih3KczjUfbW0f8VQA9v+7V/uNeRcNrdr9iG1cNl/Ciy7tprPAr5uULc6DBoxk/GkddTMvtne73rcZvnAfZ50HMDsQkjuDVETEAmd1P5RPeudGSSl+q2n7qeSiZoWuSgxNV5hy3lQD1nSI01wQUQJ+eFa+zILZgwcgYAggDV8FNMDSsxlspYVsJNJtwQMDdGyQJKjJrUSq2T91csSTeRAEXB2QrYeXkcgMw1mGHXT1NGzoSUCGVuaBXQZlBn5chN8oTbKWOeJ1xfz3jqesb1dcG96xnz9YT53ozp3oz5akK+ytA5YZ0ICxNWNSTiqSmOi+DmpDjeEE5HYF0Utfq9ASMxMBXFFRPmiYDJnpGwI9IaoFXM3XZacToecbo54ubmiJv7J9w/HrEsJ9R1tRgRRc4bg1NCmRLynJAPGelQgLlASwHSBKUJ0AytE1ALjOwvG1cdnPjPxyuFO9ZLafCakMlWWaoEbQRkhlQTwDZeDLmnajD9Va0URDXgNgwmEZk7Nl/21s64EI8I0MeYIbg9n/eL8L7xHZ+P++8FV5zDJ2Pk7fR99u3hEmmvvj742kepd75Onff9kmX32gieaJ85Amjv4ozmCy5kU7Ti8/jzaAHMR28hfNxxtRvS22DcxNLmcLg09G346CsaCsFoE9WutkRGbNVUsy1snK1MA0yZNa61FqUaxF1VXhYhDhRIOTYqf2VFi3LAwzUT22Kf1IvEeawJQGd47pyJ/lMN1yFZbk8jwbo2nBi4IcLLjVBKc/ZmwZJguTKeCc5qeTOJCbkRtDRQY7DHPCxn1p+T1zgSl84sDJlgTBBIUM6QlMwFxwykgmkqKIcJeZ6RpgzOBSlnpJKRSkKeGHliaLG4EcFq8dRmwuZ0JCz3CesRqCdATgpUQ7QVNtfYBHOhIpMjGK2MQhXFegLqSbDcrDjdP+H+/Rscb27w8vGIm+WE47qiSTNIPJmQTSkh5eT9MyGUpgSeM3Ao0DJB0wxFgUoGaDJXnGRH9kVtIYe6h6UqBojgasg8FTJePWf4jRBEi1mh5iJVmLUHWMwp9RkSs2fTlKI8X8ytmA9BoQTcLl9wd4vjAntPxO3PxrPtLQfc8X5c4C/9dt/Gcz+6T2ava1/cSeP4dwWaLgmcvUB6ZTbmw9pnhgAa7xFw/txjfNPwHMa/j9we9QdbiqY9slHQmC5Hu/3H39nEFs/s2I71SlvPPTPgGXIz0AHDSxUkQskEnhJytsh6YzaWbxGgAq0pRKzgWSY1V5wLIqP9cC0vWC45SCSbad1JkcSECKshzITE6xH53RH1stlW72afLGunUhxJzOXXrGiPJMLKhBsWHBJjckqaxBbnKeQQaCEUZ49uXpxthgESgkdQ7HKQGVbyG/B8F6MYSpmRcoZyBlIBlwyazcJpJaEWwpIBSg2cGpqDBZDUDhzkqQ1YV2A9AcsJWI7m7qseD5PkibPqyDcirNnZx0XRpKEuK5YbwXJTcXOzYLl/xM2nb3C8fx/H432cliPWdkLTBpCXFE+MMjHSnMCTsWbzlEFTBpcELRlSJghPaChQSd3iIc3GYOCTKSp2hIZPYjEcKzRllD2oJuQNDKkeV6QuhEB2nWBD4gk7sSBGAbfldQXwYT/dt7ll7WFC6LbePzr34u8geGi0ZPy17jXd/azb2yh7Abdf2C/t8/AWYrRXQuXhSPGM+mH9Rf/i0l2Mo94lePefv7r2+hdAD/JNDc93vP9nFvET7ci2RWb0pUF1+9Gd6zGGxHr1LQzvOGHTTQ/KxE4eSg5hNs0YyRBaVpXTMttXMq0dqihglEBIkVdtIZ8IfvmNnFlBfZ6qLye+wscyIiBfxBz9BSsa11S6Zt0Ll8FACaSwWEO1ZNjGgpUbrjnhKiXMfj0pmSttZsKUCFkJmRiVBY2sEmlicyTCEyU9b98E5/AchATMgpwTeCJnjWaQWzl8BdCVos2CWprFlNjyfhQAa3LiVIU2gVSYsK2KuiqWFTitQG3udGIrqsd+j8QTghtgJTQWz+25v+J0f8HN/SOW+ycc799gubnBshzR5ARFM63DpWoqjDIz8pyQDmb5UEkGqvD8LyHq5UWshLa57TgYDIJ4k7AVRFSjFGKykt1gG0MUQoXESoxzc4FMJmcSGaKvMLLX9WBhq4jrTl5ygRURoHFpjBlzabtLx4/oTqh38Xnzp372S6v5DkSBvlHwRLGoSDqEbu4Fjkkn2Ah9QxvG5ooJzedMcR5cFDFZ71rr/dmk6Bpth/a87X6ccI2HAIquWvz1YQJlL4ienCX0+hdAozAJpWRvOe73f3xF4yFtP/x5992DTjZ25i7J+AQ6690SV1IpaaenScS+mc8rkG/JgQnC1EtaK8SYFEC9tLXFmsig1Oxccc57FDQ8xkFqeSHq0GGt2BInEbV9DMkm/lsowA2ozQL0kgWSyAksGUIVQhmNE1o26p7JkykzJ1QmrAXOss2ovhhakq1VYSXASDCbeN5Tc0JPq39E1Mw9xIKcFTQDNAFUgDQr+CCgGZCiJhBBoLZC3dJhFSgxFlEsC7CcFKeT4HRqWE4NxxvFzQrUZvceKaMk419rvlwKmyBe14rltOD48gk3Lx9xc/+Im5dvcLo5Ybl/Qr1ZIMsClWow62TPqhTCNJkFlCcCTwAXQD0xUlRQW0PTihWMCmOSoGoAE/cC2mh2+nkl9g+cwdqfu7qCksjQdErNc4dM0FHfABRAC4GqPWcWRpagw7JtRIKO1Wp0+HysanNptuyxbSF8NpVvN1PZL7j4Ct/pHhhwHj8LJtq8MBcDzNpNQLc0JISQS4SoB+N5U5vAojDzXTDptgzshdAgC9Xnc4CHxPf31DuTZ24VufYGgCGqSKpeL0y3H56dbJSAT1Rb7+31L4CijaPyklW0FzwPWdNjQD78tncjGBt5yGauig/vu6wha+GbfYSOvZIWihaP1UKtcFsm8lpKDGp2HaxW4lpAWJV6qKepCYfqdXdYbIJxs8rx2iy3BIrN4mkugJrXjKkKrApd0FcNUvZlVodn52Sg1QWUOvNC9ViIl0dlMrbpxAIuAmkJtSlyyijJodNKKAxkrzpILJ24cxFLgFWv0U7O4CiwekLqvHjMipTMfRkLJ00KZEXLtviQmgtxXSsWNipSXgHOtkLUBtwsipsTcHOsuLlZcfPphuP9huMKrI0hxEDOyCljpYzisREhtmD9smA5LjjeP+L+yze4uX8f92+OWE4r2mkF1hWkDczibjyyonyFMU+MabKk2M5iS5ZoJK2hUUWlZJEWNWUBNdxt6sIqgAzkxMrGr3c++QyxqJHw6rlBObPFsjJAxUpjaHO/cDauPOMaPBcWcfTqM2uslTPYFhfh2ISNSQ44j7EGx/OtXDuCW2dkPywhFAi9/ggGQQLY5GKx37Dv36lZPIkNQIekdpfMbrEKklAFvPTtZXPO47fkcpDSdshghkG8BzbTL34PmCdB4WTGkRa/F/GvwXo0tM8cAQScC+pLNvlj3NPHve3kGnYQ7lhXdDjdfsq82jM+Tt9sTjBt8yqTzSvzkBGkhUJmrhgbpOZPo2Z5PqGxCQErBtdCZI/G1frcU9estJkLT1UNAlbV4bs6rFuGiiOHW2sD2F1WKpuLrrJYfMY8Oc6MIEjZ8uZH0DrBiuIJE7RaLKZlYztfPCZWaauEm3xhtXLX5AANIE3ANCuKVSiAToAWQJOijlUMq3GckTRwI6TVrU0Wg0xX4GYBPn1U/Mmp4k9uVty/X3FzbEaR07zERLJqrSsnFCSQc7ItTbEuK9bjguV4xNFBB6fTCXWtoLUiNcFEipKAxMY1MDPhUBhTMdQbJoYWRkuM5vG8YLRW18bJ74GhCd0CYh8zHnQQ9oVLHbGo6p4q6saCJrVVJgNJDPCSC0Gq0RxJMYtByeJjq2/jDLIlMZ6pWSs1hg22dTVQcuMSkOzUZ+wBGH43WlJnX44lliO2GVZNgGcALztBnSLpvEex8ESvzoX0NlGwjaGxPWStCh6+njaBTb6dcVyOSnfsHz2N9z6HzRXdHnTaJ9o+8wRQbCMqLu7mJZfcQw53V9ucbRtOh4fBF1bPWMFl00teO1z9vjHQy40nQWcSSKGlqkGD0VwjVAVILF9FBa3TqWyubSGjjTGt3z6LRSziA2ACq3EGQ40JO4jFyAc7hcXjE14dJ0xNLMuo2aIuooBn8Vv+qqKxYmHFKVkhO4Yr9fCFTtTcdNkILhsSGiVLhiVgYQIlI9WcmZCyImXyfCJH+yUFZ0IqlpTKWaBZIGxxogruRe7E76EtVub+AjeAVgS8rq2M46K4f1R8+tTwJ6eKm1PFaRGs1WoWNQDEjOxouxqBeyEsVXBcKtbTino84nQ8YjmdsNYF2gRFGmZS3EuEq0KYMjBnwpwYh5wwlQyeCnSeIHNBLQV1KqjzhLUULKVg5QJBQaMMkQySbIzbwsiaUJDB7qY1akArbmceHLMu1el6ErHXGjILKLnLzgoZGquEciQ427Wyu94qgp7UtHIZ5ozgfOEa3W6jFx4Y5+n2fvRs+ZA+n43DmNzyFvyLZHFI6oIaiCJbBKcsioJi6md1T8FW+tcHcgABWohA2vfkctOtO4Fk5fDa+ZwkdkvR5+sorIid7YTcja4+9420vbszXxun23n7zBJA0cbsS+Bc6DziM36Uxn3bylDFSTYdyT49R7JFJ157QXQG6/YxT8xYKQo5M0TZCCI1NDrrVYNpyJpsQrGXN1AnsxRhC+gro4lVQDWVyoLIRAxWR0ChmTB2qyeWko3ox908Pj9FgrYf0Grzt7vHSRysAKwgnMiqZxZVZFGUJMjVF/BEFmBvDWgZ1NTqEHlxugkZUTaaYRaAUegY2o/8JrZqYAfhur1PiiVn1CS9PHm4+1XJQR8mfFQY68o4LsBpUdwsguParPZQtf6olwrPnpOlvlCr5/xIVchSIcuKdjxBTkej2GkLWBWZFBMDVynhqUI4zITDbMLnUDJKLuBSoHNBmyYsU8FaCtZ5Qisz6jShpgnC2VBwavBrNAY3Q7YlYU+ATf4MFVVkE0A+G5gY1QVR8yBF1JNKYDSyfQJgoY52qMkKGkLCpb210XaI9w0GmIj4z6UY0Gh38PC7bnjsJ81dU5IAuCtYw8zogxLD2jJYNgoPaNK5E+RsUXrMmK/LtsbnIIQw1ogQlI1biMpv3HZWUzQp0caTClOck9o8tTm5M6Oe8HL1mSmAxgp0ocmM1tETuombUW05MoGjSe6KC/O/glyrCE90mOSjNHzCnRv7ySF4bMA2D1ZWNZqZ8KkTedneDuhw9FEyxBu5S01C9Homu8YJ1BdsJmgIIYapVe4DUUqO1NHt2Xg5h16GWsRfC5IM+B2FkXSq3S9VMfd6VSzScGzktXG4J41mn6E8MXJpyKeKcmRMh4TpkDBfZRznhKuJMc9AzoTskzpQfSBAU0ObGqRUq4yaMpaUseaMWjLWxFjJBGddjSx1ERiKTxitEmojLCtDVmCtXhq8e2WtXEEigAshZxitT7MOWOkKQVkbdK3QZUFbVlBbwFJNADNhSoy5EK7mjKurhMNVwaEUHPKEnCZQKaglA1Myap+SwJMh0UpJQHE6IrKMm8jNilgeHCafIvcHhOxIRW0OWnFeQWbC6txy6j5gCs5BNlg5XEGQbFRDqSSklpBXK2oHeEwKjATGGvE5bACEQO1dWsbHiEY8Th1+e+eMU5jp0GC/Sj6BNMa6fx6vR3nShQ9tAqi/xrDzXXP9IYuV/1xggten6pn/0ct5WQZAlx2Rd+VHVfvMrFJyvj6ffiQewxv68xrozJ85AmhUjUI78VhBv3lxA1+BbXl26N1hQpQYiFZ6JCiqmXAXU7F4j09wDKNG04cO0cdtgZgRBhKFtUaAMx2LB4shVr/F2AdMjJIG74H10+4BIzuvVyZzeaVQ/7FN9F7czmUvOcLJBJJaLpDfA3KkEEtUTfWlR0PjtFwigbomreCmYGmmPZPgBItHNLLFLxFDEgM1ISVByRVlIkxHQpkz5puEqynhUIxtoGTLl2GPjahT/CgzpFjsRDOj5Yy1JLRcUEvCmhgLCLUZn9siwEks5NWE0JoJodasDIX4QmQuUTL3obtTMhEmtrpH7KZrU0JSD6jJCpIVIhXSKpo2ZALmiPdwwiFlHFLBIU2Y8oycCziKzBGhCrBKoAsbiJpztgVDtlsmHheyGBz1sidwDdtDIBYXSoZsE68eywyLJ7pQQgaoWk4VKoMzgzJBJgJXBlZGroy5GscdNwbBCuE1ZBgdzxYROhvfd4z7GF2eh93HZZcFFycLEDyF564D6nOmo9nCjdYXax6m8mB2xEJONHR2L2BGMTmKy62FRd5lgqPdPMTZu4twRrgXAXDUosPnBGz5cJEMDMs/NNh/s3Wq93lQlm936VW1178Aot3rvaToTLDhG3llp+FhA/bImfNOxGehlBCM38qMgKEa5dkgO9d49OyIW3sl3Q8vQYBzMgxizdAzclEVdsvFkgmVtwGrrh1FfzLYoM2KvoUrUiHuwoKZ8hSZ8BZojigZmqME1Swfdsunl3dVo2QBAdwJcLVfR4EiqyAJIXmMqEFxcqFaSQBmtJQsxsVkJXhOinIklLmi3CTcZMacCFMBcobVw2F3BYWSywYdxmSCSEpCyxlSEtaSsDBjVcYiwNKAkwKLAqtaPlUTA3ps5ZBNwBUQDr5I5WxAjMwJJREOiZCzjafqzBEqDZoqlBsKN6hDqDMIBwKuiHCVEq5Swb00YaYJhSxuI2BIA9amWKliOQErC6QIUCp4auBSQGUC5QbiAqIGv9NuidgYZAplw0Zn8Pad/e8DNyxvuJBip5vTYhYiXDhjYshKaJmQFmPDdv4Mcwcj8oG2WRBjN+HBumVYQ4/U1BQle+nxT1dme6HDsI50mJ1d6aVt7QFhK8MQg2kvBi/N8PPVJa6RgI76Dk9FILx1uPjejfgxtjfqLlRB6izlhM1CEoRiqN1D8coLdD64vf4F0N6YGKONbm6eIU1e4Y2MATDCOcdpsIkN6VZO5HBvTL7aH/TlC7nct1fz6Bmd4BjcfcYKZukeBbBaUHnIVA+8EWFT8sJst/llQpWxeSZ6ngFFMNo0fIGYlZJM6Chvd4tVIWqlmtWFjoXvYtAPIjvyjgBkF+gsMGaEOL0Ly+adJvYCalkNKOFlwzUBeiS0QqiZcWRCyUBOBCps2jybYz2QsZQJNBkZqRSzJlpOWHLCkhgLGFUMur6oxacqPPYs8CqmsH4RI/FWTqK7pJCswmtK1p9iixeJQpKioaE58WgTuzfUzGo6FMbV5BbdlHEoBXPOSMyeL2m5PkttOAnhJCsWOqHxCVom0LSAphk8zSjzhFRmpDyDkrpFhD56Q57Y4mcxOW1qMPtqbA+tASoG11dHjxELUhJwNmVDBZBKoMksIVrY+e6s8mqFW5bYXE4xH/bCJ8bGq0ni7suHiLs62GORBswxhYm3Z9kFCnAWCzqLCw1WUMC2hYYzPtieI2wIv3FZCzckgHMAHQ0APg5VGENulbk3uys9jgtYjle8694J2br1hOXQ618Aje2SQhFfhCQf/KSP2vaHi4G/BfiDeiZEjAxdGbWYTfvfcPevwVMdmi1mBqHl7LENVkdoCSx8r3ZFZOUXiNXLbts9EzbTXB1FBwBkwR37R8ZKIIh6QlbAhtzVl1TAPpiFBI2kF1wL60el2YLUodnBFWfHh2fgh5WVVB3Boz3oH3da1YL+AIPFhUgTMFlpa4Zx01mMnVCTLf4tE9ixxprZy1UMJmIGsJoF1LiiUkblhCVlnBJjpahlw4YM67kyPlbCCHe3ZJQ/z16iW8AgEmRmlARzBzq0jwT2TNSshrCqiK0sQmHGPGXMh4zpKmM6JJQDIxdzqTUQWlOstXYQxMvuKlyRoDwB5QTMB+T5gPnqgGmumGZBmgGdshXQIwazmCJGMJeNPwfx7EcRRRM4etE+i/wqogbODdmVDlFYRdwGtAlIxUqoE5vPQPqsGV1Ftx1VIThezUza+yOMKUo65ZQ2S2LuMzriQaN7KsyOvqLvThJC6/IXF7b9u03mDeHDc+Ub21IX9EfqeVnqFs/ZoAQNB9HNzNILwuf/CqCHNF9LbTTJNqpGFekVHDICliN0YHBADHpMjAQZhg/64pkGEdUwPPTXQggRQAO7fmD+FT62ghBUAVHd3CguUDRRd58podN2RIQrLDntQALxmSEgVBCzxW7DiiGBMrrmLx5rEkgf7xJmFm2eA/UMe0vHoKGCqlHnNMUm0GDWQHJ0XtKE7Am2yV2GBRYHo6ReJ8lyn1pmtGzs3LWwB9MNDacJvZ6QtIRGYjRFSDiR4MSM1SudqnJfhIjRa+FEU8CgydnQgy0bPBxuySUQCll5iMIGB69sFl9KDCrNoPEKE5pKKJzx1Jzx1CHh+opxOBCmg+XcKDGq2DOuMAvo5iR4+WT5R0tlNCxAWkDTgnyomK8aDteCq3uEfJ0Mjj2boKQoIhVwXlEjdSXj+TOL0Z63oSoblBuUK5CMVlcFSNmto6JANau0sWIleC1U6v9sFAUd6XmeSgigB82icZ9L+mdYGRj2GVHYkY8kHeA0HJUi2KJb3HkUQH0LF9x45jPRgkGsnO0xljpTMdnXdPhJLEr+N37TO9sTg9we8tytLWwbAmdkBJbtuE8YfBDtM08AdZVIB5WG0KEgw27Ao9/TGBajlhS/t0VjgzUDoa3f7tZGsRjxkkftwWP22IVPz8ILGz4W+oZNg0uuqftgFLfNupIXQssz66Ujk5KV3Y4rMf4cEIllZ6u4JeR6q8/mqN1jvmZbGMVdcNpfe3LjfiJDPfdEoGrkPQLLC0q+SCsD7JFvE/ohjAhTBPzVRKjCyn8LG8ODiAMJyJc5gSGg/Kk1YkvpIHUBJFggWChh5eCRc9CGu9cSuVbvCYvswihBLCeLDPiQFZiUMXk/ZzBm37+RJb2WDKSmoNxQVNCyOUonBp6aCfcOhOsrwtUBmA8AJwvb1wpDMUKwSsOpVhxPDfePitNCqFKhqYGKIB+B6QQslVG1oCAjcUaihAkJmo3njj3m4WV/TMlpZOUXmr0nzy1RkW3cqytGQp2BPMOUCYs2RczURlpDMGBrH9wjfc4oWO7SL/fW0qhAjtu4zm6iIVTHsHjioH60cLH1M8V3er7u3HL/75XP29bPuGdXfCMeS/6b8aI3rXh39SYoCa58eX96WtJZYCn6Paybl4y2J9A+MwTQpZszjsZILgklBZu1GprFo97b20ODui816BPZ8WLSf6OukYin1DnZ5mNd4GPsGuPNBY8EVYdxjBoqqMFjLduEUddgm2tY0FCctMtwcldXuLy0m+tuLYlAGvWF5myCCEAeI0BVUBPLz9EGUq897YmqPVm1w5icGkYt6C5oXQA16iFVBMsMyEpWZwiKJqSwgGCMCVEvSNlVAQWiJLaq0UJI85wPJWgzNF1TWCyGFY0IlXwMkbmcFBsbBsEET+LkxK/OCO1KEakDOGBW2eTM5KUwykQoDZgrIbkVWrv7VKDJF2e1Y04JuJ4JVwe27cqg5mDCEkHmVVGp4YQVN63i/lLx8lFx/2Q0QMoNyA35pJgrsICxMqMQoaSEyS1WFYvTUNrop8x1m6zgXxYU2WDUZrnEIm3MCuQuUlWD/xpZayjeZt16uT14JK3/HdW2UXiM7/dza9z/wlQ5Ez56tocpWgbhC9K1uJYwH2izcHwu2cH9fWh2vZM0CKPLAudSs71ico8CbnCT7S9+d+FbHMn6s8lN3ay4mPh9ARiU+Uevd/FI7TNDAO1v+B78H8q3bFyBafj6rgS28Vnetj/G4btVKonY0GbOb8iwbXtcVeIx9/euiS9agSgN93QP5sowpH3wCZsA6s7lgFX3LqgnqYXGZHfR8gvsLkkzgUSB3Ir5JmICaPFtbZBqPGQqFarVhIDA4NiqYCH35vhFaGCxmmOjbNViKJIKMsWCrigKzKIo8FpGGmDy7dlJM6oeITK+OjKtncmOJ4BnkluAnZsaoWZiS+IjYwMP5mslBREjqyHckgJFjY8taZw94lSWKzZBjT5nVaSTgouAFifsTEERZBZiVjGh6o6oyHAvmZEzI+eEXJLVJyoJStmg7w7GOJHipIIbqbjfKu6vDfcXxSKEhgyqDaUZDx5yAkrCVBLaKUMTIyMhuTWpGgF66lFwhY2zHHxPHnPo1qPa4KMaQ8xoeaRS/5wboYgLZcRUtrmTIH0NjCk+Oq3umimXvhsF17jf+bcOc6AQPOOqHXMAg5J7SVn0eaR+3JG26oE9vtyIhv51U0gBlTODi/ppQ/P2uUrwciO6ackBsYt5T3ec/wlbQp8ZAmjfQggNVtCocIxDK3aPnwC3B+bt14EBI2xPzrZzqydCqF2Nv3W8W3xNr7Tt5ksEzcW3PocinhMnHRJB2ScGRTxIYQuLu9ESbBFNGoAKdR41j3Apw3BazqwQS4fDry1hoQGrIkqDShVIMyFkhHTa2e2zKIqY4uA17PzeGbNCgfR7a0mrigLFROZmyxqOE8ZGd2rZJDHbVA25Vhubbu3uDSslIVsuTMS4XFuhrKDskGJHRyWP/CYSK6UNRiHxeI7xqCW2eFZzeUrkRfRcgLInM29wdB6u2VxY4fINJSpob5gTOCWQZbFCgtWgEWoWoy4i4KSCkzSc2opjq7hpgqWSPbmqABhpTVjXjLxk8CkhnTJaYlRKqBQEtgAhm2BVgNXxkzGmkrllpZhjciXCKmbtmEYEgIyyCY1BNQGVIc2srIBgozvkgp7HWsyoFZsSeRcbdkyxS5aQ7L6nwUqOOd36/PK9NH4xOObjbRvOEO+bhpn8gMn74BbjgFU2rdI1EHVBxP1qTDiRWu2t/muC17iK3XQToN0FJ9s1jlL+QfLyFbbPTAEU7cIN2w/CGNBjwdrQKejC/tZCk+Zhz3EQiUMQTG/blxKGj5vBaDh/2I/ykGn4OwqeOFmgtobNC09uShwBAdQwdJhZGGGnQbQvwETJqHUGRFIIqS1lwBdwCUodiwcJFBUGt9bWQFUQbAfq6Cl13zN5simpu7TcDWeX2GEPMLIYs4AixTdDPTfIKqF6ppM/J0uqDZtvi8KJIdaU0JT7ui+N7HVim+tKm7+8eczMmSKgZiElv7eFTeDMrJgJyEkwsTojN5yeBsbzlggpAVNSlKzIuRnrtsPmDbUIgDwmQvZ7RhrSTVy7YIb6jyllUMoAF1tKuUK5Qodn18Rg2WtrWCugKo7Oy9Da+oZajX1hXSF5geQE4XgaRvpqrkQrf04whKXAwBOSbH1jwOn/YYzYbt0ReWRUrBItxElp+3RwZCG4l14YlcdY4x/mSr9r6T9fD0y4FpggCsWUHQ2q43HUQTfj3JfdQZWcJ4jQueHu7EE/8MX+x7pkc1M2Vm4Y04TxkrN5MxB0Ok6TNC4u7HCGHgxTVzT96mKgx/WMAugJt89sAbRrD1vrx9eXBuv2/XgkurDHJnzidbjdFNhqWoXgGCXdaL096ELitHthMwqgdPvzcEv3JDX3TRpE2YWAihUZgxeVE7IcCE2OXIsuU8/EJlFog8Nv/TMnHBVSj3+ZRkxi8R+IMV03Zz5QFXe76aA1yjYB+h2243lEAkCkJ6rfnhBUmy82LAdy6d+Vvt1NjaiDPQKL+TQh745ZSSCCVoeziiHkmA3anUA4kOLAhJmBAwOFFYXVGMh9WWtqQAdxDu/iSbI5kW/uAWPjdzPoR0OjZjZ3BMDJodhsgkdTAnIG54yUE5gszhIF8qLCAMsWg9O1QlaP3yWCpgypK1pb0VpFqxVoKyDFEmFbBThZATqy6GcwinewgAZE39x53c1J2/ww2W3P0MaELYRZA5BgW0Zz+0f7k9oDzUYdbK+4P6jt11Rz35KVwfCxEOkAgJolBN0ET9REGmYFwjpSYGNM2Curw3245US8e6Xv34SZDtoO1yHXcIJXh2p0QlW3Oh2h2FkZAl43Wm5j9x5kVr7K9v8LAbR/7MBty2a0eB7e9iLsLtylDf8zPIQLnrBG+rafMXeNw/FC4nXabaMAGt53FhDvQ0cHe77PJirdIvGOqgshT8cxdJcC7Dk8qDCrp5JZDm49kNcCV5JehhuOdmMJxcsW456sqzAgQgO4iS2UcMGB0ABjTmhfmELA7BW2EFgB4gUayGMx3WXjHg1idvFg9XB6jELZki3hrrlxwnqsI2DuhRQHYlwDOBDjoFYKfFI1xBuTMw6TVUpVu7YiQBaYixNWzC0Tm/AiBZO5c1eKUhqE6rz6hHC/WdXTlMnKSHhhNGVgIrH6TxAvGWHCp9WGulasq1moVRm0ruC6ItcVpS2oUtBkhToFEEkGtQyi2gWQ192GqD9YtTSD82JxfvM0lA/726SBpFocUCpIKqBBLxq/FGyj5Hy67KcBhu9GXe5By3tYPTPQkXi2vNvDbtTM4iVskycm8aiHKtB9yPDXMk7YvcaJ8YcOvLDPH2x0+L20HASEIArHYUC1ATpfX/qip90F2k8UEPIY23J+uodK81fQPmMFUDziUbhccpjF9uiW5n7wxOttgRytHjr7bHeYMV4Tu4yxq31HLnV8vKhL+6EbOQBtY6iRgRQo0G6gXlrBYpDaxzhc2CTY4pdIkX3RTALTpLd1BSK2yAa0U0ggHNBqd4g54g4ES7CMpFVoL6vASme3aZvjXUx2KyhuXYXFBDZqluDhtl+ahj5yOYf3gWA+c/a48vZQWMWZFTB4XNQQLRJRJUsiNaQdo6hp0RnJNWogk4IkljRCclg0iaAIGdO0bCcxi4WQSUBkikAGMDlYBGq0SsrJUGo5Yc4bpVDOAlXjfWNnIDCGCi997sSirXkhPXHnZGtIUjHJiqYrGoxvTrVZwnBrIK5AC/sz+5pr91ARrlWziNXph0i3GGLE4cmPoGzWHaFa7hAM0i5n/8LZejveMxr8wLlgGu2LS/M7hNeEAIRYLEVcU1MYyMTCLgG44W27JNY6A+ilickI1+V5P7bY0yhs726yrRkxwn3sRDHAbQKRo1mGbsTRXVHpdAqXlreRAuYJtktOyTvb+973PnzFV3wFnn76aTz77LP4pm/6Jnz84x8/2+d4POKFF17A53zO5+Cpp57Cu971LvzBH/zB2T6/93u/h3e+8524vr7Gs88+i+/7vu9Dra8c37d/xHtBw7vPLnmoCrZ6MufDYjzqSIix18MsAGtYuFFr33T3MyVk35Hx0HuBEu3SwBhVvUtbBbgCvAB0AhDbAugCyALj36oWiK+VLWjdGLWSoZNWBipZeeZGSM1KL5AY0wB5ELoLXqfXiUWj+TZiADu9D2t3RWaGx0kIxclAIx3RFvbIjRdENpJHYS7GBIzKhbCCcQLjBLJYFHRYzpoz//qxVNwdBFDVDTbeYOXDm6JWqwHUXHsX37Rr8asj+vy7yFciRaMBlKENLA1ZG5K2bqEpmvnvu0IQItPcXoUSJso4cMYVG+nolAvmkjGXhFLYKrcyDAiQDRqtGcY8nchiW15zqCV2SDlhBWElt1qirzHQ1FxsCcZEwc6Orc3ieFUFq2+LKlaF15NiQBJYEpImJCQUIswJmDMwTYpUFDwJMCm0iMG5gbNtP9zHEtz77+I3d02fscX027zVXpmVBJSMuSGlBk7i8Tj0+9HRbQo3O1xr83tz7ufdbLFLIduIVNKwVjxSEwDVUJpSjVxWawXWCqe6wJYvEDdzuGPkmmRq9ndcBPcL6BNujyWAPvKRj+CFF17Ar/3ar+FDH/oQ1nXF29/+drz88st9n+/93u/Ff/yP/xH//t//e3zkIx/B//7f/xvf/M3f3L9vreGd73wnlmXBr/7qr+Knf/qn8VM/9VP4x//4H7+iC7gkZPbf79+PD38Xp7cs+bPfbWiY7XznGnX4vbfSxOeTwnU8KHY6zyhoLknKu4TQOJBGXvoLwofq9pcqQMFdv/i2AlgIWGkbqJXgUXJEHZOR6ibuQAThibjT3GQyrrnuGveJShIbba/VNzLm5GBsoEJW8jrTZsX5fc4eE7DYgKBgg+vGZp+RZ9NvTyNCsg3qbiG1S2SYhUbnjyEK+bmHssdqK3Sb0/68iGzRSiQbGwtZv0kjz8ghyQ5bZlVkEUzSUMTqGRVVpCBmVXVAh2viTuHDyZikk0Oup76x5RDljWmaMllJn8KoOaHlBMkJKBk0ZdBk5RioJFBmcHb2ci9HrjDUHrvwM9dgQvaieezuR00ECRg/G/x/pY3DzdZpo3pCXAdvxKRcCDwReAKo2BgIl2gXetg8CuPiPE6T0cLZrwl3ORD2wgAwBUkYxoCRBVoUVNTKsXdlcS/6LsVy9t+3fj2BEt2QjZsA2q9Ro4J8q11aK/qpadsuLShhzcekjETJSzfrrjXpVbTHcsH9wi/8wtn7n/qpn8Kzzz6Lj33sY/iar/kafOpTn8K//bf/Fh/4wAfwtV/7tQCA97///fjiL/5i/Nqv/Rq+6qu+Cr/4i7+I3/md38Ev/dIv4Y1vfCO+7Mu+DD/6oz+K7//+78cP//APY5qmx76I0Cs2F83WGs4HYBm+iwGo2AZh/L5btmfHo7Nj2/vAmGwhcNrtF+6AcLkCm2V+Ni4e50FHJy9d9GAyh4tJL+xmc4IBTraSJrLMyNDwopgIKdTrg1gc00UyOVJLDUrLsN+K/0agDlBwhJ3fsXA1m+vL37MLctruclRrtKSlbSKzu2YCbBAYjFEYWcJpzKVQDrrDB9U/EZjsHenCCeYiDN0/ESGJHbP6E7aYspVtyAmYEnBIgqtEOLDiwMABwAQy9xptRTospmSlthMb60EBcFDFQRVXopjEhBMpb0nptMGQE5mizQzwBJRZcZiAaYLlA3ntdfFnJo3RMkNyhpYCnivSnJCuEliKCc9GIGRwMd43MskARgFzAdEEpgnMBZwLkA1tB3B3v6KZOzUKJ4i73nqAnKzERHivgh6Kk22SYKXZebveyOtasLlnx+SH/dim3Xexnkbobm8Z7YVPGC/N9TKrFKGoPNDfMGx+3Gmq7CdnrAIbQc4W77HxubHJbwke8bwRYxVDtdJRio6n6Tcj5u9woCiN0iGUg4Y17huLYVzC6NN8ZNPs4e2xLKB9+9SnPgUAeOaZZwAAH/vYx7CuK77u676u7/OX//Jfxl/4C38BH/3oRwEAH/3oR/GWt7wFb3zjG/s+73jHO/DSSy/ht3/7tx+7D/t199K9GT8/exYXtvN1/2ESQfu/889uOw9ijYNPuo5Cu+tiHrWdK1fbNpw+8knHhGbEEJcUJgB6nZNO4QxEaQRSC8xuTBJbzKiPXffvW06LdkQbu3Wfm2X3F6MEAze1hd2PnUmRWZGSdihy4hGKjLM4wKhvRou+sV/juR6q7hKMW+QsFhp2rKeJEkAkIGcNN8tGHeYtmOBw7/6ZYibFFYlvDQcSHEhxRYQDMWZNKJKQJSNJhv0zmhtzqRn32wFGvzNT5A1hkzjZNipAmoA8A+UATFfAPLvwcUuCCjupKqDZ3W05QUsGzxk8F6SrCel6Bl/PoHsz6GpGup5RDhPyVJBKQcoZORfkNCGngpzsM/JjSUloJUFKgkwMLdQ3KVZoTrrbz4ZZS+bVXciMcEuRIS9ah2GqbUjHzQo6Z5e6hL2JQ+ytmz0r1X6fWFubD/smVs9paVFaw8bQLfOpN9q9jsl5bgXFv82DEn3aBFGGKVKzb2HZn6V0hJTam3Rn702RJPdK9DoN47ZPsh3jE5fCA0+wvWIQgojge77ne/DVX/3V+JIv+RIAwIsvvohpmvDZn/3ZZ/u+8Y1vxIsvvtj3GYVPfB/fXWqn0wmn06m/f+mllx67v/Gs4l7uoznxdxsmo2oxtlHfelSJoV0Ht4es54faH/5xDh2/2UMlB076bmBRWCKB9HKXCMJMDyEEz7zbjp8SjI0gEYQYlWCkm9J6Jrx4wJmEkCJh06169TtsREVylnrQ2SnICTcZVjkzm+WRQIDC4kqRjxPgCJzPtw0JRV1RDaEUz9ye8farM0ed34ooxx37xdqYfb5yACdYvMwFmTVIgVKzWFYiRiZzXwEM9RiIUgJxQmJjsi7xNzFKSsZskKw+UGCnmUK4ak9o1UygCaAZoImAiaCxJa/9QgQtDEwEPgB8pUjXirQoWBkE44BLKyEjYUoF0zRhvi44XGXMh4R5ZhzmhGnOyJOZfJITlE2qkJsWwfphbje7md1xZphsSLU8InHXrXCCMqElE1RrBpakWFnRWtBWbVbBPtvgklIeo3eUZ+EN2e8/HmMEKwSgZQWM2ZvdDCC3ItQ0yc7Wgb1SNK4ofRb2vwEz2GLGPUvrlmAc+3pR2OzNwFjUaLP3DJKNTdD0v35kUoDb1s22PxaeeHvFAuiFF17Ab/3Wb+FXfuVXnmR/Lrb3ve99eO973/uKfx9m/LiNkM1xATtf/0fRFO2VCKBtcbMT3mHH7g/5uObuTnhRfOZjkNiWf3ZffIMzUvtA7JyKjuyK1Zi9pgtS5HYohKnT6Uv3Wdi5kltSJHYMdRdMsGYDZDQyKs4OQttcUgBeHyc2zWo0cUKOsGM0zxnpiel+byMXxWI9IXQ2V048gojHKcxleK58oNPYRz2FrvB6FrnFCExyShYL5LPVsQEncMpIqSBxQaJsQggmEIyULxlbOBNKZpREmHPClLnHcnJhi4c5JQ+60uquRAY007nVkY3JWycGpQwVI0HlBqQ5gQ+MfEWYrgllZSMaxQouDahAUcbEGYcp4XDt2xXhcE24viYcDoQyJVCxeJIi2TlUe72gQI6NQLDg1EPzPuZkhQJTBnvNEPV+r4WwTIRaBeIAhxjY45R42Ho4rtPRGOfAhdhv9F6FZ7ptjwrM23OHexM4UIrMoCabACJ4Dg5ccRpB5ONU1X7GsHy8EPpFJVmAXtNrq+U1HDAkrJydBFZji/y1r3qhCHfB4neq5wgNv4/OtOEGPqH2igTQu9/9bnzwgx/EL//yL+PzP//z++fPPfcclmXBJz/5yTMr6A/+4A/w3HPP9X1+/dd//ex4gZKLffbtB37gB/Ce97ynv3/ppZfwpje96ZH62hcOnAuauwbvfojcPhoufP4oTQeFiM4f8JNqu+Pp7oWo6fugTdeS0Oj82jT66Qs8RCFNIEnQsuXQgA0yrB6ZD9gth5LYGCliAuJseMTu9/eJ2IWSmRTmmrY4Egs603Is9LIaIk8CZtqtOMdo6WYBmTJummXDpmyMIJAAkljS97BYeNItBb+ZWn/UhViUB9feCzNQjGjUShUwpy50CjEmthgPI6xQuEtEvVigomTGnIFDYcyFMGXbLMnUFhwAqGCAmqWWuEvFBLX7KjNZLaNi71myWQ0TDL04ATwJeG5Is4BXQVpt0ROSnhOlyZ6VsG4MGh6noUxAtjpDoAQE7J48gqENYYGOoCsRexDCgXVxYAW2mGJYQmENCfsz8WFcMeYVnTu4YqjHrYnPLrGc7KeNDPsEy41X8XClgxDJpFF9NInFP229ZhCMi7AleOI2EMg4FaPFiTlmZFKmLAHq9bI2tWiUDV3oxjjYu3GA88DWXhixP4AY5MTDojicKNwSZzeHht/tO/Tq22MJIFXFd3/3d+Nnf/Zn8eEPfxhf+IVfePb9l3/5l6OUgv/8n/8z3vWudwEAPv7xj+P3fu/38PzzzwMAnn/+efzYj/0Y/vAP/xDPPvssAOBDH/oQ3vCGN+DNb37zxfPO84x5nh/74i5eA7Zwie4+2yNobsuHV3nXu5o1PMwRoYDh9TiDHvccl17DNNA6OKOUhhHV1Xqfnp3ZFwATWgYsT0bA3JxCJQLOm2ZKyh3pZq4355ULeh6yPBRWRwGRCYOeVa/BJeYaZ7ISCY23pFF0aO/2BM3qgYMEzmOmmwWsffExbdN6LYJtIoIsb6WXCHcLSMX7CagmQwAmOGXMdh8pABlKZ2SohTbiUmIFJwUlsYJ0RVEmGAN2cTbsYpaRlQcnL4lh96Wpa6/MbmklcCqgXIBcQJ3LxxjjTGM22KFZsAYJr1BUsW1tgqUKViFjxa4VsjbQUpHKimldUdaKPNmCmhQAMYjcDedUNWZNJig1CBvnXYedN+kKSMckqkPfW4MlpwJVg40ioYL7toJwhOKEywJoFDB7C2c/RfbraEzN0L16wnFzpQ3cFbeQUOIoUauRBQTfoMS4hVns0lpX1qirO9T7z0NvlQDeE0TSFp4Vt3w0tKq9Rj0O+hGd1VkQYqzHGPJtvJvjgjgimB5mcr6C9lgC6IUXXsAHPvAB/NzP/RyefvrpHrP5rM/6LFxdXeGzPuuz8Pf//t/He97zHjzzzDN4wxvegO/+7u/G888/j6/6qq8CALz97W/Hm9/8Znzrt34rfvzHfxwvvvgifuiHfggvvPDCYwuZvSAe788l4UK47dbc7/MkDZKLbRwUdwmZ8TsdfvOobZyN3f28STYNm+CMkI7C97R9Fgk6jE6pws2BACpo5IFNwpYLpMY6zSB3YzW3kjzzRgQgA0JnI+cxDViNXJOVrdCcWn0egyEbZU9wVGmDCYnNjoEi6Hm25zzOxbjNUegsSgQQYHk/PmGVNsQcNfZVyJFcYi4KJXMJGt0QnJIHFg9QMguuwVB8Zj5ZSWuP9TLBhFd2sMCcQIcE7pBog0+bUWNwZWWgkbvTyAr9qWOYecpIUwGXGSlPSNmQakoZna5VLIeptYZlbbhZGu6fKu6fKo5H206rAuJEqY3RsIJ4BdOKlFdQqqBc0bihkMWhLDiY/T43s5qSEdI2F5ZVgA4dCYGjiuykt8GIoC1qQYXbCi6IqHPBRRnHvXI4zv1RKN0lfEavyKVp042BsNz8h2HJqac5yDAKzYqkLT8VprRvaKPAd+rZOY0E146fYIyFntPbB7EwOoHtGf3cXvCMyiwufGfalH8er+PisBM+F7bbWvmrao8lgH7yJ38SAPDWt7717PP3v//9+PZv/3YAwD//5/8czIx3vetdOJ1OeMc73oF//a//dd83pYQPfvCD+K7v+i48//zzuHfvHr7t274NP/IjP/LYnS+4vZ6HUBrvGQ8bcG6hxvu9EHpy93k/IiIgMxx9r66Nu8fnjyOE9kKLhpHJyUzw5Nqru8Dsd4PVM77wm2rINjHOLhJXoixh1IAEnntD218oTOPW5kuHE7RQBaF5+QICae4T2TgRvbSzJ7X2Wj0AztN81f9vXbnYz0v2vc3uSzsAgnsyBKadEjqJYxiqzm5mVgOZ66iSEz/CFlJ0V8z2+BoUK8TibS6YQdzzeHhi0MTQQ/YtQWdDkpkrjTqqQbNxzlFO9viSPUtNBWkqyPOE6XpCvprAUwHlhKYJVUznbqJGRF4Fp7XhZllx/1Rxc6w43lSsxxXtZBbfiZNjfS3/J2lG5hVMCyhVNBaDmidLHk7kuWAAwM3ynNjuY3NS0ii9TqrmvtKIwaorD74QQ9CoQbhBqMLstGDm66pTt2rHcMReiRz/7ufzPsYyDHNzP/qD7AnTZPPDxmBYRM4A7wKmEc7dYsCwyI89ut07AbCSR4poAxuwdzYEUJ+iYaGNptyZAOLQjvzzYaX08dol7TjfQ/LtldjXSEN/bBfcw9rhcMBP/MRP4Cd+4ifu3OcLvuAL8PM///OPc+qLLWqFAOcCCNjcbO52vshycNdweHL3+YKqQsCGuz//6tbuo/pO2NSqW7qfj8A4NoYBJK5yuwvBydxAsLouCG4Bwmamx4/P+qVdLYwERQ1yOd8vqdHNZPJuABhsH9vUmQFocwnZZBOIpK4dNAGaC6AOIw+oqN8TG45GGbllBMnZmNgElv3dfP3hCPHOjy5Dl952nQIhYwdYyaDDkZ+rpEjqVPgCE6Tw2JrvR0Rouj1GZicczWzWz5RAJYOK1e+xhFACJerxEE1swigDOtnflNnKLiSzfqapYL6akA8FXAqUHJ2mcLYJ8cRhoKkYi4NWNKmQVqFrA1YB3MKtjbGAceKGG26Yp4o0VfDSIHMz4ImqU9dsyrUhragHvS2/Ub2wIPWcphhTPZhOMWdNADVnkYA0d8C1HqCPdV7PnvE2M8YpNc7nwZDpLvjRk6U+xc54Gv05C7m1dpbUOUios3mCwXyKgarbd3eIRqFzyz3WMJB7gvns1uHWcty7QtsFRVOFme1+MMGFvu9u3F1C6Am21zUXXCSVxqAawyhh5YQFVHCumOzvLXbfvWYtOrrfotN7GdM7yruDjP/byCT355pVof0YRp5pC3l8boABc+mcZb0rEHeEoIg6OAS4RTIIArALOCAPvydX08KCaQqsau6VoORprhkSbxxwpF6j3ilvjKvMg7hhnZAFxZ1mzmn+aXj21GNS293RPpm3xGHAvPYR9rW41IZVcjejC+cVhBWKEwUFD3eN3sr2kGvI1IlMg4cOvnSS+yst14i9zHUxsAKcYcBr+1DPzWBjNs4J6gwBXAAUBk8JKAmpJOTJXXglg1OCRIkGAYjFCuh5DpHVTmgANyhXSCz2VYxYVoHaGpgbTrkhl4a5NqTWwGJWCWgFuKJRRqXWa0kZJ6An24qp7qkHLKxAnlV0ZVQvUy7MaGzQ/gpF1YHiSDfxMQqRUcnYT699Qvn+d6GEjOHXPud1A4v0Gogxr7piR2aSxE7AJmQ6S7Wv1l525HxRCWE0fBh6EG3JrqE/6m671fYL1m0N7PzLM8nlc/kuxZjOd711w19le10LoNBcLgmQ/X2PfXj4G8Oka6c4F1KvvkUPNr27m+R7AXSp82dm72BqDLuO5D4a5jVtPyElZ8E2dVR9Moiie976KeJ3HqDUPkk8FgOj1SeYdp/IylzPSr0eiTq7NYSc8FK6EJIQQmoCSNlcX0mt4kvqmrKiqXGL9RiQxwsEgYzzPB/R7s6x69CzheX81gb2z5pFguyTLgQRDh/pt78poYKwgLGoOBzck2gFTlO0IbWkB/t1E9TKFueSZFtLSC2Dm73OwsjCYEkg8fwdNdg8uSASNmSYJRoxMFn8h0qG5gxNyfO6GCBjWiB3cSYyd1nOhDwRuBAoq0G5OOIzaiE7UTRt5q7z+/sy1JJzSUDUkFjAbHHAnpPjAAxjUE9QyRBpYBEwSh9TjRVCDZ7sBaGMRiaQKsiHnMeCQGf5OMEEECCE/ZS5NPdjH9m9jy0Sk8OyiDeqhmhr8QvyuQHfkWQ7aA/Yh2Y0mAuxwPffYbCUcDa1o091lFm+SPXw7Hgt44WeSaxB0MS5Y0KcJZYOQmdcYmjYJ8zN/dr0BNrrWgD1e4jzpX5cu0PzDQh7CK3RHTcqDLHPE4S642xKqF6eHdH5scO3/K77H1JfVKHwEtvDyFD/nuCWivaJoyKoLENyjC/VozY09j1UL4fENoIH/Q01FgvfKh4TkXD3qPv2tzkaCG+o8ac1VSQhqLMviPpCFQFqRWflDs9BJyEmeMzGdORLDMnRQtnY5qNl18NxSJ3KPqwUmHUVMaMOGCazJDmg52rCywqyeVE2508jp6IxkAY5StAYKKhxJ+g05NxQ8E/IcobCvnMwwga5ztCUwWlCSgWcMogTtsKBlqMyuRZ/SIQ5M+ac8SK0SAAAocRJREFUUHJGzgkpR6KrOEpOfPKY4KytYWkNSaWXk7DsfOrPUvootBhO6gq1B9ajuJyGnWqCWDVoe1NH0gmxW+I+tokRDrgFhAWb4IkNuK3o7wXQ3hs1jodQYEcFlAXnVe+IXFgyOuomBlIEa8TnyHjywMrrIGVCiJELie5n2w4bfevsUxctmd37UTBEXCd+e5fXZR+TGNv4u/HmPEHhA7zOBdBIzrcXOuN9Hdf0MS/kQQLoyd3nS0Mft7WJ8fXFoN8dxxm1ejU3bx/v/psNNeNaW9S45ubnDcHkEyyF5uT7jgKoTwh7oUJYiX3BsZgIi5c1cMurI7x147EKHrgM6wM1oFbbqStyGK/FPrDnHXxtZgwYQ4B2JXW8WzEP71IoxnHSfPnHtlQiYkvmTjPuNyaL8dhCa1p/EjI2bxWryKqMrEDRbY0CweIwzFBO0OBk4sj3YVAystEgBA2oM4OcjoghZHlGygUpZaQ0IScvQhccbkhgJSRVQBKWRriqhHkSzAfBdGiYDivKoSHPFTSLxYBETEMgM08rKRYARxASEiZNKJowS0bRjOSVWO22keW7hHaftvUatFnrmbDdVzK0nLEimDACmQuxUsJKjJMSjkCHX+/dcOOwBM7DpuMYqLvf7I/DML4/+5IcEdm5J/yCtouyZ+8AFaHN4kBYIS58us9YByuKtzhR9GAYvAyfy9h2iZIqZyvBKJxCedhf/CiALnEX0e54+20UWKHFPSEN/XUtgEYNdxT2sUULLWesIaK7/cbP4pgr7l72H97GHujtr/Zm2L4TwDaT7tR8tP9/prDo7mddyAzHhaJTxysNpqEMZrnfLdbzfgL2vdjCY3WxzH3WFO6G8Ro5QA/sihrdv4gXrPNTJmdRIHf/xE0KfgJyRRHeraDF2WhZ7Mq3zPLQoW/ftktbcpUlEHUbcwL14wgIzclDtdNdw+5dA5DYyyb4cR0sQRmgRAYgSDButhJ/ydmV1fi6snZSzpztXFETiDn1RE1hK6Og3h8rQEc9zqOuSJC77wgK8tR+noF0pcj3GspNRTkJ8k1DWq3MBAhG0Aa7wUIGy65IqGrIuqaMqlvOPrND250/j8hg1uyTjnzR0m7BwaHlJryUExIzOCq7UoJQRkXCYjwNxtoxjPXRso1x1A2P4fPQ6WKfNhxjHBNAJM7GMw+WkLB8IgvXlIaA8/fCiuRu5dHtFZoUgM1151+obD0YBqoOFxK1uuL7DdjT9b9NQI3SdL+OPEig0G6/8e/Y9hbRE2qvawE0DqxLII24X8D54IyNd9/vfzsO6sdvow4+HOlS7CcuYD944gKGsXqpQ9H3UGxk95N+4oD3CCPQcH00q2yzmv2IkU3arScMM9cFU4u4j2l55mJiczGpJ6i6e0fI4jq9aia0K4EhfLpMxHkNTIGdh0Hd7WUJi2apkG5us7jqmCt5eB2K2y0D0+9i6k43e2axgDMrEitSSh7vCo+mu59UURVY1RBzhYHmRJxUYKUOnInYQh8KTtIfmjEPhDmXwMxIbMAE+5cBstiX0ScAmhXIAknNYPXJXH/KEcQwodmIocniPvmgmKpgXgWHRXBVFYdVsHryZ83V8c0ZSBOQCoQnCBcIF6jVSnAB52UVkvpQMgsqLCAS8iCKlQpXFiRO6KR5iayMQ4Kj/CjqeUA4oVHq2De9uCracAwvckwPvuN9jAkM77f1wBNH4zuG5W55Qm8XPhTw/y0NgCQET1gf4yT1nhCjQ6E7DHqIDfuu3UO/Ex57AF1n5NhbQK6kIb570DaeZ+zuXljFeWMtuvwoXlF7XQugsFBG1+QYA7pL48WwD3a/pd1+r74NR7rL93opcHXpAh5yljG+uB1m4xO+lfnQzZBQpSJoGqbGsDvtriUmmwsMEQvIRhDXqm+Tx5/EWRPsi5i0/bAes1WlXssrwARbTGeLM4QBF8qjcXV6sii2445u1v2iBOzn4TDrhsmnzl7AJJ4YahREibQvflGnJmS5JU66xc3Yat+wIdxs7TVLAUQQEgvCQz1/ChB3yTEnJM5g9prf7BecgZYTGiens7HFkFWA5s4mEdSWUBt3toecGYdDwr214Kllxqk1HNfWgRSnXFETIDUDNAPTAVRmcDkgTweUMqPkCSUX5M7YYFZNG6lcBo2IkgtWt/aChkizbVJss3oaZDQ/Uc+IaSjnQX1cjMriqK/tp1W0Ud8Dxuc+josNms+MM9eocDhlYypoT0hVT0qOcWqDzffs0iR2cMkR9R7CEhq13b38GvTEse8hbEZjB8DGUu8XfrZ87Be7/Y2ME+xNzPj+yS6Or28BNC5Q4wMITXdcw8f38VvgfO0fk1OfYJztcsf3lk0MirZ7/5gPPJSWTShvSZSAdC3PXHKDHRi+/O4bpsH15h3qCTlD36oCTaGNIcF3JZ372+Yje3VJCJKXW2bXEqPsduxrlxs8dZ7Iia3on6UwWAwmck0s1hLcBluaKYbbvFc8YqHRftcGnZbcu2jZqU6BYoKJqIFDKIFQVFAUKB5SI9g9URJPpgxaVLNSGILcjOU7cmNUydCB5Gm6fn4JzrWcwDk7jM2JSdmqpEIzmljMxGiBFKSO45OGWhm1EZrnf2RqmDJwfWC84amMKhNqbUbXkxg304plUixLRqMZXGZM1wdMT00oT03IT03I9wrSdUG6TsgzIbkJIgK0NVQFqzLLFJToviUBZQVlcTi4AkU7ozfPAM0MTJYnxYW88u5GHhtzea+oj2t4tNFtd8mjTRd+ZyhG6uOl5zWF3jbOVWdE6NjpMwVzEEAUJgvQKa/2EnLfxoE8DOB+DcOiNwqYW8vFXpEdBdAoiUcBtPfOjP37vwLI2v75jYtMDNT9Pb9LsDyqcA+tN57XbVfOA1r8gHAuOR908sd42CFAu8uJ4Mu4La8Ch9GCO8IKSK6skeU7RPa9L3KbOyFmH4ZJBNfCAuFFCLtf7ZCGFmMdWHw9/NwHPJ2xwhvmwRbk0EhFN4EWc1iGlWODV2vvYsRJGRs/3PjMxoUr2rlxuunE4eZgNQFKnLpdWYgxQQx8IGyWjdeL0GbZ/EJmAVnek4CRQZrMShRy4e3Jtw5Tr/AaRKxIWXzBNpcV2ElPkSBi+TbVe8uhKqvl8qyNUBtwFMKqBFVBQsOcG65nRb0mtJqReEJOhPtTwvEALKeEihmaZ5TrCddvKLh6Q8b0BsZ0L2G6l1CuMnJJKEaQh6iiu6EGtfPeIbtikmDw++6KdFaHFHWDkld6ZeSSkHJGWhOqREG/LeU4ntWYaD4O0b1SiuH7cV2P40k8cYWhLz22ZxRMPq5jADY9RzZdcqGfLfwxN0JC7CZ9LEyXTDmc73omKMa/+/Pvj7Fv+7Vl1M4urUlxwy8Jy1fYXtcCCLgd69hrRHuP1qu1bEYACbAtbnc9s2hhSOiYvDC6t+4SNA/67kIbF9hRW1JYNncXlgQEKaGSxQ/glSjhJZYNUzt0RNm0f3eXgcxwSrC6LtScmsSD8UQWVE8Ec0ORuzSgoLRNvADgJUcbkApWhcWQxGnqw6/AZgGF1EqshjTTjeYFej6fgU0YnXsVdRgvCi9U0a2ts+/VBaHnspAaLqpoRdaMrGpCCCHDTeQTNSBycxAnD8HKEBFnV1ZL3BVFbWrF+hqwws7ZwhoL3VwNcSZkNXOMcodM+CmgVVCbYqnAKopFHAVGiqSCmQT3SgOuTDMvKSNnwmFOWCbCsiSsMkPzAXw14/B0wdVTCdfXCYdrxnTFKAc2ODcRWAW8JDA3tM5Y4TGigp4e0xWbIc4FNoJcVWPlSMzInJBTArukMpD7Cn/6/dmOwijQqxjmwC6Of+t17B/H6OAucRW2euw0IzQqBGVBKEvqCtytCTgu6GftASvFKEDGAbzvMHDe+f334yK43/9BAk5xG2oYr/d1LJ5Ae10LoD3N+mg1PooC8EraJf/z3vI6b5trJxYyNDGoso/nAFK18SAPkmZ3nCM09y2bf7eXji/cTnD3iLpZpkOAePNl2xlY2QaMwhFCvs44CiqC8pYfQh2GS2FJ2c4w5mQ4C7IJtATLM1G2IFBrFs8oEAcfqAk8uDuRyMoZAJ6Fb0JRmgkhajhHDcF05+CEyxgrbKoLjmD5Rq9YG8+nu2h9UofQylBkFSQVZBAyWekF08jPR6JRuggaEVQaRCwnpnrgi5qC3KWZqqI1oAlhFdqsKoGzjZvVVMnclIYutE5qBbQ21KpYqmARxeoGCtyqOrCAkiLNAHvJiCkxbkrBUhjLKWOVGZWvQfMVyvUBh8OM68OEq7lgnjLKZLDvRARu7FaNF6pz2maCkdKqGHt088C+RGA/BRR7JNsxCy/WvKqMigRBRlA6xTwcBc/oVh/Xz3Et592+57MoEJUu5AXmYoa4h8CEvDrbe6QmGEx7aN3iUWzJPHHWR/SZ7K2duxrd8Tr6H5/f0sR9fsePep6Eb234fXQ/PnuCSZKfEQJoH1zcKw/7z16NABdsOWp3Kji92WqlgypigWLL/k8IjRodWtzG8Yq7JwphHF8mAOIaNxeDTyQaFkM2LbqXO+gFqIZOMBs0eLhxpOZeSqrOKUYb3Fttd1PubVGPhTvAd8aOHQLJdiBnvk4SAiBwb81hvAo0cUZhO1YXoqxncd4Gp/xngCq2jHZvI4pqs3jONeiuUe8FUDwONjRZVEvdNreWyOEeagIQZDxuWx0Zsgx3tSTWpM2+k4oohS5VQZXRWoI0QYsQSiNDlbkrR5TQxNkBmlHYtOaHWhSyCNZVcGqCtYmtHUSorFZao1jp80yEKTPaBIgkJBBWJCy5YJEZlQ7QyQAIc5kw54LipbrhwqbFrEpi4IHKhspz9gdTOkwQUee2S0DKaCkZDQ9T31aCCVVV1E7ftMUzt2e6jfe2+/ySsbDff1TszYVpz+lsPRGCNme5cKrCKC2yCYlhIsQIO99hONv+76tsIWH3ls7eldYvKKw4eHlfbO9jcau6JU1dkp311Xc72utaAC3YNKDRvQLcthgfVaF4WAsBNmbc373naAcPsE3z3g9swMMYxrnWdskIuj25zIKxCbqJrFjwwcP47F4EFzysQxcJvaqcLxomOniz3igAAob2is7EotqZ3v14vdoq7JA8TJYQAhbEt9+LNKzSzL3UHGmkOI/fAoCKufQcHq5xY4Be4j7RJkcDPRVzaVywQqEIeHfI47glIcWVIsdmyAXyuBZ7bZ/E4mCI5OVWTHCQU+tYrMdKeSchqFRoA1oV5NpQagNXRW5kXH2SDDzgNDdxLYbCcpojsZIHawPWVVGPDXURHBfBcRWrLKruOXL4tk5Am23BN6XHcnA4J/ChIKcJIjNAV9ByQJoP4HIFmg5AmUDFag+17MKVxONeBrkmLxWhDj6BsvPfJWgSs5SSaSPq5bkbR1VZ9wK5WzVpLFTa50Y8vxF88CDBM66f+9DN+VwO/j6fLJoMyhjl6rtZHQPfxuItAXSm6j7pVeiONt6IOE2/ULJriFhUps0lSt53MzdNq3mQBfR/BZC1UcBE/svezN4v6K/GAgphtxdCj3K8sEhMENnfwNoEKCZcr/CFcBvTNJzk8tm2Il/DOdnmjwmgyJIhR3R5zwPtxr7q9mYODvfabACD6I9fxyXh2F/r1n9TvGgohsBIomb9CCGJLdQiZIF1FVRop7aSAagXFkqComB7tuPzJ9oUk3M9VAfmk+06DAJtBwlB14FLYTy6YttToshiU8yClASFBYUJmRWFFTmdezMHbCCCJbz6Q1YPXhEs6XNFBaNYDAm2eJC74qgZpL2qoRq1mWCrK3BaFcel4nQSvHxsuH9sWBaBNCNzbaRAgZWBmBlSGC0RKmVUSWhIaJwhZQLpjMQWB8rTAalDsidj8M4FmtnmATVQEyNNzQlUM6gJHLIHRlhEBOqWhiV0JmdDYApLfvtuGiz7WNYTtjVwVP4vudfG+S4Xtsvzd1QcfRKNO3chJJvQ6Yk6o228b3eJyVfZRlTN2WGH62jb6yg335U2Q8OY+yWI9vYG2t0361W117UAivu+B5CcLcL+V+/4/rzd/nY/wEcBFOfex4W2M8Z0GDFaW0tujggpVnKtzolALR5Em+bSB8QoWs/Ptu94JyFmDBxbfH5hfZ4pNn4qU5fD/oHS5vpytFvyVTjorkahbP3R3i/LqyBfxBlZjS+OhZEaLP6h5ETCdu2VgJbMBQO35LqHMP7CwFWBlRgVtrCAWM+13JE/rPlNCCBJhnbPAyuQGjbvhEPSyaHWTEBmKx5mMHNDuBEzUrKk1cwGkmDa+PqC9zPKGaiKMd8QIQdUmQWNxFmmLV4oTcy1tZiElAavOGootyrAaQWOa8Onl4pP31S8dNPwJy9X3NxULEvrHHvIMObsOTujdgYKQUqxWAwlKGcQT0jZc4CuDpgOB8zzAfOUMU0ZqRRj6vanLakZxVBKoMxAY2gl58UbXVtewbabtmYhQrd9EzGKx4aUCbltC3rMw3EWxFCOtrmhhzGxex3It/MjXNowaIMSGhm2Ob5vtPu7FzyvgQV08bC7u9MpSagDKXouYLeAcPvG0vmVPCnvIfA6F0Bju4R6GQXOaAmdD7yxXdaFxm8j8Ll7Pne02/bXGWsy4AKINuFz5kf0lbcTo41XOo64C6NvUOBomEOAns+PED4bLtr+yjbJqC8UocXae4KDEeCZ8ERevsHP5H5Fc2uxF6rz8thCPa6hDg9ehbFq6kzABM8fIu3I8GCuIZjixoQthKWulLpiOiooY4A6PlMEgJthxePMTZdhrsEM7eWRI8Af/F8J7NVK7flYBU/nb9CIB4kV8JMGFmOktspidt8k3J9NjYi1uYDymtDSzH1Gq8HYoV4xtClaUlv8ybwmJ1GcquJmbbh/Erx0avjkzYo/vr/g0/cXHG8qWvNy0ARwTshzQZoL0mECHxh0EGBSkFP7lJTAU0E5FMzXBdNcMB0KptkEEKVs65i085E4mio+DoNCCK6IRGkDu57BUg7iVnEXpA/WTX3aFJt4ntFGRXHfFJvQivm/zd1RE9vP5vHKBiduaGRh9ej+OOPx/hQE0J3N71BMEMLGntBvnmtZjc79kYPwCbo/UZNhdyygj91e1wJor18wbj/ecdi8kke/v8+jOBnPfbnd/uZc+KAXCevBQcJwhmFCkG7qfG97QbT7mcdCTAC5xn02umxB1ZiSFFF+1/aJnNdLTEP1ovS2LBhY2ZiNLUBMfh3i57KkSBcQMFqbCHZRU6eaMzhxa4Ta2AvQDbEhgscBPC8GLoAUm4vPr1cxCKBBSxsF0PmYOVcMIpcG0NssCkpANZqhlLxmT7J7EudrYnxgwgJVAWlD0uqxJUJS5w4jtnpHFIF1hjpdTlityoCwYCVBUxNk2gjSCJJcACWBspWKWEVxbILjqrhZBTcnwadPFS8dF3zq/gkv36xYF4FKM+YEZqS5oEwTyhWQrjLyPUG+EpSDYvI8oyknpDkjHzLKIRn0ekpAMjJVMwpajzVQM4VlzAHroJMeOwtj28fzwApdPQ6h1ZCQuRnFkdGBWmnDeI6X5nt8Nxas2yuj2L3fEpIx7BEjhof3odkItqNHJ/ZzdrTJ/jQFznkL9cqET3bhkyz/rPdfB4uo//Csnd23/TL0KtrrWgABt62bcUCG6+UJWowPufHjEN/3clv6Nm18cM2F2hg0y/GzmKBnq+pexF7oRizKvJsbnWwqmH5tNbd9PADi2p2E9uPlBcjNeFXXQ9UIQMXdZ3BhE/fBKHcAq/JivwmhIV56gVzzUnEmZQWKWqwI1Ewb9kA2kwFxmcxSGAPJIxv+CEjfM2WEgZkG3TriDohjuQAab2fyK4KY1cMmISDunnSUdPCzgkmRuCGzW0qUnBWg335IY3c7mkW0JCuPkFx5rmEtBAS7EqQCmqymjmaCMtCIsCpwFMGxNpwW226ODS8fG/7kpuFPXl6xnlYr8gYAxEilIc+KaU0odcJkqae4IiAlV5WZTQuY2NkJzMXWOEPAZsEIgxqBq1kuMSTPjCCy/2ys0JknK+D7LApucOtPUZqVES/NgAF7ZTKe5/h6XDdHRV9xnpAcsXSB1bTasots3NrvZDiqH6lzRSk2iOTe9hoFz17sYffZa9fO7r/aamgKg8/FWIucAkvHiTLovjFvXwsD7nUtgEbBM3psx4H3qJD1UTN+1HY+jEbz/S4htP2NB29kYX4kpvMZpNi0LRnVk0fo2N4PsZ+ZANR9V9p53n1CDcmygQKzygAuiAQAhYVjAk1dCqiSoeFgrAsR/wiaRwmWA5/L1HxRFyB5QCl3exZbTg4DYOkQb+LIO7IFvFtfDKDRpmHr+Yw514jHHK1zle9csbGYhQIOW9+28ddRxMGQcnGPtef/hJUrJGgwV2MVQmum8asXGkUiVE+TEdqsK/H9kASSFVIJSMDK5oZbRHCsgtNq/G6nteF0ajgeLQ60HiukmkhWstLfaUk4SUNBw1UWIAnmrMBsVpvxgxJSIuRExlpNhuEUslqziuQC1tys9hz8oW0wQl/IaNv8jpml7nx5hB4vYsCsRsQWqsLGvRdDnbAxlOwtnlgLtilhVqMA2I6+WcQbnCd+ecEcCC3ibBXY+1rG3z0pm+HR26ZsWXdIxbXKZsqSK4XumL0ofPaX/qTb61oAxX26BMMeed0epT2u4NkG+J597EFH3H8Wlk04yodJqy4Jwvp51AE8SuFLQoiH18A20ULwDLPVUNgmASz/xRZWYrUFR93FIq6hemyIxeIfCRbDSepINziNvRK4wbjTGizJEoQiAfKwWFFnTejrWAJxA9isx6h8HIUpiRC11JxdOyyuICS6LYCAsEJjEUKflNV1xE5nRNoJxZljIfQFTI3SWiVBm0GKVzZfmgnIiGdZ31eQsXkroVEDGkNWgbIllzKby1FVIFVQPSfIGLAJktlKOjBQEyx3Rk0A3V8FL7eG+2vDcbFtPTa0o3jNH7WYdGbUJqjcjAX70JDXhurWqQkgAwPMxJg4Y6IMooJG2cY+Gfs2s+X4mEvSLJyAzMfIDa3bPa+9PEOgSioDjck2coBFL0pnZRkWMBq2mFMM6Ywghj1fB+L8GwjFSjtsScIb78U2w8bJAJzP272SOX4XwipWn3G75L147dpeCNugVlBol25Zi8dtO/nwpaVsbP/XAtpaCJ+xwFw8auDJPmoHMPZ/m/+ZhnN2YPUDxdFtO2ln+0YWNXBLg39g21s5d/3sUudGJa5r76bxa1JLwkvqVhMb+4AaWJaJUMkIQqERVXJKG4XHgAYlQV3wdAHk49+D7AleaE4Bzg7KJfuhLbraqXVCgNma6uKU7Lya7P5FiCLGhf22ZzfFkVyR2Ep6UyyWUBembo3RBkBnJaRmqK3EXtGUDb21el84xdEduk6WOFplWyCVFVIVyg01JVCq/TyigkYNohnSGGgJIk4AmwgtKVoCTlAcm+K+KO4LcAPg6II0ytJ05FPUwcgNaIIqgkUaVrXy6QY7TCDKKJwxc8FMBYUKiDIqmZMyiDv784FC1aQ/dcXJYmJRWt2UBhNULXxhzUNJos6JB1S3VCqsKuoKdjKec11qVD5HIaQ4L0J3rniMwz+EzyXhsrdk9t/Hd5dWndGM+NMTPtGLfTiH3Z1PIj0/r7OUhy90r7S+xl1+XQug0dgdDeV4/6QYI2ywh+DhXozK9KRtYIUQGjnExn6O/aazdwAGFw3UwQCq5/s8Skcv+R7OVKFh37Fzd8yPYGYuGUASLykgdj/UAAHi5ZYbs8dihglLt67UTu0LOQGdGWhUKDKM/JmTcYkFTT8KIGyLqpXytoVLmjoSDUaPr1tcJmLHcYkbCmrLOSFE0myAKAbNEcMCR1aWOryWMTYcn9GLYDYHXqiXXSAmUBIrgU2MqmYFNXh5aiFQU9QmwLpCWSDUIJy9emqBIMMksG+ZejC5EXAC4QjCDQNHJtwkwikzamHoRGYmZQz0Mm6G8gpwRWNxpgRCzYxWLB8IeQKzbYlNAAms2iq5tUPNY2BeXJCbgJt0aiFtgK4EWQi6MHBi6IlQF4IugKxkTBBNUVVQnQWhKrwcN3lhugRFO4vRybC14RkD53HCbYqM81PDvh1G6Dh5xskytgdMmlsj/k9P8IxtH/u2WBC8hpU44zttQigEUbTxEkcyxQcpt4/ZXvcCaAhXnP19XODBwwyGwIoZWxV3ARTuGjuf9v/3w/lS37cTuAncV+NYIt00cEtiLEy6nyL9om/Z3rsTRufGgRQH2oF7umx0l5ZV94S55Py33cfMYeVvJ7fcHe38jYDl7Wg45DlO4wuCo98yASkBqQB5srpoPMHqoBUPvAfnXFO0CtRqFkXk0jW13Jjm4L0W1wKcCZ2whIipJ+2yAwsU4U5iCIylLFiBoOrVW72+jRgfXAOjkX0GJrQc/baYDme7b6sAC6MzFNiRzCRqTdBqQ+MESRXKGaAGwmSIQDEuDYubDCgTYnSViBXKyW9k8K6NWq66qaBbWYQMoAAaSapzgs4FWgo0Fes8GXwjUpZQAawEqgRaCVoJwYpN1axDrvYeK0FWgi4ELPY3L4y6MtYV0GoCTHUoRdjXfnblz2zrsFn28zyG72jwbe436vPU/tLu96PFstfk9u0ube7PVht71L0G/rl2l7L2qrwXNWfZvX+McPTD2utaAAGbmf047dzxsn0W93oU/HS23yVzYUy53P7K2VMcNag7BqkC/al2k0DPDttzXe4+ynasM3MDd8+RvRDaH0e2fUzAuIEWVUEBBKYm4jWAJxSSInG4rYauCCE1YzLo9PZwJmtQhyFTMbLMaQLKTMiZkbJYUB8w+DYDVQWLWI7mqtsGIS8WpmfuGrOyBuAB+drNzlfG4UhNGwNEl6BOSunWUnhLR54ySyo1uDZ5cbVULJCfyALwFgMycVFhbNa1WcmM1dfrGkmh0owVXIz5e0JCETGAQGKkYki1xEbhUxTIa/P7xeBkbsEeTIst0VZjKBPKRFbf5wDwgcAHBmaGTBlSEiRzxzeTwDnDPK60wm56BaSaINLgsfOcLzjCTcUh+G6AqVgsrOtg6HAOBF1TBhDVngIRN87RaKHbxGfBKhP7Vmh4/NC6mIuJ0J1VwxEfhe/k0iT7syeMgM1Lc+Zx6e1MS9t+MEr1mEBPiI5n7/F7YHvf+96Hr/iKr8DTTz+NZ599Ft/0Td+Ej3/842f7vPWtb/X8kW37B//gH5zt83u/93t45zvfievrazz77LP4vu/7PtT6BAmGHtDiHhYAs29XAA6+zTAXSzAa79ftzcaJISyQjiO5NOj25vsFc35bubAlo9LZQAjG7ErdZb7Ji1GijvUixqDiOIAe9H7snn+vviCGdbEqsATFv1g5AHWG7yQWLwmG6aJWLC5rfKbIPbE0SjS4G4DZkyv9PTwjPjGumHEvMZ5ixtPJtnuJcc2EQ2LMZEXhcgNyI2RhFGFMwpjBmEGYzYZAAQ05knbPDdHl+ThkvGjJa9NYfZqEVHxBz2wUNImxEuNEjBsw7oNxnxj3mXGTGDc545QL1lywpoKaMtaUsXJCpYRKjJWAkyqO0vByrXhprfjkacX/e1rxR8cFf3Sz4P+5WfD/3F/xxzcVnzo1fLo2HEVQyWJzKJarUw4Z8yH3RNFSstfUSVZzJwIkwQ+Uubs2c2ZMJXWWg3nKOJSEuSTk7Bxx2XOV2OJSKg2t2Sa1QldL5JHa0LwcRLUQk7vn4CFNN4ODmSGsfIxhCFdwSDtz+YjZCnfb6Hqrw3vdfbcCWGDJxivUX8vgQt9PgksT4q62t7se5Tf/B1vc6ORmLI1+6kHD3ZuXj3NLHrE9lgX0kY98BC+88AK+4iu+ArVW/OAP/iDe/va343d+53dw7969vt93fMd34Ed+5Ef6++vr6/66tYZ3vvOdeO655/Crv/qr+P3f/338nb/zd1BKwT/9p//0sTofyvvYRol6SdknbOvzJfCCOTHOLc3REhp/q8NvbhsQj6kBEXYaib8Oy0h1S+HZ/24UIrz7i913+99g95sLVpBq8DHSdir35kDNIZJUQdQc2mkMAhmweBFtpScyCFkZRcz1FWgn8ODSJIBgLjaIUeJEvZ3iFyAwoQgWNIbl5rCAmwm2CIyzC7pypu3a8cOdSvGJQ4aZaLDc3ALy0RbIwNDGQ1gyWbBc1ATYIWVMOYNyBucEzWws0MSwPAxnx25GqnsSwVGAI4Aji9XxWQk1A1IIWBtKE1TYopGLYhJ14KSRfEZ8aZoIZVVMRZByRSoVnBOaYarhlQqt2FpicEooOeGQEq5yxnUquBcbZcxImJCMEFVgaCptIKlAW6F1NSK6uoLWCnZuIFoVqMZVF37GjdHbhVE89UiA7n/U3IhkwBfVBoFdfx0G6QV9qSuOg/F+xqO5xYVClBE2B1X0aRNldDZurN2e668F9Ok1aLEAdkXVJf6YezgGz/fC6Alf3mMJoF/4hV84e/9TP/VTePbZZ/Gxj30MX/M1X9M/v76+xnPPPXfxGL/4i7+I3/md38Ev/dIv4Y1vfCO+7Mu+DD/6oz+K7//+78cP//APY5qmx+p8aDh7NNymU9lgHoX3GOge1+64zyNlx6gfjecAbj+TV/V8wtUTeRMEdObL8f2D2l7CjoLlDKvux+MYdGoxgFGlHH0cXn408gbYF2nWuI/i95Id6WTReEOOmaQyl5zfP2c4JgBKXiMGA00R2eKTyFBRnkMHSs4sTUOVVyLU1NAyIOJPzG9jJDgmQi8EaO4ye9JEhEStWwTqUsdKIpEXwbPnso0lGHwa5AmkVgHV7gejKYMoIyVjGeC5IM8ZZTZXGZOxGbQK6KKoi2JZBUcoXhbgpilu1F1HSdGyoOUGmhrqUkGtImlFSQ3TJCgF0AyAnCaJ2BG1lgGf1KqvalBiJA/WgSzIliZQLsh5wlRmHNKMqzTjHs+4hwnXmjFJQmmEQp63I2JCplVIrZC2gtoCSAXJCpYKK2ZkrjYWV1ZAvexM5AE1OICDrOyCbegUiHDGhyYCE0Hh3j6f0/thHs8q1ocFG8/mioH492x13a8Em2AZdbnLs/DPuOABbntIBqqkzdVD2zoTgd4R5fGEYj/RXlUM6FOf+hQA4Jlnnjn7/Gd+5mfw7/7dv8Nzzz2Hv/E3/gb+0T/6R90K+uhHP4q3vOUteOMb39j3f8c73oHv+q7vwm//9m/jr/7Vv3rrPKfTCafTqb9/6aWXANxeX8PDMCr7o1DYC6G99yn2j0G7NyDGZzdaP+NxQrt6vOZHJ4dRjQi4/voBA/ySj3bs2Chx+4Uz4CGB4Fjs0fu9f2PoZkCzGR7f0U4mY7aEkFkButUMIlUwjaBn80HbIuTuRRdE4tecvW8THEzgYIOuYJDHT9SKrVWCIbiS86UpGaAgSERdJd7kqucoJUOnYcirCeLToA6K2JQlUBrYIeI3nlJjGxuP2YoE4YyUJ8zzjKurjOkqIRXr09oAWQHOhnRbFHhZgJdEcVOBU1M0sZygxi5g1tV+o4bEtIqhGcwZRAnSCCgJK6uVZVgUbVWIu8SCa64XaWJ2gEIGpwlcJuQyoUwT5lIw5YwpJUzEmGHlMpJXp9UmkFahUgFd0bQCatEspQqmCnADpQZuzRKYUzNTNlngR51wddyEpCfuRm0MSmJb3ebEONTHYT7O/9gvFPoQPCF8tiPFBLpLAL0miv8jtLtF3Ss+HOP2TSNsL9yjsWnU+ppaP8CrEEAigu/5nu/BV3/1V+NLvuRL+ud/62/9LXzBF3wBPu/zPg+/+Zu/ie///u/Hxz/+cfyH//AfAAAvvvjimfAB0N+/+OKLF8/1vve9D+9973tvfT5S8e/dY3Z/dTeUbnuo9lusuSNaZP/coo2CKeNxhc9wVs+5MIkAnFPuPAKeby+FxwDWXuvJwIYKCDSbCx2WTQCNvooeHW7dcmKoabYQY0OAdxW2CKvT1EDdDUaeB6PmMlKywgwVigVifGbgjlbLPhmSCHJTpOrWhzu/hAUrFEeoV/zULQ7gQrLH2nHucYxbln0NRiHo5MmdnHr8SQE0EZOAIjZHPVepyVazJuoIcTICTdUEooKSZtybD7h3VXD1FIMOBEnA0gAsguW+3YGlAS9X4CUR3G9AXSxQr+q8cky2/2RxldVjK2slnE6K66OgzAWYEmoCblTx6dOKl29OOB1XrKeGtoTU9DHHJnyQi5dYmMFBTjplcLGYD7vRlGEoPyN8NYtEnM6CqRlk3GHdKW9YM5YG1hVcK5BXaK62pQrlFUIrlCqIGpjFACABsUteuj0ZuWvkSoaoiKE9zufRcB8h2KNieT6bRvXzT7uNAnD8bOzPayj6aP9mkDJ7t86fBRfc2F544QX81m/9Fn7lV37l7PPv/M7v7K/f8pa34HM/93Pxtre9DZ/4xCfwRV/0Ra/oXD/wAz+A97znPf39Sy+9hDe96U044HZYA7jtVotBG9/dUgCGv7HvjhTgbAGLzx/pmfBuh06349H9rp770XXslR/90glGSRozsQxbBm5JTsZtvyPc1xG07AT0JMVoBER+gIU8tJc66NBwhVPrKFDNLZWEAY1qp1auOsNq2tg9ZlRSSOTFiKLBkxpVsagik6A0SwKtagshqS1QlUwIbYFu3RjzxW+PL1pRsbXfhkTIiZE9TqM5Q0q2ctFkJeWaqlcTbZDKluMSjhsXQhZY9/MmoDVGE4aoQZ9TzjjME66vGXzFaNk4z9qp4YYauAn0xFgXwZFMeFSF586Ys1AZQAWomvBZqljhuUVwOjbcHCumuYDmjJotF+h+bXj5VHG8EayLm4gbUZ0LnwwqGSm27CW2HbhAiRw45wIAsrloRM3F5rIiJgNrkNIqlAXEJlyIVoCq/10htAC0ItJMEwSJBJkMXEFJQNygvPnwuKMZ9WzojwIIOAcfjMIqpsn42TbSNzfreJzXtu2trtf4VPsLGrXp7u4f2i1X/JPv1isSQO9+97vxwQ9+EL/8y7+Mz//8z3/gvl/5lV8JAPjd3/1dfNEXfRGee+45/Pqv//rZPn/wB38AAHfGjeZ5xjzPtz6/xjiIbNjo8D9w2402GgR36T4htAibRTPuO7pDzwgxsXtG4+yIg3AMOt1Q1h194v75S7VG9sfZX0xYPqMAuuRn7Igzt7x6xbXxJKZ9bl0wKcMIFJuh23remsBiLBUw7wsZH5sCDAMjFA/UJ6Id+WMIXmz9cGRUS4ZWunFrYBEgazMhR7CSBm7lavRBzFCDxx1Ca2aySyoASrIy1CVnJEd4UTaYsSSLK60gnHrgXNE87gRlr9ZqQq81mItRxRiq3UKJranFszgxSmGkyaybCsW0CvJE4ELgbKaaMNDMJ2mJo53ltUGTYD0K6k2zqqc3Dcf7C+7fnDAfJtBc0ApjYcZJCDerYDkp5MSwUqhqzzwlUMnIZcJUJlyVCfdywT0uuE4Z15wxM2NicleoP2RpIGEDGETlzIWAhUErI1UrOJfEqrVKa6DWwLKCZAXJApUKlmoIOm0gNCtmR2JxIFZwFnBuoFJB2d122dgVklcf3SDb54JoRMSFEb/3Ymwe6lgtosJv5PCFSLrkqnu89nDRsv/2NfJ1AdviNLp7QrkMT8i+W69x9x5LAKkqvvu7vxs/+7M/iw9/+MP4wi/8wof+5jd+4zcAAJ/7uZ8LAHj++efxYz/2Y/jDP/xDPPvsswCAD33oQ3jDG96AN7/5zY/V+SvYAjfmB4TxP8KixwE1uunuMoB1+M6X497G16NZf6uI4KiW7aWg901Bw4MmU6eBTRvp9a1x+29czN7tlnaf7/1Ou627Lnik3HQBKU4jQ77IQjGRoECRdTPmuhCqtnFVr3w5hJ6UnBXaz+iWngIeW9mehJJlaVvFUMXCClJBdZi3cX3apLGSEC7MB02c3IwdWX4NXOACiBOmxMgpWb5MIkg2Es0Gy7xnCJgVK7ss2B6dGQAuZAADRkAaamtItWGuFS+vFZ9eGw5NMGuUK/ebnghUGDQl8KzgBaDs0jKSkdWsyT4u/Ibqyji1ilYblnXFca0oVxPoUCAlo6WMlRhLI9RVoatbuZTd25swlYLDNOFqmnE9zbg3TXjDNOENueCpnHCvEK4yMLEgoyGLsQ9w5PFUhSyKugBygiWitqjlA9MGmgEV0Jqh5hw5p7pZPaxiDBYkSCxIqYGzxX00NWgWaBGg+SwXc/1eIoYfkW7naLcLbvg+L2zgaBdHAVJ59ets6IuXjvPKRdoTbNtU34TR+N0FPfhJt8cSQC+88AI+8IEP4Od+7ufw9NNP95jNZ33WZ+Hq6gqf+MQn8IEPfADf+I3fiM/5nM/Bb/7mb+J7v/d78TVf8zX40i/9UgDA29/+drz5zW/Gt37rt+LHf/zH8eKLL+KHfuiH8MILL1y0ch7UZthDNgFgiYWBotmangn+7dPb27g2j1ZQKAujUjAKnghs9vNeQpeMJ96/sVV4+/jS72j3+WgB7QMc46Ch3Wd+LgMNCCykvV2TMHVXCliNcBS2JiYAWalbQTT0S4dzmzcvuM+szk7wvwUCuCl6/avq8Zt4dupSg9WC8ZUtFqQNkOSIOgzKggsckU2QhfWDuhkRtv5bh3thOXX3IFtgXshobUxPcCg3A0oWr+K+8DlRqPdbVaEiqK2BWkVeKsppRTmu4JsEHG1RT57Eugib0uJuUS6wSqpEWON5GdWDr6Lh44KZXtosB6sKjg3Iq4IWhRaBFoWkjGa1GhzFaIzViQhTLjjkyQXPFe4drvDUfI03zAc8Nc24njIOmTElIJMiqyBrM6WjWSypVQFVQVoFzRNQqbvlLEZEItDVC+r5hipoTUDN4kPinEkkVj+p59e5283+uhWkYnWCdHvum9Cw13vhE9uoIAo23S7yoDsjdJ8s+/b4q/CDfvF/TPCM68CZi00fvEB2KU6uhT+ZK3gsAfSTP/mTAIC3vvWtZ5+///3vx7d/+7djmib80i/9Ev7Fv/gXePnll/GmN70J73rXu/BDP/RDfd+UEj74wQ/iu77ru/D888/j3r17+LZv+7azvKFHbQZCiPodil4UDRt2f7xN45o83tdLvuJLhsP+eVhym/3ta/6Zu2s4yCUswTh74rfjMcYOXEJN7IWca/1nn+1RE6ruMoKVyYYafNd/QO4GI8CSRGmQc2qWj0Gp/XBuzES6TCc2gD2bjaYomLABglUgjcRWgfYFIEhYRAXaLLcIor16qAgMPq1OCOvuOTgTNzRodoCtYl30yQkwYYt8goEQjEfOnoNZgnYPzHojv6W6CYWmgSX2Rc8EpTTBWhv0tAJTAu5n6J8sWDNjKYx7KpjXBE4JqwDHhVCruUETCBMxJhKsTB0r0C3mqEHjAtZueIVWhtYFy0Jmps2w2j2ZOpgCSEickJlQcsY8FVwdZlwfDrh3fY2nr6/x1NU17s0HHOYJpRRwYg/3CFQrIGyFCRuBAgZYBVwFUiuwVkAatDVoNQEjIpAVkFWhC0EWQE+KehS0RdCWhrZUtJNtsiyQuqK1Cm3NiEnVCvIJBKLNYn5mtJw5AmIajUnaMUf3n52tCaPmdNYurRyP1/6PWjd3tVi8gM3qScPrcd0Zb5bAFBlJ/vsnQxzw2C64B7U3velN+MhHPvLQ43zBF3wBfv7nf/5xTn25P/53w9xsBcjGNq7Fo4CJ9Vp3x9obG/Hb+D7OHQP+obG5S2iFS6btXgCFn6Ani+G2INpLy7Fz8Xo8tsICx2w5OsGKS0TOgeYM1oiFnI0myoPN2fNqwo0xCt4oVRAle617Zm2MY34r342+sI7+eYJlvoeLhj3IX/1amKLuENzN1sWLex+5H2drkfyZUBvB6L2NV64ykBxajiRmBanxzWlQM4+bE2y6+N7GQhOw1+Cx5M8FKAk1MSoD95aC63sFJZv79dSAtihoAXIFDqoRUkFjbAiP7qOP50rdkjurBNjheNvGzCgpYc4JJWfkqWCeZ1xfz3jq+gpPX1/j6atr3Dtc4Wo+4JAnTJyRie1+qCWBqqyQxs5gruCm5mKritQqINXzggz2bVh1gSxmBcki0JNAbgT1RtCOFsdqp4q2rGjLimVtWNeGVhtEBCoCEYWYB87h+G4A4vyWxDg8537boNeX9L+t7R1ifyZFx5NrIYljjVHslNndoqFw5c4n98PyER+jva654EIGx0AL8zsG536N3odGLiHZ9lbQ3hLF8PrioI6RL9hUs/0J9vvfsna850zu+6JzyNklMMKlKOt4/EHCJgBZDFlmbg4AzNshyARHouB0I6dCsUWJVR36hA20ZyGGfl+4AUnIiTNpwzqQdbyzIwCAo9e2y9IQFwgofaz94SnIUGdi2G6dPd9wLW6WXJRcttRMq1TUhKzGzJIwKYOb1yhKAKi5VSaGdGsKXdXNXXLhY0cOIU0wF5QugqYVCxJIF5AypJoVcHxZcLynmIsgpWT8nKqQtYFqM5AHi23ZINfd6mmKnpQc0j7KpI8KB+yZUlKkCZgLcJ0ZV3PBNE0o8wGHwwH3rg94w1PXeOqpKzz11BWur68wzzOmUnDFhEnV2KypOtJNgcrQCkM5rgJezQ0ntYHqCmkrIKuV/W4NusYmkFPrQqeeKvRY0U4r6rJiXSrqUrEsFctaUWuDuABTr44qDZ3Op+00vjMlHefz9eGpEfvJ9xkufMYW5ZKV0LVKBhDWPmi7PaO749Yi9srb61oALf53RL2EULpkMADDAonLBsheaN2lYV2ytHrbC5xLwocu/CUAEaTv1g+5dotzyXjJrDs3I3aDx7YRlpz9u5jPTsfWIcvGBmBLbK+H4xBtc7XFQbtcMbkJO05uxs/Gnhgaa6VBek17jzzbUSmzQ+nZrQxgmAA9eZYZHWwQ7RyJSH6LtlTZhs5/jSRGnSPKYGGwEJJrJ0rS3Ye1KWSFEWzK2Ls4+jZaVBtkJaxYjbXBq8XRCtSToJ4U8yxIU4Zmk2cnESzN4kfN60dYRdnOC4BtFA7g4RE62xURW0y4GLno1RXj3pTx1GHC4XDAfHWF68MBT11d4el7V7i+PuD6nrneppyRE2MCkESN7QB247nBXG/NhCmdFDg16CKQpQG1QtsKkdXYEWqFxrZU6FqhS0NbK9paIatZPdW3da1Ya8XaDMihrVmcqHk8z+gSLmrfdymIjy5KLq0EfzYE0X6ZePI22mjZ+AQdjz6yIYRQeoJnf10LoKP/jekZUxWwWxSY/9Eo4d3fvRXzIAtoBB7cQr1dapfQD6OUG62fMIfhf/u2c8PsBcu+03sWBL8Z8bNgXU+Iom8e8yCAksV9krKVRxYjCu21q5oJJajV/ZF+V3TrdrAlky3TRBG4d7BDv6Ha106B5Qft0YtmzaC79ShyRIdb1WW74Ox4YQONdUvtyHR2C1nhZrNpd9xg5KiwEgwW/yfUaqWz7V6aJRis2gErD0BC02blBirbQrsCbVUsi2A9CaZDQzlkYDKut5MoTrVhPQmqx0a0s0yrbRF3Ct9mPPdYlLsgMi2CUkYuGdNccDhMuLo+4PrKLJ+nrw546mrGvesDDlcz5kNBKQklmbuVQ9CwLTzUFFIFVBm6wmI8i4BODXIyAaR1AdoCkcWEUFuh6wo1UjvgtALrAl0rarVN6uqv429DrRZL0yYgaQaCEXuOwV8+iOCzMTC2S3P7ctvP/ge3cY9HWYb3yu/jLt3j/qPj49Gu7WE9GxaMSAHpa9ZOgw7BpA+/R4/TXvcCaIRJxwMe3S4jpJJwO0Y/yohxcI8tnkvdbQ+N/YwH2De6a9sLIbiqD1tlx9/v/45m3yhBow+uNAfZgYS1QtrLESQmQzu5hWGUOepuMgMHkNdrsaqXeoYa75cQ/UAoreaTJMCtiHgm2wJuTrftaSaoIdDcb0ppuCWx5g6GIle7EcESthc2djuk2yxGbskmZAJO7WaYPXPaUrTadt+i3+xXFLc7FB31YzdpqKfVEmxVUKvFOOZDxXTI4JnRsscpmiWXrougroK6NqsvsagJoh55J5easklkr0C6PWwGOIFSAaXJmA7mGekwoRwmTAcTSocpYy5m9RiNkEArQSrQSTpFzD248iaAVvsMJwMT1JORkqItUDUhpLIC64q2rpB1gS4nAxksi7vdVshillBdK1q1+JFWE77axAep9hwvFaNDGifU3toJJfEWMvWR2rZ6bMv87T0ep10SmI/6u3H/UTY88rpzZxu1Vd9GDri4D2eTR7e16REE9aO217UAOuE81WVbdwe/vD/6cy7krY1yfn97x0VlhHeOrx+7xRi/Zf1gCDoTeu0W9h36vJDbHb0khC6cVhU9paS5FSRsxKDqpbTH8vCsnolPcf+srDK5IAKw5czK0H1sl6HwgHqY+WDoUETN7r9ZR1kDNWedINhtkAQvCW5CMZJKaSDsYwKyMpJEMbnt6FuzRdXOYDlPUROmQV3rtt8JDGZtj8r+D+7kTQiNcjbOGJacCSFoRVtceK+Ktgrk2CCHijwTtFg586rw8gVmbVjFOjHenqi7E+aju9kA2N+oc9AHsykvxMZ0TSkBxbeJgcLQTJ50a2MhLCzWBkgIXgJaA1cCr15wLiygtQFLQ1sa6tqcG84LHugClRNQzc0m6wo9LZDTgnpa0E4r2nFBO5oQan6cthpgQVeBVGe4aDAgQrN4UB/LuK14xmfjHH28No7ecaK+urbHAz1KLy61V2/xjNrpzl1Csc/uuveL4RO4H2N7XQugiv0iYK+3YPQG0h71mRio8ffWPR4+D6tpTGqL8zy2ZjPOlLuE0LgF1Iz8THsraP+7/bnGCx4uIHJwqq9l1IUWdVlneS4WADbt0yBI5PQrGi4vgSWdBmt1HMr9yRb3cXwasTNlU18vySWjhZYEwYsNv3SEpeOXvxewcS4GzF0ocWtDh3e49s4UNJgBdUebAX29bzAAQmD3ApYtCOg99UJnY5RGz3o1cj0odDUBk2rDsjRgYbSZQYVQ2Tc4KNAD8Ab7cusnLCC4Zexkq8j+MMxXhuDGYVLjVksCZIEmhWSgZcWaFCcSJDSoNLAkSxRWteJxNQ6pllTcAF4UWABdFVrVBNBaIWszC6Y1iBrmTGkxYVQXyLJClhX1uEBOK9pxRbtZIDcr9GaFLAt0WaFrhdWgMAtIVkWtwNqsUN9ofeLsXl+2Fu6ek/sJt5+U42R6tJm9P9LYXom18mSX+P2Cst9CuR0tnktCiHCLqucJtNe1AAptNMBmcYutINqmmSrOQ7khXPaDONo4kC4NzzjfPjz8SI9ntFJuISVGS2cwg0crKI5x18n2UjZeD1K0TxYewBS+vokPMoExIUDU1UlbCJMRHwOhkDf0JNAgJd2Ety2UAmz5ay5Rwto3V5rtR56jZL9z1wA535gLRPMEbBLJeFXVYQX75em2LtktORcvW5EzcnEUGfFbaqKAXbMmnEBdAAXsfxNAW5XVEHwBf0hoFgtbLD+mNUPeUSFIcgqg5Fcgik40F66oUfsJbSthGHyhDTQwVSSqYGRP7qxQXdEkoQrjJAlJEqiy8esJkCiB3YJM3cQXUGugqi6AdCg726Dr6sXnDDggamnZXQC1E+RkVo4JoAo9rmg3K+To22mFLgu0uhCq1Yvaean1RqhCaGq5Y+LW6n5hH+dpPPnzaTIKlnFBvvRL4FFm9JmeeOEXofS+epfZq2l74XNBYz2LLw+WdL+g4W56XPBJtde1AAr2mZH2bDMsR3KNbTDEujxu8f34N17vBzTv3q+P0+E7FJDtbyyssrOAuqlxu3OjGRfbeKGxT0PnSAvZJuy5NWL0KkgCdiaADPE8GzV4sjHsd/9GF0LNC44FISehF3bb+koQBroDa1CsLLHVOMQivMFhByn3mLvxvznhEvtrT6hNChN+sk2e0VAKoWC3YxM+EQ8KURFA9KhNFFWHBIrqgucIxgkb3H9z4YXIteNseVQW48pwJKEqeBVAGNIIlBlaWi+LbSAQs3ik+jV1F9uwgJxZy34/SGA1gCpYFqAxpCbUhbGcslMRmUCnKqBc0bggpxOysySkxqBe/lYc+abgRUBHR78tAnUQgdSGWhtaqxCtULcRBQu0rWbdnCrqcYWcKnBjQkhuqllEy4p2WlDritYWyABGqF6CozVHK0Iuzl0Mr0NW3y0+9ovwOGH224Pb3lYaldRYJ/ZgpydvQzysjT6efY9pe9k7RrdfdwsINkFHd++rbK9rATSWzh6H1T7+vrdcxnV7P/TG/eNRhVAbBzeGYz2yQrC3ei4qJIoOfYykl84lo+cXANweWwx0OOVQzyMYTc4EUKxrgg40YEsCgsLZh/2iSYxFQPz3ouGm4Y5o6CwG2IrLmWHnVk+Y9xrgh7hERVInsoQJpLhBqmRsBy3IQNUEkJkKHSXF/mDGW2w2SdwuGham6GOAVMSFnvht3FSXsfxzg5Vzdj2/a+Nx/JF/w5a1DbUVn3WehaZWQE/U7yWZqytZgq16gq3K4O9kAf6/9r421tKrqv+393PunbbUmaGUdlppAW0tDnSqFilXo3+SDtRSFLUkBAltlEDAYngLgSqKkEgbSBQ0Wj4YgQ/WRghFA9RaC60C5a127AtSgaBtpNNBSDtD6dx7zrPX/8Naa++119nPfZs7c3vbs26ee855XvazX9dvrbXXXjt04kMfRPriMDUhTtBhwvNgfcDchBCXAqhj094SArq+x6jv0Y17dPNjdN0cKHZIsUOKgZeCpIAwjhLXT82ArAHFJUL3KK91SuMJJv0EKbFHW99PkMyG14l4gzqMJ8DihOd7Dk+AwxPQYg86LG7ZS2NMxmNMZB1Rmowx6ScYT9glnXrtLwziSjq/42UtVRSn52ftoIvmvOekwzBhWbe+259v7Uekb/b3+3RrM+5Gkk/VcUoSaTTzISMh2kcikO3hGxMIYWsD0HGodx2wQOK1Gw9OQN0sXqJqdSYvP6xJvW5ZAKyolDNkZKlUtIUptdiaYywYWTFMfquLMitSDE69glvPBaVEoBEQO2LvOGXmwtx5LzFxU05scuN5m5DD95RoFGRKoXHZ+BxrpvUgLtkP4tZMpp5lg7mJgJDsDZPkiaRmOSkjV431flO2by1ZChalQRK0b9TiSHmumIB0fVAvYFRme3TWSeaTwLH21MkiIsjSAHk/JaQU0PcSegdlDisQybYVRmrQ+UDdpKeLQJAhnEgXFXH4InDE6fFkAlrkuZa0bQ7p0XlMts1jMj+PpdEc5kOHUYwSuYfne5CdDYjNbZOETgBotAhebKtmtzTBJI1BNEFPS+gxRk9LSGGMQBPEcY8gC0/TIoMPFntgnEBjjpowHo8xSRN2ZOgT+r7nOaXUS/uS2d4q8tYNqOO8KfjYYVXGpgUfu6XkyuDT0h08UHg+on2mCD/tdHz6wDodm1ZNlgNWWyQjrwPKUpxnOFTMb9HX2/ppSwNQSwVO7jtQKx3KaLTDqju1XVwa5fvQjgZA/a41Z9ae8wCUAURSzi8RDSj5+0wmMievc0VgITqJlE0UkJKaHjgPJPubpw4lGCeEsSegmzAIBZ5mkDmgkPulxtFW+7zOn3hWryxAiy+sEuo0XQZv8TrT2ZZEEuIl2KKWSrWAU6pXwXG6j9SRA0MFJFZzKeXhWaLOwFREcVUws1xQdkiIEijXSvH8i/ccCsLjpewhgAJv45DU/ziUHOcjBWDSAXEEdOwKMSHeqTT1Y/STESaLS4hzS4jzi4iPzmFubg6Ht81h2/wc5ufnMN/NYb7reKvtIOArEc0xBpsAlwhhTBiNCZ0AEMYksdr0WAJoggmWMJZPCmyn7SY94lKPuDjh+a8lBp8w4e0aGGzGnA71LHOlBCR2kEAqemupOQ6I6zUMK4fpGO6b4KODznIJpelRbdNdiYb1p2nyLOHoaD/AtObn4dDZj9RyQqZ+VIJVU/cG0ZYGIK0e352sFKLntYMatjsVLbc394zMs950R6gBa01k29ya4SrBW6QQu+o7md+tkWDFLkuCrimjbDBGdIFkHa1SmdSZcsm9E5kLyiBEEKcA1lhsMNFaq6Gqi3vJkX3Nosi0MZ/TtMjcpTMurAxwmCAgVHiri1BrEKoBkFMN+X6dLSzz/Oo4YIWXlDU0C1ja/xQop6WD4k+neSN5pwJQ38uTKeQYeewSz3HYyp4Stk0C+7ePJywRCLNO/RhLaYQw6RAWebO92I2AuTl0cyM8Ojfi7bZHI8zHOd6OQhcbU+L5QHHx68f8PS5xtO3RGOiWgDghoE8g0VIo8aqbCY2xiDEmJBtDIaHre8RxQjfmTxLwCcTPMoCNkSBBR5X3IYlDSgnJpP3BmkV9jes413ZRjaIIjp7t6xOWQ1B+pmWs0Ds8VPmhtxJvWB6s/GhZK1mQ8aNPGYW3ERkYT5JDXbuhuw7atRwbQFsegGwjeuZmq9tLR3q+ZXoDSse1nVvvtcC15sxqJpZT31TSaD0H9137lY5GL1JZVW8McedFXSn2e+fSMWmnRBxeJgFIuswzmdtpqk1sNmrZ06NwCR/q09DgpFmTEksUOnmvAmKyYFTrQ5p6yMDBUbE55KmJYpClbWZ0Gk0j5bPFwaAT4AruuZAZJN+v5erlnQKbAkDI60hTCLwba1B9UvuBabDM/QjoO5YGJiKdhiQN3YGSrLeKEX3k3U/HXYelboRR12GuG2EujDCKEV0MsuU1A5A6QPQTII2B0AeMJgGjCTAaB8Se0E3YQw59z9GyMcGYJlhMPSbooV4qMfGur3MTDqvTjTnCQQB7zfWYsOYjjvG5BqPtylqnVPUxK2zatrbdmLuHjZivQo01H3iIqTX3+mqQPGjvLw7+VhC2n20aApjV6FmrSa/FICzQ2hHZBmDuf6kcCkBHBIw1bWkA8gqklYJaEpI+o+Sr0WOCx/na5XYd5LmrBQKfUZup5X5ruh4x/bUeEsV54B61h2lftO8ylZnEJKekGkWriEBd76xRFA0lSNxq1oB0dyINREoVExjJs9k9IAIUxbEhiqNCIFDiqN4k7txdPooBJiGIWazWuMqaHj7b57xwFUwQsyYDebqT+Z1RlRID0BgRExBUw5pIhfL6tRqseR2ouIHnhVly6H4XGv4hAGXHPTCzT+DG6TvepbSXZ0IAYgeMRkDXIXUdlmKHPnZYEs+3IAuuIvW8L08PXjQ7AdKENa3YB8ylgLk+IE4Ioz4h9nw/aAJCj3HqGYCIASjIouWQEkYT3tNpREkgfyKgM0GCOrQXwYSqnXrLwl6/WZw1TraMCl0WNLIhV7q5tX0rFZhpiVIlxK1eoeoOq221+YPnWN5WY2m1HKZlyGtJofaIjWt2s3I7ehV4krt/Y2jLA5A1k9hqsdrJkKrs7caW39rn7O/lAGhZpdlzZZuwFedsYsF9HxKOPIBVKl0wahu1+zpQtB6bVoXGAZBQKOQes6UeqgNNrtQht5pCUQQwCfw9yPYMuqBYgatDJxCAvC0PF08YM2QiHezCrXMuBYAoA6DGiGNNqOS+aC7BAJCJbIAokMPwNnL6s0raPVRfKqDFbFrfXAaz/s8zT2RZqSatGhBJh0/IW9KqK2NKwLgXhJMOEwLfNxd586OuA7qIPnboY8RYW4X4HUF2O+WQO+C9KqTtl1JA1/OW212fMFIPPbAW1Pc9JqnHWM5HEgMn8ZyWChed1AiJTqi9iHMs9ULWJYREOEhTGo+X5XVZBj8d0YuwUawWvN36JLcqRJ2WejQDwQuueYF07g/mIsrNdf+3gGMFC71mmcBambtnCj5tmy7cbws2ftD7Ee51zY2jLQ1AVqpValW1rdLg7rcKqrcXaxoWiKzV1CqtengcqV7k+58X45a737rv2Wdt/2oJKa2M6/lWX23lpwrD7gtQ13CrGEBhDkVgcMyXeVz2IA+J18MogDCDYQApUbQpe8GpdSCavLOAUrQfXSZa47qGKi0aVjG3KTviXFrn7GgYmN36oZQKmJdnyoLV9o69tdRgmZXpqREMJLoth0aVzdoQoWzKJ7nJmpNU7ihmAMqhz9XcKwep9WwMlggmok2lyJ6PE2CSEkaJN+EjJKgNkdIEfeolTFOSekogFEcOXlPFIK16rw3eXgyx7MShKU1AU927JfdrGh10DRYLIhNEdPKZ59+mnh6SENss23Si+kI1CKI7/ADUtt4oBm97t6ZnTRotjUnLakVyf73FTY+ctjQAlZmDQraahpwtgVKN3jMO7jk775PcofeuSJaftHg4UPebMhKnn9NnvMmuhbyAYUpSKxqgTbd4aOWlHnsuYx6+gaHBY5NX8Kn9kHRJKIfm0QcCeLO8jmpnAK2SBMiUR8ivDYk3zQOVtg3yjgIk9fxPMo1RIi1TVR06+xBEZ4tViqUO9NnijqFaG5Oa9sbC+FQqr6fKC+PNkniu9lA0ngxAgRFXr0VpG60XjXCsgIQOSJEBpdP0COzAIM/lDh+K08oklOcmxHv0EG8YR3mNmjrgl5Gicy/aobh0VI0du45P9+oqTj+cml3s7Xm8l88sL9CWZZ21E803Qpccl15rR7of4dNU9XQ7Vj2vrure5t7D2BCXWg0NcTeLiv68kmp71vwxBE7eLLIxtKUByJKtbgsoQ4KJbZqWEKNVbtO07Da551adwdYoad3jgcereT6zywkuOUKAu2k5gaiZWOmk1oCmRy8P2uy3im6jBDDx7E8kBp4R+OjkUOaUzWFRN7Pj/AQZ5Jq2zb5ObNf51HkBzmUJ9V+eLPZ9W0EFbMiAp4JPFKAqTuXIqagQMxIQighYxBCbc42gAGQ5bakUA0ACXlGARFf6AiJ4CADpmo8IZA+7zHcFvBSMCHxvH+Vg81tMxdzo/yzDIgNEvmvZ3wo+CkA2FS2qhelcLe7Tp1685nQujtuT05TF01TaqV46PM1wyaQ9qNhM8W07fpZFqjVS6xmV5JRaDMbea/PVut4yq2wcCG1pAFLpyHZC2yRDprngzrXmfFjtL+n4+aJWx/ddrHp5Qp1J27en2lMGP2g6QZtpf/iO3+o7+kUFn1yAqVzb3ECZCaArawrDLoxaJf+2xbA4MhdvstLtk8yv23kXDSgqbCMAHHJGHyKoUwECQJlxaFQG5PwARccpJbJwqCBSZobUJ0sXz+p8lFa/1o2aB1nGJslxDYm6aFXnswDtv2Rq0de6ZXKE7ICAgGKrRDHLKVAhlH5AMr+jkV2pE8ARQLMAtKwEzyH7g2yhXmpQnTS8pGz7TFvY8/JW7ShS10RL0PNike3mnBuBvhxVnlPjZQTBtEXIz9i31XJ/6V0qUJC9XdOfMl978dXnfj3AsxL5dFs17hmKZ0qtGrWfG0NbHoCAaYVhWhoq/cMDhv+0LtYt+cCm12rSweaxapk9WijpkdG+3I+4PEqU6VB9bShD+R2mBFU8NXK3lkzV/mnK+BWcVIos2kIZwgVedNFnbe7kyeqxbBPegy1MHYC5jr3cugiow0EAh60JAUjEjCaRX0Ok6VvvupDf20PBQ6X1HiOBC137w6YiG+C2butiLS2QarWgkgOWxDk2HA8+1oxKXqseFVRKMG2iwJGFDAGpHL5JHxdQyvM7wXXQaNIUEMr9Um7K52JOg7tIqf8inEwjV3FCb8vYAbUJ3XZZOw6t8WdIeLRVkoE+AOgIoUsIqjUTjHYXWJNLKn6UtGx+AA0zm/I7YyhL6qbIjssKfFrcSb978flIGb0vzRAIDQHR0QLHmrY0ALlp2iZY0DL3B/dp8R8omKHP2AGh9/v3L9tkaoexGbM9mOyXMN13fMarvmKYjBdEmyRSNCAgZD4rlLNkIVkH7PQA8ov9TFQ4A162HuU9EocuiKQfQkCIhDlAtkdS01tJV3ktIWASiqmrdnLQwKIKEklmAQrjH+UcMfgwGPG8zwjAnIBGMfersa0tnQNFK+DSJ3NA0g25DhKUzRX2netfBYvsMBALSIBKU2UpS8HIChMqZKB8qpatWlAWQBR45LOPcr6YpnpAvLw5LQoE0n06ZNPCYuSc3iVecpHZsZeZtB1tbDfPnm0vtUNFMaaLQIyE0BFil9htHyi75yYOdxTMeMlhq1D6EH+j7HEZVADKBQp1fdkM5h/2u585tjVwpIzfgoutbf97CIRsSyyX/sbQlgYgncC05Du1r0bbaT1gkXme4BezlbWclnrzjN432H0scvkR4wthl/e35oJaL7G2/MFMOCmoGdm2lakhsgPKAgunr55rdqaFJ4VVVxAZMxLHNe0SL8YU77asIQWddaH8VgKyY1iQ+9X9WY0/ytjVRUDNiFFAqEMSSEiYoMdYQILPcykYgKiaIIfJhy27nlW4UyDROaLyfLkvQBksmVohWaSaSl/IfaCvm0dVCcs/piQwAnurARxp1OyCqavb8wFkpxXdkqMnmT8yuQ9i3sr5k7ymBApUL1syh822PTwY6WFByFuX87OSMMViyhtFoIs8rxhkfyTEhBF3KI4xmLhasgdgCgh9kG3AVTMm8dCUNwepCs/D86ElaQ3EliTpIbhquDVQS+z2XM22gn6379Qa9x1sKP0joy0NQC0HMWCafer3HtNVaE1zXvbwmtRQtWu3WZVckFXzgQf8SLUKxnL3r0Z4yQ8MJaZkYXol8hmVgSm/e9kPqJOaVvfYqNb3ACDy1tuhAyhGUFDmz+/vAXTEu4YGUBH+BXwAXmtSbYgH3y9qj6wA9Yti8yGBMIeU53HGJg2zcbGB2rq2WkYoXUkE1A4ONl926CeTmt5HQGmGlqBqz9nR3BJUspSu8z4CKBX4kLE/i0DTp/Lb1m4ilG2aCZU/vH832nK/HnY9ny1iwnR9qcW5kqNCbYnWF1KUuT3dSp6SbDQs/TNKz0i8Oyz1rF1GCrxTsIArC0BFtIoomUo6p0YomSG9y89mefIg5D/XS7ZzWPOeGTwVac1aG49Na3qcbwRtaQDSJvamNaDm816usEKidSay0pY3AcDc69OBO7e6nMOJUJJCHlRUXupFRf+YFW6WzYCUWFfI67n8epsIYRqWPWt3smueLDf3yD5BPWnKfD4zlQAGn6ifLFVPJIuZ4RM4FBCZVCSricqYtztnarubAC9Qt+4ReowQ0WVmzwsd1etuzlStF3KsHNnCApj7dM7M7t5r5VHtY0NCU5OsANObTFopqJWZREDqC5fWxVd5AzzU6kXFi1oiljJaeYEJ02LHZSsEKMw1tWRYBwRbjOTS06wjlr6T15KGYuVOYA/ySIQuyZokSqxp61whBQ4AG8UzMsjTgTBKxBs0BqoFHzg5MaGsip7KuR07lhPZumzU67rAZ7XP+J62HPj4Z44EFKfJ8+1l6ZprrsGePXuwfft2bN++HQsLC7jhhhvy9cOHD+OKK67AU57yFJx44om49NJL8eCDD1Zp3Hfffbjkkktwwgkn4JRTTsHb3vY2TCbr21zCS6f+8NJUS2jU6rcBSccoe8pb8JlD2YPI70METHej4Vxb6DTfY8zzIIhhKmJ6s5+2km+eNIlUeKJgZIBkKq/2easLGOfZ0AknCLzGJC/8kd8d2OqjTgRmEzXeSK2Yn9S0k0JAiiVAJyIQIjsi5PWUki2NzZmPUNpTQQgort2c64QRCPNyHAfgeABPMscJcu54cJsP1YI9tJ9sAzCPkPvLnHvOM2Xtg9rvllVkW6hnm2pIpciaDbHG0/fMPP2sf5MX+VFUxLQodek3iGx1YdtzLPi06jO6w14bifASO+5+GHEf6ztgHDki0SKAwwAWE/EuEH3CZMJbzadEvI6JUILbdlH2WgroRwHjDphEwiRy8PFJlCOYxesZdywz9+Y3X2deTLK/N5LJtyRW+zmU3yHa2PytSQN62tOehquvvhpnn302iAgf/ehH8dKXvhR33HEHnv3sZ+PNb34zPv3pT+NjH/sYduzYgTe84Q34zd/8TXzhC18AAPR9j0suuQS7du3CF7/4RTzwwAO47LLLMDc3h/e+971rzrzt0F6+GJJIfVPYe61EaseiMoRWta+vOdwTAQI4JKvbqZxvoVvrhU0U9MBiLpL5Utkt/IsNWmW1I1g04fQJUPs4zwWE2mFAzBqymamE2yHDmHSJIBCozL7lWSXRfjoKiMFE8iIjvwWIJxxlgR8o+hbnlAxDCwJIIdcQA0WohA+thZZMy1MvxfMOkm4wjdEhAEhZWfH6o++7qyIvF8TGb824nzCZksCo5kOr5UUmKxE1M7HnWlio1+yh9yRzj4KOakH6iSRdUVQiWwTFWNtoJBpQDAExJoQQEUJEzOoT94EekTfpI9n5iUJVZctWQGYGa2HkfpxtpKbR0ts1XbWzrqfRNw6AAhEdUWonnXQS3v/+9+NlL3sZnvrUp+Laa6/Fy172MgDAN77xDfz0T/80brvtNjz/+c/HDTfcgJe85CX47ne/i1NPPRUA8KEPfQhvf/vb8b3vfQ/z8/OreufBgwexY8cOPAel41oGAUyb0Lyg6H/bZybu8KAEc/+RNYW8uRqpNG2ybZlVPPeyKlyvibbYnX2ezKBpvUR/SyYUUVQdIRuuAQhdArrEn6IMRUkjEKGjgPkUMEcBoyRaamDpEyEgdFG2jdY8EmJImEsJo77HiPo8T6PWn0RAP+H9dFIywSJlKkKhhzWTgG2AhPdhYJiTo7gLJPToMUHKG51pv7JOKAo+6lyhTVCaq/wPCBiDsAjCYUl3LMcigB/JUewAroe2Oqzl4FYlb3F8PxhsZ/adfB0SVTDZsK+djnzRfsZmW7Nr64h3dC2/cz0LOuna2mRf4hW1BEQKGKFDFzrE2CGEDilGUOgQQhQ5jKM89MS7vRKZN1aWA/8uUYlWvV31ShLlRpCXYC0/aGlfq00TAAgPP/wwtm/ffkQ5XJMJzlLf97juuuvwyCOPYGFhAbfffjvG4zH27t2b73nWs56FM888E7fddhsA4LbbbsO5556bwQcALrroIhw8eBD33HPP4LsWFxdx8ODB6gBKVaw0rrxwN0HNr4cAR3/bgeDXCR0ZSScI5mgoK1U/qdAwoA6iFgo4NOXshsGI3L26qn5I/crrSjRjyPdQ4MGcArOdGCJLnJpsJISYELuEriN0I0IcBTHRRVBX7CkhsK9cJONDJwDI5rnSRmPwxp1LCJhQREoRlAN6WpjQ6tSYZAnjfJA56ravcL2i4lDRyRFNXRatrgSA8XEX2n2Ipn+2mrBlYvPWHK8p+X6lz7QktVWSfZWCCpsfazz02fXapH56E501p9thMCHZMVz8J5qWLHOeesrmxiCH7vCLRLxdRM9zPyPdjj4FlN1CfcF1zAn6UQfe2dE67K9Ua0cLfOw7/Pv0WE+jb2x+1+yEcNddd2FhYQGHDx/GiSeeiOuvvx67d+/Gvn37MD8/j507d1b3n3rqqdi/fz8AYP/+/RX46HW9NkRXXXUV3v3udzev+Y7c6HdVlfkmtyY7C2QekI5c21mGfKYqu0ww1+SkSlyVIEOS0RZ4eBDSl8pPdaXV74DM5otdQ++tvKBchqNoSAiAbCQWSeZ4ACDIVmydvKqTxX0ByCFxIgNWR2oqKxEIRl3EiHRfIF7jrs5HkxAxCRKtjThidzGDIbN6XtvDeU9ynoGlmP8ANqV5B5S6mbicGlU7GjmueLuFqhkBjf/AW9rp1t6t90yRJuJByJvaPL8BaobcojV1atuv2jlWELLst4WRHh+92ARMWxf9GJ8qB5kbjUxXcisrx4iFtqzQk2zrAcotSyDZgVqeCRHZzdIG580LfHWc2kFp6+loAs1K5PNiz681X3WvPlJaMwCdc8452LdvHx5++GF8/OMfx+WXX45bb711QzIzRFdeeSXe8pa35N8HDx7EGWecUVkM1HPG4/qQ1mzJywRWO/JC1TEhHY26K1cl1YU6MznWFyHH/qoymq3mJZEpJUnBh4z5TzSdatjbWjTspQs8G6zgRcKISfSOIIAgGwmRXWiqf0GD9ITKhyGEyFGxiTDS7AkD4FiaQRasBsSeC0RBQUhzaV1JyrZmGp+sB2WTXMBQu5fUSo2UqA7TkG8D8SiYhqoGh0zEg+RvGpIx/DPJfHp+2FBy6xdYhuNfUGrHjzWLjfqUNY+roNfKgjXLeIXGvsP4srAir5+SoZhg9nYUDZ1k3ykFi6Slk7VbIihpZiiYMmdXOyAH9dUcZ/DJkiOmpYPNpMdCHqZpzQA0Pz+Ps846CwBw/vnn46tf/So++MEP4uUvfzmWlpbw0EMPVVrQgw8+iF27dgEAdu3aha985StVeuolp/e0aNu2bdi2bdvU+SUpgNdoVppW80OoZaJT88tR1XyAhmuPHAEscfXBgBBNj8ZKIVFxjxqakE7hKmChAE4Eivu03k585NA8SsJegkiFxX8aQEAgZFfmmAQcAu+6qdsdhEhm62k5HwpgKBiMgmgNsj9QSIqJnAfS6A+acTEd8lxQlDkgDRikuk/Zj8fu66KgpLXo+0TNeq35jK9w3jXAkAChkacnUNMeSf9KAj6606dpP0+t09bCaM1xXgDXwvj1BZ6jT5FHtRbwUHXG+jr4NVPRXGsJe1680ecSihnUa07aJ3KYOxjlpFE+opA3BexQ5KuyFxOy2EAhliFkX+QjUARNKJSXZzCynzr+WuQ1io3TMB6LoGNp3XNASiklLC4u4vzzz8fc3BxuvvnmfO3ee+/Ffffdh4WFBQDAwsIC7rrrLhw4cCDfc9NNN2H79u3YvXv3mt+93DyOn79ZQj2ROTTvYzv5MQOfocnkEYARFe84a5PwhwUwdWaYYqNqDBejeaUtyWhSz4Eomk2eoxEtp9NDtI7IIBNDQBc0xlnZCG6EiFGMiHp0bGrL6cWQcSw7JBnX7RAD359dssHu2TDRrMXjDhG8kDVGmVwuXNmGPbV8ZWh+YXpOkWRDOb2PTX684ZkySM2XXouYIGCMiCV0cowwRoeJrEQqzst+qesAWU5tVQ1fCF8AWzBNZ1C99w4sPgPTyOV7m03Fd1Nb2uCea41dHZ8eV/M7SbpzAkc1MOaL4g1X2l+3YLcR+Eqa0n6EMr+a51ntnZqcqmG+bixULqdmepCP7rPVBptFG5+fNWlAV155JS6++GKceeaZOHToEK699lrccsstuPHGG7Fjxw68+tWvxlve8hacdNJJ2L59O37v934PCwsLeP7znw8AeNGLXoTdu3fjVa96Fd73vvdh//79eOc734krrriiqeGsRHb1kAcNL/Rp3/HDyg8l3x2OGgBZDugXPpSAY/X9QC1EBXuBjMYvklqev9HhazhVkmc1DV2cmgcVP6vxMEnuD1DHAp5vCShjOwQtBmUMi4b7xKjYFvKSIStEZuYSkZ0M8poVbSkRMpMJPBog78laR0RIgWPHkWWn+Wq1+NgyQe07QM1GCmuKRoeyjJGym7XVgJIA1CKARQQsojg7TKC7pGrsbn3zCj0vg4aRuvV8gGiuko4dDN6kSuaefH5I67G08qiwqSm1pqusWQ7mnL1npXkyqxH5d/rc1qOgbKlR9trl8xEcC5CtEIQcQcLmLA+9IAho69KX0Odk6Jxvh+XuPRbka1XzNe2Ssx5aEwAdOHAAl112GR544AHs2LEDe/bswY033ogXvvCFAIA/+7M/Q4wRl156KRYXF3HRRRfhr/7qr/LzXdfhU5/6FF7/+tdjYWEBT3rSk3D55ZfjPe95z7oy75mFN3V7a4Pe571xgFr+6Ew6YxyDZrfzOgQY/+G6H5ZZcpdroMks1M06P6Slt+8NyO7UGRGYAYbIJrNcRxRkg02d09EJWlGcgsx1yGfQVeQaEDLIRnMB6HwaBIkIoAtPy26pnYR4Ydu87J4awavUieN2QaBB+anuLaQLTzvwYtcOdhMGyjVnV0UA09gf8zNlXYhuaGeBqG6XAkCshfMeQEuoNfI+m2ci6p7qchLMl1IJWvlTzVv3BU1LSqgb2XFl1ffqRnZTifnRUj+X532CCBHyGsW6dk/NWxKaeq3Hsh9/djjYNL0yqDnOWo20FY/xZObkuJdz7RdxoriKJCSNidfCZLJG2hbwrETLcRgPRMcShHyN2pr3UTHXR0e8DmgzSNcBnY46NE5r/sd2YK/YWrLDSSUuNd2tL07DMqQZ0UVMrXkgq/F4U0nFKaU0CmJ5VbtqDp7c1HCMHLVx1KFEYaB8Z0jgFeOJGbANKJq3pYs8lDsEdMEM9cjgEwMhRkIXCfMRmAtspotZg+PJYZJJ3pDng9iTrksJI5ogpB6gVEwuUjzdkTqkiECi/aSArifEPnEavMRQQEcDg+peNqW9rRl2uu8UCCJJUR0QCJCtpvnuMivE6SzK8SiARRCW5DPlBoX5bOlg0jZqIhXXdTWH8lycXqNa3egFASiVykpUlvNPgBx01GpWqkXlSobRAmrRbgTgOLD79Zx0qTzWUunmmp0JgDEVUFAo15TVQ9CPZT/PZFeiuZ5thgrfra4g7DZftopQKqXiWSFdD5akbYfpaALEZoFPG9LLcu5HN2Qd0JaOBWcnL5cDHk8tIHJDverg1q69PnL6VisDKkSRe8SPOptRuM8E5NheK/bVUNLvgbyxDsk1EbL5VmZshJA9ihKF7HjXgSQqNUmEA+Y4FJKE6S9yaEe8IHQuEEaiUQHJbtECNW+BzI6WJAodUfEOD8K0QkKXCF2I6EJEDLwipyNCTLo1AENHYS2FCtNbZlpEznd5AHI8bT5062jOa8ip8qFzGxbciknJ61pA0cFtLgxbzZxVVA2KQHTBp1SL1srKaN1L/xMAo1C4uGiUuRIqDToICEXwRIvCCYkspZomAw5yWyJvvmo1HC5/gBV/daaulJqaNaDDZ6WwW3XtUn5OZg4FsFTjKXeXnV1Vv12JjiYwbJZ+4GsSmOJjG0BbGoBaii8an0C747YkoIl73t+zdrLDRjNBKF5nKlmiWGHq8d3uC76AAhqVGGg3p8snG58k94Z+CoTKYgmTBnH0YAoMQiycGxCy5ULZRIFSWW+hi1M7hLwKvTd3q9AeEuXdAkgPC+QQVwCJmtBhhI507x7WvmwdMW/kyu1RZl5aTii5ueSb/lnpkMBBLNXDLWWZHjklP/+vORiOkV3XX76um9EpCHXqtSEg1GLDdssFTSeosCEgZF+vUge59+t7pzQh1SuoXnCayisUcDXb6kSSqC5vER7V8FW3ie21XjbX3Hp5ja8VAahQgIKnwo4XMrlKdMZv86Bg88iPBIXxI+OIlrY0ANlO0frUw1eZgpCfXrMdTBnSkVe1k9/UjFIxRmNysdItgKl1PUOjIMq/aNPo6gWlNJBI6gX8lFuEAkS60YpfAxH1tWx6U02I1+4Iowq8wyiFsuhykhjkIygDXNQ6ATFIyXtKMgl9n0CJZDfOVLzAlX3IvZEIo54wJ6vaY1KDSqiqwJtrfew3bbHiE6K7YqL6VeYXIOaaUPU9LkqovLp08Wt5i36uordpor32JwGh2JXrecLcPKBugipUQMFH53sU8fUFsX4+F6aeVLf+iDU0l0qw40udS1Q2SlDDm+7iVHZtslojUIOOr73c5c1hrxXfRM6xmnjzfj/SoknyxH1FRQ9uZQuQ7WFoc9aSGLcaaY3alt1Y2vIA5EHIH6pUWAuXByeYz+ju13SPjExDajtmRiBvrYRB82aVNFuFzGQ1rNAenVUCDUanZprc3wi5wwXznHmvul9HBIwCYU41GgTZNTJP4VZgnojy4s8UiqqXKLFnW17vxAsGSeYnUt8D1CPb/oQzBQqIpBuJBXQpIPS826XKv73koYdOL6eKWdVx3KbhQOW/Ik9r2ZihKaj0iNAttlXuVkcEdTyo5fEBrXRZktzpQpUY2SEhP6pgkqS9zCjR+g6hODEkcDybHqxq5lhTZoTlPlRrLZbp+26pd9p5Wm5aTk/NoLYNbDqtcFfBHC2n9eAOm1ft3KrZqMCkJUmSgralasu6FWLpqQqalN9R74271YHHkpd+B/jHOmlLA5D1GfLUGgy2e1ipyjMatcBbc92RzQFJjoLLLYUijVoJIy/nFjSwJpTKph/k3liAJ8/IU9GeprZmJkwNUSs2KtPSyWgFS417Jc/qGiBe/xNk11DRDSgCgTUWXojJFGR/oLzLpLgGE7GoEPK20KUoSAmp70GJjxBF41FPOoI4HrDXVZBdPRUGeqS8ALTHtEmsZbZpAVFhtmQWlNp1ZKFavFyEoCAOLSRM10qTLajzYpW/pu0jfUVjlVmpK2hbaV+RtLKAEQr4TIg1Kt31NLWYjHcFKIeGOLJ32PrTcUTyOabasacPfEwoFG/xxsi2aQ1FIrL3wlzjc6yLqguNnT8qwFI8HbWv2Kfbus9yQsTjAYxs7U5D+5HQ4wKA9FDWaE0tHkhWkpr0Od3XRQcU4Wh4w5GMKgGiWKlH/N2u3bD7uGRmI/cp+AQqvq9ZcrWFszVjgMhqOXpIzCy+pudQQIlCyXsGKTZwkGziZbOgzgQ9sS9SFwhJGWGIOXvqkKWb2aVkAk5Kg/C2Q+zSrZoSgw9JtXrYqPsKzFU0fttqA5TVFul4AjW72UWTHPXaCitWurcMir9pDG7k8zUTW455SVsFW6JgMq8AQ8jzQJVqYABII2fo9ynYrd9rjYwtPz6tce3JFiiAMo60+6YI9IG1xCqBZcpfYa0pvc35EDhRQeGcvwAVWEo8CwvD3PZ6vlwZzuHjTRMCSm1vnCnucQNAwHRH0+uq1fiIJfYZL7HpNf203kvrJo8v+TfJPkD2pmgyYABIWRolI7pLCXQrh6w+mMK1Cp3BR581YGO3Ws6u3vqcJkoIiUGIeRzxIJX7EsXsEd6D8jxNAk9a84bV4pMkmmACA1QvmlNKCloyaa3ed5JNXt1jykSlva2O0QIef77FcrXNlTFxdAM1t3F+xyhu1eNKRi5rhNTrC1zaDEFJ0m5LljaHHhpR+o46FVQmU3Ov3yJb5xez2ZVqQWeKpfM1jSseZWRZpdmORTv7ZMcWUEcm6UPAJALjKOCjjWft5obUJNeD21d9dey4thYNL4JUJQzl3uK1XtzmIZg9ASRmIZ8sU7K2lyzXfjnFxwnZFj5y2vIABEybPFpSrZ1K812HYCeby/lozmsnXzcA2ZFSoaBhIMHebIZSQAGfZkRqKUWugIh67ii4RxwSBoj2pVKyqBgIBnzkXWKKi2T2caFkIlgrAAWAogEBkpD54v6aTYTCjInNiMx3dCo/CX8sUasJ0eC1hvuxNaFRp3WCmRl8ZximHUJ2/kfJMk4vkJilifJbw+4oENXydWE/hUGxjhikVjzz8kysnvSvSGPh5bm7vrRXfiVhaqFpTiotwx/rdEbo0EHWThHB+/ppPaoXqfbgjHnyXcFnHAh9JKQYTZQb088GsmyjC1kTWku2C43ndN2WLadaLzkmIfhbKM9qH0qKTFNM2Iu1+qT9/XgCoY2jLQ1AnhUb/aCSeoC603rvt4SymRbMNa+oFFV9jRQxDTyez+R4Nqr9qF1fB6WK9/KgAkYlGAczNnRUW+BolCwDn5GWfd60pgV8QgiIFDFKkXcvJjlEqoxk13ewhsLOeBxji++RrRYI6MxcE9d1wCToXJIYRoIYq8h6otVmsXotD5k7Sont/J6NfmCr0Z+L5m0FsJQBR+gEtTJE5PwVc44HmVT1KlfPU7+9BjTFHWue6DsyANMgyP3GTuVUD5hY3hGyvlW2TafSXWyuVBvxc6q+5PmEmbbspC77nKDp1wNkhU77Xg9KqoNon+HqIbMXo5iBQ8jTm32Q+bzA81ITkrxVg9+6KrXm81oFeDyA0EwDymTnzFteNOR+a2e0w76lS9h+Zs+vC4C8eOZnTgGUOGxe6zHpZN1f7tV5n4hiUslcgcpAzi9qlMSPF8t1MyBZoOI8RooYUcSIAuYEeGwYu0jK73S/H/aN63VLbpR4cbw9N7JjWxDvO64inuvqAcRg140U1+ciebP2NIaChZr4ymJGrXavjI4wLbjo3I7+5uZg7YfEiKjfIZPacyihXtjzrQad6Y7QWkLp6r/qzYaqZFWICO5RgzKWsRNQbWToE8wRKbSr6WJgEqcRr7mVvHmBzZu9NdBHkj5VfNKMQJWs/W14tLUw1JvaSXJlN8zQnaF4aUBACiSBcAkUA3okLIWAJQQsUcA4BdkCxL5ZOUoxp9bzeTbvto7XLL4+xqjRF4+AtjQAKXmwsOTBJDWu+bkkuPstc1oTOWVj2vym50XM1AllUoYhDCJPFCtnF+cE0k9TevIvbpXKfqXyHpjK0OcpMkMKHYMPIjp0GFFk8IGawyT2m2RRvdsKg4mI6tSA4igQgOKLQZTdt2OI6NCjFxNdII45oI4JnEM/wBWQmIFqYNSiq9ReT/PwEa9rU9KSOSe5gq6n1wWo9py69k7nynYAzcHQGn773fdsmhZkgjQAgEqb1ba18zvGvb0IHJZpBm2IwkwDl55kj3MVFkhatRNdsuXo4zUiBQPu03Il1st7iUx+VzniarcIq5No+yB/6hM5DGmkvLU3Z0sXFpc5vnrxpeco9QqxaW7zeAAdTzMAAlAyr01sm9qb4eyhWhBQBkhvzqmmVIJIlsnTI1Y+p0BJbBFZZJNcpiTuQVRidfUGZJRxkO/g5F7gO4u9hsKM9HdSIBTwUTYSeYvtUegwB9Z+OnBAzxjYGSHHPEgJRIRAITvMBbmfqEiNygR6lKCnIbtlM9AG9OgQQeRX2BQ5vOgnxTOtxDMOORApx3+b3gaAML39djTMJ+T7mLWV1GKOMKdeUoZ1V8a/IPVIWQeojbpl19bydN2WCYhJZswTqmgavPq3tFvlnKJ9hpwkJfdGKn2p2lZAciTeaHkaSfqK6qgkNdShbCrheliuhySMfQkBY2LgJlJNNhnwWZ24Z99B0Pk4FHCRNpog5DyEfDeHiEoRCB3l+KvqXDKBxqjjtW6qsVVjxeSizq0FH68VzcjSlgYgq0z4SWUfVNIuNAyoBUmblnYbG4z0sElv1TTU78hcy5kh5dLIUmsKAj6B12mkhHZwUU3UH0PUmqq1mVWGVB8hhTwYFVBCLkMBOoKJZgAYTUfjT/O7NJBngjWZlHkbW41qJvMOwHqHMp8SlYDZYglUGVBmXQosWCeW6dq0e6baJrOGFgtI9gr/Uo+xICyany5wqKUuMRpKjG4uh9fXpYcGPXqjaogggzDdpLbfVN1DOqP1mIT9Xp8rcE9VLdjc+d5XBMIgeyMFLAkokGynUXmWrTE2MoMGCytc33Z79ZgXB7PQaQUCmVcMnLtcNVT2CtLtRTg6eyjYQz4Hvibs53L3zuhxAEAhf7dTK2qdtxPTSp7/6zP2Hr8p1pqJ3Kfn9TpbrR5nodFxrektZ265TuxfquktpwXZTAXziLJoldzVW60wmR4MRBw0VNdJlCl7Taws7avTI6hRSl18S7gUhRTNDlsGC+srehCLDAnFIcFqRICaiQp4WEZp5W2vLWuIGX0L8rv9LD+XqTQt5b5ZgLeY7TR6Qum9TgCodPFS+hz5IGsp0ilydiKKj7o8r7/tlErldWHBSZHAQ0mJUl2EtDKqNHnvFwbzNEfDCLIHEjBBNAqafFkH+HBxVKzQfhbE2SRkQaf0wJihPmt8oZSRD+l7osUH4t6ft+euANzWl+coKwmDW5U2rkxbGoB4qBb78TSgUBN8rMdM3kAUtURsx2mLhR8RTfF/AqLoaFZzzx5vUqIqqGQLbGjg/FAmDKPT+QON/aa7wuXIB2pysgNdzZlB5loirCmJEMS6EwHqRCdQqGGmGkEYIWWm3aFoLpw1YfqkrF/NdRydi3JqNSu3si5y2goKWd6umkGnv2wsai+gWE1bQTkYJmcXKc4paGfAjRgbXc8CXlty9t+1bYQJynxaDhUek2nH+hFG5mDAJ7iu4vuLvVjgXoPvBHNYgJoGca03deCw8z22jEOaxBDVkp3NUZ97YUSvwh0FBKq9EotDiQhUgbWpCQhEPUdez/fJXGgTJG1dBfi6W+cM8ipowznTMactDUC1TFv/ClNX64lR7wmV595RMxq9r2YW687u9Iszs5COmqVVkYQr7kiATAZPMw0d6va8H9ymdirPKfmtZpyAMkmsQS/RVbb8HhFjKIiTAQ6FBk6HgtkMjPSuKHDFBikCz+6MMvoycbWEKv865Wu92yy/1eoFit5ReHHI323txOq5UmOqi1jwUQZK1bOWUVm9TSVvBXDbM+2c4lCvGjifd0ENxb4MFAElyxVBCiDtayHVax/5pGX8RsuqRgdH1CuzXsgAFFDmUycmtcKGuYY6qUmFN1T3hoHST8eNsD075m/qGB9Za1G8Jn0mSJdn4C7WEsoApMGFiIIEwEWtMVXg6evM1mtLM4J7br1cZWuDD7DFAajsSFnmBoAiXyvz8FKxkh049pwFG6sntLrWiuTdgVpTMJo5zY1qPlWHFylX9ySoaAho4H57AFLGFJDXH+V3m+vGVVfrvIfK/kHAQ92xNQSPjHriLRg4vBsZWVCjIViQZ3mUp+hJ5M5aV/BMR6vUgk1nrlvAKSJJmUGyfcQfViix/QAoUn3JlzXSlf5Y8sC64gi6FJLzsTRVKtdsoCJ1B5T26iPUQy2H3BmhpGNNuup9qB5xeW2Z3m97s601K8HXJefwrlbfawNCXf/c6rqAuDNAY3fksdGmPbsutVu/T42gKtYQ2HEme5fq+jaZd0pB7COUoMFy2d8nicdfMoJgQt4rCSqjSd6pnhWMsLzI18ZyHMPX8xODtjQAqfeRDolkuqRlGK1JZn/Og5C9z4PNquSWojhMb9voD8v1CMjmlBhLv40JeVOcKfI58chmWaxqOfaIyO5qgAGP5QrGJiUGEJ04Lxuy8Zv4vUHmiNilucQdLqtokhmwxY1Af8d8jZ8vpRPTXzBGQbPvjaZvD2uy9TVla9NrxEAtmWvTJah+F006fjuzMkcUoCZLDuDKnmGaoqtmfVswPZHMkW+h6WcilXZNpj39s1Uv9zVja06pcqWbgi6ffS2ZBQvdR0r7COUd7IqwooFAfU49VHvhIm+8HkZADAgdR2aPRGyhlIXNyJpRytHZJ/IbSK7/axtAth1hACpVWmu9xchrqdXTWrRq0XYdJLXns9JC+2NEWxqAdMK5eL6RTHSWMPlWmqoGgXy2dIngrlsrx4CsOp2IiuJ+cYT1wG1pRbpDpV34FlJZJk6o0bL58lZnl3Ma9NROVHshOCO0SM/LDpyQ/wcqGoZ9yjIgnScoVvoiAReNgQdxiRbAb1AtQtlaEG2iC5S38WYeXVYfsYMEoLJpiXdc/NaslK5FV5mhr65NG3m1JEVQSRXL5juSQKWyJ8h6ITYRaclyPDRtiOydRtOdzv7W/uDnfXK4o76Az1TcN8/wrE5oxS87MzotBFVTl3JnH2rxhwBQSALakZcn5y3cS77zHF1joPk3223WdZ4NiKDIGlCO4yY78+qOvTy/o20q4o7tBPaQqtCQiQGQ9Wo6TClbxuter79XAp6jATpWkHDCDSSzJRzEptGWBiALEgw+RXJSjcgyNsAMBBjTOaZ0hOodXgpbllrgMwQ69rs+rADRoSGpmg6zJm3dgZIFGL2uHlZkB07LXliz7CjWdnulmMO4Vq2ptGz0p4yXJBQLzwVx1SW5Qw0afCc7IKQck6wTtt4REIJcJ81dkOkQ76RSoiwU+Kj7h61xuN8q2CizUy28aEe15K7NVfz+tN4CRoLvIbC3PTs9BgMQDdEpZ6rB2Kx2lLfvSMi7wPV63huZvdZja8J2uJUn021qGojbloAdOgmgxPMzVC/HLWWZFgaH3hUz/Blxk5C3Bge43aIYENStuqdQQjjZOTIfCE6zRCzc5t3r9QBKdNTKtGnr0OYa7rxtk40i7nXlMOd1XnUTgUdpSwNQbz5ZsqZKdedjuAvbJreSmv0NDJvymtTybvBitu2DVvTz/TSKyKVuWbpIdNUZ8lKQGTXB2AWn1v0sN2FVClLOlpq0gUBZlmZ532oRWlSFFtYb1JesbGpHiJIOCRSVmGtzQAEiIkTREMtQKy1YfPY4/5RznaBmw7xjK2qt168nU8GmN6VWUFNvqWJkBIrOI6uCgtwdQo68pNJ0H5hBc8JG2KjaRxmLAYoI5IWpUTkvmYKQKUgL3OysmX+XHQkrc6ypJ6l+uqRAU9cAnQdcGzsu824Z5vK2HFE82XJeEldnHwL6ENlaEnS6R3KYQxSJZ2qVcVlsrc0wWANroaOlhjwGEGYF2tIApOxDwUd/FypzEpb0t58WLBK8kdjMvcAqeP5Qmw+elw6bxUYgTxT7h+wWCStmwsKnB5CIHGKnseh0GoCiSQvQzOo8jf3vAQhQDzc9Ul5lXpgP1zSDQMIEZQ2QLigFdPqaGTi7z1PG+mDen00qkteyQFW3A1ftOEIjW+uupQo8lhHWzi71olNm3yyBF6AqIFsAiCVr3kWWf8bIiyFJ3hchsfMCGYcBz5y0X1Bpko5KEL5IKCGdYABI0hzsLy1Jyd8zTB54hp6sZa8CcH6uzo69ISLU21wEFANoQOKdcvuQxzRQlJQUgIlsF0JQNcYgFMmNzdlhKYnWZ3NYLqf9LAfqy+l8a6VWLR4NbWv9tKUBqI8EiiR7tEm8KlOxlnVa9qq/vRzoZX7fTKuSa3yilnwmaqwsh246l8xA0FAqPa3Qf4osWSTlpqgGO2E//TnEhEL1W5knZ0mdCZJJTU1n3Nk06riu1dBC60qSlAFoulqKRtXKbea2OV8KAD1KLAR1BVDnlT6DE+UUSkqU70O+T01uBe60nLn5xCjkQ/9H4nkI1uREVDIAo6FpGHzU4aTW52sWLWCT4wiG0qY59I72l+XAR9MN5lNp9czK9jz7u9XNy1AoFgu/jmh1VOblqDqjfahod0XGC+hTRB9KH2Ef7YS8lUkqs5NtKKTm1+Gcr8Q9NhJ4LNm+A6y1do82DXCmNl1zzTXYs2cPtm/fju3bt2NhYQE33HBDvv6CF7yAJ/3M8brXva5K47777sMll1yCE044Aaeccgre9ra3YTJZ316jYUQSTJAQOh6MFkh0CmZOjpE5/BSNPz81PYM1NNtKqOX7gjIKnSRWBpR6gHr+tBERVsyIZcZDsqVnbC0ItunRVLrW9bmstyHzp3ppL3M3PebQY2Q+ix9jLzqQakK65TUNMqaQ36vzQmVBa9FiOS0OAQPZOA5YRMBhRCwi4jAiltBhCSOMzTHBCBN06NFhjChHyLHFCuMseZ2Y37qmZILEpQtJ3H97pCC6Ho3RpzH6NEFKE6CflHbHCofOiAPI3m594AklXlVZRP5l+4z2h3qD8RoSliffO2zP8z0O7l5+a12nKxH3ULvOqvRZMv+LgFOLphzgNpR6S4Fd2xOQ50PXTS1hwebc3zt0baPI5uexAz7AGjWgpz3tabj66qtx9tlng4jw0Y9+FC996Utxxx134NnPfjYA4DWveQ3e85735GdOOOGE/L3ve1xyySXYtWsXvvjFL+KBBx7AZZddhrm5Obz3ve9dc+ajCDc5NJbVnO19qJWOFiPz14HhwTNI2cIVpq1admITZJQJ0+msO61VNrx1bNX9yEq2XjMi991qQ0ODJMuL2cymZjCNZqDrgBR+1PSlZq1iHrOBIxV2CszYelfdYmQgTe8oIUH7LE2XkqtbLkfx1oWoDBrBtGvRaGpTWtHwyv11DABrplPWreFmkuQkIGAE0X5iDxIzXAJhjIQxCGMK6PMeUEDd6xwD0T0sYpKmde2Vb1dhZrk+4h/y2rD9VWLjbQRpCWtajkHXd+lcoZpTrRjUmVGfUGb+rCZU6dI6LvNYaXGKtVDrueC+E9o6wFrBwguLrXw8toBHKRCtMQCTo5NOOgnvf//78epXvxoveMEL8DM/8zP4wAc+0Lz3hhtuwEte8hJ897vfxamnngoA+NCHPoS3v/3t+N73vof5+flVvfPgwYPYsWMHTj+RJRiaAGnCO24W90opIGpw8bqALbzvdlZKW57kLSp6d+BVmSPYhQOcYl4AISClYYZzyHzz8qG9AoYKMJg37xnhEc3qi173q00DqvV0sPM6BYz4ac5cKUbERI4xOBBlj+JNxmRZOTPtosEmzIOwDYQTQDgewHHosQ0TzImeou/UoJdlnb6uwWFpWQ0yuupd5xBSlR+d7yl/9j6gREzWcvQIWX/g83UA3FGMGEVg1AWMIs/19JQwpoTFxBufkW5TkLQ+Gj0yJAEeAaGqqQm8K6qY79Trbc0j3I6akGuxQCry59FjawXyLOkvFnrUuKtxziNI9lbQWO09FT9K7QlakoTeLKe13GFijo0ooY4vC30toc/XrN+rt0VD1oqjTw8//DC2b99+RGmsyQRnqe97XHfddXjkkUewsLCQz//t3/4tTj75ZDznOc/BlVdeiR/96Ef52m233YZzzz03gw8AXHTRRTh48CDuueeeNeehi4QuEEZEGCXelbMEe2kftbLOpE3tt19QiXb1FArvzvzddQbf13sU85tHPnvos0CNG0NzxjZPg53UZ8T7fNnObB0MVPNIGCFhhF4MVT26DDUl7GTKB7P8MvDbOqZqHZN8d+1mX75rm8V8THLO1BlbY1ErSyqfGqynl0NzrvqU1XrqeAx13U0zZBubQwUMXmHPMcYmSBgjYSI1YUvUiqjmms6ajCZ6qMktSHOGI7S4qE6oa6WoMllbE/ZGGY5qcYgFG2s6b83nlugXhNjJMeIjdJSdPW1prC4UBnPvAWJ6sUF7bLVK5TUfe94O5FaMrrXSY1PTGaI1OyHcddddWFhYwOHDh3HiiSfi+uuvx+7duwEAv/Vbv4WnP/3pOP3003HnnXfi7W9/O+6991584hOfAADs37+/Ah8A+ff+/fsH37m4uIjFxcX8++DBgwCALgIhUd4QVPm0l9998yu71e/WSHVkVlKqgSfSdB/NHm76IqolWcuTh/hRS3DSZyzl/UtgHrKfNoGph+FrTwd8Gfj1dHwxaKVsNiOp5eKUbX2SIlaC+MLmQ55bGYNkWSeb0kZZvylhboL5xqCj4fpLWVQ7UzNO8agqRkTNhQopSqVJQpVPG9esvItdxXldCslSHOL5INJ6kCesLXlImiWA12tpG8rJpBdlIt1eq7578tdKGexi3dZ8aHKf6xk7LVbcYr9WFithbTmPKYhpVtzQ8/6KWasMiCQacAKsv2xdy3Zw2eiALaDxKUwbFJevEVty2wa+dlciP7a3Dq0ZgM455xzs27cPDz/8MD7+8Y/j8ssvx6233ordu3fjta99bb7v3HPPxWmnnYYLL7wQ3/72t/GTP/mT687kVVddhXe/+91T57uAHBpLAwO3hmxtUCid3Fq0Jubc2puRSuL5e0AVy81mxoKQeQRArfV4HwKvla8oesr7MzOyar7v8ArHflDw/YUx1NK9TvITkqzuL+f5mu5qUzuIlHe35Fp9gjIwjKEsIWR46EVCVhu/SsLWeMTvsxsj6JuLNqQgpKVTICnRrm08DVtrZQMJjcDRmzs0H3mlPhFSTyCJijkJHP6lz2ayhLzLbfUm204tKUQ+my71K4HP8PlWz1guJy3yevdy1/V36wDq3WxZGy9zeiA1mibxIeDxx1OyHCmjS0BMJKHwtIVLP83u60CuS9WV6igYtjQWeOz4suQlRkvehGHTaEG+r/GtBzqW1qzjzc/P46yzzsL555+Pq666Cueddx4++MEPNu+94IILAADf+ta3AAC7du3Cgw8+WN2jv3ft2jX4ziuvvBIPP/xwPu6//37OCwFzoWwIaWkIiJYzzR0ZUc04vEltKietU4KoQyPQj/qWma6VrybT8oPBJ1g0Gz/0CvjoBD3Jvknq9aVmMnUYYDRV45bunqnTxrWOZcHPgkKUDc2AJZB4slmTafE2K6Y9a2IpgVrUTKtmOTbJFeNcMTix8Ufv6hDNryjzCbrPT3GJqOeTYMogm7JRwFIKGPcBvXqr5WpvNXLLm7E1m7mc6LV+RqVyz6RxLOcnt5oxZUtpS5CnUuWYB3AcAo4HcAKA4wFsg5oDCXMgzBFhRGKui4RRBOY7wrYR4biOcFwkzEfCfEgY5YP4MyZ0MWHUEeYiYVsgeV/MxzZEzKNo3G3jvqeWua6l+fiaszXgNzpfD7da7n2bR0e8DiilVJnHLO3btw8AcNpppwEAFhYW8Cd/8ic4cOAATjnlFADATTfdhO3bt2czXou2bduGbdu2TZ3vKAAJSES1Rypqk4DK2V4T8r/t5/pIpNA8qoJJ2EiiGWzICKhyL8l5jSmjZjgtjR2tK1G+Z6jje4nNl76scrEhZixU2Rh5PWo3BusLx3pIcWCwV+r5lVYxAjRSwbh6PzP1kRzssECYF4BQLyk11/igPP63DZaTJetsOiQUA5011ZUYhCVPtgFsFAbAGupUcp9uI30W7ncLTMhdUyr617CBrDUCLJWOtqyM41Ly51cLfRZ87KyItlZnxImipeozIVsuE9jHJ0ZCjAmBIjokhBBAPdDLWqwkWlMMJTxuF8rQi4nDPGk761EcTnTrulbpl5Mil2tj/7wXRoC11aoHntXqrseG1gRAV155JS6++GKceeaZOHToEK699lrccsstuPHGG/Htb38b1157LV784hfjKU95Cu688068+c1vxi//8i9jz549AIAXvehF2L17N171qlfhfe97H/bv3493vvOduOKKK5oAsxJFYc6hZ8cgreZ6Srstp7SaQIeqHbJroswZAx8xON5gAAmpHvuEcmO2SgWTLiFHQwTW6h3RoBb0DmlGlqkmMSkV7aXoAQwq1hW7OFQXSAI0YA3lNI0xxbLn/L836almpQA4BxIpWR0OogBhAZ8um9lKLyApd90POJ9luMreRlIPtVGkeMAVTcB6VSl4t+od5p7lTDS2twJtxjHEkKY6mLtmGZM396jYtjof0OW+27evxPJ8Dywst47pqO3PrcDt0okdPkSOfh0EdGJIiCEi9GJ+S6KXU5mp1L6ooIQofZpIYrpGkwPKsiYi98csHFqcmAKbVhv4GhqCcn9/GS9tAFPyWpOd8d58IFoTAB04cACXXXYZHnjgAezYsQN79uzBjTfeiBe+8IW4//778S//8i/4wAc+gEceeQRnnHEGLr30Urzzne/Mz3ddh0996lN4/etfj4WFBTzpSU/C5ZdfXq0bWgtxcMGAmOoYxdo0rbl737k9WB0RqdlNg0tVEa0DOPgX+G1qb9aIxZD7YX6j3M4HrbO/DANLuW7Pl6neFvMqE8+lI9tANaMMMOpBpqtw6lA2xd+i/PetVVgDs/aJmPA0bM8cyqognROYy++1O5LWcKkaC8swdqtsrY9UQQmgQfaDgKBuLx1kcSoEJIFSX8tNSrek4KF28m1TcbmBez1Ts2LVkElIaX0uBdqjWgaplgblU/cQa8evigytXGrLajCDYMIYBUoIsURM7/O1xFO0ZHqhnE+U0FFCiHqP9GcKSBQkXjChi0DKYY8ScvQJSGaqXLZK3AKalpnNA5UFkFZf8WK1b2crFB6J+8iR0xGvA9oM0nVAP3t8BCVgPCEs9TTlPm07/dAw0zn9ta/9HqAQgK4DRlHCLwQx4QbwjqNwb5SOm/dtMQCkQDYhLti6YpUETK/x8VqPv3/aADJNlk30+TMIAKnEypJqmWPRvOhcSZ2eTdcPNH1Xkncw+MyBsA0J8+B5gm3guYJt6DCHiDmZrYlmYBOieNMFiYwQsISAMaLI+9ZEaA2FxaGAn+VICovQhad+Qs5rLraOPbBb368hCdjWd0uCHZoP8kxwOfAp9byy4a0uEaH0Gi9zD6VkzwVwG+r8YGhctyKRHhEBI0R06BBCYPfYEX92o4guBoxkW4Y+AWMSx3cijFPK84dJXOU7Iswj8fwyaTkCiHhd0QRACgGTwHOOE1CpNttEVc61bleqxda4a7XRSvCt5AHIw/v6RfCNWAe0pWPBAUYaCbwOCCiGAz9Fy09MD92h4by+LIVyQBMzkkoGIJTrAUZ7Qi1FtfrHqvqz125azHAIgFoSlmdWVooKsI7t/CSZogT01QS/deq1efEsys86KaSpBkQSKLyUwbtNlKeKQ3FxaAgitCgA1Vvh8bNRcqfzQJwDBSB9bjpCgK9v/W4ZgjejLDeZrfeQec7Xjdd6lKw7sV7zbWk/9fvqDdFD7M+/Ee7T5syzXq2RVq5LzstG61XJCbwJHfE8zihI3iKfJ9kJNYayrWVAAkIqYlJgKzrjCyFRj5543VkijeDhCmArojLFrYbsmNIQ+K2+0AKkVlu2atFmNmG4rx0b2tIApNpvBHcWVRy0I7d8hAjTbA2YZslrByF5MsTSazVlG9U4A5JRZ7KISNOZ86Kj7+Qr5gkugZY6b/I/CEjBnQPqQaIAojZxmP+qOyxnXiBzRiHMt1CpHB+t2gKN9URTbU63arbBe1QLYq1ZNzLUNxQwiq40PSBx5YJZK+9ZcAvs9dPPRi7XBr6RLXBpnVijs6/blrDR6uX++/rEMFt6XxrrcG9Lotf89SFIL+4jxcGePRGLq33ead6+LxT/xqRiijCRSPqdeUkHcWQIpWZ7AsYJWKJktHeazrSXctdMti1bNenHaAtg/P0+M+tr342mrQ1ACYBstdsJn1Jc9/M71lDkAUnJDtW1NY8BHxuQLjlGRIKWFTNF4Wo+g0OWENsvBzNq3221Cy9Tmvxn+XPIvbTFTvS7goZ9t83DEPDo/cpSij7TV4X1+S1LRUtUBGZJY2jstygxwToBnw46J6XzPurazWYY2esl/y/La/mNZUsH1XzqMioY2DrwddcCYctkbDm9BOzT89zOgpN9xte3T0O/+z7iBKlVjgrf83yO9LyHYs9GW1CeDOiUTc750P+Els4n/UpAJSZ+PkYGJF0LrqOgC2WdIaFENSqj1pSoVS3rl2Qbpfc1FNy5IQ3H9inLCVvC0eYA0tYGICSAgJCo6uTLyQze8nnkllBDRHX0YSL2WkvE8zllu05+k+UzLbCxmWrxoVVnth7CbVNPiyX4F6Jxv01fz9uObgvg05jOo5X7pqmkUcxwDAj8TInPwGa2iJH4xJVN5HTxaInfpvOGExhvKKg2Zd9ZzvVVWayWZjmPZ8WZvTXuGQKg6Tpqg8EQ+Nj0lxO7YO6x81H+na35rZoS6nkcX5qV4BHuuh8apafW4BMhey1BzGzQfsLPlfkcFO1IhiUCgxBv7V7AymY+//So2CrUmhmJb3u4Eg+Bj59xg7vu0/Kmt7ULGBtJWxqAvLwNTHdWZX92IZ2Vmv0Sv/XmJA9yAqB7ugDIDgY6rjMIyWDPGhPK/UDdF1q8f82ZbTEin/jQyBpiD3rea1VaWMs+/HX7jlrir1u1zWzLExp0FJXpTc1sGvfNRq+2TKne8qE45E47pNTBSi0wTWssoXqy3GMB3mpKydzjP4c6gtflfT5a9RdQZseH2qBVJju6Ws/WFN3RGp8W5myPDO7Q2tEwSTrTyGxUd3iiHCGDvdbA3nCTIEJgEB+fkDcEVvt9CLwOCGKCq0DTDJfslhN4PmkCGaq+qS1Or3qMrkb48Pcq+LQi8tna9c/aTM3mgI6ItK176WceVDy4rHR9Y3IEzkw1fsnxAwEejXpgSTebz79Nziw/KqNwlYLLcnJo67c/15KwvGTmnyV3j97nR6uO2GCeWQ2pSUzZEA+6MiktnlEo0QqE7VSA5OcKtW9oZOtpTyJrRrM9h9w9vlf5Z+395h7tF1WTkOF4vo6W0x9a+kYL1P25ofyhUa42eZZog7rb616W98BV57rMEOrMnrZ2ABBJlmUkkfH6AMrAI99jACJkujbI9hhFEMwjxTRvUBCikteJrSLflVc1JrX0ywl4VmCxtWTBZ8hzcjVgZjWiVWd6w2hrA1AAxxlMbKO1Go4yEcI0APmdDVrD8YjJCzT2DSqBtcCnmZBjOGvynG9N/br8TMmdntl6sPEyrh9EdjQOSfF+xNpnkZ8rT1P1bNF+Q/6s1xmpOU4978piWhvNTt/l15jUtFx9W3C1PlzWjtpKL7jvThMZVDKmtcE2oNuePwQ8Kwkdy51fuQ/anFjhr/WkAo66tQzXHteXmmBtNGsFKAWRIGAUgdwsIQIxgmO5yhEEnBA65Mj0ORGUPevkPX4XDGj662IiQ4lpuVoANDRWV8qU7x9HhfOtibY0AAGlc49Rlsr4oWeFEgtERzzns1ymKj4q0pUEoZzSfHMmaTqzeZM6qvvTqiatvORuX9jKrNIQCFkwGwKgGkCmZVgPqP6ekpbCiG71TS7fujKdoEMzmDhzlO8pf/XuMmVDBttngrmLz9qY3yX/1uxhG833uCHG7c1ZJh1q3b8Ss2i9eyUA8ufsd2siVFp5/kfvsstgbI6G+LQ1lfsVa9rb7Kosm25v+oDODFnRJYBYM5JsqzNBkBBeJCY6BTbo4lRioEoBZW+/Ft8+Yp6+HAhZwInu074c7rxN1/YLr/Pbdx17LWhrA1DC1PIZC0CtoeWH6BBZlpryGU1pBar6QGiDDjDtMJX7BU0jqHdMWnVH9wBE7tNmoNUhbedfzWSnf7evbc8+POMuh7J/mnpOny3lKoErKYfiKcNJnW5VOyqslM/YTRxKvfDwtzv1aFgezYeFrqFB7uvD0mrAxfdiTWelxh/ikivd3wJIn4eVTXB2HCqtlGt9i++x9tOnoXN6pXfyijPVeMuwkdaVXWeJkCPoB40iHngeiFCARldQ2BCPVYZ95o/YpGLrObjP1jV9aURdez4Dq0HJYws+wFYHIBWzUt1pW9OzloZNLYW0KZla0uAy5EeOTdSOStuPPN/yQorOvtq01kQtZmeRzYOP97Cx4OMl/9XUqJItfGsGps5zAZ9afCjLSlmL0Z1Z5+RQiZllZs47S88dNLq2Vn5XlYnfp7HqynAODbdwL+74nmfTbAF4q2xeQ9R7PNl8+DRX0nqHqNUGq1K1p2j986rB9L5a57Q59LxfWyKCBQXVbEvuTQioBNlOKebuH0AIsksxgw5vm6EODUBxaK2qxOPAhkwmr6Yvkfv0IGXTatVY69pMA1obOeDxh2e1tmpXU9XMWltMdxnyY97zBi8S2szZkAytTK65b9hRYqV1Je8cMKTxDJnZetSSVyvTev+wplPnwebF+1CVUR4EOCIidDtw3p0V2e2A3xgEglqaW70jZjHRKcgF6K5AnVzjaNytnuXL0X5fm2P5Rtd0W0BiaYg1+07T0kDtu4Z+H3tSE6puQuBrQ0vTCpFqnUd8T+5dy7JlWzTfAHFIoPwQqZaUKK8BgoKRfqeSt/rLRlALHOw1Cz7++koCc0tMb4HX0aetDUBoA4+SHeaeBa42Zcrf7dtWSiGUDOQv5lmdgPIqmxc0N6Q/rKaDtRim0pA7p0XNlrGklVYrLy0pvcV0p8ugLKUE37Eby5W0rU7hZ7MUTjIzyvdb76AilUfopnPrYei2DNYNxkslfq6tJVJZavXwFoPx+R3Kp7+2sZLxkF5mp9kLAAW5L7j53TRYE9ZVuxadjAcdqdu2zgOy+S0E3jhQTfu9vFDXlXOw02UKdFTIwq9+V7NbMr8tRC/XX2y669NwN4q2NADpMO1QZHHrwgnUQ9Gv+6mpxUSHpM8WSpB5zDyTd7vUT9HxvcIw2FdWqXmtSMuBj163HXJIG9JnhuYIhsDMv39IU2od00ZVu+9OhI18Xbebnd3Rd5SVQ/WWDOVJMufrcDx2+Je5QVsWb5IcAgG/GEDTshql/T4E3r7dNA/2XIvBtPr7cgxrQ2xLFXkRxPcc7nVWoOBnRlInE9BUjq1INK7eE/N/FSQiAR0RugQOw5MYXYgS0FMGHPnJGo+Zd9bhvCKfPyLSEgElvoPtE3YsDtVkK72V/BKPDW1JALIBvFveMp79eSWjPZS8LDYk9bfkNyqPRSBvNEdwvdXcu+o2P5qdw6thwV1rMa0hQPZS/Er3tUDGMktvnvL2SSYWPDgO9UScDzgHOoeT5A6d0VHTWswsqd7Mg0yuFIYYvjoDRnYPIC3PNDuEK1dr/ssyAJ2QiMiBDmWLgOk6U7IMyLZZ670t8gDq+/fGaj+a6kq/fRsoqYYEyZlGvrfP1r+LcBJNO4YEDlTaQfYO4npOSAwyifEoCS714EjaUwLsMePdtlR1f61N6S0wsmPIL8dffwE2YiOFLQlA3//+9wEAtx+V1H0XXgPlnrl5EsXaiFA65NYkArCEhCUAh7C02dnZGDqqEvVjl1Qer1txfZVRNhK2Ao4j7f5bhqrtkTedDh06hB07dhxRGlsSgE466SQAwH333XfEFfB4ooMHD+KMM87A/ffff8T7dDxeaFYnbZrVyzTN6qRNvl6ICIcOHcLpp59+xGlvSQCKkVXOHTt2zDpKg7Zv3z6rF0ezOmnTrF6maVYnbbL1slGC/9AKwhnNaEYzmtGMjirNAGhGM5rRjGa0KbQlAWjbtm1417vehW3btm12Vh5TNKuXaZrVSZtm9TJNszpp09Gsl0Ab4Us3oxnNaEYzmtEaaUtqQDOa0YxmNKOtTzMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptCWBKC//Mu/xDOe8Qwcd9xxuOCCC/CVr3xls7N01Ohf//Vf8au/+qs4/fTTEULAJz/5yeo6EeGP/uiPcNppp+H444/H3r178c1vfrO65wc/+AFe+cpXYvv27di5cyde/epX44c//OExLMXG0lVXXYWf//mfx4/92I/hlFNOwa//+q/j3nvvre45fPgwrrjiCjzlKU/BiSeeiEsvvRQPPvhgdc99992HSy65BCeccAJOOeUUvO1tb8NksqVis1R0zTXXYM+ePXnB4MLCAm644YZ8/YlYJ56uvvpqhBDwpje9KZ97ItbLH//xHyOEUB3Petaz8vVjVie0xei6666j+fl5+pu/+Ru655576DWveQ3t3LmTHnzwwc3O2lGhz3zmM/QHf/AH9IlPfIIA0PXXX19dv/rqq2nHjh30yU9+kv7jP/6Dfu3Xfo2e+cxn0qOPPprv+ZVf+RU677zz6Etf+hL927/9G5111ln0ile84hiXZOPooosuog9/+MN099130759++jFL34xnXnmmfTDH/4w3/O6172OzjjjDLr55pvpa1/7Gj3/+c+nX/iFX8jXJ5MJPec5z6G9e/fSHXfcQZ/5zGfo5JNPpiuvvHIzirQh9I//+I/06U9/mv7rv/6L7r33Xvr93/99mpubo7vvvpuInph1YukrX/kKPeMZz6A9e/bQG9/4xnz+iVgv73rXu+jZz342PfDAA/n43ve+l68fqzrZcgD0vOc9j6644or8u+97Ov300+mqq67axFwdG/IAlFKiXbt20fvf//587qGHHqJt27bR3/3d3xER0de//nUCQF/96lfzPTfccAOFEOh///d/j1nejyYdOHCAANCtt95KRFwHc3Nz9LGPfSzf85//+Z8EgG677TYiYmCPMdL+/fvzPddccw1t376dFhcXj20BjiI9+clPpr/+679+wtfJoUOH6Oyzz6abbrqJ/t//+38ZgJ6o9fKud72LzjvvvOa1Y1knW8oEt7S0hNtvvx179+7N52KM2Lt3L2677bZNzNnm0He+8x3s37+/qo8dO3bgggsuyPVx2223YefOnXjuc5+b79m7dy9ijPjyl798zPN8NOjhhx8GUILU3n777RiPx1W9POtZz8KZZ55Z1cu5556LU089Nd9z0UUX4eDBg7jnnnuOYe6PDvV9j+uuuw6PPPIIFhYWnvB1csUVV+CSSy6pyg88sfvKN7/5TZx++un4iZ/4Cbzyla/EfffdB+DY1smWCkb6f//3f+j7vio0AJx66qn4xje+sUm52jzav38/ADTrQ6/t378fp5xySnV9NBrhpJNOyvdsZUop4U1vehN+8Rd/Ec95znMAcJnn5+exc+fO6l5fL61602tble666y4sLCzg8OHDOPHEE3H99ddj9+7d2Ldv3xO2Tq677jr8+7//O7761a9OXXui9pULLrgAH/nIR3DOOefggQcewLvf/W780i/9Eu6+++5jWidbCoBmNCNPV1xxBe6++258/vOf3+ysPCbonHPOwb59+/Dwww/j4x//OC6//HLceuutm52tTaP7778fb3zjG3HTTTfhuOOO2+zsPGbo4osvzt/37NmDCy64AE9/+tPx93//9zj++OOPWT62lAnu5JNPRtd1U94YDz74IHbt2rVJudo80jIvVx+7du3CgQMHquuTyQQ/+MEPtnydveENb8CnPvUpfO5zn8PTnva0fH7Xrl1YWlrCQw89VN3v66VVb3ptq9L8/DzOOussnH/++bjqqqtw3nnn4YMf/OATtk5uv/12HDhwAD/3cz+H0WiE0WiEW2+9FX/+53+O0WiEU0899QlZL5527tyJn/qpn8K3vvWtY9pXthQAzc/P4/zzz8fNN9+cz6WUcPPNN2NhYWETc7Y59MxnPhO7du2q6uPgwYP48pe/nOtjYWEBDz30EG6/vewf+9nPfhYpJVxwwQXHPM8bQUSEN7zhDbj++uvx2c9+Fs985jOr6+effz7m5uaqern33ntx3333VfVy1113VeB80003Yfv27di9e/exKcgxoJQSFhcXn7B1cuGFF+Kuu+7Cvn378vHc5z4Xr3zlK/P3J2K9ePrhD3+Ib3/72zjttNOObV9ZlwvFJtJ1111H27Zto4985CP09a9/nV772tfSzp07K2+MxxMdOnSI7rjjDrrjjjsIAP3pn/4p3XHHHfQ///M/RMRu2Dt37qR/+Id/oDvvvJNe+tKXNt2wf/Znf5a+/OUv0+c//3k6++yzt7Qb9utf/3rasWMH3XLLLZUb6Y9+9KN8z+te9zo688wz6bOf/Sx97Wtfo4WFBVpYWMjX1Y30RS96Ee3bt4/+6Z/+iZ761Kduadfad7zjHXTrrbfSd77zHbrzzjvpHe94B4UQ6J//+Z+J6IlZJy2yXnBET8x6eetb30q33HILfec736EvfOELtHfvXjr55JPpwIEDRHTs6mTLARAR0V/8xV/QmWeeSfPz8/S85z2PvvSlL212lo4afe5zn9NN7avj8ssvJyJ2xf7DP/xDOvXUU2nbtm104YUX0r333lul8f3vf59e8YpX0Iknnkjbt2+n3/7t36ZDhw5tQmk2hlr1AYA+/OEP53seffRR+t3f/V168pOfTCeccAL9xm/8Bj3wwANVOv/93/9NF198MR1//PF08skn01vf+lYaj8fHuDQbR7/zO79DT3/602l+fp6e+tSn0oUXXpjBh+iJWSct8gD0RKyXl7/85XTaaafR/Pw8/fiP/zi9/OUvp29961v5+rGqk9l2DDOa0YxmNKNNoS01BzSjGc1oRjN6/NAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCn0/wFALepbmQIwgwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from PIL import Image\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "\n", + "# idx = 1 (leaves)\n", + "recon_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-13-26/digicam_recon.png\"\n", + "lensed_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-13-26/digicam_lensed.png\"\n", + "\n", + "# idx = 2 (cake)\n", + "recon_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-38-07/digicam_recon.png\"\n", + "lensed_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-38-07/digicam_lensed.png\"\n", + "\n", + "\n", + "recon = np.array(Image.open(recon_fp))\n", + "lensed = np.array(Image.open(lensed_fp))\n", + "\n", + "# plot the images\n", + "plt.figure(figsize=(10, 10))\n", + "plt.subplot(1, 2, 1)\n", + "plt.imshow(recon)\n", + "plt.title('Reconstructed Image')\n", + "# plt.axis('off')\n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1.3333333333333333\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADTCAYAAABZRFVOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hlV3XnjX/W3ufcWLm6uruqc5Rare5WzlkEgUgGS2AMBmMwnjHghNP7OBtsnMf4HRtjkww4wBBskxGSkJBQQjl3q3Os6srhhnP2Xr8/9j63ugH/LHk0r2eY3jyiq27de+4Je6Xv+q61RFWVU+vUOrV+YJb5zz6BU+vUOrWe33VKqE+tU+sHbJ0S6lPr1PoBW6eE+tQ6tX7A1imhPrVOrR+wdUqoT61T6wdsnRLqU+vU+gFbp4T61Dq1fsDWKaE+tU6tH7B1Sqh/wNdVV13FVVdd9Z99GqfW/4frlFADH/3oRxER7rvvvv/sU/lPW2vXruVlL3vZf/ZpnFrPwzol1KfWqfUDtk4J9al1av2ArVNC/RzWoUOHeMtb3sKyZcsol8ts3bqVD3/4wye959Zbb0VE+NSnPsV73/teVq5cSaVS4dprr2XXrl0nvXfnzp285jWvYfny5VQqFVauXMnrXvc6pqenT3rfJz7xCc4991yq1SoDAwO87nWv48CBA99zfh/84AfZsGED1WqVCy64gNtvv/0/fK179+5FRPjjP/5j/vt//++sX7+eWq3Gi170Ig4cOICq8ru/+7usXLmSarXKK1/5SiYmJk46xj//8z9z/fXXMzIyQrlcZsOGDfzu7/4uzrnv+b7iO0489++HB7RaLX7zN3+TjRs3Ui6XWbVqFb/0S79Eq9X6D1/rD9pK/rNP4P+UdezYMS666CJEhHe84x0MDQ3x5S9/mZ/4iZ9gZmaGn/3Znz3p/e973/swxvDud7+b6elp/vAP/5Af/dEf5e677wag3W7z4he/mFarxTvf+U6WL1/OoUOH+MIXvsDU1BS9vb0AvPe97+XXf/3XufHGG3nrW9/K2NgYf/EXf8EVV1zBAw88QF9fHwAf+tCHePvb384ll1zCz/7sz7J7925e8YpXMDAwwKpVq/7D1/3JT36SdrvNO9/5TiYmJvjDP/xDbrzxRq655hpuvfVWfvmXf5ldu3bxF3/xF7z73e8+Scl99KMfpauri5//+Z+nq6uLm2++md/4jd9gZmaGP/qjP+q876/+6q94xzveweWXX87P/dzPsXfvXl71qlfR39/PypUrO+/z3vOKV7yCb33rW/zkT/4kW7Zs4ZFHHuHP/uzPePrpp/n85z//H77OH6ilp5Z+5CMfUUDvvffef/M9P/ETP6HDw8N6/Pjxk15/3etep729vbqwsKCqqrfccosCumXLFm21Wp33/fmf/7kC+sgjj6iq6gMPPKCAfvrTn/43v3Pv3r1qrdX3vve9J73+yCOPaJIkndfb7bYuXbpUzzrrrJO+84Mf/KACeuWVV/6792DNmjV6/fXXd37fs2ePAjo0NKRTU1Od13/1V39VAd2xY4dmWdZ5/Ud+5Ee0VCpps9nsvFbckxPX29/+dq3Vap33tVotHRwc1PPPP/+k4330ox/9nnP/+Mc/rsYYvf3220865gc+8AEF9I477vh3r/P/hnXK/X4WS1X5zGc+w8tf/nJUlePHj3f+e/GLX8z09DT333//SZ/58R//cUqlUuf3yy+/HIDdu3cDdCzxV7/6VRYWFr7v9372s5/Fe8+NN9540ncuX76cTZs2ccsttwBw3333MTo6yk/91E+d9J1vfvObO9/zH1033HDDSce48MILAXjDG95AkiQnvd5utzl06FDntWq12vl5dnaW48ePc/nll7OwsMCTTz7ZOffx8XHe9ra3nXS8H/3RH6W/v/+kc/n0pz/Nli1bOP3000+6H9dccw1A5378375Oud/PYo2NjTE1NcUHP/hBPvjBD37f94yOjp70++rVq0/6vdigk5OTAKxbt46f//mf50//9E/55Cc/yeWXX84rXvEK3vCGN3SEaOfOnagqmzZt+r7fmaYpAPv27QP4nvelacr69eufy6V+z/ru6yjO7btd+uL14voAHnvsMX7t136Nm2++mZmZmZPeX+AGxblv3LjxpL8nScLatWtPem3nzp088cQTDA0Nfd9z/e5n8H/rOiXUz2J574Fgnd70pjd93/ds3779pN+ttd/3fXpC96g/+ZM/4c1vfjP//M//zNe+9jXe9a538fu///vcddddrFy5Eu89IsKXv/zl73u8rq6u/+glPev1b13Hv3d9U1NTXHnllfT09PA7v/M7bNiwgUqlwv33388v//Ivd+7pc1nee7Zt28af/umfft+//89gBz9I65RQP4s1NDREd3c3zjle8IIXPK/H3rZtG9u2bePXfu3XuPPOO7n00kv5wAc+wHve8x42bNiAqrJu3To2b978bx5jzZo1QLBkhSsKkGUZe/bsYceOHc/rOT+bdeuttzI+Ps5nP/tZrrjiis7re/bsOel9xbnv2rWLq6++uvN6nufs3bv3JGW5YcMGHnroIa699lpE5H/xFfyfu07F1M9iWWt5zWtew2c+8xkeffTR7/n72NjYcz7mzMwMeZ6f9Nq2bdswxnTSM69+9aux1vLbv/3bJ1l4CBZxfHwcgPPOO4+hoSE+8IEP0G63O+/56Ec/ytTU1HM+t+djFZb8xPNut9v85V/+5UnvO++88xgcHORv/uZvTrofn/zkJ09y5QFuvPFGDh06xN/8zd98z/c1Gg3m5+efz0v4P3adstQnrA9/+MN85Stf+Z7Xf+Znfob3ve993HLLLVx44YW87W1v44wzzmBiYoL777+fm2666XtytP/euvnmm3nHO97BDTfcwObNm8nznI9//OMdBQLBMr3nPe/hV3/1Vztpnu7ubvbs2cPnPvc5fvInf5J3v/vdpGnKe97zHt7+9rdzzTXX8NrXvpY9e/bwkY985H86pv6PrksuuYT+/n7e9KY38a53vQsR4eMf//j3KKdSqcRv/dZv8c53vpNrrrmGG2+8kb179/LRj36UDRs2nGSR3/jGN/KpT32Kn/qpn+KWW27h0ksvxTnHk08+yac+9Sm++tWvct555/1/fan/+63/LNj9f6dVpLT+rf8OHDigqqrHjh3Tn/7pn9ZVq1Zpmqa6fPlyvfbaa/WDH/xg51hFSuu7U1VFiugjH/mIqqru3r1b3/KWt+iGDRu0UqnowMCAXn311XrTTTd9z/l95jOf0csuu0zr9brW63U9/fTT9ad/+qf1qaeeOul9f/mXf6nr1q3Tcrms5513nt5222165ZVX/k+ltP7oj/7opPf9W9f3/dKCd9xxh1500UVarVZ1ZGREf+mXfkm/+tWvKqC33HLLSZ9///vfr2vWrNFyuawXXHCB3nHHHXruuefqddddd9L72u22/sEf/IFu3bpVy+Wy9vf367nnnqu//du/rdPT0//udf7fsET1VN/vU+t/v+W9Z2hoiFe/+tXf190+tf7tdSqmPrX+01ez2fwet/zv/u7vmJiYOFU2+h9Ypyz1qfWfvm699VZ+7ud+jhtuuIHBwUHuv/9+PvShD7Flyxa+853vnESoObX+/XUKKDu1/tPX2rVrWbVqFe9///uZmJhgYGCAH/uxH+N973vfKYH+D6xTlvrUOrV+wNapmPrUOrV+wNYpoT61Tq0fsHVKqE+tU+sHbD1roOyHllQxoqRGSQQsHiOCQzBACohRMAZrBHBI/J8iqAICDkCUkhGMGNqqeFVKAkYEI2BEUSV8ThRjBNHABBEURbAqiEAugsEgxmFEUB+Ob0VIRPCEY4VeG4KE00BV8Wq+62+eVAxGQKyiKEaFRAwiYA2IKIrBiUEAg8fG8/VOyLCoeBJVDAGucCrkPvycCCQ26lKjiIKNPxPviYgl94ogWAupCgjkKJlTHAY0vj9cTfgVwViD9w7U4hC8KhbBGo81ikr8rAipiVet4b5aIBC4DIl4DIIDcoHcebwXjDEYVRJRVBSV+JRVUMCL4DnhOSKoWhBPYsI99wpWJDwvic9ZDSrh/ogIGLBiECmRe0sbxYggBqxJMdaApDgMXsAaITVCmgqJFYyxQIJaC4nFGsGIRQWMTRBr4zEMai3GWERSRAzGhHNwavG2hElL2KSEScuQlBCbYspVTJJAmqK2RGItaSmhVC6TliqYtARpSpKUsJ3jG1TCszQ2hXj9Xkz83ign0Hmmxa8Fr27z6SPPn1AnJhxZJTx5UcGiWAGP4AibwKB4r1gbBEEQUPCAR/EaTi8IuSIoRhSJQhIuJ2wQ1fB59eAVjBgQjzFBEMLeDDcJYwDFJGFTeudRwAioEcSH4zqJwoXgFLwGNaE4QHDxcDYe2xiw4lEknLsakKCIRASRcL3hXIPge4IAWggCRThW2OyKeCXIZRD7tvMIhlQgTQwa7yHFvTMKGu6RFfCqeEC8xHsYnomiqM+jIg3nhCrxlgeBAqwKRoOyjI813AshnnNUUgRdk8Q7FPSHB1EMQqbgREk0CGPRpEiiBvdRoRvjER+UnusogcXNqqqIeKwJiloV1IefxXjUgPPBgCQqiIa9JnHfdIyFCppL2EtRMTgUq0qiimBwIiEn7pXQTSA+Dyn2d9wDYnBiw14HPB5Rh6iG/SQmXIdYvAT1rhKObyTsX6Pg1WPUhH9NkAlEUA3PvDh+IcTxjpwsfPEZPltE+1kLtTVK2Npx0xqz+Ng0aBxBMAoSNY4XCVYWEB9uniFYCw/gHYrBmvgQwjbChx3buRCDxUjQ7tL53lCWaDQ8ODRo8bDvfLDEhTUSHxSPD1aLaB2Q8IDQ8BC18CpEcCaca3hAPmhYDRYoqLHwmQ6ZNB5PJEcUpHivCGqCF1IICoWVi/fWiyDeBovvgweU2sV76iUoKPUnWGRTbIywBI9quD/e6aLGL4QkKiXnHGKCskqihQ7qMAhidBjIFXKNr8oJClI9DiUjWFbjw4bPADEmbGQI98wZxFhM9OpyDUrdGokeQhAmIwZvggJEFS8GxaBeMOKD5yQJWbxaIwYfzxo0KCkRMAY1JnhgBD2fFnsrClqUkY4yA4jfhgh4Aw6DwYJJEJMEa44JCl0F0eDteIKyNYAxCYrFI+QsXovxio97STXsp3ASwdgsngUn/Bz+LewVInj1PFuxfg55ah+EirDZHGAwJFHlihjERFfZBLdNJFiC4obZxEIhhIVbptEKR0sUNo+AmI7rDD5uxOCSqoIxYSMYJzhVvJdgvSS8B2PICcKVig9CgpJrUEI++r2pelAhVyGP98x7jbYOvChq4nnFTSQCVuPPyAlFBwZD0OZGbceydcQmPqTgAscNi+CibnBA20FqBIwN/kq0xD6eoxJcdhPvu/Ph+wWHkUCvVA3/eonfq5B7MJqTeAuq2EIhoeTqw4n5oNCiCgnX7oNyKu6HU0G9x9lo2uP5KSaEKihOgsse9r7rKD3BoBoULsYE1agaXOpwpogqgicpPo/tXG8S3XzvIV4sRlxQrsZgJYaG8d4U4VUJE68ran2J+1MVMVGZa1BoiQpiC6UQwo24o4LeLryesOuxqlgUMeE6nMY/OocRgxrtKNaiPj4IdrhWLQ4cn4WicT8VFluiHC0qpX9vPWuhdtG1NiZaUoJGdUKMnzwStW4QgHDTTIyvVBa1VKHNnYAtNroqXoJYRM88aLvoHYRnEQTB+3hTVRAJboyJblXhagYXJ8SyRmKoYMCpiRtMsD54Gj66cUaDQHuCuy4iQZtKEKRw+kEpoCa+Fm51sOQgGLwIarWjBCwS9n88Tjz16P6Gm6EGUMX58D6jLrqRQTFZE+JwVXAueCZh+/vO9XTCFS3ch6CwgrsbrLqTnFQsGI9TEO/xIlghKCRseBZxrxkB68O1F8rYigkWKNzoELxo+L5EZHEfpCXEK15zfPQWYpRE7qPnV9y/qOCDZ7B4r8M1JHEP+aAaTKFgQ6BhROk8VYnHVAs+CLOL+0lMOHhHacU9akXw3mOiRbUo2nGrJcbyMf4+8fykQIziqRYmrHCTTLyBce8uKv/CqJ0QN0tUaCIE9W47iqTz+ZOs+r+9nrVQGxPiBu8LwDxsflXtbDgnvnOBneuRcEJJtPDFg/OdCyguMULxHcsfNHNwp6LV9ESHHyQCKybG5aoOlcKKx3/jTfdBBrAilERwKCbeeFc8oXBSnbuoGhRRsNrhs+GbLEUIZgSsNZ2YuriWwoZrdPVFJV5PcAmdeny0OBLvj2q0eArOOYwubtvghvl4v4JFwEgIaUwIK9Dg5sfwLoQ6Mba00WNKKikrNqzD9g1y6L4HyLNGuE4NCi+xilFP5iHz4I0liZYjif6GCY51FMig8PCKx0dgDiQRrLHBdQW8U7yGkCkxNigIDcFcYgJA6WIIJPH5BnwmQfDRowlxqTVCYgKYFbwmvxjmaNgrBoMVj5F80cuK1lwxUc4sohYKKy0W5z3qPRjTMTQh1JMTXHgFdfG7C88mhBSeGB5KjJVlUQgXFVXxgEwIUztKOIarLBq5wnONR3i2ovrshbrAjYV4ThSay3cuEBM2qhHbiYl9YRU7Fo1OLKxFXEJElqO1KmINr4ULZzrxpBQgRBFwSLSIKqgLLjUd0M1H1NyTI6QaQC+DD2GAFC4g0cqGm+pVcSjqlVQK5RHhJ43HNhKP77HGoM7HGEsw6gGLESWPVjogxuG9RiF3dNzxzn1BI5odtbKLLoktNhUBJIrCFBCIePqqqAOx4bq9NVRLhjXbttNu5Mwc3c8L3/BCVp6/DVZdzUOf+SJ3/NUf4TQL1rRAxQiudPBYHHkE01BiViPE2k4DeCqFNxX1YS7hMOJyjDRRkrBpRePG9h2PRQhofwDiosCYBC/hPxEhJcPisZ27YzqhGD4All7DPY3aLjx5UcS4wgSgGKwq3kbpiu8Vjfs4KsoMMEWMHjZ+sJLqg+FQC+rx3pN4DzaN3lyhfKPXVVhiCk+ksLbxZhbWXxeBzvgXCgCt43U+x/XsY+qoeWyMZ8Omyikeq6GQp8X4w0dN42LcZSRYLNXCBTJYBfAUWR7ExhguurbBTyXAp8F6FtdqpbiZivEhNkUJAK0JmwgXBNv58ClrAyqtYmKIIBFpDq5/sEBE6x5caSF6FgSLGeJIi6LRi3AnaNTCwuaoSpAyAbwPG63YzMagFJsuIqkEN9upJ4sbuUCSrRaejHSArSAGPuxPLPjgBnsCgHXRyy7h/J9+L+1WnYPf/CSrV04hh26G3hJbX/5KDt17E8d27mR+bBzVhMwFTMQhGBuuzamQRS8nlZiq8kH1WB99kuhBhJibGEJ4bJ6j4uLOMEEhRQvkZFF5GQGL7cTQxqSohCxA1PQYDaGaE0PuTdgz6jrhnoiC5AilALCKCYohfneuwXuzMfXpC+UZ0VVf7OJozTWCvCrBm0vELIKPGlxs9S4q+sKyRtkM8D3qNBqlIhNR7N/CZdVFL7E4tMa040lr0YN8NutZk0+MNVhrSExIyySipIYYQ4XYMzhSSi4eL3TSPEV8Ha5DYqwmweUzwVULrpNdzBlLxGHEFFui40YZA2I9iMOipEBqg/sI4KOFEw2giSE8kAzFeY1ucXB0or4OqZyYLgtKO4YbBAH3Svysourx3uG9kHlLyy2GBSG9FzeJBEAt9XmwatF987rooofYtcjrFhsnIMW5D4k2r0X+0i9q9iKlZoJVMV6LQA+VFLXCwPISSbWH6uBSNr70RkzfJpzvRibHqLSf4OW/+mYueOMbKFdLmMTgbYKzFpOkWGuxNig+p5DFcxWgYgwlGwAkJ+A6oYEEj0njnVVBfQJqsWi4xhizlvFUCpxciQBn9Px8G+vbWJ9DRMyJnzXqwbsABBIUvjFFRE0EcQVHgsfGvHlILeUSPRIf3x/BLTHREzIm4CUnegVi8NjoLwSPkbhzFAHvYlzoY+S4GL55LYDLIMAFUBZN1qIsRyt9srv+HzTTPJc8dYFkG98BMUzcuJ6AJp8IdGkRLxJvt0gAkGKsa2OuNx4i/Ex4j49qrUgfFa6Lie6fid+fFACZBKDOesVFIC8YEQ2xVwR3Q17aRMJEkaAL1qlAHYPwmI5W1QgCeA1a3XntuE2Fc+WJ5BSIqYsTr8nFXHcnqIqgmAmkAwhejxIBuGLThA0a8CePirJs/WrS7gGO793H3NQs3kNubRANCXFpQLo9beeYbxCsiQHKfeTLdpBPLWCaij7yPzBrz6A1cxRJy4gPysrahCStBGJQ3sa7PGQ6nCPzDith0wicQAqSDn8hPEZBbFCKQTl6bPTNMhVKFKlCoQPRRKEM7wvkGZESHoMXH8CwaAwyCuMQlEiIuJP4c3hWNj5/GxVNQMuVPIaJxd5EFvGTwnoKEgg8HpIkJTemQ6UyIqB5ePYdb0NjxiMaMBM9rxhGds612BsmhHQdEO0EK9zBmfQ/LuTPXqjjiXsjJAQrGk1G1G6LrkXxewBBtBMHQ8w1Ey1vfF2BJEIEuYD4yLSJxkc0KhOisEJMb3TwUQpAKTExbSUhDSAaDmAQxBdpLiJpho6gBc0Zc93RTVYFG9lQIhanJ+SJowNc+E7egbGKkRybWLwzkWyjwQJEwTYGVCzOG5okWByVNCHPHU4difVk3iA+x0eSiFMlt57+lV1c+SvvobUwz7FH7uOuT32ZQ48/g/c5We7IsWTOMd/OGZ9t8czYLNvJsUZoToxy18f+muqS7awfmmFg2enMTMD+Bx7HeSH3HqNC5pVcczCGcrXMNW9+G93rd3Dsyce495/+jnx2hoyQpiolJXyeYcWQ5Rm5c9GNtVFhKwkuhE5qyBW8D9KUJjYAeR3cIyiH4I2GfD3WY6VQIcGjK0DQQqAUA96iJoBeAZE2OB/TfqIB1fYBlMtVyfEknZSjRoxIg8UVA+QYSSLJJHyOwhs1SfhW7zoxvRQCHvecEYOYBGNt9CJONErBNRdMTGkVoej3AmtaeGOFN9zx//89WX3WyxeKkbaaEO9FASnQRzDk8cGk6klIws2IZ1lgearFTQgS2XmgMXbqmCmJ1k4lCLq6iJpHIKFADWMcaU1w1RFH0N8F9GUAF+V3MS1hFPIollKkfkQ7cZpKyKsWML74cO65RgFFI4ATI0oNVj8xgYAQrLZ09o7Eh5oQ9s6Oc7ay4/Wvp3v56TTmFnjqlq/y8Gc+Du2c3EdmWURIm224+44nOO3rf8aKl/8B619wFiMXvprdN3+Wb/zlXzMxGR+4s+QeFlyLf/q7b3L+Rf+N1Vf9PEm5yvI1K0jtHP3nXoxPLHf+4R8zuvswkqQYZ/B5jtPgSmYuZ3DLEOte/AKS+mks3Xoptqx8828+SDYfcAmnDislklqdelrGe09jfgbXbqHR4mrkARgTQrZcbBBw50mj0tfCO4tp0cIo4DM0MrGwIY41KGWTBJBTglD7qOAxgtGIv4h0vDUiuq8d4ShelqhUYsJWoj32wZoaTEzVOayxOJMiNiEgkgVHUkASMDayEcOeMDbQPk9OZRX/avS+iowK8X0nR8PFx55rdfSzT2khIEGbg5AIEJlGNlrtIm8ZtriJijNS3HxwVY1ZvJDw9oJMIR3bR4EBxzhKTMjHiphIuogEhM5miP96T2KEko0PGYOLN8UX8Z4N31mQaVQCXVQjTzkRE2O4gs5Z+BKwiPSHCN9Kwb0OYJWxtqPgrC1ixCIlpxF0Cxt58zkbueIX30pl5XJkZie95TGWvOF8lqxfz01/9Lu0sxxr4ZzLtrHxyvOwQyMc3Ge58xuf41J9NyMvfCuV3gs47fo38NS3vsnsHQ/j8jwwjzRcy8RYg//3Fz/Iy37oXk5/6StYvSYncZM0DtzJIzc9yMT+6WDV8hbOeXzuGBoeZNkZp1EZXkW9p4Y0pqGrjSl1cdpL38jue+/lmTvvCnG281jxZAtQKiu1rh66KnWyZhN1jYD4p8rAcD9529GcnmZ6Zo52K8dKgkqh0ReVfQE4FHfKa07uBCtpDJsKwDCk63zMwrgCaZbFz4Ywz9DhYsW/BRJhIZCWE7LcMbYvwK0QD4vzJMZhEfLwoIPRMAZf8MejpS4srxE6Ql3sT4l71cWTKXBgOt8XQy8pPEA54fdnv55TSktFSCW4D9Ej6bC4CmCMeIuwBjWLm7twU4wNNtm56CJrTPkEWDjmb4toNV6U8TFWozDrnb3gVLBJoXQWH2rMKoT4WhTUdICqGBGiCFYNRjx5IcjE3LcUyiCc52Kcr6AukhFi2EGI3W2R2sB0+OxeT8Spw7WnxnPGZVuoDY9AcxTGdqFTj2HTb3P65T/J3m9fymM33cRVL9/GjsvXY9uPIwt3M3LJy1l3wR/zld98G+cf/h3Wv+SNHHzmKHP7n2FJfy/Hjk+Q40nF05UKvQk0Zx1f+Md7ue2WpyhJxkDdUu4aoGS6qVR6mLfC0MoRRnZsY/iM7Sw9/QzqS1dAZUkRXeHdBAujD7Pz9ps5/ORjBOKnxxgbQSBPu90km3bYJMUaS7lUZcXm1Zz9pjfSMzyM5m2yZpuF0VGOPv4ou277FsefeSZYVy8YW6hOASXyCHzEL6KH5BzGSnTnowsb89gqiwpcWQQ7A6U2eF6Bcl+EixpDvIjJRBe/oDwXCHbHXPocY9rhO6WESojhDYtGquOxxr1RZDk6CiimAgtXvNin30tK8fHzizLwXNazFmq1ClgwDhM3aiFjLsa+SLwPJmg8ilPSGCsp4YRPuPnB2vlOfFPgjoUld/EhF9cXs5CdUEC8DW6w4YRzCjFBiO4WY+UT8+I+usURN8GyiKgFwItA8dPoZImPbmI4H1cE9ybSOKPQWrEhPSOLtNBElTymaESEWr1M76p+SJei2QSSCzI/A/kE0n8rZ7/uVVTz/ey4+kxMY5bs8Ch2fifp/BGWXnM5W1/9kzxy0z8y4+9GpcS2l7+Ecq2XXCuYcor3ltnZWfL5SRqHj9BsTpNpQp5bumspS1cOMjAyQvfwCqS8hO6VKyj31MFaDDmYDJpPQzaJVlaw9/Zbue1DH6V1fJJ2K5qXuFHF2g7pxztHy3kwMC8lrn7pZQycdgmGNjp5L7a9m9q6zSzZ/kbWXfvDPPSpj/DkF/+VkIpyJDFL4ZETcvgBmPTRunkXwx0J3pF2vLfwLJ1XxBaZiEVvj4Lb7xVNTIznA3AjkcqJBhJNRIIC8BWlVdXgfY7FIRLy0yeyxRZTmYLBYgqCiUR0XoLx0njfimzWd1tjkUW/sOP16nOz1s/e/ZaYjFBHATwFLRfOQiJjSOPruLCRvRNEXEff5DkdAS8E0IpGN/VEjdXxygIIFYkpBS2vSEsZG+NgFjVLEcOLFKV/wRpbCRnlAKwVtI0I7cQwwEssQSTEYOo7UQ+YAPQoMX+sBqt5jIUU52LG2USwJ1r24AYKJknIxeC8x2gDpQdTWQYDG9Dxp2F+DDM7Sv+ybs65Zivl3tVk7jgLzafQ0QY9HCOZe4pzX/lazn7pJVFhOoyfhNY06jJ8axwjKVpejamvgnQ5XqcRuhASxNhipwfUwVtEG/jpx8ln9pNUBzBDF+B1GjNzFJ19gqEBuOhVL+HAowd46lvfip5UsScKMiyIKk6UdubRco1qT4boDAtH72fn17/A+CO3MbzMsPLCC6md/04uetsvkDcbPP31r2B9RJhPQH+Jz4EivNNgQNQrTlyn7kC9x1qJpZpESnL4oIsevfEglg442wmspQAwC9JK+JvRGKVFDMebBCkwm8L6mqLAJ5bPRk+VE4p1wllEUNiEMmETi0wKMkpHXKN1/76rk9b899dzoomGvJzpQE/FdVhbIN6GnBCLOLVEvkewpNFdt2ICz1Yiq8wqmdeYghAWOTgnedt07HDUclYETBJEVEO+lGJTaNTIhiITGjUkJHh8zPdqdLmJthYCm6io9vIu8IhtPBuvkMZQw3dUUnTbKFwsYhlq8AxcTGf0Lxngyp/7VagsYeLpe8Hvg8YzaHUVdE9A9xrUNRHKlCtQ3XweuBRqlsx205wWSrUy3aVu8A3M+NNkjSnc3Azzk8doTE0wP3WchclRtDHLys0jlLq66VpzNunwmdB3PoIFzdF8Gskm8M05mtNjHNmzl0fvuI+ju55hx4XbuPjtW/C+Spb1ULKGLr2bzeePsPTct3Hg8UeYH5vGGkulVKKZ5R3vLClV8XiylqOhNe788Id4ya/0sfOOvex+ap5nnkyYufkoG2/6HC9+d52hF/w/bHv1G9h/z/3MT03FfWKi2+w7FODcu8BWRMhUowGJ7qkQWV4htLNioncX90FBBY0YTyduFOlQR4l5bo2ucwCuompXYgGQDV6BLioer4pVj2iOaJmiXvq74+Qi7LIQa6el4yEuFssU+7BzZeF4Bd7As7fWzx791gi8a+EaCaoZIiUSSRDNcBpz2D42JwgBbietFPgnWtwrjIl5aaLWLARaJBbhSHSJlAKEFkLjADGRxRW4qLiCRBA873g4G13sKHpFXlwLsKW4tpj2sLZDLkCUYrCjSNAOhdsUHXUgEE1CnJ3EmMoFZUFgLs97ZaHpOPMVF7HyildhmGHVeevQtgN3CKQXqZ2N31hG5rdCq4GZOAKmEhRoWiEdGKE5uJLSpnVQGeDoE7ey946bGD82xtzEBFPj0zTmWvhWi0xhYGiYVu8KNq2/ElmxA7qWgzZws0+QjY8yOzHL5NgkB545wKP33MvRPeNkLY/VjKX9/ejsUzz5pW8z/sR+zrn+aupZArqHZPAMSinMBjNPo9Gg0t0DpkKrMYtJLD2VXnxrnIWZI9x71wzLP/mPnPVjv8m2V/0MjdkFvv0Pf8PNn/gsS+8d47prU7qWj7D9xjex+557mXjqEUxrrvO8gsD6Dr7hCPn8xBOEzxuSwnU+wRVWDE6Dgg6ElSL8M6haAuYRudcmgG0qBpIEFRvBXYtPzEnsMxONhfUuhB3GUPDlKIgsUfAKTsUJkWN0yQtDEkICOqAYsQDKdkhXxfUUeNSzXc++SsuDERfd7ujiWIl2L8aVMVAwiSnITyHCiIUeBZkjVMUQC8pDQwV1vri2Du9W0OjydkDRWJGjqKYdZSAx0SkuWEhrC08iAF6d9BtBc0q0xohDvaDGRhe+oyM6mlwkEBE6994Y8KZjJWJLgYjSh/BE8eQCbW/I0jLLVw+zYesShCawH+MPoaUlYM8CqiA1tH4Z1I7D/HfQ0SPQmAp8ctemPjhE/aKrqazfjhPP41+5lce+ehNZW8myLFgmD6Vahev/y1vY8tI3QG0Ai0WYxDV3M7NvF/sefIi9O3cxNz7PeS+8jPNe8xaGN17OLR/7Ww7u3ctcS7nv0T1c8vAXWXfJJeD6aJuE+spzoV7h8D1PM3tsCkjiKFqhsTBHpctibEp7fpb2whxWDN2VMs2kn2/f22D1hV9l2QVLqPWt4KLXv51GZQc91YeDZWxm1Pv6Oef1v8Ds3qd4+iufZPbwTvI8CxZZBKs2KMpOxicQbAs+PpKj3sbcdfGWE9BwI6HRAkFYfHSnO5x+W9BDYywtBmMXO5V4KWBVwQSLEoqYxKK2FI1UENSCh1EIZGFMJO5TMYXRMBTAQbDCepK3d5JbDs8prfUc8tTS0ZoxuxhRSU+uWSxtjFolAmXBImrM7cZ67E4XD9uxeqraaVZwciwVfokErkj6kPhQgxIw8W0mEl+K1FQungRIipx22AuxBC/kk4O7H+M0FhUVviDNRCUgUZA7YECAxXznFAXEheovC/0jq9lwyfks3bKR4bXDJPkEC0cegsYBqG8D24U0dkJ1N2K7USpYyckaE0w9fZD5sVmymSeol1rUurswWZtSuY0ffQSGr+aCN/0yu++5n+bhUXymqDi6+/p50c/8FBuv+3FMUsXoYXzjOON7n+aJ226n5D1rT1/LprNeSTo4SDKwFElWUu1bw7e/dhtzjzzO+GyLXfta/PG7/on/+ta7OP2Gd2N6z0XGH8X3bqY2aEm7e8lmmoGI5IHMMD89HeqfJYn3R0m9p62eowdH+cf3fIhrb9zNiu0XMJdsYcu5I6zetA1MTqm3jzUXXklSH4RtG9h05VYWRvex/6FHuefvPor1TbzRWCKpoD4y+Hyo1PNxjxnXwTswhVcXyjZFLCYy7wqgtCO8mMg3oIO/+Oi628AhJYR1IZWFKYX/SMJ+NwpRAQRrTCc+h5Nd5vB3jXXuner8sKNVF/e7LJJNip4ERaXh8yrUgbIoHTfYUbDHbADOoiK1IuAciQQBK+JkR0hTWA2xbkGtc3kQdoiEfQRXVCTEmCK40JFkopEdJAHcKgrjBSErIpOIWPoIhnQK6TUeKPLBkkgPLUjNajrOAkWuF0LJHwUxwQTk3PiC7RVCiMRazrz8Ana84uX0j/Tg5w/SnDzE5MMPMn7kMO3ZSfpW3EJyxnowG6DaiO7lDEiZ9vwRbv/w7/DE3Qc587q3QTMl3/9FNm9tUbae1oE99Gy5kKSyloo4Kt11nMvwovSMjHDD7/wWy8+8FmwD39jD0V0PsOvu7zD6+JOctmUFa05fjrojyOG9SLYUKV2A9A7gMkPr8C7SREhMQj1pc/RYiz/7w12ce9t7OP91LyHNppma+BKHn54lzwL/uaga0+hyOiWQOBQkCSJSt5ZqVbB2iG/fDwtf/Dte8vafYtPVN5CWauG2J0LaPYtr7Kc5OU6z4ZBkhN51ZQbW3Mf0ngcjDhIUefDOPFY9RUcVEYdIGp5rdLmD4tYTCkoCI81LrCnwkJuwb1ONoZl6vPFIFAvVwsuLpsSAikfJYtFF6IumNkEjNfREy1TkqBeFiCLrekLcDYXSKKq6bETmizIhUxShP8v1rIV6sSDexzMqcr5xs2tAFqUwtVEYVXygdEb77pVgCWPQFIAsDc39CGV5JrrMLgplkdEr4irxoZLFJB4rtpMSMxqQd9GiPU1x5xZrbotUVvA8FnncLgQypAXsKbHck1DaF7wLj42ElsBEk5D2wnDFm2/k7Jdejps7zty++9nz+GM88dhRntw9xYFDU5Q0Y3jlrawZOQv6LwK7IcZaPSjK3PGj3POl25iZK2Pu+gbLN2/FtQZxWDKXYSmRrrsGxOFdTrMxj1eHpCVe+ou/xbLt1+PdOKMP38Tuu+9g9PHdjO4+yFmXrmXZEk977AlkYYKs1SDbOU/5iVtJz/thSmtezhVvfiuTv/eblGQO3yMkZCTqGT8+zxc/8BXUNejv7sVomXa7gXrXwZuKxgGBDSZ0upEglEtdKJ71F1zDqsteQr06wepzLiUtd4XH4lpM73uQsd17sL3roWsFmtQQKVFZtZFL3rWCRz791xy972a03QwxqVl8hqIu2FixUVc7UjEgCd7YQFoy4TlrDBeMTQIXQjzeJ4iE+DvxirE5BRGlUAR0UlLh9SIVJrEkF6LrHJmIUOBGGvE4WbS8UZbC5wqSS9iXhcHxGkp0hcIghmWM6aSD/731nFJazhd1qgTaZjypUNqqsUEeHcurXjs9yky02sUDUfXxIUU6ZGEXtZO7j8opusO+gBxiaKWhesfFVjxBiCN9NVITO5zZQtPGeDk4PyF2SWJIYAqyOTHGV2IDgkWwI5FQI62EssicaLXLFZZv20JjZppdT+/k7lu+w3e+/TRHR2dCfbmF3Cl/+7d38K6+XoaumEf7zsIkVZQWQpXa0jVc8JKXcev/+CJHn7iPfHQXF12xkYGRtTQmj1Dq2oCUSqBHyOZa5K0M5xMGlvUzvHkTrekjPP3NT/Lk177O1KGjZM2MekUYWV7CkKFZjm+08POz+GwWNzdPZf7DlF80yGlXXsS2u1/Mw1/8FzQx1Etlqoml1tPD+EwLl5dYmG5QKTuMCi7WxhotOApREaqgYlGXQjmlVO9h85VXc9bLf5juFSOYpIyS4DUnmz/Crtu+xMKUoW/bi0h7lpI5Hxv0JbRVqC9dx9lv/lkerfex97bPI3kroM0ieDU4NYEWqtLp1imiGOMxkSlWhF2BagzYmO5SAvirGqu5IC28D4FOhVb0BotcdLjwhKLPnodO59hg6kKIVoRlIbQsUmBhYxdqQwger4pgIgXZmwJVL0Cy2KDwOaxnzyjTUJYYSg+JqGBMGWnsvhn58DGTG2POQMIIpt7HC5VFKy4m3qBgsxMTUmZegpZMFJzxHbKKqGKJHTJ80LjhuZnODS1IBsaYDhTutaANxhJKLYo6YnscDaVxhfa1UY12Ug4SO4Mg4IjNAA2zbchwfP6TX6I1P8b44VHGJxZot3KqZcNCyzHfcMzlns88knPsPV/gTW+cZPtlO+je8QoonYEA5cogV/zkr7HliotZGD1Ed63MwGAdcTmtiV2BRNPKIG9S6evnhj/+EAvTc8yP7qc5vZ/7v/g59tzxHWaOjuIcqIcLX7KWel8X1qTkjQXyXKCVo3kGWUZr7Djy8KcoX7uZ066+nCdv/go+a+OckJmEqak2mudYW0KzDC+tUBFl0lDFZGzovqKgJFTrXSzdvJVabzfD289i6fpNDG4+k3KlHvO/c2Rz04w99R0OPbGTtH8HSy+6EClVA8XVhc4j3maILdNuO+oDyzn7xrdQqpXZ980vk88dx3jFqceJjQraICSIJEFMCndaNCphF72qyBuL4VlhHNAAdmpMNSlwQqI6SkCwvLEeJaDqJ5CRisaHFJ1PYthZWGk61p6Oex6+L4p4/O4COIs8zIAHdYC451moUYdhsezOSWRnRa1XkEKkoAJJhPUjttSJM0zID3uEJIJpIgHAUA03U4kaX8F3ytygaE8nhdnVSFphEZCQ+LMWNwoo6JqIYE2Mg2PsFdLIhWtv6DDQhVjkAVY9TiIhITrNgjDvhemFNq2swSO33k5fXz2S7nLy+QatZk4zg5lMafpQIfSNJ2Z58Le+zm//1BGu23A1pt8EDrQ4TCVjeMtG/KZV0M7wBx5i9vBjTO55gt6VW+gqLUHSjaQkLFlXQX0b5Bzmp2cx3ML0kWPkWej9VkstI6u7qdT7cZnD+4Q8A2k7jHOYxOByT75vJ5WZPQxtHKF3ZISp/fvxCu1mZNdZQV2Ow9B0kIhiTWiO4UyKaovevj4GN65j0+XXsuaCy6kMrkKSEpBB3sK1jjM//jQT+3Zz+JE9NGQpw2e9mtqyEXJ16MIs7VaLxswUs8f2Uq3XWbL5fLq6DLVyBRlextmvfytdwyt45gv/QOPYoU7e2sc913aKFRfCJySSAyON0xichnDOFmEhFBwcitqAXE9A1CmENwSJAqGnehE7xzppEcFhOkU6Rbq3U+anGg1MAfKFfakoVov9RqcU02hBgpFOGJo/ayF9jkJduK1EtyNXH4kZoX9VPNeTcIGOoAUiLl59RNBDbJ1HBWCL/JeaeBdDt2xPMP2G6OMnBudi3zAJaKeTMDzARG1pRGP+W8lD9V5kGwVXyCvBDfKCwwUOeoyyFcDFjWKjW0nBAw99u6wBZyzTDqaaGcYauvGYBFyjRbPZJmt71AUGm5GgvIxAGuP8ysAyjh+bZvbWv6C29THs0FmYrmFMWkZLWzBpFZc/xd67vsLhPXuYGYPThpczNHh2YHG17oaJR5HmBNSGqfddxsU//m6mjxzm6Vu+CTgGl3RTH+jGlrpxvo2XFOfBtRyJOmxiEd/GNVro3DG6l2+ma2CAyf0HFmnA8ZkUeVrvlbZ4ErGkiTAwPMjq7ds48/rX0LdhOybtAl0Af5zm1Cizex9mcmyehbEx9j+8m6wtbHjhm+hdvQWvjrnxYyzMTJFnC+SNBs2jR5je8xBLN56GX3MGJT9Kkp4BhM44m1/4CupLhnniC//I7DOPo1lOJnF3ipKrI4kVYYIPnIOYbaFja4qwrNjPYQ95Be8MibEkZjFuFrEYbMeKh95rptOLTGLc7ZXYWbSwc4Xx0VCi6VynxTUx3pfiPUT+gy7KkSqdgREBe/tfAZRFq+U0CE0amCShPU1sb/Tdq+hzrAXAHGmFosEq5z7kucsUcUMQPGNCqyRPEMagNGJKzRb9s0IUYwoWWoG2R+clERs6XQAmNuhTIuU0alEVOlrQSmhQFPSPgBqcy2MKLxRsOB9SKDNOmWx4jEK1XKJW6WbJ0m66+1OSrj52PzXK4UNH8QsNaj7cs7IqOZCKYePpm7hzrMGSL93Hlv0H6Vl5O9VVmyiNnI5Ul+CxHNu/nw98fD8HnjlC90Af/89bz0FtA/wMzDwDs8dh9giM7Uan9lJZ9TIu/+lf4+AjD9OYmKRUsZTLFcSW0cTgkjLtDPJcybMM8Tm2nELZwcI0iXGUyyklCa2XxaT4PPBzS6US7VaGw6OaYDBsuPhsLnvHb1EfKCM2UGWzxjNM7b6Pw488xoEHH2f+6BT1DReS1mokQ2fTt3oDWbmL6acfw83P4JsLuFaDpFTBe082M4W2c2ZHj3Js91PMffsf2XrjL2CSJRx77NtU117KqnMuY8majTz86Y9w6K6bsS4HY0PVIILHRr525Od7IAk0UBO52IUal2iDRYq2w4WXeILLbJPowUWMiIC1iLGRchsbdXRaCUvHey262xbp3SIcLYpHIt4cQkmNDEcWFVAUsfBSNErPq1AXjQtUQidOIeBKPmr0eE8Biug2IIAmdLsM7nYRaRdsPR/G54QcV7DeLgAhKmBiTbFaRbwJvb07vFrppNFEA4gXyiE1ut1KYkIXEB8JJx1nJ8bTGt14r8SQIPQuxwjOu05fMksoJJAkoVmuMj05T+INp525kevf+VoGN62j1pVCawKp9dPKetl1x+38/R98jH17DtBdK9Fq5yy48HD33ncncyocrnh+6OgMIz1PUaveTNq1hEaphyPTys6JModGGxiEFSuXsvL0ZbEwfxy8QzQNXofLMRN7UL7EkrWv4Yo3vZE7PvMl0ClEswBUJmVIKjhbouWEtBWuqZSGFJDPcvzcKHljIXozgnUBgc1cTtZSjEk6DQ7Ouf4KLvvpXyGtDqHZ/cjUk+Qlw9zkau7+h39heO06Vpyxg50Lz7Bw+BCV5RuR7oSZQ/uZ2vMkebtJmqQklRKnnb2avY8dx7U8SblMfWAEl7dYGD1Au3QFT37t61R6h8hkOf1umtQfoTzcx1k/8kaklHL427fRylthL0loh+UlIbESke2wv0QBK6FGPgqfjdG4wwUBJSjtGGGFvSUGTRKwYTBBx9JHi4u1sVFmLEZRH/kZEtNXPnrhEsb/2II3sVjFAHS8h8KyC3Yx7YV+P5v5Py/UhWbxxM4RETTQiH4aKVBtTihl0wg2LaaRwv/CTQwpMKJNDsrBqyHPWQQqYrxbkAkSMWgSW/j4RQphuHGBmBDKLSGVYHVzD6FPlusQ8EN6QDr9tZ2PI2G8Inke0yCKkxB4OLXUlgwzOjsLXrj+J3+IK970Cqq93dCYwo3uYfLRW6hUDNVzX8WZLzift/b289c/+7vMLUyzIIY0C33HjFcWWsqeCccHv6n0lDy9SRsxCxi19HQb6v29lPJZbMkwvHQp1oQuYSoeKXVBJUdaM9Bug2vB5EGk617WX30p9/zrl5k6Nktzboru/gxja6ECK62itkbmpkJlmKZUKhUkqTF/7DizY8dC6sR7vHGdDIIi5C5DS10sXbecS3/ql0iry0FKaHoBUi6TTN5Bb/c01/7cf6FcBz/3MKuvejG3/PlHmTr4NGm5iqmUQC0mKdEsV1m7opuRs8/k0K7baC4s0N23hO4Nq2g1c9oOyv1DMHAWUquxwu2m6/BfIDsfQatlutf+EOe8/o1gLXtu+0YH6yissYhQsoYWllxNHNMUy2yikncmCifB2zRiI8Fo0U0P+FYCphTq5a1FivdhQZLQIimGWJ7AMYzbPQqsiW51oKguwm/BOi+GrJHTUdQfRDNti/eeENo+L0LtcaGiJ+bSshh3GI0srgBNdwL/om40GMZoyb2L7kjkdhdX7WMHUVFcjHFCLW0sw4xVUEZCzbJCIPYbOp1AJXwi5I9VsK6o5Q4+jvMaOeOBQKOFmon5Q6VoAOE6c6y8gnpDZg1YODw+yeTUPC//0VdyzdtfS6lWx7cXcGMzPHHP/Xzrc/eyot5g03ceYt31r2PN1ss47fxzuf8b36JsFLGOtnXghYpzlIE0avJmDpXU011P6empkOcZFRHEJMG1zFoIJTBVfKWKcRZaM9BaAJ8hzsDsOLWRnPrSHnY/Osn4wUm6V7Ywpoc0qZDWK6T1Lny7H7UNpFKl1DeIKZeY2L2HxugkSmBJGaeISVAbmjVmHiZnZrj4opdQqg9Q3EERD7Vz0dIw0niMysAAjD6BPXYvfevPpGvJAFP79yG9veE8SsL6s05n1fkX0rNiJVYS8sY8K1bW2HTtxZR7V+F9zsL0LHsf38Xk7qfI0iZrln8HmdmNzu7CJBnM7ad6Tg/bX/k6Jg8dY+GZx2Mca+IgwyCYYYCDJ4/tjIy6GIqFvdbpjqMSWw8bJEkIRfopkTFBkbkxEdBSMbHqS+n059aC3w2YiN0U+e0Tyi87OWulY5ROZJ6Fv2mncrAD6j1La/2sE2CmCNqh00amSI57DZ06M9VO8zvVyNn2IfHfKWFUQb0N7aBOUD0FsyYA5ZGf7UH8Yg+rgqgSKfuRUBCjaCXmLouul+ETYexLqBzzfpFf7jVMwyhG7Fg0Prxw3kXazpgE0YSGlploKhs2n8Y1b3oFaWUQZQkLx+f54mf+mU98+CbufHSKXXOrKG//YeyKF5H0ns6m8y+ikhhKVimlhrJNKYkwlBqWVBOW1SxDVUt/1dJXT+nuClMWm81m5KgL83OzsDCH+jlUliCVfqSrH6pLoNILpT40raF5C0OTrS+4nDwpMzGZo2KwSRlJDKZaodTXS2loCemSYUr9fVSXDONck933PYR4x+qNy3nx21/PS3/z9xjYdDrOGfLcM597vG+x6ozl4A7g3fHIc98P2uLIIw/y4D9+gYWd+yAdQrvOwksv7YXxYOmznHLZc/HrX8WOH/oRhjZtp1xZQtZYoJLMs/mypdSHlpCYh0ibX6Cnei+btw9g5kbpmruXpN6HT5bQGof2zDxMHcHu/zw9y3o497U/Tnn5SjASwcmiF3xoVZRK8CxFQ+o10IclMuAcxdwzaww2ia2JjMV1Gi9EoxtzzcaYsC8iydRI7EUmwf0uBBZOcKsDTEPRdRbhZEE+6f0x5iZwIop44NlRT55T5xMQEw7bmT7YQb0L5lXBuFm0niHoX6S5KWGQW2KDu+00FrurxGkZseBGg38fQ53FG+sjJVWL/F1sJeNPvJnBW/C+CAMiU00JvZjR2L41UFbDRMQ499IXDKDIz7UJHmHSlZlvtrji9a+kZ8V6xC5jbmofX//EZ3j6rqeoSYmtpw1z/StWs3woI9UZJJtFKimJKcpAg0qqJYJPQkVYOQnflyQWW0pRAwvzbVw7aDIxMHpkjKkjY/QPHMTYc4DVaHkC7W2Aa2FMJbjgYpHGNGecv5nqL9xIf2kUbBd51gQ8Jk1J6xWcrdPbW6e7r0xathzZs5vDD+/n7ItHOOuSXqrblsHa65ibmeXY+5/EoTTznEpFWNKf4sZ3wfgzuC1vwbAaxXD06ad49JZvk9puTn/h+UjXMLOH9jJ18AgAs80mfbWc4dPXkFRr4Rn5WY7vfoSRZVCrVkHa0D4G04cxjeOUB0fZdMkW/JN7kPoAOjvH/ILFTMzSPVgimTmE6jT1FatZf9XLeepfPgZZIxb/xIIMDRkL2+kIGhKjeRHdFRtOTGjMb0uhAYIYvFiMKax2jLm/W8CjS150tfXEfcbJiHVojbTYPbbjm38/WYvgsouNVwyKV8dJqaX/P+s5MMoUCmCL4KZK8Ton0+Y6JPUTSugKqy6EYXd03PXFz0okihRVWr6DFBaCHo7vCR02Q81rLIw3gteQ5hKFzAR7HaZKxCox1U5MExDLosVMsOC5D6hm6LmWEPJalvLwCjb3DXF8bJQtF50JphfvhZ23fZ2xR58iyR3LVqxicmKapi5jaqGL/bd8mVY6xOPfvD2mA8PMZwyx3NQgNngTXkCNIW/n5CgiCc4RLI0Ik6MTPHT7g1y1eilUNoEdDPe47gKcn5ah3YQsQ8aPUqp2sfHMtbiFAdq5p7EwRrs5G1I8CZRqZfp2XBmKMNwUT33+fjYuzzltbQP/zDO4deeSSoPepYPxfntcnoHXoMz7tuAVjj3yryzd9AKS2lK2vuzNLN+4kvpAL3bpBlQcXbUuNlx1mO/88+eZmF6gdf8BRm/7K/rPvIYssxx49EmevncX5251qLkM6EfKK6A6j8xPY8b2sWS4H1/eipZLmF4w3StpTR6lPG9JKKGuSatpWHnOhYw+9SCTj90dGIjWduqljTGYJDmpb50nVH8ZDVTSgGQTO6nEDLcYxKZgkmAlI84SgLCQxw/edTGcx3YaIHT2byTBBAjHB90QPdaT5XpR0IMyCAcPc1IWqdjPZj17oT4hh5ZoGPauGquy5EQwrEgJRZUWkb9CydiIIGp0JwoGj0BIdXk6BR+Goo5aO4n9POL8AZAISsKfAJQFeqwhc4o1wY3Hh66cgTKx2D8awozlPD5cIxKmihjpzM5YNryUV/7CWxlc1sPE7BT9yweBLiYOPcmTt93G5OEjbL1wOy/41T+C1iTp7H0wfAWjt9/Lzf/9T5gdmw55eULcJAQeb6I+MNtizOVzwTuPT0xM9yneKSZT2tbzzZse4KKXn0el+hC253JgCLUe05Oi5T5oTiPz8zA3hZ84SrMxw/xcxkIjo9WaR1sL4JpIW+mpWNIVp0Haw/zkNMnCXaxeNU/z8BjS00fX8Lbg6TQanVjKYJicbTJ3+Bm6Tn8LLNvI4zd9gLHRT7HtipdQrvUxcs6LyReOMvnwP1Kp12npEqaO7KTdmMc15jg62eTLn32azUeXU64NkZbXsfLcNSRyL9o6GigcyVZMfxc6PwWtKcz8DNLdh+QpklSordqKsoDtFnTJ2eTzDSrto9RK+7ng9T/MPX87xdT+PYGRaOKYZBva9aYITkMb6ggIdOJX9Q51giQO0SSyzQrcBfK4H6wPYVxR81W4y0ExxPg8gmyFISlQdIi12idI82Knl++W2OjZFt6E8PwLNZEX0pmgEWNbH5E/0WJQ3iLy14kZin803qjYhURj3GOC3C2y0SKiLkAeiweS2LJV46jWwiswJqDgeV4crygwCEN0RKNPEQs2wo1cvNlWlAyJXS8SrIQuGt6DWmHduWeSVpSjzzxM2j+MKdcAw/6H7uXIzn0szMxz9pUbKZeO03YVjj7wIIPSx7YrL6Ix9qN89b/9RRw/5GIosshJC3GFR4wl9w7nPVkrw7ngeuVFfJbDw4/u4fYv3MELrpvEpXWkuhVkAG/70OogUh5Fk0lo58yNHuKZx3dzaPcUzYWUtFQjLUNXLaeWtLFpi9bueymtOYek1WT9aRUaO6eweU593RrEduHooTU3H8oT48Ydn8nZdffdLL3iECZZzYUvu4HP/9Zb0d1fZ+0Z68nKp/PQvc9w36f+npFlJSpdSxifrZKKZ+WGray86FpOv+RKBlf10lNfQM0szEziH1f82F3YJS9E06VouhFdPos0jyKmDO0Mzdthn9XqlIdWYQe7Yfn52KP30rPvHzCMk1z2IXb86Fv41vt/H222EB+41R0vL6aeXGebBqpvsKgRSPE5KikSyym910iRDph27j3GF+ODwt72EfHqxMOFTZPCagud8UCe0NGWkwX5u3t7F38qctXPhf393AbkRRDKGKEUCRwOIuoXc78ayvAK7nRB+jiJtRWtVogZTSB9aGyhKwUhxMSeYWEcrcsNqYl8bQ1EEB8524UrH3zbkNs2kUZYMMHEhAcUBhEE4Ezi9MSShvnNThVMjolspJm0h8998U727buHA3snue4tP8fI+SPk7TmOPPEIE2NT5EmN7o1ngXRx8MGbefSb02yev4vTrpjl/B/+UfY88CAPfOUmTBKqvorBgArY1JC7AIXkzuGdxqIGIfNCm3CeJq3St2SYj//DfejcQa59rSdddgitrATbD+lyRAbRxDEz+zR3fP0uDu+bx/iEFTteSF7pxtoKszPjTIzdT6t8EP3Wt+h68gE0c8wfHaXVNpQoUV57NqopIEwdPohYpZSWqdsuynkX37ptF+e9+H1Uzv5DenqHuOotv8pH/+sPg7+Nsi3RJkXaOWPHDP3tBqVqH6svuobTXvFjDK3sp6svwyYGcSnt0X1M3vE5Zh+8hcEdG+kd/gpm8JWI6UFq5+Frc5DtRttHyKYn8TNj+GwBYyvo3AL+ka/hdn4N2zwI/b2IbzCw6nR6Vqxj8pknQmEPFh+tMBqQ/egR4yUQPGOZ9mIb31jiaYptlXtMGoCwgMcUk+AMxRS0goRibCHcZlFypEMGDa94jaj5yTFyx+1mkcUYBD0WPT27kPo5dD45AdKT2CwhlIPFJgIa6JtGFpuxdZLsuijIhXB7XwySJ4YYtlMc4hDU+9hYLrj4PrYULhshTRTjXJi+6MLDSIIoBlaQhig290HJLLr/0YdRD2IJrW185HhrKFJAQtSVVhg47zru+Orn2fu1KeYajqtmdgUARdtMj48yMTlNY1749qc+zjX/dYCV57yEkqQs2Xga2t7F3MFvc/zQHowEpN3G5KN4Db3cfEDwi26lQc8FjriXoGR6B5fyX3/7tzj32pfQaDbZ/cAtPHXPbWy+oJtUDuNbR5EVV+D7d+CaOQ/cfCf7d45zbM4wfvQAR/L7GV63iZVnnkv3qnVMPGloTEyxgEWaFtGEXOooFUxvD0mtAj0DaL7AkScfwpIgUmL5xtNYffol3PKR9/HEl25je8/fYja+k+VnnM1Z172GXV/6e/qHRxi5+Ab2fvtmyOeQWjfDZ13Pxutfy7KlCT39DjVVsslHmX7gyzx+663svecpLnzTD9F1zU/h86NIthdKO1BJUK3Rmpznma98Be9r5JmnZo8yvKyMtd00x47RPDhOOVWqg92YUh/WGoY2bmVq3zMYl3cAK+M8Du203ArGJHZUgeA0EYgqqqHEWDSPac7ifUXsXSRKA5Zd9N/rjOEpaqM71jbmxo2AFvWIsCgoxfru3wu8SmKK7tmt58T9FgSrcSaC2k6sLwSQKwwAW3Q5TnS/i64hhQY0UcBDHjoUtdvIZko0on4Git4uTgNxQ1SpJhqmO8SmDUU3z3AsH0syY2/xGIujRUslwWsS501rRMgLN0hjrbelb+MO0q1n033TPzM7p7Rzz6H7b6e99/OkI2ey6fxzuPtLd3K0Mc+HP3An+DaX3fBKhlcpZrDK4Se6+MZHPsjo7v0d+p/38RwMAa3PBauhGF5sgnMucuIh8462E664/jouedUNJEmNGpMMLHsRk0e2cfdX/561Q236/V5quUe71rLv3jvY9dBDzM618Hk33UOrac7OML5/H+XeJSzd0E3bK6bSQ3lJN0mljGYZLGRIrY++VUswtS5ISkzueZrZvbtYtm4DMwttvCRUUkM6sJ6P/ctTvLPrw6x77QqS4Zdx7bt+g+XLh3jy5q+x545baTcyJK1RGzqdVde+knJXja4eA1Jn4ukvcM/HPsgze2bo3vQCul7zdpZsmSDp6wO7PbILQ2Ykm5/j9r/+M5685yGWrjuHNee/hKlDcwwOKd3Lt+A5TLN9D62Go7rqSiSxzExP0zWyiVJPPzo5iqiQWTmhCWbB5DKB021C00qNKLjG3a6adEBciWEfgFiDWAvGUjDCjAkC6zsudBRyr6FUObIcA1ArHcbkSeKrwZKfPNHjxFWgcv/+evbud1Hk7F3HpS5yy0XNtHamD0oHVOtcSHFinXYLYblI9CCmlZAAyngieiixsVu0drkIuYNKYoA89uZOyOMoF4lF8Uhg6xQpLbzBRaQhAdTF/s6x/LPA7FWhidCzbjtlAdvOsWoZ6qmz55Ay8dQDLFuxmh0vu552XuETv/3fmJ+e4bMf+w5337Gfc3YM0DVyJ098Z4yDjz5G1tI4uCD2zIpeSzFLLHS+NGBSnF+gaI3h1ON8wqp1/WHmtLQxHAXbYHBFnR2v/C/M7rwTqa6HtWfhmrPsvOdujh85ztSMx2mLau9STCqgOfPjYxxxDzHzzP2s2tZNuX+AUlrHtZqkCy0qSUZ19VrM8Fn4Vov7P/1xXDvD5+1Q5DI/xcKex1i3dgX33fYoH/zHI7y5/resu3wXtY1v4uw3/BzVFZu45xMfpj3nsJUy/Zu2knT3052OY5J1NGZG+caHPsbEaInTb/g1+tbv4PbPfYKj2VcZWN4HS1+AmOUITZQyXj1jh46Rt9scP3qA0jOPUM8nqXYtBwuloZWUN51BvaeEXbodn82xMNuPlLooVWvMTxXOcdH7yy/WNmMjMm5RkyA2RUwpPBkNu8GLxHG2Ie4LvIWQ5lSbhkpCQm13wN3i95lQ3w0mpl07uFwHUTkxPXVyM386XsEiKSWmaJ9voCy4IwleQg9tE0XTRxAil1CrvFgq3rmU0BI4Ju/CwHRZJKvLYixhRBD1aHSDXbTiifGhhXDMO7Y8GPWUzGLnFK+hz3iHhx7TV+HH0N1CiAG5CTcpAYzaMLEzQuqZQt/qVaxe1cPpZw+x5TdeT9eypazYvJZK3xDd3TVMaihJzoWvfhHLN23ink9+glpvP6WBfvY+spejt95Na2FhkcAvnp7ebgZXLWdyssXEwQPRBS/OHXyrFR+2xxjp9HM7+vhdmMbjaH07QiXcW4GeJVV6B18ZnotY8ulnWJg8jmtnZFmOczn5pKdUb+HVoaMp2b4n6DbjDK2+mJ7eIayUyJN50v4pbMtSGliLNzV2fvN29t52J7mt0pybw7UDSt882KS3VOX0jZvY9cwu3vcn9/O6naNc9kPHqK65mDOuuZThrWex586b2Hff3ZQqKTN7H2LteQOoWA4/9SAzExnbb/xF+jfvYGZ6nkOP3MMD5QNsXP0pShfVYeCaODjiAOX6Ul74C7/DI5/7O8YOHMA293LahRupjqwCW8NYx+CmjajPcbqUucnltDMLKpQrNRq2hHOOJG5F0xEP0wG0MEJii7E5sYNKTFHlGqr/rAUfhVlsMR6x+DeyxJA4lnkxfx1Cx5hsPgHl7nDCI1J+onB3rHzscrLYvafzf8+fUIcviKhf1GQFbO+kiFXiZtTOB0KfJVlkj3SGlHXYYEV8EuqWhRhTU1SxCEWrXxu7jng1oX4WEws0PZBEJlEgpjgpUmayWC2DdGJsFcgFjPdxnn1IotnEcN55g5x/iaXcd4zTVp8JXSOYeh1sLaD9pKg6rC2xdvNy1v3KWxA8uAWyH3kZD97yEr7253/CzMwRcoHu7l7e8PvvYPX5FzE9bvjU//Nenrrn24h41IGJM6UEJRHBeyHBUBHPQ7c9xsKdH6N21S9BMoxKA1GLyDwqE0AJtE5a7mJoeJid9mF6uy3zDUM7a6KtadrimGzOUJMWl91wEUuHh0nyWcRklOwcTg6TDC3F9mzimXt3c+vf/gNkbUQTWrMz2MRipITxAUQcHhygykbGmjkf+qf97Nr7BV54+Z2sOudWeja8iPNe/Uq2v/wGpkanOXT/P2KrNwZRSrvZ/JK3s+S0HfgkNFoody/hjkc859z9FJu7/gXO60K6LgDqGHEs3XQJV717O25+HJMdxDQOITNH0dTjSivRhUNMtFbAinPI3QCqTZwqtZGVpMtXM3t4L9nEcfKsFWy2TQPHHx+roEN8Fpp+KGosRoqhB7FyUCKj0hRFHUE5aCwpjpzQkxBwifRR0ThyKoafYXJLUZvPCW64nBSDc8LefS7x9HMSakuA9m10VXMpdJXEPCYUwHtwMzX20I5NEWLtdeFSqJzQ1qUD7QeAAiGAVxElzqLNDYPqw+t4xZnAFiI2PEjiPS7GwCAnKoaYHhCJ/ci041p5LYgEiklLPPb4Ecb2/jU9fd0MDPQwsGYNXcsHKKcpppZS6uol7R3Clpah0wcx1TJM7ETGHiGlwTkX/hgTN76GWz7wl+TeMbBqKWu2rscYoW+4l42XncsTd98RurAoi+egMYfpF1Mi+441+c5nv8T5ZUv14l+HdEncbDnCFDAHLCAlz7brX86h3QfYu3MXic0wJsGYNq41weBgL1e99ELOvOBc5vd9m+njT9Hd3UuSClJKmDcb2X+ozkN3PEp73pOqkLs8INWmHO5lnuPaDRJx9HfVWLpmmD1pidsf2M+jT09z6X1TnH3+w6w6cyv1M17J0MiZDK36cUwyCCKMnH4W2u9px5xkqV7h7Fe+jr/7xuf5wGebvDm7k01aoftcg3afhXce9AkkPZ2kqx/xFj+9G50fhdoWzOClPLT7azxy5+Nc8DMLdA1F97pSJunto3fdmQyeeT7TR/YzuesJWscOIa4V+pa5OC2zgH3Ex/9KgXBiY920DU38QylmGDyfiOkIdtHMoECrO+knLUJQOUkgteNHa9QZJnRk+a50a+hNXsT4i0L+vAp14SYHwGHRzY2NYArxxMW8c1F+GXSiX3SzO1h95F2bINShsmpRy5nYSKGDHCJRGQY3Hx9YZcUEDOLnFGLbmnCHRUKttI/H8T6k5Iphls7YeBUhHrfVbp46bni8sh5/3HHx+uW8+LrXUls2xPTOuzj4uX9i/vhjDPRV2fzil9C943pIwBxPyGfn0JldiPsw2y7/We74hyqzU/McPzbK2N1fpnvVVtpaZ98T94MEUBAhlqYGAXdEkMx7Wl5oqeczd0yzdsnnWVqqUz77nVAeBk0RyVE/jUiCSJnezZu44b2/xeQzT/PU3fdxfN8hFMfI6hWcduZ66oPd2MEVNB6dZ2z/FAt9Di33sucwPPnElxBzB2VrSUpKlsd7SgAJ8WFeUihYaGApk48fYcVAD12VtewdneDTXzvCV28f49Jzj3Dhufex5rTl9F/9K9C7FKxSqtXprk8yOqE0XcbU6Cj7H34Qac+y64jjtz9ylLO/+T944ct3sumaa6g0xunqXkBWXoLp2oSUa8jIhejKVyJJL3mjxf6Dnrljx1jY9ww9Q5sDIalcI2+2mFtoMDC8jmVDK+ldezqTe3Yy88QDNKdHaWneCcE6BJtibxsbSy2lU4BErMcOlj2msmLZrpeQ2QjJsNiBtJOfXgS+vHq8c4gL7aSlEOhSegIJJQrbdwNpRYug51OoxQfCSEhURyEx2unZFFaR34sAQ2SgWyMRdfaYooWKuqAOvOl0LHERkTZAakFcmEZZaMPQEdSH6QsEi2skTOIsmUIoQtxs8UHgNdRyF85+7mNL4djiSH2cmZzUsfUukiUrWBjdx9zEGK9+zTW85h3vIi2D+CP0LjuPvjMu5a9/+RdZMnaUswZGoHspWItP9jLXVsxMk1JlnJ4tFUbWrmP6oYfYvXec//d9n2Vo+DaabWHqyEwMO0KHSCMhhFGFtnM0nSPzYQB8wym37W6x7g7h5a2/ZdnkEarXvAeTLgFGECmjkqE6gDBBUksZOucalpx1NZJPoa15dH4SZsZRN4+UhPKG87jni0+yc9cRsuwQJXHUSwnV8ji2q5dqpc5c1sZnjiwOogpKMA/pQ2tDC6a8jbqM/nKZgfVrmRro4cjoUb7y7Uluuvc4F249yCsO/jxrr3sD5bU3YkrLGBzsw/pxjk4qY3nOnru+RNXmGA8tl3H7kxm3PHEXfe+/nwvO6uctNyynd9cukpENpCNnwNJtmIpB27OMPvM0B+67jVpawtCOqSpQb0mNZXr0CKZnmK6eHqr9w5TqPXT1L+H40w8xvX8vvt0ESQNOpJF9GOKg8GxMaF9krUVsCPVElGI0D0awLApjCO8CFdjE8S5F6aqa0LUHHwI9BVRCMzlxtpO3PrFiS4vPawE/P89CnZg4wFR9SC0ViaCYmipS61YWG7pZY8gjul1w0IgggCrBnVGiKxxy18V5h3rYEJ+3VeOMKukU6osJee2Wi4h2Z1o9HQTdFV2SVBEfNGcOtB0hT2wTKFVJewep9Cyj0jOAKUF2dC9nrBng1W+8jrS2BM3uQyafgbkZugY3cv3P/gr7vvynmGoZSUtgunH1QZx0084SKn0bqC8b5rqf/QmmfuV9VOUIrWnDvulxyhZKiaGUWLJ2wCFamaPtPLkGemgewcCWU9oO2uL45HeaTM9VeMn4v7JyWlhy8cuxS7Yh1bVYlRDf5aPosafxXeOYvsvQUgJpF1R6oNKDNGZQl9K/6Xxe976zOT5a4e7Pf5rHv/Yvnaomn82jlRJpuYTP2gFLMoKkKflCE5sqaZrQztokgDUJiGI1Z9mypSwdGSbLlMOjY3zr4Wd46Knd/NBDf87F193O0nOuIV35EvqXraba3WTmwAS1qQP010K/tCw3ND00vcGVDd/Z7dj333Zx6Y5eztsBy9Y16BoaozywlnbPch7+/JcpeShVyti0HFOUDq+epFQjdTmtxixJvYuMlFJap2vtaaT9/VSXPMnkzifJFmZAbWBXK6jPEFfGGI+KBZsgthwEqtAaNjTLLJDuYt8V6apQ+KGx20pgk+UiJDYMFih4HkXNvvEBHA6TYuR7DHIh7Iup1+dJqJ3Rxdg35hJRDUCPDZBDiCmKXFtg3tDRZLEdq1mkvJnOCfuQMjCmUxieq4aWrUYQHxL2OWGWgkTAwSDkkTZqk/g9fhFwMuLJJaHtw8CbzENbwdkU0hLlWh+Vnn56l43QVe+jq97NzOxh8DkrBxxpqYr1Sj5/GB19Gpk/irgFTt94Ppt++HqkawCcg0SQ+iBS6iUdOR1ZeR6SKmvOPpsbf/3d3Pe5z7Pz7ieYmZ+ElqeZO9QpOS70FGcxdgp5ahPd79gM0SvN3PPVJxb49m44685PsXboX1m+bgkrL76Q5RtX0rdlO9VyDWm2ydvjuIP/APkcSbUb0zWAqS2B7iVo2gPJELX+CquGYerobnbf9hUkz7DWYo0h8W2Wj6zg2KQyN3EEk2eQh/Ak84prtSLuYUAzSIKSTNsJUknoGVjCstPPYctlcNfNX+XjX36Sux//Fi+6+Am2X/Bllpz3YkqrXsC5l59D8svv5mv/7feZGT8e6LGi+KTM8EXXcWQ854GbPsvugwt87dZjXHJWHxdctoXeVXPs23Mbhx/YRalUwVZq2K7+0OhCIwlJLDafg+Yckuf4JGUhd6RGKPcMs+S0KqbWxcTOx2lOTYZsiQQXW9WDxv4BHbgn9BJPTBLwnuiSq4RJHsUM7MKIBCwpdiiFkObq0KBNzPCAWAmuvhT2+3ut8b/ND//+6zm434F5hZVQQA8RDJBO2WPhKoShNEVcvdhCyIS3dmI1jZxaIyHlVJStFT3CHQZjIZHAhQ5xcVFiqZ0OK7kq6kItLRB6PieW3JZpSYWmreBMibbzWGOo1uuUylW6uvqo9vTS2z9IKSmhPse7jFQSUufQxlH8gEWqQ2Cr6PxRTGsBnZ9FaiNQqqDteWjOIM1pyr39sHQZdmQ7evwR8gMPsWLuQVa++8d54O6cf/ndX6LtwWd5oIdqgfUHBVeMVvG6iIQaQnOHslWMGqYanpv3OWTfHPa+BWqfO0hXTVi9qpurrt7CtqXz5PMzSO5IyjXK9TpJV51STx+Vrj7Seh9J1xCu3s+Tjz7DA5/+EiVySEIaRiWla6Cfzddcwfrupcwcm2bP3bcxvnNPsDBK6PBqbGw6HyczmlD1Zq0N/Om8zcDIOq778XdxdOfDPHHn17l7n2H7W97C1NQsjfvezbJzr+Osl76KNdt2cO8n3s8z374f07OcgTMvZsl513LT33+cgZJBJMeq8uDD4+zZcx8DQ0+xbNkIy3dcxvzRUWw+hyZlXGRrmaLqrzmDUY+4DCmlKIaWczigVO1lcOOZVLt6GXvmaZpjo0iehR2bGEya4k1seuk92JghsSbMiktspwmCRmlOkpBZcbElV5IsoudyAtrtne8Iurcxb96x0P+2i63fbcL/Z4W6aAeDBhfb4TtcbYioX9Q2qgQ2TdQ8Rfttq8GCB5mMsYbXTqdGVHEm8mdjWipUhxkKL0ddBM6swUqRe4zsMFFKpTK2dznJ4CrS/mWYVk7dW9LuHly7gWvMUS5XSUtlrLEklQqm1o1TpTU3T5416O7upqm9NPbfR23kZZh0E7pkHA49hLYXEJNCUg/aHPCzU+TTR2m5BvXqMnxzgdZj32ThsZuo9g5SGbyEoTUHKCclPPOhUsjHGKwoVYtTGWJRZqeSLCW05a0KlHAYI+RR4EUUR06rLRydWOBTn3uAh+s5V2yx9HclJNUmWd2TLEDaSsgzoeQrJNpk96NPcMdnv0F7YozUWpy1GGNZcdoqLv+JH6avL4VsGrb3svWFP8NDX3+Q+z7xEZwPDf2Nj1x9PElauI0J1iRhymSWoY0GLleWDI1w8ZUv4sKLYena5bjkMpKuLkzXEvzeLzOw6gpe8It/xOpv3cH4rMX2LaWVe0aWjzDeXSLxQrWUkKZQ6yrTVatSqdaprT0DO7gF5g5jyl0gAfA0BvKFSaQ9GRRR1iKp1UnShLYIPvO0c08lKdM9soZSdw8zhw8ye+gAfn4eVTA2CQQSAW8BUVR8CHOs6bjWITwpWq1Epcaiy8wJ1tXHEbxFQwXTyVUtuu8nhp/fXeTxbNdzIJ8YMAWRPZiUsAWLaDnGJHqCE1Eg3cQJCgqqeSfd5GJqo7isMJdYsAreCM57vA8JfUzsVFJU2MRUVZB1xaYlBjadSde6bdSGVtGzYh1aqjEzdhjXbJKkZRoT4yxMHg8hgLFk7VZoBlepkGft0BdaoN7TSz58AccOH2btwiNhqF3fFnTFOWhqMNVhsHVcDnO7nqI9c4xs8jCBi7aX8sxx5seOkPkeui57F6a6iu6BOUrVMu3ZRsQa8zBbzNBpS5yLkGApGR/SbqFgjLIxVKynpJBCZ8YS0atJjOJ9zug87DzsuPeI49oNnu2rHUNLCAX2aQmflhmbH+fpp3fxxANPUbIprdxQAsqJZWBZH1f+xA30DC9BDt4J07vRbJpq/1LOf9lP0p6d45HPfBxJStS7Sqw7Zx3dq1Yyfjhl/4MPY8tlkq4eJKlAUqIxN0NjZj+NhRkuf8EIq658DbMHn2JhdBddy3owS9YyPT2PfPM36LnkF9hy7UuYnpjiwN5x3OQ8K08/k8lNO2gefYqEjHLJUqvVqZTqVPtHMNUBqr01unu2U+ldHvZh0I+4+Sny+XnSdoPWzHgASpMUhyHLMhQhS1LSJKFSG6BvVUq5p4fmxBjtmVnwHudiitEs5qCLYq7CM+00IZTQGy945SdY1JivDunVaJEXtz02UklPtMKd7ylGGT3H9exjarGBMKLQqZ/2iznnIt6OslaAiBRFHGJCvTAUs6vD34sWLSHnXRTDEVsZhSMqivNBooumCc4TelDHh7X2BT/Exhf/CKVqD2lqqdS6ac0vUE08czMztObmURy2XMKKIXd5GJeaJrisQd5ukbk2iCfPFF/p5fanjtEz/HmWXLgUk2yG094C4lE/Tz65m7u//HmevO0A21/0w8weHGdp/SjdfT3Yei/lwfXUNl1Kae05iByjb+UqVmzfzu5v3U6Oizn3EJJLopg89ChPTYHUCykePCQG6lZCeWDRDbNQlgBJGM/abIWGiUdmcv7Hw55bdqZsH5mhr7dJuTZHZsocOjgJmaPeU6XSV8GLoZ23SVPLqk1D9KzdhNgcfAZuHmlNYA8cw1Q+zdaX/RgH7/06vbWMC64ZZmhoGlMT3Kt/nbs/eyf77rsH0z1I6EZjaMxMMXH8CNMT49Sas6TS5OBYwqE77mf56StZv3KY4+NNvvLX9/HqiV9j+LpfpX/JlZTSGnt3HkDby9l8zasYu/dmspnDpJJRr3XRtWw1tQ3n4UyJSq2LSv8SbLkWMi5G8ZmnXC4zNyqk7TZNP01jYZ4sb9FsZDTbDTKv2GqdpFKlLGBcg7J3pFmLpCKk3Uso1XrwuaexsEBzfiG4zaIdpdpJdy3u/CgfMeaOhjr0z5SOt8kJBrzozbcoEYsjlZ+tu/3d6zlY6uBeqeY4FVKCy5xL0VckNk/XoKlcdMOTKOEud0EJRJTMRJgeFq17IIeGYXUS42WHxnlWChI6XDrvySUCD0mJgQ1nsfayH2JkwzaSNKGcBNBiIj8CJqE5v8DC9CQ+D6XuTh3e59jEgnrmJ8dpzc3hXRsyx3xjDnFNxhfKPHj3Ea7Z+hjSuwzMCCB4neDB2/6ez3/ki6RmiO49ByGrsqR7kHrPMijVqPU0SLp7cNO70fo0aXkD57361ey+9y4Sp3jjwQtqPKhHk2K2daCHCnEwnwnWvGogSUxMu4S0nYsaXqzQCGR5KjbE4yWrtPKM+w60cXuaVJJZusvQV0mod6XB08ozTJrSbmSkOfR1gZb7Mfk8mvSg3iDZPJopevQJ+s8+xvYXncXKroNUFvaiew9DLcUuvZltL7uRyePTLMzM4dSgLsNlTbIso1Hp4itffJLXbfoiq7ZeS7XnenRhP1T7GT59E+1Vr+LDH/0ir134XTa+skV96IWsOW0l7azFwtqNpALN4wcwrkmp3kW5ZzlSHcQYS7neRaXWBSaJBtWHFsTlEtpu0548RqPcjW9nNFpzzM1MM7Mwx/xCA5IEWymFdJZ3pFlGV6lEtV5ncIWyfOlKuroH8HnGwsw0s9OTtOfmCy5IiN/jDC/EIIVbHkfZRrkO3q2GCZ2OwkqHP/qicxCFgghz3bwUoLPp0Kg7X/x8CTURydNY2F+4/4ttVwvhpgOi5QT+dkJovU9MyCedLIB0emtH0BshEliKCQi+qC2NaTAVciOxjWqJ6vpt2HVbqfQNUKmWqNUqWLHMzc4wPTHK8WPHmJ2cCFMTjUBiaS3MkTWbYAwua9JsNPBZhnqPEUNKziXnrGXbtf8VWzKImQdtIjRAExamjnPPP3+Z5kyTpLfF/oe/zYrBnDXXXoZ4xR19EJ8kjDWFBz/9Va667hwq5w6y+pyL6O3rZ6p9NBSf5UGZ4SObONbieg316nmkCFqjlMRTsgFTMATFmQuQCnM5zM/nlAykUnCGA/20LIZKWUkToVYSkpIhlRRjLW3N6erpZpaUtm+TtZuoz/BpH1Lup52XoKlI7pD5NsnsTs7Y2k17b5v2xDQJk9ikip98nPoKpWv5chqtQ/i5ObLGHIjS27+Mtk34xhfv45l3fpB3vftx1rzkv+DMVbQO3s3xsR62Xn4Fj1e7+NuPfoIfm/sdtvyIUl92HZvO3Ex7dgY/sAzjPHl7AWeUZqOJJtN0jQwztKRGbz80MsFrFlDlvMXUsXHy9gIyfpgJl9BqLQBC22UhzCon4CHNfcxDp2TOMJsrzdkmzQP7qS1fS6l3mFK1m65qL9X+JcxPjLEwPYV3cQyEFDFy0Zr4hMSThAaFMbiMTUKCt4VEqnQRV0tsuoCNjT3jgItYNvy/ZEKHqotwf7DGAaUtBC42H4okEa8uFlosssrCQPogvgV6XaT+0BOOhYAYnO9MyYoibzpEEhQSmzCwbgvJyq3kuSe1CeW0hIih2WoyduwIB/fsZmF2mvmZSTTPAiJpDVmrSd5u0m41cVkbtWHk3kJjntS02bZtLduvOou02hWQfT2MtveCpGDL1HqEHS++mnYz9KQ7bUuNCy/eTK27F1/poXX4Ab7z5Dz/+sW7mJ7zbBnOWHXeK6j1LmNk+zambx4NHDZXjO4V1AY3W53Be09iDLl3UTgDiy61AiYMKRAjWGtoOaHVyHC5oyRCyQiJFxKjSMwclK2hnBhSa0gMkIbNt3LDWq5868/TveIM9j/yIO2n/xVpH4GuS5Gepait0W7mpKUSKiXMwaextgevJVqTDTCepFsxueLyCbxrIi7Dt+fBtalWyhjKDPmcHZdfzb7HH+DPf+9WXnnQMnzuq1lodTF9fIpm0zI4tIyjA1v52D89xpt4H2e8QekefDGnn30Gj0xPcvTQAq45F8pXfc6SfstpW0YYXL0e7AIylTM96SHLyTIXBMek5AvzeGq4VhtjDWVrqaUpUq6hkpKIYMtl8tzRaC7QaMzTardpjS0wM36crqVrIY3utK1QXzJMUq2zMDWBa7fC65EBWYSTooTJqSySSYoKMYlysgigFaVPcfa6hMwRkcossRnJ/xKhNmIx6kLNM6EbSSqL9alBb2lEuMP8KEuIu03R4zfmsUMJWUS2oZPLU0JMHa+DWOKOjW1lMlUyNZSqXaw972pqG89iauoY1WqVUq2KE8haTWYnpxg7coip42P4vIlaS5618FlOM2/jFuZx7Yy83YwKKWwCTRKOHD3I6f2zzN/9t/Rc+BqkthlDEzd5DHwL6R1BKhUuec1LOf9lL0SzDNOcR+1Skv4zIOnlO/dO808few95lpMuXc3hY3OscSnQZuOll7Hz1lvxzoVeZUXtkPpO9xiniqoh0dj8XVwU6pgktAlt72i2c5pth6ihmpjAi0BIvYYe17FlbmqhnIZcfpIECmR3X4mX//Iv0rvhxYg06F9xHf6aazGJB9OFLr2K0pmOtKsbXI73CV7LGCmB7WNuPqfZUGyX0qUp2cJhjArt+QUka3e6htQtVCpVyqtXM7B0GTP7drJndJiedCOkKQtHH6VxdC9+ocmq9ZsZHRzig5+8jTfO/hZnv2mSnpWvY+ulFzKxbw+1oaW052bYcdUWVu+4kqTcHcRC65TTBi5r4XJPe24S1xzH1ntR16JvsI+joxmJLVHqqmEqFUxaIrEljE1ISiVy5yjlvfQGs0KWZZTqXbH+QGl5FyjGCkmlm/pgQjY7hWu3o3zGZv4nCJ+JrMUTsd2w4fWEfmMxdI1hVVHxtVjoEYqYihz48yrUbfVY8SQm9n2iSJYX8hpodiqLaa8CLdMisKDoZCyoN3jjQpEHMS2g2hlbIsSicyWwhIK9pza4hPUXv5SlZ19Gu92m1Rxn7dp1dA8MYEqW9lyT+bkZ5man0XaLvLVAWqog6smljVOPNwLekRgL5Trt9gKZh1KlwtiBI9w+X6VqbubKY8dYdu7VJOsugqGrEZ+EESyz3wnTLUkxjSmk2ov0DoHMMTc3xoNf+goVA3k1odrbxaGJEtBCrLB0/RpMSTDNwLjTiIBL7N3m1ZMkKc55kgJlgTANUQxeBe/yABxqEOJENIBlsX2yTUKutmSFxPgo4LYj0CCcdtoIPQPdGHJgH4gjKa9E6QtPyAxill4YFPCxffj2AqhgkxqmZylS6iGbnUWrS5ByNxMHJxnbtwfNGxh1EBsLqMkwaqnalGpXF8u2nUPS08v+R+6nNT5Ol5li3ZrlHD/kYQHc4DJmVm/lw5++j7eW3s/Zb1tO3/BVnPXS63jwm/dR6W2w5uwLsWl3R1CcCHkWmk5mrTYTj99FfvhJyivPpzmdYZIU09VPUi6RdHWRlCtYMZTKKUmlSpImsQeZoVQugwpJklAbWEpa7wlpstzhyMkzT+aV1JYpdfWRzc/is+ZiFkdAjIk1EI5iRpaIgRhKhg4/sVLLaGziESdcF1RV6MTSRR78eaeJWj2xD1mIjwtXWCB246TjIuc+uIkqxQzfAP4YEy4wjxbex8qkYsKkj4i3iRBhLqHwI6lUWb7pLFZf8mL6N26l2Zxn4egeVgwvY8nIEJV6CZtA1m7TWmjgshyTphhfwtiUUj2lnTRp5HmY10yDUq2OrdfRyTbWGA4fOcjU7Dxt5/jX7xjueOw2LjhnlO3b76K2dhNJ1yCZT2nt+RZ9fj+aJyxdv53q0BpkbppmUudf//s/cWTXY1QqhtwY0lLK2ALgGpB6agNdJOWUrJWRJDZkAvIwYM7jQ1MDUoxpI76oyQ0puDw2dkhtIDw4HGlicXiMerwE4C+1oRuHFQWjeGNRsTghfk/wTnR2Lwycj9CDsg/V3Yhsi+nKCWYP7+TI3Xto5xVKOk3/YJvuHk+SJvRtPxM7O0B1xTJ8vc6hx+aQvERocODDqBokFDBkLcjzYJOMpZ23UJsyvGk9F77kZVS6N+HaOU8/cD93/8uXWTG0gt1zTf7m7x/i5+u/x8Y31Flx+vkcOTLGk3c+yczxp+lb3kcogfXMjx9mvlUJfe6mjzL/zLfQhTHKG1Io1zCi9C0dplQpU+uqkyQlEmuRxFKu1ihXykGoNXC2bVKiXKtT6a7hVGi1Qkcf8GSxIWQ7U8q2QloHaQg+c6FPtw3yUbTMM7FUc3EqR7TMxY+x9ZYvIKegGjru9snNCZ+drD6HbqLaQaSTGEeDdPLGgXvjw8YpuNrxhBbnCIe+0VB0GynAtbhxY1ydR5dHonVKB5ezYsdFbLjohSxZs55Ws8nRpx6iMTHK8IpzMNaStzxqc9rNJj4PxSJpuYpN0kCkR0nKUO3KMWkgFaRphYJ3jk1YcI45Vbp8Tr4wz65ZeOJz91P9p9uQUoIzCRlCT9nx8rOqnHXWRrp7DqLZAnl1hK99/WEev+V2KiVL7mK8hpJrCVyO+AomqWBtgkFoOUdaraALOR5DimCsAS+sO/dy2mI4/NB9qGvhfFSC3oEP43mFBOMMaeJJVXF52FXlRNGYNhMRxIIXHxpC+PAc9u6fxB17mmRkKjQuVIfKKDAPUqc1fYzb/+YvmD+asezsF5LNVxg/eojTz6hTKleo9PZS3Xx2KE2srWXlpg3MT1hGd+9BfTsoc0ILJ8083gdMxgO2UsOZCmoydO5BTN9SbLWHcllojD5FJeliePkIe6Zm+Ju/e5JfXvmnDL7sr1izeT1P3jvI/3jvH3DOVedS61/B3NQc/St3UB85F/IZZh69g9bMPElSxiQV0p4axiQMLVtOqVajVKmEGDXIDqVSiXK5EsK9OEOtVC5T765hS5bMOdQZLAbvHJq6UJzRcizkjnpSJqkqXubxLoxuEtVO7lpOKKukkIPYISjE0L4TmgaR0H/TzX7eaaI5iveh+6aowUtAowv2Uywmi6B2cMHDRgyiGxr9SeiRFbqhY8UineOE2MNBTOUIpXofvWtOY2jrBSzddAbdy5aRO8fEkf0cO7CHSnc3c40FStOG3maDNCmBCJKkJGmKTVISGzpjZi7D5wZjE3KZIsnqiFiy5nzoN1UqM99skyQllg12kSYwM9lgdqFJ5jxp1ibTNok1jDUNf33zFCvufYzNI3sY7O9mrqXMH5+iVitTrqRIy+HU4rIW1tdQl6BUA/CZ2kgOVfJWCxGo1rowxuLzNi9+88s468afwKdLuO/zX+Ab7/89fN7GmEAV9T7UtaeAT0CchsYKadLhHQtF6WAcEK8ScuIo4nOe2jvD3if3s3njY9B/MTAC1FHqoML43ifZ83BoxzTTVJZtOp+ZmYw1K+ZIl5Uhb6C+BfNT0NzH8o0jaHoxM6NjNBZm0DzDa4b3OaiNzQEiiQNH1pjmO9/Yzd6vPcjWS75J36qz2XfAQSujd9kQpgmNdRlPPzTBP/7tXbxt2+ep9ryUMy64kLHDa9l/6DC9C5al6y6gb9UOWs02Y08/wsSuB5ibmaLeN0B7dobq0rU4Y7DlFJMkJGkZgKzZQLwL3WoTg5iEPM87xJHQkkixaqHkMVaoUoIsxxqHKDRaoYqukpRJSg5tNVDocOgL0oqaotIqAL8a074+NuwI8mE6wmxNeH5e9YQYfZGN+bwJtcTZex6P1dD4zxURssY+YjHOFvWoBDqjqgnzjQhxcy6xBlpB1EWrH5SGLRo6lapUlq1h6KxLWbHlbOq9A6BtGrMzNKbGOPjEQ7SmZ6gOLsW15slaJbJWC1POws0rUEaniLWk1RKiJbKFBaymVBVSU6bdbpItzEFSotLdQ6lWJ3c55VJCapVqaoEwH6wqUE0EUzFhNrWHmekWh7KcufEWxmTUu6okqaVsE8rVKofHZ8n8DKuGLD6bwbACYxw2KQVE1Ds8np7+EV7zu7+HpGUae29j62WbsY378fNTnPOSK3ji1rM5/MB9Id0noYhGnSON2YJMQrvksEliVgEbufJJTJ+AWsgyyIxBM8M/f+EJ3rr1EXp7hjF2A0YHOgBN99JhkmoPrcY0c5Nj2P1P0d2T0T2wlmq5i4W5o8w/+K+UZI5SYqBnC4Mrz6d3+VKyyXEy56G5AJohpoQXgzMOk5bQLCcRS7dRGpzBvbdPUq3eQ1LtIe0ZpJRUqJU9gz09DA6PcNv9D/Oimz7KipdvQ12T1WedS7lyBfVaHZuEho2NmUnG77uJ2VZOZhNyU6E5dZzqyo1gS5En0cClpeBduLhPnSPLcoxRNMuRJI3tgjs9LwP24aFcDiNtW+0MRckctFpKyxmSUi30FsjbYE7oa49BY8+vAICFGJuIHZsw/wljJZRiFsUbnNwgIea9nl+hNhGRK3p9hXRoiJ9djLclomKeRVAHsZ06aMHE4owApECooS7AcWcrpAND9G86m751W+lZNkytfwBjYWFyjubkOFP7n2by8H5Mpc58Y57atKdWq4Sh3wI+d/gswxhDuasGCFnWit6A6QBPmXdkeRY2caVKrW+Q5StXsfuR+0MtrLbpqpfoWSjTnvMkRqlUEhpxHM5grcarXv8izr54Fd193YzuP870kUmOPLEb32wyfnSSxkLOQnOOpLwcPzuH9Hdj0kaczxWEMPeGVeecx8aLX0iSHMedtQzDFDo7gRzbR73rGKdfdhHzo0eZGT0arKMNDHGjGktbFYxgfIcK0JnJHXqkhwo155S2d/hyGSlXue3hMVq/9zHe/GtVRrY2ETuANylGltO1/Fxe8avv4duf+Ctmjo6xbMSw45It9KzfiDbnYWwfs2MT1Cstkv5u6NqAwZKkJUy5CnkWUVtFcGHWV9thbC9JuRuXzVIrJZi0juDRrEk2P0VJLNnUUVRTamIY6h+kWRvgW597hte96Cjl2gi9XT3RC7MkxpK3W8zu34u25/EmwaYJ6pu0xvdh8u3Q3Y+xJVy7RXNhnqRUwrsM5x2pNZDnqGZo7smcI2sukDUqoGUkjpoM6eXIyTcSUqiJw7nYEJOEarUrdFbJc5xznXlvRdrXSyGiEgdGEnvYRQUgSmEefcfjilTVk/Hz50uoQ1M+T2A6JUUPJgwWF7SemtC/Wz2iJg6yU5LipNR3eoWFogSLeCURi+nrpb5uB/3rzmTJ+jPo7utnbN/TTExN40qWqckx8uNHycaPBpQ3rZJlGVPTDlOaZK2EQnZvlHbWxPucpFrG5Tn5Qo7PHalNyH3OwsI0s1MTsfQLkq4KlXoX5VIFPLTbOSXrabdaVEoGTcMDaWaeaqXOWduWcvHZA1x+w/l0b1iNKVXYeFkVkRqthtCYnmfvdx7gzi9/m7tvvZdjhw7hJvfg1oTCh9zH7qea4ZxSriaosXjz/6Ptv4N1u87zTvC30g5fOvnmAFzkRIAASDBnUqQYRIoSZbVs0ZJluyXZJZW7p9szNe52d095xm7PuNzB7ayxZSubokhRYo4ACRIACRA5XNwcT/7SDivNH2ufC7ZruoquQt8q1AVwDy7u+fZea73rfZ/n9yyhyh4hHkHwIqh7iYu38tafX+b+D9zPyR+M+dTf/zu48TYipLQIlbqUhBDwIiGcU9h60hSnRr8gBGiCoCbF0LTzKZONLf78wiUefeK/4S998n4++osfRB94F+QrSAoO3fUBPvo/HCPMz6J8mzhdRQ9mlvDyc2xdrol9x+C+96BWX8d4Y4vJeBfVG8J0jOpcWzG0LKwMKYc517/xXYwOHwc3TaYJZdLidw2TaY2bVKyfu8TmmYvs7EyIaj/Ndcd48pknef9LT0K5Sj1Zp798GKElMTgmW+vsfPcLECKZ0jRGEMKUWFvseIfy0E2JJuMcbjZHty0QMVJBiMTGpVGqkljXEHY2iDjywSKm6CGESpWl4tr9VwlJnmX4GLA2Ca0cmjxTaO3Bt0Qf9r4c9hZ0J5uWneMwdKESUaYvShyAjgW/d15H0YVTvsqL2khP9BpPMkQngH7EEK5ZJ6OIXTMkLWKJABFoiciuBPEixcuGaEAK8qxgcPw2lu94A4ND1yNCADvD6GWIge3L52m9Y9Y2+PEOoa6QQiGCRcZ04voQUFkBkNxhwVNXFc10hvcOEcHkhhhhPpngmhraRNwUIRJ9THSW6BJOiBQWMJtZWgtGGfAW5wVL+xY4cGSR9a2G73/mzzl82NBfWqS/to9yZT/mwA0sLC9xzwffxh3veSNvffxFPvvP/x3NpWcoXjNJ/w8fsbZNQAQiF08+C3aaED3BMD35OeLkKsN9PdRyQZxcpHf2C9zxtr9Oa/9bPv3f/5cI6RK6JwbwnVuog0MIpUg528nrLoUgOk+CNkbsdMa8rlDeUcXIqfPbfOaPHuUd+9cZ3vYI2e0/BUtvR8gROjuINw3C7iZLpdBQKsrDtzC44bUMDiwjb3w/MGPz3FVyZSgP7WNpTXLg4PWs3X4n+fA6ikGPlA4XkaGGMCDEFmJAdEygZTFAyJwbXnc7MWjq+YzJZMI3PvswZ7+9jye/+EP2f/idBEc3eoo0s4rN73+bdrqJjRIV08YWZCRmBc18zDA3zCZVkgELnWg6IRCVSA1HKVBKU/SGlAi8bWmbmtZtovMalZVI1S0VIboQCU8ikXZOrhBpYyQ6yJRGG4U0HrxPDbbgr1XSeyd0TGwtgkqLVYnOzBT3cmI7Rfg1Z+OrfKdWQVBKSxNNR2GQyXBAKuk8qW2/F6Hj4147LyY6aNxji6XTnKjorR7mhnd8hKWbbsc7n+7h411ml68wn0wZ726lMrma09gq7Wh5D+UDWikUgfl0xliq1JgJOmlplUZnOU5UNE2LUgrT79PUFW01x84rvG1TkiMCI6BtG5qmZt5YahsoMkmRRXqlYXficdYhheK5ly7w7MmL9PuGlWHB9QdLVhY1qyPDwYU+C6PIwlLByi03s3LzPdx54won/se/hYpJnmN6gd7aQS6cOkVr0yJ74amTvPSdz3Pr299OPY585R//Uw7dfi833bPA8iFB1Auwej8i67Ny9AhZJpM3XCmC7+pt2YELg+gSRwRGvkJfLbQkuLQBuqZCOce+o0eoqjmu2mW2O+UH37vAXSGy7Htkt3nE6muI6jiSZaLZwdenEFe/DSLHmBnH7r0Z2T9MDDC5MkfInDvf/lp6K2sUCxqlAiLWRDuG6bOIeg6NxTdzfNsQXYsPDt+6FN5Hk1BTOqLzgkEh6S8e5/0//36ev+v1yGbGwRN3IbOSGAN+Pmf9xafZ+uG3ENqQO0Hl5gjbpF6Dj/imIisMZdDIMqc3HFIOh90BIDFGUvZztBYYnWi487ljd32byfYW1jpUbsmKfrpSdj2g2AmE9jLZZEfUdVJ0bi2B0TlGRJT0BNeAb68JsLpLbOp3dBqOPS3HtUi6SIf42tu0f7y1+mMvaotAIwgi4AOJud3N3vyPlPuBgBR7N6lX5G2igxuEmP6v+268hVt/4uc5cNtr8TFw8eSz1NvbeGuTY2p6kco3NFXdSUkDwmTIPEeFgNSa0FaMd3dQUpE6iJHoPaojMSJT2HlTVwQpme1sUU22cdambGqfLInK5N04I9AGz6yxLGQ65Ri3LbUTNE4yzKHsJH9ubtmoLfPJDBlSM0VoMEZy874ef+nXX8sou5G4+RRlcQ6x/zUIPFnmuPVt7+DFhx/F+YY6RHJK8oXDBLGE6Vl6x2/m8ukz3PT69yBEhugdJ7gxrq546gt/BG3oiDA+EVABvEyft0xxqVKItIHG9DVRSjIhU0noEhnGz8b0M0nUknL1GJ97fIebj19l1nscVfSQfo5Yq0HtJ8SCjZcu8Oy/+V85uGpYOjikd+A6qp2W+pJn5e5jXHfnjeisTHdosQ0xh+YyYWedenOLyXiHra0x6+vbjHembK1foZ7s4ptANZ3Ty2Bx0Gc0UKweOcDigYMsXC/ZjJuM9h1gMFpF6gwtBG3Tsn3lMhe+/XkiEo3GRodvdlGhJrSKmAVC65jvTli76XZ00YcQMJmhtRbXtNTzCttUCCLBeUSMNPOK2XiXajpBKk1/YQktFDrvXWOPxciPUGgFRIn1qV+UEF0SbNJpaKEQKkuiquiSsMonbzx782vRORSTpYvokvZAIfGdvetVX9ReRELQ3Zgk0ARoASPS3Dqk7QtIyKLYdWJD6FRm0JFOMo7e8Xru/qlPcui2e2lCw876VarphPGVi6mhVebpA/YeET1Sa3JTIrIckRtwLSG02NbiGtsBBBNcIHhP2zZUsxnT8S5SStrW0s4mNNMdvG0wJse3LT4KMpMTY6RpW1AaLyTjectaIbqguoCNsNMkr/VCBlrJFBKok7ZaSInXGR/55M9z/evexYL7Pte/5jDSn6TZdx9nP/ePWFz8JoPXfgh99AHu/cD7eeJbD/ODr32Zxkb6iyOWj9+CwGD0Gd71N34TO4nk8ixx/AyxdwNXL8MX/sX/jc0XTxOkxIiCO9/7Tp5/+FFmG1fTqCxA1IboHFqksk4IhQ9pjh11+h50YZKyLszxFQRtmMx32diZ8U8/DX/lJy25nJHvnkSt/pBtenz7e+v84b/9GqdeuEhPSV7/2v38zM/fyLHXnmDx+jcj3SmUOQBigYCFOCKGljPPnuGZb32LU888x3x3TtNAEBrrHNV4C2trfN3grEU4h/KOteVFrr/Ns3LdAHPlKocfeC0Lw0VUljrX3jvmO5tcfPAz1Beew/RX0nvmWoSbMVrdj0UR1CIhCJq6YvPqRYKDpqm6RlYgujZpsq1Dad0FOgRCa/He42O6QtZ1Rb+qKIYr5MNRoo1277qSMlknRUet9V2lGjw2RryUtCi0kBiZpVFXR2aNUnSTCl5xKkaPFJHumEqCmhiujQNf1UW954lWMglGrEunsE6bFHRdcIQk+q7LLFJ57kPKK8pMnzve/yFuePNHuOG2O8gXVzn14nOsX7zIdHcn3TVp6esRIpdUG1c6sJ0ArYgKvLMEaxHBYds2iTFimjuWC6P0cIKjrmbU1Yz+cIFSDght1TW+JVordHS4YHHeYl1LmS3THwwRQmCtg2jS/JqI9S0zD7IFQ6BfCAwaHVMSp5CCg2tDPvyL72Rw/D5ojyMvPkY8/wRyf8tjFxbpP/ci92z8FivvdSwd+Qg/93f+DhcvXua5x3/A7NwZXvrOv+feD/wqUR4hLw1ZAcFamJ1C6IJGHufsD1/CVTPaEOllIx545xon7v8lPveP/iXNeCPBFAVEle6uipiaPEKkE1pIlInkmaa3tIhRmu3dHXabhp2tbWwdeOxl2Pmdltff0bJ//w6b7fM8eXKHF0/t0ljP/qU+7/3w/Xz4Vz7MvmOHENkS9cmX8e0G/cV3k8SOBusCz3z9szz8h7+LryOjw7ewcKCPyUuapsFVDfXuOq1radsKaWuOnDjADa+5kyN33Mva9bfiyPn6v/7n9MoSqXJkdLja4l3N5jOPMnn2e/gY0SGCjng7J+v3OfrAe9h46TkmtkhThiC4euoUvqO3um46QrchEyOy7ebKISC7Btde3vR8OqVtG4YxIIzGFD2k7ppnXbNYiIhUiXwUCUThO7xSuoC2oatwtUxxyV0gohT/EUFU0I2KO6WmECmp9f+M7ncSj6QOtiTlRYfYdVk7jVuCDXZfIwQxdqqxmPp6933453jXr//XRJlR6Jw2RrY3kjWyrue0bUWU4IIloKibiqzopQ/NpNGF79RiSTyfJKeZMTRV1eFrDUok7W7wntl0TKYUrq7wzoEPWNsSuweMt0AkL3L6wxFaKWyXHpLE+B4tk+10FjxXG8kaEZ17DCJlSAvJ8rIm1y1S5JDfiFhsCdu7SDHkrW/cj+zdwjNff5wbvvy77HvPgMPXfZCP/Rf/Bf/g1/4G9fY2//T/+vf5xMvnuPODv0i5uArzpxgsLaD7+7AtrJ99gXo2wzrPvAnc/q53sXLzmznINpd/6qM8/G9/C6l8ktbSmWm0QhcldV2jo0+brM742b/5MW54w1vRg5LxxhWqzSs8/fQZnvvu81w9c4HpxpQv/cCxYHYphjNGKwM++JMPcP19t3L9/fdx/DU3J04XJcznnP7ypznwE7+EZIEkDQ28+O2v8sP/8DssLRwjv/1mxHCJel7hphPCfArBk/UWKWTGvmNLvObtr+HIzfcjy2XS8FGgvOXuD/4CMRuCgHpWI4Nj68Ipdh//NvMqEKVDl54MiLRAQIVdskM30Nf7CW2F1IamHSM6zzUIlDbphBRgsqQbUEon8CJ719vU+I0h+Z4HZY/caMqiwBQmaexJoh6l0vtfN4HQEWFD6JqizuG8xzqPawOZlklZ6V3X1EzrdQ98QUx6BBW7PwOJFvuqZ2m5kO7FksSATppuaHyqH4zqximkjl63zxCxeCTHb3sN7/trv8nx6w8wbiPjsWfnykW21i+zs3GF2WRCcDVFNsA6h3cNpuyhykGSgXpHbJLVLZDK7eg9EKnbBqEVSiQlT14U5EWJEpK2qiBLajahDdHu0jbzzpcsUVIRvWc82cUHR54ZGtcmCGBXQuVSooTHZJp5G9iyMZkojEv+CBk5c2FM20ZyVgnecem5M8RJzmp/H/bqQwxXt6mP3sc/+ZeP8MnpP+X4T854wzs+wa/9vb/Hp//J/4y7ep7f/X//M8p/8XusXneAtplx1+tu4+DhQ2xs7vLCNx+hdVC1lte+8+18/P/+39EfZYTtb3LPT76BR/7od/FVjVASHR1Fr+Cdv/xLDI7fwTd+65+zdeZlppM5tch45pEnue2uwywdfwMrR/ZDNeX2191O+KWPUs3XmY014411FgeS4sAxdO8wWW8xQSVkIOKRfoafrXPu2w+yqUtOHL+L0PXrNs69xNOf/i3a8ZzBscP01g4zn1eYGLFtg5ABIQym12Pp6AHe/pE7Ge2/HlhCdGmSMQo2r14gyBylFLZpIDpmO1tc+PofU69fxjY1uswIPuC9xwVPM5+x+fIpTjdr+HiV/bfciydS9vqgVGcfhrwoO/2EwJjkL5dKkRmTSt8YEqNbqk7fIBguLpENBuT9AmMkWqWmlu0inI2MuKhxAVoXIWgiMK8C8zrQNA3z+Zy2dRSCrtFM0qHHDo5AZ2JKk6x00ndC8lfd0BFjIpv4zrQRo+9YTZ065hqzO6mX/N6lH0FRltz2rp9GDJaQCLJM4EPNeHuLajKhbWuyvKRRMTUzhEJoQQwKokcIg7MNTgQyo8F345kQsc5iZ7N0t1EdeC4zZGWJ7pcECdV8TpYZTG+AaxvCdAdXj5EqS3woZ6lmSdpojGE2nxODTM2PxkGUXfCZIjMwd5GNNtBGRSbT9znegvUqZxAtbTXnO//u37C0dj2IknzfrWSHh5z/yoM89MNN6pnlF2f/gls+KnnvT3+ct33gDbz8g+/z1Be+zJVnH8PZirNXxzz0J98mU4LCGFxoaV0kZH1+4m/8VYqFIpV5/f30RjXZqEdbVbg2yULv//DbeODjb0Qvv4Ob7r+FzVPP8fDXnuEr/+53+cyfPM7FC1f5hV+5yOH730W+vIrUi0gh6OfHGewvOXDrvQShEVF3U4wekRoZrkA9o96d8vTXv80XPv1V3vzhd5FlOYLkSX76839ItblOuf9WhsdvwRmNb3dwTY2UElMMiConX13mNQ/cyHDfcYRYAwx7ALDp7jrrp08zOHI3bl4TfYOrHWce+jzz8y8j1ABhNFLlECF4DzLDCUE+WMO/9Czn13fplwPWbr2JYrCI1AqtkgNOaYVUCY4lOzx1jKCUSbx636aYX5GaWSYr0EWBzgxdkm2qRkX394BEpevYHpGGmAAXJmkoiBHvLE3rqIIgyAx8i5IKRZcas9dgZo91n9aQ9L5bT6/iolZ4HFCHmNr0pA5qFF0CRuzIKIGui9xxyULk9vvfxeF734itGmZdlMxsOmE+m5JlJQvLa4y3N8nMAkFlONuSZyaVz7NtlDEdZjUSnEWhsJ3ZPHa7ZLSdo7tjyGitOx1vQCrduWDCNdG8b2uCaBGZQZV9lM5QRtIfDBhvbneOqECWaYQN5ArmzpN3DrVpFNjGkRuVPNDTMV/9oz/mL/9X95H1DnHnxz7JS1/4N/T2v5nF2/8Kpx79HI9++SEKCQ89N+bSv5zxi5f/Ia/7yNMs3Pcx7nzLLdz5lrtp5zXblyacfuK7vPithzn3zEtUu5sQJNNoCfQplkfIuAvCg9nHxZOPMtmaEEKgDnDi1mO87a/+JjKrCfV5Cr/L0ZUx+//mX8HbyJ/+q3/CI49d4uTzv81b7/sT7n3TrRx7zX0sHjqMXj6STgalk9JvNkMUg5Tuoffh7JArP3yMh//sq5z84SmO3v8hbrj7TSCW8Q5efOiLnP3ON4gss3TTnUQlCNWMUM+RPkJeQtEHk1Ou7ePwLUeQchkIhLBFbLaYj2ecevoMC4fuoZ5MUV2u9+lHv8rmDx/CqBJpFEol55SPluDTpi4yyfLBEeXTFm89xk4YjZaxIc2VM50TQpo1a6VSTrmICJ0ccSBS9ebSNUKKFPqQFzmyg/HLzt/v9yBAXbSzE52HIZJMDDKV50ZDmUVaLSgKgyAyqyx1N46UWDCmS439EUR0d4DKPahC9K/uohYk3pgNERtAqa4kiK94RG1IFkzRKZlaHxksH+LO9/8s5WiJyXiXza0hqijxLmmYvZA0TYVvZuhiQAiOSMC6NgkEQkApSWsbpLNJbZMVqVPYVQatc1T1nK7zkD5wH3Bti2st2hjaaoarK+Jsh1BNCG2LyHK0kEidoZQmiMBw1Oes91QhUHTVjvOB0ghmtWce0wxSRhBCUTUhRQQJ+O1/9inuW9nltp/9NU68/jZuOPYzyOUF5uNLPPLgozRbM/JcknnPS1db/pffv8pHz3+WN77tCY7edTfFdbdglq5j9fg+1k68n/s++mGqHcXOpRf54de+zSOf/SIvnDnLk5//D7zxox9B5SPOPXuRr/zL/w3bWOo24ILgwIkRZc9BcR/f/zf/HwY9zb7lDZb338HK/pzlvkQrg3Mtn//umG889l1uP/YEb3rdCq/70PsobnsbqpkTZleI8wkiG8C5zxIO38ys/3O8+OAj3HDnPUzGA/bfcT9X12csbJzmuYe+xvNf/gpNAys33Eg56BN9xXR3E+oZMitRZR9hDN7kRNEQ7FVaOcdNx2y+fIoLz52iFmus3vZeJlWLllDNx1x57OvMzz1PUzv0oCZKjck9kQo7W0eXK9gICkuvWOgw0BXZ8hrzK+fIVw8SQlLTKaOJ3qdkD5mcWCbPMMake62PhGCwXYJMFBCSAoNAch+KKIgudlfPpN32MRXImiT23HM1Wp+gFYXRGJkux7V11E0AqaGtEUKQ6w6JRHrHRMfT9/yoseNVXNQhJlROG8E70cEBYzr9SOOfNqS5WtalHEhd8K6/9Gtcd++buLJ1mXNPP86xrTs4csedeCGRWYYg0DazNBIwppPfFbh6RiYkNeBbR7AO6tT0iCpcAxuiNEEmc7vJkzMrdB0FKQVtNScvS5xznR5dE6NG5QNkliJLTV5gMk3d1ORlD4tg3DoGfYNySfKaiTS+mgSQBLIQCSptLLWDTML5sedv/ndf5o7feZzDN95ENt4guoZ64mnsHCE8fSWJOUyEZNwEfvsrG3z58Ql333KB++97ghtvW2VpbUQ+2oce7KO3ehODGw9x9PZP8o5P/nWeeew5vv57/5rv/uFvMFhdYffKFtON9VTSWZi1Nd/+6vP8xC8+zOi2VXrHbubq499m7cbXQHE9t75B863/7++QiU2sl0RhOHH/zdzxjvdx4z2HKVcF9cvfp924SnHre8mP3gbzLShvQMQFBr0N3vqxe4jTM9zy7r/K975+gYf+/e/yzIImjGtmE4dZPMDt77ufG17/LqTus3nhIo989nOIYoQeLUBe0l9Y5PzJp/nT//W3yforLB64EfoHMYdvppePaBuLsA3bV85w4Rt/xnzzPJUwML1MUewjhhIpbVJmtTOCKYjRIWPA4xFln8W1jFz3qF58BLPvpxgtL6d3Tqo0kswNxqThke4IMXvhBIoC5we4EAgR5nOLMhqdCYQI6WrmAkIJ2gAmgtFpMuRETIRYkQzJUqYSXRlAKTJfULYO2wasF0ip0daRa9NF8MSkMydRjfYCcfgx1/V/GniQxNEKXc6QJFE1bIh7+piufFC4KHjN297D7e/6ENV8h+9/7XOsnz9P9IEDN99EVuaUvR4LawfZuXqRejJOck8jEEoRoqOu5zjnkswuJn1zZjJCx++SQqJMiTY5eaEpSsV8opJcUgqyvEx3PaVRpqC2Y3zwCCnQZdFtVinHqG1qXNOSZ0Uyp0iNVhotLFqn700piQmJfBGkpAmBgVHgPa0XiBjYrjzfe+oy5bPrLGlBbmC5p1gYFQQiWsHAQL/MmVvL6vEbOHbnnTz851/iB48/yeKC4ei+HkevG3LrbWscPr7IcLFHue8YvX13cd8DN3Dra/8uLzz4GN/6nX/D9Mo61geiTAELcxv44Zkxf/yp7/Pxj1lufdP7ad/wVvTW12h3n2W+tUO+sEZs5tx042He9J/9Aife9Ab6I2DzHLMXH+Xcs8+wdPwog2PvRSpLKCL0DhLNCqLZwm8+THzhC+SLhzlxx7v54e/tMN4KtA6szhCTLQ7uqzG5AKFZOniYwYF9CLNAsbxCPhhRjpYoBitsn1xm8fqb0LrAtR4ZPc5XzCcT5hdPc+7BP8VPprQR6voSRexgBC4hkxK5o4dThlDPMDrZWYPMKEY9ZpMJi/v2cfzEMXr9vNNSp1dainQ9S51n+cq8uFtESkkKJJFIv3jFh7gH2A+dxNRGoLuSpi3/FUEJUaQ1EyNadwMIneAZqrbYGIjK4IPHdQkyMXSBFXsZuSTRtXy159TgcVEigVxEbAhdDG2AKK6B6UOIzKNj6cgN3PH+T6CLkpe/90UuPvUYrhhy/uzL3LW9zejgAbIypxgN6S0u451D6jzdo+ukngoxhbGFDkLYtg1NBLIceqlxgdaQFcym0zS015o9YV0Ikrw3xNqatqmSw8xkCNsSvMM1TSKTjnfRvk9TTfGuRRtJax2giUSyTGJ82nlzGVKyh4zUnZDfdDlewUfaILpeAyAjUis8kmnlwUtkiCyOFjh0143sbu3QbI/5i7/wej75Nz/BD77xfR784y/w7FNP8+QLm3zp62dZXSq5/vCAm258hhM3PcLKwQVGRw5z753HWfm//BK/87f/AZPNJKzIFGitkNbzB//qM1SnHuMTv+bIjr2F7339OZ771r9gOjYcOlhy91/+VW59x3voL/aI0/O4M+c59/TzfPur3+P8S2f41b99A0pCdBeI+hZsO8JtnKFYPYw88gbczmni8Dg6WKTIse0MZy1107B9+Qp/8vf/AW/9+HMs33w/s7DA4qHryAdrmF6fKDUxQNnvo269i7ZusXVNcC3W1sRmxvjcac4/+AX8dANExLYVufAorfChRftkhAgiI1s+hG8alK5RBuq6QbmImG6jB7dz7IG3MOxn19xSnpQuGmJy9VnrcK5DD4VIU1tCsOQ6jcC0MZT9PsZotEpS0mSXToSTNAIT7MH1UhxUUlrazhMdhcBkARUE3iuIPWwbGc9rPIDOsaFNwEidFvZeAs4e2FP8mEf1fwL5ZC9GJGCkSmVBp+JKlsx4LUo2X1jmgZ/+JY7cdgfj2RYXn30K39Q402Nr/QpXz5ymt7pCJOKcReclg8VVnPc08ylFXjB3LdQ1ziZHjZTJgOaaKt1neyVSq9TIUprZZJwaZJlG6PQXROaTXZSWaf8U0FhLmE6QJCi78B7bNniTcfXSRaZbm2ihmNdtEjyoBCModUTFkKJNRfcQiVQuMCg0mfBUCJrQkS8IzLopQAwRZQMiprLvL/7nP8Nbfvq9vHRynb/31/8uv///+sf8+v/jb/CxX/kQb//pj/Pdz3yOr//BH3HmuRe4sj7j8qUJjzx6mf0rJYcPlRw/sczq/hIO34t1DToqohZkAlb6kBuNlZEvfOU8W7u/z3D051w6t8OBg0Ne+457edMvfIh8YT80O3D1ebZPn+ORBx/nOw8+zdXzVyhCRPqKGGuEWGR29Tzf/Zf/gMn5M9z30U9w+O6j6OveiOgd4OK3v4/qLJ5Ei3GO0bDPE883nPmHv8dt9z7DHR/7DRaO3AAxBdk38zntvKJtLc5ZZHTEYInB4aa7XPje17jw6DeREg7tL3Gqh70yJpo03SDURKfxxpAt7Gcul9m4/DyZb1kcaGzrIDrEbEZveYkqGDY2x8zmM5qqpmkd8yq9W955bOuuWXO9SzJlQqTQhigC+aDP0toBysGQotejVxZInVSFquOySwFKJHOTiJCJFMboiDgfcR6kljgfUVqggqQschofaNuAlSm8wcbQzby7Bl5aeqkCDq/ySR1Cyk1izyNKuDarBkAEfJBk/SFv+fgvc+fb30NeLvDy8w9y6cwpbN3gdE0LXDxzkgO33oLOMrRJtBLbWtp6TjOfIEyeYm3bJgECix7ON6kLHkKyWPqAzhUizwnOsbO9CTEitEj37uDx3tHWU4r+IloqptubtNWM6BoypcnKHmQFTkrmsymXz59jvL2bAsQjCTukJE3ryQX0M8HWLHYPVHaQxSS+6UkIWlBbSRUjrfW4IBiSSnytIjE6brz5Ot70znvIJdxy22HueNtdfOl3v4z9r/4nPvmbGxy4/wHe/0s/w33vewPf++LX+eHXHuL0U8/STMeM5w3t6ZrdrZqyl9M2Z/AuffZKKUqRMMC9rJMYjjS0sHzgAG/56Ie49e1vpVw+AGECuy8zOX+Bs8+e5uLlHZ5/eYcrp68wn7ZsxcjFrRk3uw2iuQnXnmd7Y8zG5W1efPCrrB14K/nSKpg78OoSxeIqvqqQruXQ0YMcfs8vcOniJlce+RrbuxkhG9BaRz2d0TYNtq4IbZPyykWkdS2xnbN15gXOPfRFts4+B66l6A0YzzRCzEEJvJMoYYk+EESgt2+VO+6+ia/+6ec5e/I8+5dXMFlJb7DIfHeXaFvyasz5ly9i/Vna+RwXW2JwJC5YEnnIrEBrQ4wSbx22rhE+4I0mEHAxYPJ+ykDzkdaCzAx0G7zsGsNKCbQS3fUPkpYskXyci+AiTRPStCikQIeiyAg4HJIgBSEJXEEkHmAq+NMhkWRfr+KitiHB5EOn7VYh0nR5WpJAJhTkBfe+7+Pc+4GPs7h8gPNnn+Xlp5+htQlGJ6NnPh9z7sUnueft7yUrM/J+D5PnaaESkUrT1nPsZIKbjpHa4ITCR4eRBu+bNP/rAHEOQRCSjctXaOs0ClN5hnWJhR2dpZ2N0+IbjwnNLM0cTZZmm21NlILJeMzG+lWqyuIF5FnC3xhtaJsUaD7KBXoaaV1Eaa5RQlofqaWiJZFKvY/UUSSxiA9MHfR0YoVN25Z66xxlJhm3gasXLlPFyGcevszjv/q/8HPv/xPe8LMf5eBr38ZP/sLb+Yn/7L1cPrPDD7/5PZ791iNMr17A+Io88/QWDbOpTdpEZVCFoT9cY+X4GoduvJnjr7mdfTffRLGwAKJGhhlifpJmfcwLP3yar/7xVzl+6+28/9d/jTeLkn/1t/+ffOszn2KnDnz7oQvc8M7TmAXJwqE+H/xv/ge2Tj1DWURoLsBggbau6C0d5vi7P865r30Oea4C65iePUe9voOupzSTs1x+9Ess3PE+6rpGCoFzNbaumGxcZvvMC2y89DR25zz1dAufTPsoEt+raQ2LQ0vt+0TvU1yS9eR5yfET15Flkltf+xourTfoTHPrO97LYGmBjQtnkBjsxmXCkTZZXTtJsKtn+GZOkWWocojO+8lnoFI4IyrlZTtrkVqiRJIW7yGIrLMo2ZmKogT/SnNLqeS8QyS3nERcS6URSqSJj/e4EPDBIQQUucIFQeMUUmmM9BBSFEYa5YqUNPpqWy8lqRGkRLKsIZKxI4bUlDJGc+ub38N9H/k5hksrzKpdnvvh99m+fCkBE7TBxyR639m+hLU1RW+ANoaiLNm0lhB9+iB9Gr8LH/Fa4tsaHaENLsn+ZA/hWry3IDRZbpjsbjPe2GD/8SPkZZGSEaLAVRVVvYtQGcFaQlMlzJJzhBAIWuMj7O7ssDurCc6lB5RlyQzhHUJJ2ujRLtLTktYlBRNBkCmJlpJZSItbC5mSNkLSwtcRnItMQiRH8uhzV/nDP/gqN952goe+/gzPP/I0Rabw1vHydsM/+N2Xue7P/2fe864v8cb3PcAND7yOw0cPcOSXP8RPfPJjOFvgw4TgHPV4jG8CvX6O6vWQJifLRshMJZpn2AY/J7bnidWUejLj0qVtvv25b/Lsw4+xuV7zzl/6FfLBCOKM177vTXzlU5+isp4vfeU0H/0v97O4sAz2NL2F2ynvOQFXvkS4NKe6fInHH/oWK/f9NIMj1yGWD+I3zjAe12x852vEkMwZJlvm6qnzmLXzZFJSbV5g68lHOf3c82xPt1CZoGorQlulcMBMgUladVGMaInszjWtylIlJiQ6ExSDHstri0ih2X/jXXzk8M0cOHwArXOqy6fZ3d6lb/pYk6MCOG9BQG5yDJI2OExRUPSHDFZWcM5RlD1CELRVjWttut6VGf3hiP7CEspkGFMkO6RMkuTowQabGH0hJj9BTNFOxM4z0Y2plFRpgxCCPc2lI0XgahStjLQBtJBkSiFiMpykq41CiVd5Tn2NmiNDmhXHpC92gI2CG+57G2/+i7/B2tHrmdYzLp49w4WXT7I928WiIViMJMEMastk8wqj1WXKXi91orXCTZPjymPx1RyvJMG1BN8gTIEnaZuVzjq6Y8C7No2sfMvm5YscOH6Uolegix6m18NGD8HjpEse7xCJszFW6tRwy7LE2W5aGmvxPmCESEb3PCMr81TuxSTpKzPNTlt3qYTJpROCw0bxCjlSCJRNhoEY0/iNAD4G6rrhH//bh9mXf49SpE5qIQIqU7Qx0LjAyXHDS//hcf7tZ57ixNFP8/533cpbfu69HDy0Sr54HaJfIigYLi1CTEaVIBqEqxB+TJxMCXUDbUPbtGxsTnj+B0/z4mM/ZP38FtOdCdXMYrMh+44d6/C1gqa2XePTc/HsJT713/4tfvYX3kz/xtcRFlaYTeC5L36Nk998kNlc0D/8WjZm32Hz5VOMzzxFaOeoKAnRopSmf+wGjr7l3eSr+7j88IPo848x3NdnvrPB6ZefYdZYsoUB5dKIQE1vmNHPe9i2JkSDLPsQI3NbEbzA1xWDfh+lDYur+5GiIOqMTGT0+j16RR8hAn64wtqJW7DOMbj+NlwG+cJ+Mp11/RCJa+aUvT4Cx3B5HzYE8qJHiJJqNiPEgNKavCgoipyy30cogc72BFZpRi2EwLkMazuAppS0rae1DutjureHlhg9xIQLTi4/lQ7EmCrYTEq0jLRR0iDxEgIS5RoEtmvE/Z/g0rJBkJMIlTYalFQIFThy2z286ed/naWDBwnBMt7Z5uyzjzPbvoJrWnzTQIwYlUreeVtz/uXnOHrH3eS9nLwoGS4sJktc3hLajGpnNyUptE1qJMQmSe1Ex1jOQgIjKE3rPG1juXTuHDfdey9lf4DOMqTWZMMV5tXFRIHUEvIS4d21EknS6XxJ5dKeGWZaW7TKUUqnl74LHu9lCf0bus8l+oSDDSHQ2Wo7yGJigkmZWNyis9iFEKhaz26IoFM8jpJ0Kr2umR8jrRS0wfPs6au88FtX+bd/8Ah3nFjkLfcd4M7Xn2BhZZlssNixujKCzJFoosqZTCsuXtrkxade4NxzJ5le3SbWVQIUBIlH0ATJ0pGjFKNliJ6m0jz34DcpC0PpPITAH//xD/jBt57m6OE/oGHAvIXZxmUGCvLegOF2hn76Sdp6TAwBXQ6Qo30MBgvoQY99t9xNEIaTX/kM5srznHjNdahMc/3+ZS5P5zz68NPMNqdEIr1RL01WtICQEbMSGT2+qRDRoVRKJ/VVxBdDFlb2EdPgFyUVWTFIKjgkgwMj3vTxX+B7X/sGgUAxGrG0egBlMvI8nfjetyz0FdBisjXakKSmTqT5tRASqSQ6y8gyRZ6J7t7MK4yAbozrNbR5FxUlBVmm8E7ggqCukvU1Bo/1JBuw8+neTBrTCuE6bDDJ+onCKo3suvvJ+eaQ4sdbrj++9luC9AKL7ALoU1TIdXfcw7v+87/L2k23sbt1iY2rl7hyeZ2tjQ0IEi11wgAXJUEr2qqmmu5w4fln0B+VlEVJlhfkRQ+lNbauqOazjtedcjCDc8TYpqSFTgHkmzrdO3oDvHNkmWFrfZ26mlOWPQajIXmRM1hcox3vQmuJZQ8VBc61mE7aF71HWkdmTLozuYhBsjOfs729jQgWoSVKJ0H9QChyqZh7j5IyESRjKpl8p38XIpIrqH2K4E264M7k3pldZj7Seo+RgoxI3tlatRIYKSlkxAWRnHAEqqrhsacu89SzVxl9+mlWFnosLfdTjIxQ1K0D21L0S6rtLZrdihgDRkgyEq4pdLpiT2LEveUD72C4CCFUPPRHf8aL33qQUkUWc8ncRXSAC1stV3fW6edbFJlEx4hzCknNrjsFAWRokcqwvHaY3vU3snnmFPMXnuTK49/i4MH9WOu5+d4bGS71EAqa2nHPfbeysz3hxRfOsrs9w0SJXelD1iMTDpln6OQcIpiSSI5rJISa3CyzuH8/mFRFqSxLoWYhSYeTUtgjpWK0tsKJ19yJKXKUkCjVUT0jHSYohdGVCCCJoULMuulGJ+PsNuR0UMZrHoe9H4l8QmLgE9JpbtJ8OzOahLEIWA/OlTjr8TbgbHJveR/w3nWeioDHEv1evypxfDWxszK/mota7H2be6xiWNh3mDf9xd/gwO33Mh+vc+XKJS6ffJHLp05iY4C2xtd1AuSFkATyIWDblpeef45qe4NyZelaadPMK+a7O9STbaJLzR9RqET48IkY4X1SDdl2hgoZUWcY10MWmu3xDvPJjOXRkGI4IC9KFldXGW9epnbbqKCQWqGCxhOIwaWH0Saet9GaedOAlDTWY/KS6AXtvErdbg+GmEgiISmLFkvDrLa4qGiDT4tbgJMpazo95/RW7I0mWu9xQuKExEaoEGQuGUNyC7oLwdNCkMmO+CYBlXTEtIGN9V3GWzOIqcGoVGRkBNn+/SxlfWo3QcUkiPARnExC5SACdYgcue4Eb/7A6wne8vBnv8xX/tk/h7rG4FNTLwqiEmRIlEwjGhnShhRFxDaO1mt0b0T0FWEyoX35BZqXTjEfb+GtIzeS0b5V9h2/nuHaAN9YZKFROmNhRfPWd9zN4sqI73//Bba2pxhvkX1DlAqcRBU9sr7C+8i8icm2SMPqsespBqPuruqJUqGk7rrEIkXGuholI6uHD9HrlR2N55WpTafW7paA6+KdLoC9iszvJIpeSuXo7I/XMK0/spiv/RAJZrCXnS7FHhhEQBY7dp/AJOMXYHA24qzpTEmRprEJjOg8wba44NKI2KfnF2XHNHs1F3WGxKt06rggWFjdz7t/6W9z/A3vxNqGKxfPcvrpp9i6dBFft9iYuF54Bz4SqVGZIaUWGLZ2trj44rPceuTdDJcWGS6MGC4tUs/H5K6Pc22SujtLNlxITLGqYi9wPVQVqp+sbVVd03pLax2bV6+wevQQZb+k7PVo6gFZb4BtauzuTnp4RhN9wLkmqdW8T+gYo/CxI5zHyLxpKPCYLAMfaeuW1nfJFySKSImnKBWhghbZ+clhbj0DLSlUxzoPe4ojCELQxoCN4toDcEKhQsCS9POZD+RddpkmdVUNiac2kql4a0NECYdUAiMV0VvsxhabeEJjcULg1V61kK4MDkHlIx//2JvYOf8CX/7tT/HYZ76Mm24R/F6V0VlVfUJEGVNQ9PsURZ9mNsHOdonB4XOFEA2hmpMNRoxbw+bVq8hoKbWgt7zKrMpYWTUoY9CZJojUTTbes7x/ldf1SzKj+N5Dz1DN5vh6G5MvMK4bpEzZZd47nMhT9G5RsnLsBnxIi0WpvaZguh5FqZFa431AakFdtWyPxwTn0pixrjh4cIgpBntLEGJFZAMRJ8TmLGQHmU4skzmYoqBXZJjOuNO1TLpNIi3c1AxLuoVI0n2nvSA9r70A+aTGTCe7VhDzdIIHr2i9xJPTNJHptKGtW2LwRGtx1tL62DH1XsVFvZfEGBCowvC2X/wN7vzARwhacfLpRzj11JNsnD/DbDohywva+TiZKJxNBg+ZE6UixjQj9M2M737189zy5rcxWBwyXF5mYWeLna0rqdPe1rjxNtlggdhMycyIKkZcgNjMU8mjUke9bRqEC8TouHz+DLfcfTf90QizsIDc3UKXJXFX4ZVg1M8ZjRTbmzMm3mB9op8YnaGVSd1GYTAiMJ9M0VlEakM1rwlBEUKLkqIrlZJgIZOR1RLaCgjJrdPGSBtiAt3j0CJ0flnIugu27aJ0POmetpf2qQTkAhrA+DQL1SGSuYC1SYjjQySYSNZ5vW3sPuf5NPnNO6yt7PJIJTIJeJRiXrX89v/4eymVs7XkfU3eHzKvxkipUP0hvWyArxqyoiDvD9DBU8/HzGc1uEDrI7OmQQlPOeoj1o5w+cVTNNGyUJQY4egPF1ha0iwtFATXoPKc2NQIrVJgfFmi84zXvuk+Gnq89MijXN6xLO5TtDJjZ2eLpYX9mNE+qsqSlyMO3nIby/v3pV5F8ESdo5AoETp6alpmzXiCVIpnH3uSyfefBJURQ8AQeP29+zhy55tA9ojtJu3V00h/BXPwIHL0OqIYMNvd5uKlht7CImVvIW1KSqKNQOuEsjIqVUhK/scSzk423W0AIb0W14QkifVKpzxLAARj0p261ZEyK5lVGW0bmE+n4D2uTeiLV3VRu73iQmvu+/Bf4t4P/izFYsnpF09y/uRLXDj5Au1kjg+Wal4humAZowxaS+RogZa95IJUIr343FNsXrjA4tFD9BYWKcoeo8Eiu3abnjZU1iK0pp5GVKlTs6SdE1yLUDoN64NLMroQsKLi/KmXaeYVC6MB+44dY767w8HVBVbUlHnRcuv+mn37Ii9urPLQo1eJwoBtE33JO4hQeU8pUmwQXUiAjRHb+o5U4VLXM0aaEMmVICewL1dsVaGjwEDtPb5OOl4pJaZDwEax99jTtUazFzxIt3FC02WBt93dLxOpnzH3nrEPmCjQIZDJ5ACKIRWfRnSZZh1IP933RJqrAkIGfBTsbo2JAnIkMx+ggtg6TKlY7q+ALnDNFvPJmNn2eiJ4BI9zSVnovE9QCR3w9Ng4+RJSeAaLi/TLHnK6Ra/ocf2JNXSukFoSkGS9fpfvlSFjhsgydOl50xsEBxYznn7qNC+9vMlwaYGVlWXqAAKNdxYRNMduuwOl0xVQRIHK+xCTmy+qEqkzfJRM1y8jtWR3Z8JuM8H7mACUPjK98Czvl461W99IaK+k2X/RRzNKG6uYsbp/P+s7F3E+0liH8C5xyq1Odkg6L4CRZCagdUSriDEkT3UHNUiE3b2bO7gocN3JLSOvsMi6v5ROxpDYBdhblye3obBY/yrPqV0QaCl4zTs+zDv/8t9i6dgKF85f5uQTT7C1vkkzGRNdQBclzs8pF9ew1ZSmTjxr38XcKgRKpQ9kPBnzzCPf4Y0HfoZyOGSwvMriZMbV9UvYadppm62rqXveNri2AtsgkERTEpAYnagR1byhqTynX36JS2fPcNOdt7O0ukRzYJGDk5dZXNqhuWGEnE2Q9TbH913PE7ljOou0Tc2smhNcjSJQW5+IFjHQRkk7mSXwQwjkeUkITUeSFF2ZrciFQOmAN5ENl3jQ1nlsZ3gXIeK6BdwVbChB4ohJhXch7egixfsSoZGJv5VufUkAJAVIkbTne1JEjUxsrORISLt/jEil0In7hPSpsggd9C4dIRGPS2YGWaGlJPcV9amXkqY5OorRiGhKGjvHOU+m0khHofEiIESkmW6nNJaiTGxtq8hzw+LKIv1B4rtLpRNvLoaUKy0MzcYFpBTYyRbGCo4d24fICx76zpNsb22g8wH0c0RdEYNnZd9+1vatdHnlAaGzJBhJmYEp+kYlqOF0dwc1WGNnUnHp3Cma6RjvLHMReX7uuPTwn/MzP3c/Rx94HSt3vJWojoD04M8gxD5cMCwsrWG9RGuD0OmqF4NI5osYcCHQWOjM06n6MJJeISkLMKYLsuhk4apTh/muGgvdBWBvMtKF2SJjJDOC0II3GT7LsNbS+vZVXtQxsv+6m3jbJ/8WB2/YT916Lp8+x7lTL7B59QouBEQIaK0QmaG2LbrsJ1aTkMTxLiLLgYjREpdJWhd5+rHvcvfb3kuvP8AMB6gsY3FtH5d2djqZKJiiRCidOu5dkqBzFuk80TuCCwQfaOqKrUtXeOqR73LTbbewvNCnXTD4sE27cZ5s+RgsHkaGZdZ6Q+55reDPv3Ka1jmkMgyHy2zPWmqXpHzWB4RQ10ipRkFw4dqMMiKwUeBDxMhIJiRLBYyngdanh+i7Ml2I7vdMrUYMe2J9cC7svRYoOiysCOgoOtNMF8aSrm1A4kHbEK75x5HpihRi6AgakMUkgglhLy8cfHfv94SULhoBAiZATkyqJyFQwXW7hMTWM4RwFLlJTSibLLdSdiOdmOAoMjpkFCjbMlpdZnk0JO8VtJUly0eYrACVMd84TbQt3rbEoofQOUJEjBLsWxxy/fVHeOzSFba21lk+eh21dSjm3PnAGzAGWuuQMmW07aWkCzNI1zsErrHJM1AMef6Hj9DMdpBpKETlGmY7Wzy6eYFLL5zkLQ98kTd8+B0U1z1A6J0gzxcYXTfC5JoDh5Zwe6ejSB3z1oF3BucC1gass7RtSvUU0mJbaGrBNMu7UZikyBXZHslV7CXWQBBdUf4jDfX0iafMcaEEeaZos5yqbYiv9kmdLazwnl/+rzlx5y0YI3jx+Rc4+9KLVFWNdw1CZ0gF1jb4psJkObHskxd98J6qXQfnUEWB1jlaeZp2wtkXnuf00z/klje9heFoxO7ikHKrz+LyWhrlzKapo+wduBZpm5Ty5mzKk8oN0TtMnlO3NdPZlGd+8H1e84Y3su+GEzRtS7m4Ri1yvv/ELmtLJaujTXbnlzlzsYfuLdIvh3gPB/I+yuRsb21QzyumjWUtGOjA+XjPvK4SDqe7rdroaWOy6IUIKkbWCkEz87TdKhTdTg3dFCGAV2l05ruAFQ1IkRpaMu6lb6S9XYqY0htISqa98DZP2vFNCgJPySchBSnsRQVD3AvG6Gga4hVnkYQ2JGCOVgohBUVuWFxZo56PEVVFM58QtUkpLDKm8Deb0ll0noirNkSqpkE6n2B8UrKwskyvkJgso1hIyq8QPM3OKcJeKD2S6D1Ca3IlCJUnU3Dk0DKPm5zxZJerVy+xtP8Yg17JytH9xLZJzbA8eeGFzAjaILISJVRavM6BUtiguHr2BcqyQGU5UmYUUiEHIyrfcHm6zR8/Ynnw5He57rY5t7xjgeWDPW4YzFjdX5B11VCKykltsNJ09kwEPmqqVjGfZ9jGpQ3FWayzNLMaMY9oLcmyjMwo8lzRLySZTmBO1Wm591pue0AGCeQSQiGoYkCrpDCr5avcKHvTB36WW97wNkxfsT2tuHDqDJfPvUzbVJRFD6dy2vk4WeNcoJlN00jLeZRSSKHSiVo1CJXhxQxQzOs5Vy+c5g79NpZWVplPxkw2twh1w3w2p55NqatJAhz4kCJylEZpgWtrwjSNdKy22Lamnc84c+YFvv7lL3H96Ru5MTvHcPkQG+ubqLjNwsoiZ89u8sRJw5ZZpFjok/V7KJOxWE3Jen36oxFXr1xmNt7GB6BbJD56lBIYBdalD7+UMg1HOlyyBHrdeGmj3fPevqITjzFZ6pToXmshkvNNpMA7IVOXtJCSIk9ihiQtTAtYKM20cUxqj+9mmenqLzBRsidoIHaEjq7bKkjYHRFiB28EREzPJaaNIHRHRRRJ6RQFBK1wISBDJJNpcSNl6ozH1H0OIr2kkogOgV45INMZg5Ul2q0d2s0rRByqHCX1Bkm0o4ROWeJK4q0H4Rgt9xH9nJUDq5x6+Tw7G5fYf/RmVo/uY3F1mfn6BVxbJ8GPydO1Q3eOJimISjKr5tRVTU8rpIu4OpFFdK7Jij7lcIneYIFqd52y0CzvO4ZaPc68jZRVy6nnT6KNYml56doocg/8J2MKoI/dhqoLQS+X+JBjPdSNxjY586rBtg2t9TTtHCmTfnxS5gyKjEEZybS/du/eG7J5knQ03dlBZyIt6ixDNq/yor7r3R+h6PeoG0+9OaHs9TBZQXCWrBwQtCNXgt5wka3W4mcVSiiC6ZxUShHmc7QEFVpaoXFZhvORx77zTe59x0+wcGg/vcGQcjhgur2Nn7ZkucE3itY6RJson0EZZF4Q/ARcixOSEAO+TUD4envMI1//Mt/70md5+01D7r5thcnl84TxJb7+2ed5bl1RL9/OYBToFSmgryyX0PmAwbSiqmvE1iZz66gbRyY1+OQfNzGyWmqsTwtSCoGM3XkrUoODEFnIYMemxZ6ur/HahFMKQRFFEhOE1GfQMpXwPRVYKhUFyawvRdosQOCjRxjFsDAs9w3r44Zp42lDJDcdSE+l3V+EtP97RCJwiL0ExmQF9ddUUaScs7S3pIZYNQepCEan0VH0KKnT7+XTnbztTmzpayJ0TZ+ICYG8n9HvZbj1k4ylJRsNkVlBiC3ZoASpqMc7DFbXgNCZdloKlWF6Q0ITWF5e4NSLZ2imc9rtdXonDhKix/R72God1woQBplFtEmRQiIvkEZz9dIl/GSKaCcIEbCtRQiF0SUipg0w7/XJeyXLa2scPHaCbDTCFAXWB+rZnBefeZ6j191Ab9hPJ71JAp69Zyi6saakG1XqFHXcMwLX0/RKyWSuqStLa5sUd1Q72tZSV4bpTDLo5QxKTWb2wvASKSWI5NOPEYQCYSSi2WOyvYqLerC2SgyBukov0WQ2oRwuMlxuaCa7RB/QpkzB3lmWaKLWoV2SwJnMYK1BDQao4GjVHDtTtNMdzjz/JM898h3e9rM/w+LKKsOlJTYvXUaKlIoYAGk0sSxQWfrmfT2DkBDBquhjXepchyhwNrBz+Qq70zn//vRZPv+Ninpzk5255WoVCLrPYb+BUAa0wFrLeHdM8l+PqauK+WSX2gecj2Ra4eumkwcKcpnmj3sXXO/TAtoTNWgJPWApF1ytOxlq7BSo3b3YkZIcMiHIlaCvBaUSZDqxqdCyux+n49+G1EF3TUuuJMMyI1s0XJkqtmcO4QKlUtfg0GLviL42n+Yaepa9P3oHaYxdZzyIpGBD58TgiK5FC0luFIsLQ5ZXegz7BTov2NqdcvrMFXa3ZvT7PbQO4CxZphkMF1lcXGCw4pJxRhuCyq6d/koqesuLxEynHoyUyMGAWFmquma6sU1b1ykaaV4hptvY7YvMxzNESKENpr9ANa6o6ophr9fJOhXSGM49+xzTnS3aqxs01SyxAKhTuotNoAOZ9zG9HtlwCbOwTG8wQOsUjeNCZLI15UI8g84MedlDFz3KXsFwNKDs5xidgCFCyFeUZqS0Gq0iWV9QFjmz2jCfG2wbaJoW6y1N09A2gnnjmc1zhv2MshDkOh0AMkLTCZGlFCiT2GpGvcoy0awskLmirivOnHqJ888/x/rF8+isx3h3i+gc/dEyTS0pR8vML7yMbx1Spbhaj4A8T0kDQiN7ffx0do128b0v/zkPvO+9DFdGrOw/yNblK+xcuYJ3HjefEaRCCInJM5pqTj3eQbgWoSTS5GkhdC+v9S3TnSnzqqZ1lvPOM556qjZpsBdkoGpmjMe7+OCRUtI0bVK72Zb5dIxtWnyMzKynlyVUkKBrOHXbdehGGynQU1xbKIHUFV7KFLutZx665d+V56pbaoUSDKQg1zDMoWdSU8t6QClyKcAHtEkh6TH45N6REL0jE5GVXOCcYKcKRGHJlUJcA+qIa84mH1KpFwUYrVK5i0So1FjTpJjdynrY3qFUkGvoGcPBIwc5cXyZ5YWSGDxaKg4t91hb6PONh1/g6u6c1YWSflFQ5JKsXGC4NAQ9ReX9ROyMMVUSQiPzRLjx1QyzsJgUiiHdr5WXyOioZjNa58lLDdMrMF0jz3MUkeHKGkplLK0IZrMWJSDLM1RmCFJy/plnkQsrnL+0Tt1WCKXS6GguQCgMYKRBekNrU3yT9R7lk93SR0lsLbPJNrbxTLY2kJmhHA5Y3H+Upf0HWBgNGQwK8jzJe+Vel7tTkkmgUJGsD4Myo2qgbTOq2tE4R1031G0SlswbTVmksrwoBdJIbEgTpwgoIyh6GufLV3dRF8MhQUsunjvHlQtnqSZj7GxGpnK0llS7U6oQEGPQukec10iZYaNjMExwgxAi0XpilqFCJO+VzCcK5yLPPPUDHv7iF3nXX/gE+w8eZP3KZbYuX8K7FuGTwSBkBfPpLu10nLzQ3qXA8HEirsjuPR6Px0x3J9Rtm2ySMdniUgJh6ihX8ykRQd02aJ0WdewiR+sm/VqIMHchqeAQSCmSu8b6Djksrq1WH0RirMm0wF1IR3NfCxoruyklqCgwRIrudO6rzsQQE/fNKBBSYoOjzDJQqcOd5QZCxFYtoaNO5lqSR8tSLrBeMrWJGVd0p4eUEudDurt36edBgHe+K/cCQgi8FzgihYoMeiOKQY+s2SETkiPXXc+dN65R5gKVSYRQaJmRlQVZ2ect9wb+7FtPs7Uzo1zqI8ocZYqUL+YjzndiHZOjpKZtWrx1KCJWKEQbyZdW8JXHuim+nuO8YF5bRAAVPT0ahosrCCMo9QCjJM7bdHqWAlSeOO8mYzqbMplss3bTnVx58jmsD+legUgcAJXhEXipQSnq2YT57k7qffQDzpj0XJ1FK0+xuETVDNm9epGNKxdYv3KVlcNHWT1wmKW1Q/SGA8pMkeeQG65dyUj7e2KQykjWk4RSU/UEdZsxnxnmVY1tW+qq6X7OKaqCojRII6l9GqNKJclKTe9a8f8qLWrdH7A7HrO1OUboHNNfoFhsU+pBViIHfZCa+fZlFBNi2SN4C22Lm04QQhKiJytKfAQZA73hgOluD1FVtG3Ltz73Ge5561tYPHyY/ccOc/6lF5A7hqLfZ7qzmVr6bUNs6rRJxGRpFLZFqYxMaXbblvFkzKypaBubwIJRJAkkIs2EY2A2n1K3DWo6vhYenhZ1IHhLZgzLZY7UAkELWuK8R0UBr3i0EvUxpABBG5Pm55pqKAYy+SMzyZhO+lwJMpWaYUalX/dedEmKydmVqTRSS4q0RNXo9wxVSHGpprPqBSXQRrDck7hZpLaBzKSNxSePYDolRWrIdHsO6btIG0/wkJMgEMdvPMa8stir26wcOsztNx5gYcGg8xSi4KoZKg/Y+Ywwn3JoOWf/6gJnL24xGU9Z6g0weYlrakKeShSZZ2RFiTYKUeY08xZhFGFqaaYVqBmyrdDGIMQAP26QJks8MJ/AGcvXn0B4RxschRghsagyx7ZzsiJDFhlI2NnYRLSOgGR382rXgCPB+WMkxAlFFERpkDpnPq/Y3dkiKpVGeaIroYUglIZb77qNYrjAeHfC+sUrbG6sU9c1mxvreCQjt8I8LzHakGeKslD0CoHpENoIlai7pFO8NILMQJll9Hqa2bRlXjU456jbBusdTZtR5jk6y9IBYQMxEym/69Vc1C7CtK5ofPI8C6URmSE3ORDw9Yy2dri6IcYG0z9EcA6tNEI4pC7QtcdNJgit8M6TFQWDwYC6muJby5mXnufBz/4JH/zVX2P/ocOsHDqIm1e0dcWsrgmt60zjjhg9Hp/uNQF8bFDBY6uK2aymaly3S8dr4npFElw4l5wxonUgaoxUCfYWk/tMEDFCMhoMMARi9AgVcW3beY+7rnKIXRZ0+hFiKpf2XD1SJLWX6MQnWkhyCYVK0tK+AmIikSqRoouET2otbZJkNf1+kvnUMcg0JgPhfdKEG40xmihqpIksBcHWPDJrPGWR5vpKdo2yH71Ls6dVTtWTkGlEpxXMLp0hBsnaygFuOLyG373C9jSQFUWXWBHSayPSVSHYlpVRj9MXNmk9BNeQlQN0rsh6BVoZsmGPZl4jGku5sEho03MrF/pIJcHNsfUk7TZZQdbro01GKyJNZogrh1k8uA+CxUXPfLyFMiWqqcnLDJkXSJm8yhdePgN4tscV4+lO54WPeBewztP6kAIckQht0HnGbLqDzgwhWFRMz6df9EAM6PdKemXBoJdz+MAKIYK1nq3tCdO5xXpB2zS0bUtVSeazjKqX0ysVvcKjteyK8aQq0yI5+5SB3Aj6RcFkZphMGlqXmmrzak7btBRFSZ5naCGxje9C8vJXb1HHCFpnDBYXsPMxRVkw2YbJ7g7D0SgZPVyFn8/Jen18WxG7mBWdD/FEtA7Y2hNdi21rssIwGAyZTnaZtUkx84PvPsSbf+pjLB8+yPW33MZsa5edrU1UnmPbhugcsnMmaZXj3TQ9NCHBzmi6MYILybTeTaTSbtkNA4WL3ewxDW+9EIimO3/37stG41pHMAl3rJTu5qCplO6Mm92m0fmtSfp4IUgWy5BYVUaKLtMb+jo1Unoy8bEyJEYKlIo0daDIBEoL6tZSFgZrPaOhxoXA7qyllxvaugGRCK4ARWYwHkRpiQTWp47KOnpGY1SKDPLWEgKpm43ABY8ljVC6WoStecS3E1YXRhy5bj89vYM0/STscSlpVOuksHLOYUOyDA57Jl1PSFVBXvbJy4jI0+JvqyaNxIY90DlqKGm3t8mMQOcFzoLMPOCReYGYTchzTZ4bBIb+oRvRRQ98gzZ5QgSLiG9bzGCAUhq6amj93DlMucDWdI5tfXKmxcQKiwFsqHFO0BJx2kCWJ1um2cG5hkJpVJZhtSZKyc7uGBcFWip6/RwpJXmuOXhgkRAjjYXJzNLYyGxaUzUVNrTUtqBuDL0iUhapBE+ZXOnz1l3DVJuAHkqM7jGZtkghUiqo81TVnLZtKfIcbQzx1S6/vQOtDSo3mH4fd8kiQ6StayZEQlMjrUeWA0TZI0qBNpoYwc6nRGVSbrWOUDcUpHA64TyZzqmUomoazp46xTf+w+/z8V//TY5cd4zx7jbbV6+yU/QQ03H6ULQh2DSzjsrgVQ6uwdumC5T3Kd2DV2bEyTwVu+Dv9D0J/LWSV8VXiup0VY60TYORBZaEcVJK41zqQovQeb07V5boRAq2i0HtpFrJkSPTfVyL0IXtwcJAYW1IGB2lriU/ZCIlinrfDThEoJpbFnoG2znFAh2eWUqaOoUUeMBkioEPOCPYbiONc2ipMEIRpCJ4l/zUMTUubfezFgkqqYVk2Cs4fuIgo6whBJX46gqUzlNwugjIskecT8lFgROWovBYAUYbTG+ELEqkqtMzkJFyOKKpKhwabEVsAvloAUTEzsbIcoidt6hMoQuNDAHXNOCTfbO/tEhvuIivN5AdqSZ94Gn6kbwrAe8jF198hmw4Yn1zhnUWJN0cnmvAP+eqNJFICFC0TvAN71O/x0hFUIKqsjzyrUdQmaDIexy78QRlr8eBA6tkmUEiKDNBaSQ+wnyYM55aJtM5VVXRto6qluRG0y81/T7XOuZ7L5pAoiWM+qnyKuoBk7HGti1Nm5Bdzntyk2EyA2Sv3qLeWr9Cb3mR0eICrqkoR0u08xn1fJqaR1IjrEOXPchLhkuLtB0KlgguOiQZWTmgIaJNgc5yaMZkxmB00ux64JFvfIu73vgW7nnjAxy76WYunjrD5vpFXD0HqbHb24lhFSJRpMA1P2nwISmdQrc84zX9XWeF2yuE0qrrTnEBJHPGXmBB6mIGWusp8ogXaSEInainmUxNORtTbFBMszQi6eGm1Ry7rm76e4VA0/GqZAIF6JTdQ4gRG5KMkJhENkoKrPMYJWmsI2+h0Aork/xf+IBtbJKI6kjbJM14oSVGBYQMVF6gbEQJj9aJte2c674fcU17LENEK8Ew1xw8sp8DqzmZiEhjUnaZTPQXHxOOqmltUnMJUEGkRmJIV7T0YSdXkRAN2WCAlBkm1B1iWlyjCrSzOb6qMEGgBwXRBdo6hfy1VYMise8KmVhxSpn07FQHvPfgXIOKCwglqKZTts9fpVw7wGSymfK6O3xxiBEbk6xDCEdoBExmoAxaZyhtyJVMZgspKIcLlEurXL5whenuJlIENjevsLC8nwtnljh89ABr+9coiixx0ySMeoJenlH2FONdS123zJ2lqRqqWjFvMxZHBbl+RXqa/N/pDO5ngswIhCyo5oYw6Z6X99S+xjlLGpa+Sov6O5/+Hd76s59kOFrG1jVrh49R5mUyIviIzAyzLE+2wphojCGEpKoBysEglRtlQRs9oujR2tQZLYsS2x/hfXKRb+1u8al/8U/Zd+QYo337uPHuu9i5cokLdUvTNEnypyXtzg42OsJ0m2CbayeduOZUitfmw3tLO4gf0doiXiE0/uhPEYgCbQx5mYOtkTikCjQCgg/daS860mNMc2B+VMMrCSJ2ZXLS8uZKkmc6YXpiAipo3anIYtJPt94zzBRRSWrrKZEURTKHFDo1XiCipcR2SrJMSbI8GfraALYvsCKyVQkqH8isSzA7nU5eG2KSasaUA51FGBjF/gP7OHRokV6RMZtsUZaD9D2iaKZzopL0ygLnLaFpkHmOGQ6IVxIlNFhHmO0y31zH7F/DiKQSa9qK0LTkxiRHXRTY6Zwwr0BLvA2oXCB63QurZkznU7SUaB+wO5vEZo4ps8Todp69lAwpZJcxLthd32S2u0F2+CgsDvB5D9dUyfkWI230ST8RQTpJ27So6RST5eR5RmMUeVmg8pyVQwe4/y2vxznP1aubnDtzlivnz3P2xRc4JwKXzu5ndf8+Ttx8EwcOHUgpLkKipWClrxkVkvFMszNuqOuapnLUNtC0gsWhZtCT6c9+7a1JUmApAot9mfQKscdsXl9b2K19lRVll65e4Ptf+hwP/NTPkg8G5MMJkx3BvJ4ifECqJCyJrSM0Na6ZI1wq0b1InmeJwCuBaprE+fYeHSzChw7GBq6ZYUXk3MULfPvzn+ddn/gLHDx8jP03nOD8yZMYk2GlROmSedyG4KCdJeRqhDIvKLShsfWebel/933sLeI9mMX/EXZVKEl/OKAoC0KYE61NCi8tcG1IKRx7ml2SlS7pvOPe4Qx70ssQETGN07RW4FKpKztNMT79c3pRQwogTGcKtY8sS4lSEq8lVZ041CIEos7w0aFCxMUU86uDZ5jrrmyL7NaRxge09yl7WSti6zvVUsQQyZRgcWHIcDQkz1RibZm8m7mq1L/qGnfBWaSUWOeJKrHD0tiw28C0gnYK6jCuTgAHaR2yLDHLy3gbme+OiW2DyRMDTOucKNK9XxUFDZHKJkOJ0oZyNCJGh22SpiA4S5ZlBGeJtiHoCknO1XMXiMJx309/lLdedwdf+bM/57f/8d/HN8lll2SYqadgCYRgEdaS1TVN1eCGAWkysl4fGQJGK0YLA5ZXFrn5lhvY2dnlpRde5vknfsjF02dZP/sys/GY9u57OXj4AEWRQiOiSBvt8khQ5orNHcl4WmNdy3jiaZuMsFQy6CfH4jWZaEw7u5aRQQlKGhCdys9a2vbHW9Q/nu4MOHjiBN/96p9x8aUX6BV9FpeXGCwvs3b4OEVviMkL7GRC8A7rLcVgIRXB0aWu9GyKikBTJ+7yfIKczwhtjRGpNNXdovM+zea++eU/5eWnnkKZnFvuvpulfSuI4InRU88nCeMrTRKmeI8K0Ct6HFhZvrZIfmSZ/kc///9f0Hv7Zln2KHq99Htogwue4BOLrOuPdQs6NeQEXDu9934t/V4xBSEI0eGMxDX/bAISdprf2DGeUTQ+sc5yJdA64oMgiuRHTmFrGoemaVq0lKlRplMUjM5UdwfMGOWCTCtmIdK6xMSS3RRAIjEIcmCYZywsLbHQ10gZsMEjZQZCYq1lVtVpXCc1wQdch5oyRUldtYync9qQ4maE1tj5NipTiUpiXUJIGY0mEUqUlmS9HCEl0QcockKwmF6RZuttSztPVwtVlmSjRYzqPncBMbrEzJYkE4tvcdZx8eRJ+kXJ8uFjrB7Yzx0PvIXVw9cjpcYisVHho8KL9M9BJG+zI4EtUIrh8jKHjh6h3b7MYw9+hxdfOEk1m6MErKws8roH7uGDn/gp7nvr2yj6S2xevcLF8xc4f2mb8dRfc3VFkYRJvVywf7XgwP4hvbJPBKq2ZX17xpXthmmdRqFVCNQx0sbEFpcIeplgeckwGGYMBj0WFkc/1lr9sU/q3sKIy1vrfOn3/z0//dd/nWJUMFpaYry6iq3mFGXB9vmXUHmekjZsg29qVHAEBNJb2ukOxqQ7iCoKorf4kOSJ2mjKvEfrp1Rtxe7WFm3d8OVP/QF/4egxllcPct+738vOpYu44FBTQ9YfMh1v01qL0KZrejlGvZyFQcbmtMGJFLcbXzma//eLuCvj9n5GCHq9HgcPHabXHyFcg8o8YbZLjMlumBour5z0MXZha6JzTpFO5r2yKgiBCHvwQUHTEVASDDCAEp0HGrRJBa8LkegCeaFBJ8hA1XhcSA2+PFP0sjxBInwgl93dMSikCgTvyLVkoQhcnSaEkRa+g9JLCMnaWerIwnDIwnDI4siQ6xRO6Kwly3vkPU3TWEASpOz83BCUwLUOnRe0KUM2NeBsnZpTdZ1yzXwgOk9UpICF2YxoW0Qvx00seS/D1jWxtuSDtHHhAyKmcWCvyMl6JbosCc4jCQTnUHnSugcfUxSsFlx+6Xn6ays898MnaV8+y/mXTnN0ZYGDh9/Msz/4IZPJOPUPSBnU0uTIrreT9QaY0YgD+5a45e47uXj2AidPn+el06c4dvx6jl93jLX9awxHC6wuLbP8lvu5+Y6beP7ZF3FeMJ3OkVIx75UsLeTkmbwmTsqUYHkgKI3m6qZkOp9Rd1RRbyOjhZzQBU2WZQrNNSg0gdKAkIJGR1518olSBmcbnnviIb756VXe/NGPU/b7rB06RGzTnWbfTbezu7UOu4mKKHRiTEkfKXp9mrrC2RZV5IisQMgRbj7GzacorSnygmlTY+uatt0FrXjqiUf4/te/yht/8kMcv+VO7nn3e3n0y59n224S2qo7STXWJ3+wFBlawMpgSO0Ck8YmvbPoYHr/B+U4pHnw4uISt95+O6vLK0wnY/CGaDPC+Aq+dSAiUglqG9FiTxrYXcM7l1XXygK6MUZXkqUvltc2gD1RSOgww3ubQehK+DzTSCFonUWrZMDHpbwm7ywBQWZU8lR7EvFUQC/TuFbQNjqRaDKY2IBBUvhUhypCgiIoQX80pF8a+j2DdQ0QUVmiuSoZyXW6dhAceEGQElNk1I3DtY59q8sc2z/Fbm7RtI6iHGGkI0aFGPRop3OKMiMoidCa3v41hHfko0W8bYjzeWK/R/AuaaOTUMaT5wVGJSgCspP7K53IrT4glSdGgW9bNi9d4ea3vZ6f+LlPIEzBN//8S8y//ce84Zd+gwdvfJSv/cnvMZsns4pWmszk5L0ew30rHLr+Rg4sKG6+fonrb7qREzfdxG2buzz5xDNcOXuerQtXGPZzTtx5K8duvJGiKFheXuR1b7iPrd2KyazF2cBsWhE8LIwyemXimtHB/Ht54OBayeVNwWSSUF+TWYUPgYVRiVFJmWg9iKwLLohJfaikfKUR+Wot6gvPP44m0lZTvvvlz7F88Ch3vfnNjJaXaeqGSy89z3w6hsaRFSX1fJbUSh3zWMgclWUoUxBEujvng4xsNGA+3cXNqjT2kWn+Wrc1890xvtfj63/2aQ4cO8bN993Pba9/I5vr61Tf+x7TC2PK/ghZ9pjsbGN3twnVBIuizBTveO11FJngiRcu8/LVWfqzRIn7j6iMQgh6/T43nLiB+9/yNnrDARvnL2KdR8p0j5xvZNh6ihI6jZyi25uo0InFUlnbJRRG+aOurNhRJNNMW4o9WN0eebIbq3UdZolIohEl8cGlhkr3/5EyQ2DJC4VzJKqIUdjgEDGgM010ikznGCVARmywzG3SsQtJSpcAMiLDcsDCwgIDI9EETJYlj7WAajpFlzlFURJEClmPSmGDxLeRZt7Q6/U5fqDk2KG7mW5tkSs4eqRMjG4pKLxCDnvpeLcemWfJzlpZzKhA2EBeFiBS+J1rGqq6wYVArkDnmqLIO829RGqNFArfmXm8TyO9yXTMfHeT1mV859Enubq+xeaLj3PwuoO88Ni3uO7GG/nQu+7nwssvUNctwRTopYMs79/P8dc8QDOe8tH3H+Lo7R9EiwBCs7a2yDve+Ua2dsY888QzbF28xOmXzlK3kaPXHWFxaRGjFfuWe6ws9dnatWxvz5lXFuci7SBjONQY1V24hKLIYN9qhpCC8XiO847ZPMmTR8M+MUp8TIq0qNJ7okkN4Fc9yvbs009RqAwbBdV0wne/+GmOHj3O8vEj9IaJ2NkbLbMzniD2TBLBp3FBLwPbEuoK29YUo1ViiLTW0tp5oiZGi86H9EWKkfVuB9e25KNFJpMZ3/zcZ1g5eIjVI0e4561vZ3f9Ki9ubjCrZngfyRfXaOqK+eYmUQhed9ch3vn6NfLgeftr9/PZb54ll4bhSPPQC+tc3JjRdCEDx6+7jr/yN3+TA0eOYUNkPJ4SosZ7kHhisLSmh4/bXYplV4Z3e0OM1wxR7P2UtNWpO6ujSMyx7leFydPnEUMyO0AnCEna7YQVjuDTQtfdCMcDTnhymaAISimiiLStJVMJcaSVIgiPdpoYHL1MULeSYa7YqAKNiGQhYoQiAwblgKzXQ5uUcS21xNiIbRuyrMD6NNvPlYJCJ22BjwTv6fV6aC3YN+hhjMEcGKC1RhqN9R7tA43zZL0+ajRK1wyRJ6pmSMioWCZnlFTpJI8RmrrBtYG8rzEmZ7QwRHbiC0m6tiQLadLax+jZvLJBqCsuXr7KZ//xP8R5x5HjR1kZHOfJJ59n6fwmd95wnLX9q9idHYLK6B+6kf7yftZufi1LvR6Hj1xBZQUxNoAmuAaUYXVlkTe9/Q1sbOxw9swlnNBsbFUEmbO0UCKlwsjA6qLBqAHrm3PmTU0IjrYtGAw1/TJRYqOA0ij2raRo2p3daTIOVQ0hCkYLJTrTNG2kMJGgO2uOAPNjrtUfe1FPN9dRzqC1wlvLhZee58EvfIb3/cVfptcfcODYdYyWVwi2wl20qLzsWFZAF1YXlE6CighNU6FDQMZA29quJFUUhWE4aHHWMq5rZpNdhM544cWX+Pqf/CEf+eVfZd/+w5y4626uXLhANp2ztb1B1bQEaVhdMiwMBty0Kpmde5n13S30cIV33raAihZNRKrjPHHJs7O7xXh3wpEjRzh64lbWDqwxnU5om5qiyCj6fWxT46qaKBVBK6JLfi2jJHPvOshBvIaBjSSOWOhGJ4pk1WxdEkAIITB5Bn4KMVGpRPffaJ1m3p6EBQ7epwZY14AL3tEGRV7KzqOQYohEAGkEmUqOIRcFCo8yiSfWzyWDNrBRC2YhLYpcRHqFphyU9PsFmdyGYGhdQvTkQuFFwCjVSS0dOjPYvc8iBGQnysm1IO/n+LpJaZCetFFnJvUzpCS0CdwXRUgbZnQI0p1W2NRR30tBsT7iQ2KxySzD5AJrHVqnDnzb1mTGJFACDrzk6vnTLN95G+/7lV/h54+fQOqMssiIPrIxqThz5gpPfPOrXHj5YUzl6ReBrKxotGX34nnKhSHi2AxiV8NEz+all5jPYO3IMfr9dN9eWhyxNXXMZpadqSUIxfIgS4EPMrI4UqhswPp6ldRl3lI3BrdYMBpm1/DBhRYcXC1RUrCxPSb4QFXXEDyjhT6mTDP5pJZM0xT54x3U/wkBec4jOl2sJSFzH3/oq1x/653c8553E1cidT3rtAE6mTlCQOQZra3wbUpxEEVqeIgIVTVLUjUBUSXumACwDX0NLjfM52OqaPFuxmPfrrnzta/jpje9iVtfex+T8S4vPvF0wvGuX+KNdx7ira+5HScC84tnqHZg10nUzpysiMym28mtpW5gZXUNZZL08/zps3z2t/81n/iVX2O0upSUSDFi8oKNi+e4evkkbZVMKTGm0ZkIyRvsu/HTtZEWne4bASLNg9NoOeJIiYnSaIRIC1d0/0WIAueT4SN2KiipkphFuNRMlFKwkI4mnBMoEzFaEawligwXYpeeEtEdplKSTCOFlmQqMHMR33XRNYGiV17LcQJQQtNGS9M25EWJlDopAQHrHa1t6I8Waauasl8mVpjRICRBpCjYfDiAGGm2xxQH1hBG07Y1uUn51FlviMlyhEqRwyE6lCnBOkQAWyedc5Fn9BcWEtWk+3xbn64jiUiapLhROPZff4S3v+7d6KUDXN2pmFc7DAY9pJBUs4aNc+e58IPv4zYu0ssLpJAMQsAiqZqW8XxOaAUhWtzOWYQwLB84QL+9xM7GFayFxaU08tu/rNjONJvjhvGkJdjAwjCjLFIPZFQAaz3W1wO2rWjawM4uSKUYlPqVsHoZWV3KsG7A7u68W9gtEFgUfYajHCkiTYS8a/jyY5TgP75LqxwhnUXlPeZNy7xumIy3+fpn/pBjN93C4pFD9EcDhksrtNMKt7OF1gpnG0LriEqSlX0CYENLUAqCwzuL0jmqyJDO4W1L2V8kKwa080nKA24awtY220rz1T/9NMduvZXF1WVues09bGxssrOzTRY8J5YdplqH2QQVHc4ssOkc450ZR9c0OitpvOTCZsVmvcl8Omc6n+Kd5ZEHv8lwYcjP/fVfZ2VtH5IIStDOtnl55yrTqqK3JxeLaetUPinRAsnYEaBLNEwQ/D2Ri+gWe4iJD5b+fSohhYgktsFeCnEXFCBlWuACRHRIcoRIGKd51eCFpjQpXrXoZzibyKLShy49JIlilBIEC0oLBpmkdSneRYhkAR0uLiGjI8tzogTXVojoUXme5KfeYUxB7EwmRUwMsOC7vOQu+SJ0oqAQ0v2QACLThNaR5wUyz5FIgkjVDsYQfIIo4GIKepeSIAKT6QSpkkovL4YIlXeTjS5YIXRSXJLHPKjAwsICM2c5f+oUVTBkRYkkEWoe/tyf8PzXP0OcT8m0ITM5dVBsTSqk2CCs7/DMbJcju1e4+acXmV7YoN25ytoDP0WvN6QZDjl79grz2rNvbQGtBcsDjZawudsyqS3WepaXSvplMouMSoHe12dzUzKvKprGsr09I4Yeo77uGqwpcWVlqcB7mM9qbLBU1sLunNxoej2FJIEiEeLHWrA/fve77CGtw5R9GrcNMRDxXDjzIl/79O/z0b/2N1hYXuHYrbcTrKepakxZsHPhDLZtUf0edTVDS02wlmZ3h2JQEETKjghCQWixbYV3DSYf0MtK5qoiWof3NbOtTZ564vt8/g/+PR/9a7/GocNHuOXuu9lav8z4csbu7oQJNfPxFnXtWA8LPP78DmA4cbjPvtURJ7cqXjp/mc1ZvAaJi85hdc3XvvBnHDx2gvve+S6Kss+gnJBnhtl0QuNCghuETjAS90ZYAYHs1nAkiE44ImL30qev0yJRR1N6aLqMhy7TGFITJPmxFYmNEHHBk+c6NddCQHYa8RhTlO6kgqgU/X6JVp6qafCd4EZIjVAO4QVapaSPUifzSCYjhZIU/RHFcAh+jNSpw+rbthtDJgSwyjTj3V1GSwuEPbNKjJi8C26TCjoZp+gSRmMUqCIn1BW+qmA0SCwyQYp7FS1KKbTWiKJP0+6QqSxVIzqjcZEsCvAeHRzOphdaaYUQKk0llSB4i4ie6ARlUTC7usuVnZrvfOMb7Fy5yGg4YGVtH2effBy7daWzdkLtWkrvaFpLnEzYHY95/unHaR98kb9q1rnup34DdcMq0QyBPnlhCXLG2fMb1G3D0UOrGGNY6GuElGzutlRNw5WtOWuLSVQiEfQKiVorubIhmM3nNHXLlvcQ+4yGeadtEJQZrK2VrBOZTBw+ROZ1zdUNwcpqj2EvuzZh+XF+/PiQhIUl6s0tVAioGCgKTRQZ87riO1/7AvuPHOedf+HnCWuwdOgg3jVsXr2KKkoyH5BFSes8wTq0gFZEkAalIsFb/HSXWM9S6SoUoa+QXlGYzhFkPXY2Yexavvgffp+VA0d5w3vfz/U33EhbVWxfOMcLFy6z0uuzsO8wPSRu5hgUmxw9MGJQCKKrsDawO54yq1MQgA9JY1Q7i9ve4VO/81tY2/L6t7+bhaUlev0S2yS0jgNESCdvjJHWx+5kTT/2pN6+G2sl15fouJndiR090dl0WstXlG0JtC+6HC2ZKgCRpIRSJmxvVEmimnVy3Cgiwnnms5ZeL0N1X++FT9p4ksJdKTBSYvApWxkJUVMurqV5u3eokDYlrTVRp2TRPM/xLkEHr0VMKEVsLVJCVpaENqCkBJXhQxr5he4kz3JDsbSckFTBoU0inkidNgJCMrOVC4vorMTGiHANjfdomaSdtp6nnkO3+cU9IGJM2n9BSps0RuKahunODtXONrvnTjFu5lxRpLm2UOmuJCVBzYhSE0yBioLYzOlLz5Obhn/0j37AB17+J9x6162MbtnFrNzJcPU4x47v48yZdba352Rmyr79IzIlGJUSKTOubAbqqubKZuqTDPsKKQS5EayspJO4aSpa59nYnqO1pF8mCrwSMMggLhdY66ibOgE6mgaxFVFSMSjVq9/9NmVJHI6IIlDGRbyUyPmEurXMZmO++YU/5a4H3sLS0UOsHjoIQjCdjhmuHaC15wne4pxN90iTUa7sw/QHhPVLSTEVPUEbjDLYpka5FIiXFz0a2xD+f7T9d7R2aXrWB/6etPd+00lfzl/lXNVdnZNasZXotiQjMGhYxgGMZ7xsL3v+mPHYa80MwxjZHgzGZmGSMVhGYgxYSCABDSh0DtWVc305n3zesMOT5o97v6dKciot15xe3dVd31f9nbPf/TzP/dz3df2uLrHoOrK2LLznl/7Kf8mps+e48MzTrB87ye7OJtdfu836+AI/+cQjdIuGHO7wB37ySYiB2cGMrXnHt16+xd6iJSaxb+ZeRZIzLBYNd+7c4df+3i+iFXz0+79fuqzBQ4KsOQwkkLFThNDD+rVhCWpXfXqERsptsxxZZVnYPsVDlrdO0gERK6lsBl2SrnhpZdXHmNEOQAAKy3CAYnmBT5G69ZSuIOVIXibxobDGErPHmISx0tDbD4mBSXi/kJNZJyyGqIUcqqJ4sK3ShNAwWhkLsscmNDKSUiR0UZJ8TU4B37O4i8EQ33Z0vmP96BHpo2iLHVZSmViFrUZkMsY5Qj3HDcbUdUNRVWhTcPrsce68NWZCZrjuWF0dAklkkyjxmfdNypQlH90Zx3h1wpq3PPz0MxTJs3flddpmSiIRQifXhM6QtUGxIKo9XJRs8IsPXMDcf5qtg4Z/+LVd7rYzTjQ1o9EbPPHxAcdOncA9cJKrN3bZnXmUWXDiyBBjFZMyk9dL7nSB1i+4txlRqmIyFFXeqIBjxyo2NzNt0xB8x9b2DHd8haLokzxQTAaKeGzM7bsR33WklFnUHfsHLcNygDUf8KJebO9SaEPdzMh1x2i8il/MKIzB55bb197mV3/hr/Ev/pv/LkdOnMG6Cr+Yc+X1VxlPVkRhNpuKsD5EdPBQlDJ3TAllBmSl6VpPG1uK6S6uGuK0orSOQIaYqNuG3LS0Xcdf+i/+E/7t/+g/5u6d61x/5xL7i8i3X7nOo+fX2Dhi0APH3izw4hu32F94Xr+6w1t3OnxfAh/KOXvSZybTtoF7t+/x67/8d5g3c/BTbFGgrBcjB4LgNSicUnQ591AEuQdLaf4ulndpdVyKT0KKaOUQoBAiiunvznk5i1QC5+sH2T2wP1JkK008K5QznxJFocHIixFixGhk5JRjT6MUCqUzisJqHIkFiUjEZjGEpBjIWaYSzpWk3NLGhqgzrhCnVkSTfEAXsgGVhaOeL3BKnp/EKye8bynLimo0BG0ErOAKYo7omHDVUK4pWQw/phoJ4cNAW89IXceHnnmYj33oEdrpAQ9/6COU40oqlX78l2LCZIHdxxBRyqK0YzCoWF8bEs7fT727x971d3BGhDkpZjxBmnE6kBHNOK6krMaMNs4yGE04ai1V4SiPnSDgaBY1N69c58jJ44wHjtOn1tnaWTCvI5t7NcfWB1hjGQ8SG+tDtneh6TrubYI7pakKaYqOSwNHh9y56wk+0jQtO7sLjh4ZCkihF0eNh4aNtRW2t/dFgZczs+mc+VCzMql+l/T5f+ei7g728cMRNkMyBuMcK+vH6GKiaWt8s+Dbv/GPGa+u8KU/9m8yHAxZOX4Cd/US2jmanR1CEE60GBscSiuCLtE6MZ9uY8sRWmmK0SqhnopcsGspypLWOrSSE2C2vYUbjrj8xmv8pf/0T1H7BXu7e8xCx/duNFz/hW/w+KkJusq8fnPBnT0BBKTfaco8lIId3lVypvUtplPcuX6d3/7Vv8+jzzzBo5/8PPeuvs3dN94U4Upv5Yr9ADGpTCSjYqR0EjLu30NE6R0f5JwICVZsgVORol/2xvSttD6P2RoxcGT6LKaiIHYtXVZoazHGiDstJmzSh2M1bQ0hBWm69RtEirFXhlm0ktNN5YyKGWss1hjIYu5IviFGxfbBHmurq4TWY8uKmDtySgycQfUM6uA9sWsZHFkX0qUVOWlhJFLWFo6kNBhLVhZjHaSWpIVzZiyCuIqBpl5gi1IaYVZx4vgGk9U1ynKEKsZCG+0ltgn551DCdGuDkLIBqvGEkVYczBZMjh4javnZui7iY8ISxM2nJJpXdRbrWyomGFswnGyglWZYDTCmJMaET4nde5t0bcegsqxPDEaP2NxrmNURa1qOrldopdhYdWg74s6dRO0D97YbTh0bSDSUgmGlWV0bs7l1QI4de9MFxsDRIyNAeOJOKVZXDG03ZDqtidHT+ci9zQXOWUbDD9BPbXLEtzVRKZxW+LbDugErR4/Tes/e9iZdO+MbX/41nvrYJ3n8059jI3ace+ARNqsxbdey71tpjGnxIYedO4S6RZcjSVLUHsgYJ0FnKXpMNaYqHLODfXG0JPA+kOY1Pnhe+PbXCHVD1wWIAqu7N0tsv7krgv3c+5SR5Ai9HEulHnr/u75ySiwdGrt7u7zz9jtcuHgfbiQvlwKiKD9lIfbz6WU4fEZB1r+Dqy1bwJJTJpJGnQOqEJmYsLNyj4vnUIlH311OIfTkCznhVJA7Olrym5yRE1ybAm0UxpVM9/YkbjXHQw+30xK6rpVsRqGvOqwrsZWjnk2ZH8wx2ZKV6xNDoCwqUvToYSUjrhAxzuIGJdpIOWusZegqQHjlMUdMFrQtWmOcvIy5544b44gpSEKH1oQYKMshxI7BoBKHW/RoAtFnrC2JKfU6/QzWCOghikgn5owpKqxJFNZRFUPaLuJnDa2PxJSIKWH7Zy0bn8EWA2Lb4uuadnaAsY5CgReFDBloF8iiHkj87WSomXcF85nnYNZRWs3KpEAjd+zpeMj+bMZ07ikKzbGNQT8VgfUVS/ATdnb3CDFyMPOMRoHhwPXvi8hyNzbkujKdJ3JM1F3i3vac+z7IRc1oyHi8QgxRZrB9XIsLjtX1oyIW2ZtysL/DL/5Xf4Z/bf0IZx95CH//BWazKW44YrC2ASnTdcIKD40ntg2uHKKripz6dMT5FB8XZOMoXMQVQ4qipHKi2d1rPT56VJtBG9quFRdVv5hyFq52pudm9y+x7rWWWYkIQhw/v3thK1TIZCdVRdM03L5+FR1rguqzp/Lhb+1Xbe+0UoY2SI60QUD+QhnpLZl9vZ9iIKtIErYwS2cXOZMMkpcdNdqIWy2FIEIMRDEWfERrGVehFMF7tDEE7ymdXU7TMK4k5q7fWOROYA29FDETQ9tnHkdSlymsZXLuDM18Tk4dmFJC4jHY7EhKuu+2kJFMURakEHBVRe57AxLJqyUQzzmK4QRlCrlmWIM2VqYjixnWObQxOOfQriLWM1RoBHlVFBjjsNrifcCYfkGj5OS2Dt8FOi+tyjopmiBoZqu0YIeGI8KioK2n5JRRKRGygpCxCYKygjGuhpiiwNmCYjigIaFTIFhDMoZqaMna4lOUJBWVWRtb6jYSW8XO1FMWjrKUJufGmqWpS7quZmevYVBqVkcDef7A+qrlYOZo20DrPTvbC4qTE5zA5DFKMyoS3UpJCJnFYkHMkYPp//QQ+p/7et/Wy9C2xKYjdZ4QIhhDIuOsZVhUrG0cYTh0pOi5cfUyf/sv/jkONndYO3KC8w/ez8lz9zGYrGBLAf4XozFuvIoqKrqpPHT8gtjWxBRJSRPqBSplFlt3UTFgXUVROEqd+v5QIDYtMaYeQZz6wrp3OufDZSoLJos8UbKQ/ucHBBppzMppHlEp0dS1JG9qS5cVES0vhxL74rtJS/Jn1DkSeuOH1ksHlpTWCrkDG2OlA967w5bxtikL8XSJYFJpmQwhs3DQFJUhE9HG9D+dqGB0FupLThGtrIxskhhVrLGgerQRSoLaY59ekSMxespBSc5SLYXOi4hFKUn/sAZrDMZYUkiYHDHGoq0hxdxr/AOurLBliS0HJCTwfnkPzBnppjsjp2Cmt3J2dLN9QjsFlbBlibYVyhh8V7NsEFpTyMI2BmxJwIo+vyzJbkiIUoH5lHBlyXjjCLZ0JBRNgjZA3SVan2i7SN21LNqapl4wm005mO7T1HPatqFp5hL51LXoqsQYTQgQUgRg4BQrY8EqtV1kZ78+NAeNS83G2kAmETGxvdcSYuwdgtIRX18ZyIYVPLO65WDavkuG6XWG1UB4aMtkji7ED3ZRa1PQNQ2xqwnzA9HiZkRQT2ZUDpmsrlM6S0odb770HX7tv/2rTLd2WT9xivuffpILDz/GZGMdayzhYJfsA3a8hspy+rvhCnjBEiVl0bYgJw8xinIoCZxu4Axl30eKQRZ0FyPv1YZkBVkL5zqQ5d9ZAAMhht7c8T9d2ErL6ZdyIqe+zCUTUiYoS50Vs5BokM5rXoIQ0O8CGJDGTO5100oLelbpDCodjqlkI5AGFUlK7pgiqY/xSVoaUDqrPqEnkpInhUhZSYKo0sKzTjn3Lw6EzmO1SFmdldlsylJKm766kAUWSTFKNJBxzOc1oe0oipLBZJXSOpr9GV3XoawE6CXv0X0PQGkDxqCcJTuLGQzFAquUjL4ShGaf0M379oWiPZiJpr8q+1GV6NpT12CMwQ0mMm2InSCLshhfYozUTS1zQGNJyhD6zVUZRbm6RjlZkymCM6wePcKxcxehGJKLIW3KLJJnETq6EAgx4jtP27TUszmzgykH+3vM9veZTw9ELty1YBTVeBUw5KyYTrv+QFCsDy2F1eTgmdcdjZdFp8isrljKQUXKmUXt2Zu28mu9r35lUjKsCoySgMGd/ZbWp+VxhFaKgYHJwFIVBYVz/4tAj9/99f5por6TnCNjyPMD2vmM5CO5rQmhoRyMWD1ynKZuacMuoYt89cu/TFFYfuBf+jmOnjyFbz3ed4JliZ6D23cxztEWA8xgyGBtg2g1qvV0831M8Mz3t0nZkLtWsqmtwynDyGbmIdGEcHhxXf7IOdNji/K7QhHetV3+rz2cougBb0loLIaESoEY5P6ntVjj5HSVkjbmSED3AeLLha0I/exX9Z1vAxSIHjuqfGi1zFm43qBw1pD78IGUMtECWvcvg2Bwcx9yp7TBOHNIMjXO0fmINbb3TENW4oHOwYt6rb+05/weY0qIPRlEpJ5aa5yWq1DIPVzBBEnYIPen/hL8YMkhop3tpbGiVVdkbCEyR2OEGa6MolodkVLsxSQKbUUfnrIAHkKMqOhBgfcdxg77K5vIjI110vRMHt92vQMwsX78BGO70kMKJ7Q+YIZDrly6RL67RYzQKVk0QSlSJ8+zsx3zbkE3i8SulWTWBMoHCqUwhWW4uiY0WAOzRWAwclTOYnViPC5oFy0xwPSgY3DUopQgoFfGBfVCUlL3DlpWVyqKfsUVVrG6OqJuI13wNJ1n/6Dh2JEBPZ1dIAtDw3Th5Ll80HNqTSaGgDJWNNOuQGs5TeKBkCeMdaxM1ui6hrb1LJoFv/nr/yOrx4/zid/3JY6dPEXXzFjs7wszWxnqxQylEs18hjIGbUrRB2tL27RS0mqRK0qDppTzLWWcSgRr8J2UuDGLouu9Laq8/A/17t/7X/wZtWI4HLA6GbOYzVBK4Zsao4QZHZcPVokwQqB2UiForVG5P/37TSMoKRlMhpylURdyom5bcLLAtJEXPPWbiFqyzJWRbn1WhByxSZOTxjiNtbLwks+ELmCMvHxlUdK2LSnG3sHVY4tR/dQhsbR1y1UhCkaq/3u2N9wInVRKwLIcyNUmCBTfGEPX+f4ebMih31A0hLYmzue4qiR1nWwsuoCUaecHJA3VYCRN/hjkjm0LYrvAVUJCIQayLclaTuAlGdYVokCTaWSiaxpCXWNUQNuSpEoGTnH+6ITTGxO6lHj00Yu0vuG/+g/+ffL+jByluuqyCHKLKKPVZj6F6AWk7zRd4bB44rhgvHGE4doxuhCZmEzUhmkdqJwIRyZDy/6gomtaZnPP+lrAOek5rE0s+wcFi0VN0wUOpi1H1qrD03o0Em67D4GcMrNZw/pKgStkIKpUn8vlDI2W9+f9rdX3+WUn63KK+BZXDjHDMVgL1jEYjanGK+iuw1nLqCyw1pBCZDGf8o//7i/y8le+ynh1hdPnL3Lm4kVcWVKtb5DQKFdBCBzcucH0znVCfQC+O0zN8M0MH0WzrPsdP2uJkV0bj0U+2As45L68/HoXLbQklKSUf9dJLQtdKc1gUJFCYH93jxij6Ju9R3e1BABkTe7v0p5MR58RpnrELBrp12o8yPdLXzmQ6HKiy0Ih7bKmiwkfEjEnYh/GF3sxjFGJ0hnQ4ljKKQuWVsufF7wA/RWZ1IMPYooYK53olLOAE6uSqiopqwrTG0mWvcGUROQgCyVLiW0L2aC0MKrpdeoY1S+6d08MnXtll9EQArYscaWDFKj39plvb9N1jQhFdEFZlKCMRBD7DmNLUBZjpGRX2mALGQ/FqPBdoF3M8V2L1paMJSa5Xiym94jtDip6mjZz4/YtWh/JOWFVZGBgpTR84cd+iM//1M+Btb3EVsupHSLz0NE0LbP5nMV0TpcECNlGgf6P11Y5/cBjuHJC6onCtrS0rVRRAM7AaCQhjj4GDmb+UPhTmMx4WB5u2rsHdR+N3PukNQwHhcQSkWi6loNZh08cTma0UpSFxul+/PhBLmpljDRggHqxIMymhNCS6gW+bzxp53BFwXA0ZrK6ijUaHwLb927za3/jv+Ht515iuLrKifvv48ip06ysHWEwHGGKivGJE1SjMXY0JJPoQo0iE0JA54wRgjshBpRPWF1QDoaEtsUkT9kv7GVzWhbxu4v3d//vfs0dLuuqLBgMhohAJAkILycpp2M+3DQSidSbGGLOfSBfEjHF8u7O0pghu21SPSghK7kWkEhK0+U+srTfGGJMoq5DEbJM1ZeqNG0UmMSi6YhdJ9QVlk1Aaeyl7CHLFUFpib7NJJztJ+Ix9qWdOpSmkkXooq3tm2xBVn1OGFfghgNM4XDWiRHDCGW1GgwheIzK6BBQRSnd/cKSc6YclgzXVxhOVjBliasckLGupFxZxwxXZINMHaFrICZifUBXz4h9CkwMEZWVpFFqR1IWnzK+awjNgtQc0OzeZXvrHq985wVeeeUNrt3bZW8uzadpLQrEj33mc9x3/gwrkwpjJUstZtksE4qcBCWUQWKZtGGwtsJHfvCHOHH+ETIyEiRrBoWl84lOpINopVkZWKx2xJSYzbs+tliuIsOheNAz0HaRtg1khEGntWY8duKXV6Jh2Jt27NWp1/BHWdSlpqhK2RTfx9f7F5/4luw7jHXEtialiBmN8dpiUiA2HaOjx4k7Wwz9ED00pOTZ2d5h0bTcuP42f+cv/ln+5X/3/8qxh+/nsY9Zrrz+Cvu7d5kd7PYSQideWxOXrzMayaTqR8ISfBE9SlmiUhTWMrKWmCUkb9F28sDfx9fyxa5Kx2Q8xmcYjMZ0vsUosRRmq+i6Zpn4jpz+EZ2hY8kd06J26qsEoxUqqUMs0XL0pZJIRTNIOas1mohOS0FFT47MQiiJXaQs+sWmLIFe6xyzLNgsG1BZyHxaq14WGmUWvex4h+TJiIZYHFqymqXZqgk5CHoqeqmCSIQuknNNOSix1srVK0ZUKUaEmD3JZ1LToYxhNB5hUETfoQoJn0sxU+9PMa5FG7BFRU6+r2+UVEIpY4oBS69oRDY/FRK2VHLNsxUB8VvnDL6r0XiREIfE1u4Bz7/1Nlu7c1bGI4rC8Mj5gvOPP8yoOs1TDw54/JEzPPr0Q1y+dIM3X3uTeZdlepI0RVGiS4d1jqIqOHXhJD/8Uz/Dkx/9DJvbHdpmytKCyhRGZv/vTcsoTMI5RYiK1mdCSGgn5pfKCcx/XgdizhxMG4aDYf/mZAZlf23yHRlF3QXKOtGUurfmZqyF4ciwqN/fWn3/CR1kRmvrdJ1gVbOyEAI+dISUKZylm80xUUogly2TyRqh8+zs7bPwHVcuv8l/91/+p/yh/9O/y6lHHkE/YQgJ4SIv5rTzKS5EGI7oZnugjWjO6wXJCFeZIAaMYuBYtA0xahIGo6X5kGIk59DHgL63EF+Gu/Y628px3zHHbNbR5gGpl14u6jnOWGIMxJwIpSP6hLMZazRJieMqK0Wf3oNVy+QF+ZNSXvLFBYBgENtlzL3SrO9Gqyw68qVXWHyZgr1JWc76EDWFgy4kunnDeFjJ4ukitujRSkFGSSiFTwGtrTSfkqiUYvCQdV++9+aSLJulsooQIqltUIArK1zpCDbLlCAEMjDf2WZQlZSjAUobQttiS4spLTFnppvbVKMBOvUVRtvhyoJShT7LzEDwhK4WpBUyFVD97JvYSmsoxZ49JqaPrAVZnLy4vFKQhmlZDggYTFFx5/oe165eohiNaWdDPvXYCvefGWL0JdT8Mhce/jB//N/8EjhFe6D4K//Jf8Frl3aZdpFkLeWopBoMWB2NeeZDD/OFP/gnWD91kb2DQNd1uMIwLB3LYVPMmaYNorBTgp1yFhb9CM/7SNHfuZ2FsrTMa/nMZ7WoG7WWUZ8xWWSyc4NSSSYcMRCiIVrxxzudKZzCuf9t4cnvaVEXrqL1EWMLiskaoashdKgoA30dI4aEGw4JXYPJkUExIExW6GJkejCjbTouvf0af+PP/Gl++k/8W1x8/CnO3H8fi/19br79NvV0Sn3vLviWnBIxiApoWVMrp6Fy0LbUTUNIiaQskcigdCQPJIdSGh8jXczE/u6TpaFIVpmNYcG/88VH+NjHHqReLPjNr77G3rxjZ5557s2Wpk+l6GIQEX305EajyxJpvWZ8loWqlXiAU8597rR8+X4+u8QeHwpUsqbSsrFEFF1WlBkp2JeXIbXkQC/vzAgSN0usTyQzMLZfFFICphjQ2YrzjIQxSnjsgMqS/Ryjl4hZpBIwSsQ8OUHwAWetvLYZVIoUwwF0kqxRTUaorARLbA1FUQjwcVFLqR86VC7Exx08VeHQhSXHPt5XZZnPW4ctKnyI4KzkjSX/ro+8D1ZXStRoISe5/vQvvNUJ4xxlOaaZT0mp5O7mPkYbjhaeH/2Jpzl57iRGXYUYyTd/A3Mx8cgDQ5IO5GM/wh+LgW/9zb/EvAn4ssKdOsP6sVOsG7j/2Y9z5NhJUjC8/drLHD97nmFR9WaKjPdisOliouf6yMbeHwqZfIgJBlm8g0oSTjJJopNCZlD0fQkFVSnxwCG2KAW+afFdQec0pZIKrLBQVe8PaPT+ZaLOEOpOoAZKfhivFLoo0d4To8eYESElBuMxi+kMYyzVYMiKbyB65vMW39TcuvImv/LX/wp/6N/69zjz2EMsrUxdCMT5jLzXoIxFp17BpZaLR2OHY5JStIsFISaKYUFhE6YaMNvbRVlLpTVDVVIMLDsHM+omHSZRro8H/L5PnOJznzpNGwPznV0+/dRZZnfvMDp5jKZp+cabB+TUgLFooxgYQTjZouhPxj6CXvXVA6m3V8vOIY2xvkl2qDiTsY3vI25UyrjeZZSQmJ2YpXSPKUqUak5k2UOwWmMK3TuTErXvqIZjcgqEmGTB5YaycPjYnwJKYZQooTRJwgXJGJ0x1so4KEPTttR1QI9H+LamqApUVeAXU6wtaZuOYljhjEwkwmyOWVsRIKH1Qo7NcnWwVUVlrYz/uoAu++aeLVGukOlFVhId61vxkLtKOguhQ2mwtpJ5rbKyKedMig1KZVyhcNqiUiaFhgUldlhx/yP38fjjZzn7wMNyhVCPkqNBTW5D25C2rpE2v4P6yDHW73+Cox/7PPcNYDSxVMfuYzA5hTOOYrRBBm5fvcaV732TI2dPMhhYdB/A1vWS0xCENrOcteh+hJBzxoflJBvImaKQaUXMkmvedJFBYfvJjGJQKVzh6JoGkgh/dE5oLEnJdme0wDQ+0EUdFgtyVhTW0XkR+CcfsEVJzi0KaOsGoyCEDkIH1pJDoFCW0WCI7zxN61m0iStvvMLf/vP/H37/v/FvceapJ6jKAaPBiBdDy0FRoruW/RuX5f6ZFK4UhVEKmZwNKUswe5zPyArCooGcmayu0NQN9UzE8pVzeN8yHgw5urLCH/jcfXzxJx4hmcyv/63f4PrlPe6/uMLpQcu5ow+yOiowSGxNDJ7d/UAsDSMr0lhTOFQIqNBryLI01VJKfZkpJJRDjTl9eZ6XAXyq76CLmERcX5mQRdzgdKQwBmUUJLlnayMlHzmhk4xDlNV9E0yTskb3UOIYRE2mtBGlnQ+9EEeLEgswOZO0Et918lLWGWhjxGVL07Ri3LAO7UR5xnKKQMZORijrpOtNFujgaEzOQjBxhZXPxHcijEngigHKCAVU6x6amApUIQYQTcQU5WEmmTQqBRwRUkdGU9iMocQOSmJbU9sxanWdZz92gum9e6Tbb5Kap9FlIvsF3R6oA0uZ9mB0GnVXkxeXefNVw7ff2OZTP/qTrJ85xdqxU9TTKaEcYQYT7t3c4eWvfJmu2YPYMhiIMSSTaRt/OBFYagnh3auXfK7q8CqllJGcbSMgiQw0TYBx2b8NUBSaolTUC0lgDSlgdMRgWYqaFBnnPmDxSaqF1+3bhcgojMwUQbA3RhtClIham0USp53DZkSlVJaMxiN8nFF3AdoFb7/xEr/wF/5zvviv/AkeeOZpHv7oR1k7eZKXv/EVbr1zib27NyTdwpWHEPu2behSb91DEaMHpVGFwShLyhIsl3JiZ7oQEmY54PjJ06wPLA9eWGHlyBHubu5ysLcgJct0umDj4hGmDVzdbFFGYZLMnUNK7NYZSs2kDHS5AG3JKvSTi17CuSyvyYdOqESmjRplejqKWopTZEaftHQ3jcqE/B5deY8U1lryuJZRuapvdBljSBlCzDhbHmZPG6PQhaOpO2Inz0WrXmASRRoaY5Dvo2/OqdBiKisBAEIzxHcNZVmQnYynbM8Aj1qhUhTjhTP4pobOE2IgtnJlUjmSS4crK/RoiC0G5BiIzRRdDcWTnrXwYsoBKXXYFND9z5Z7EwqmkM/Sd/iYKIqKnBJVNZbn4ioOph1vvX2J6Y1L3Ln0KieGgad+5ClWL/4o7b0X+M5//eeZHD3HI597kPL8eZT5IVh7GpPf4mM/9rMcv/gQp86dIaO5s3mVkoJ7dzZ56Td+g707b3Py8YdYGRVUVpZuCFl06EBh7Xv0D30YIkDWgqnqF7bw4mRRq0BP0Q2H/R3xiYMrLCpryJGAYj6XA7Mo5MM1SlGVH7D4xGrFYDKhnh2gqyHed2hbsgTxpbZG+UbugZMxptRohU3KNQAAVd9JREFU5+TUqGtsEm5TakU73sVE7gLX33qNv/Vn/t/85L/8J3j2+z/PsbOnefxjn6Kr52zfHDPf2iW6EuqG6FuiSvj+4WYlJ5jWhtW1DbZ3dmgO9umCl00HudPdf/99OKeZ7R3w8uV9nvpYJs73+b5PXOD2nRnhYJONM2d58fUb3N1psEYaIEEFdBAjxl4X0QHKQhGtw2a5r+eUJIFDKbokJ3Rcrk61vEcvVVbiGguI8MQmcUoZIyaBd4mkcvcnZ3JvjhB1pJg3QCB0MXH4Z6msyBFcP0dnSQs5lKfKi2eMQ6mWzify0ECO5KwpyoqitBADRWGBhG9rhmtHSNpAXZN812u2E6QoHmUfMDFTDof4CGhRP8k4M6LyvOe9l+TQkLIhOYUxK+ScxReNgixdfmULyMIy860gh5TR5OQx1uCMRPREbdi6s8lb3/hNDjZvkLNmZzfzxref56Pnv4/i6DMcf+Yput3bqBPHIUQ4cj+xfIZj50rSbs2ZM6fZ3txl+9ZtVFbceuMtLn/nmyzmd1i/eJ7VEyfYOHpEXiUSXSfTPm00VSlcUKkqeiMLvQz0cFCsDicNS903KhKClumRMYf7QuE02ogOQMZf4V16Dku13/tcq+93UfvUsFIMKI9VLBYtoW1YO3qc6cEOrrD4+R7GgCmGKFfRzaey08codsAMFCVr62uEFNib14QYWcREd+cef+ev/QUOdvb41I//CPc99gQbx49w8uGH+NYv/z3u3rhOkyWBI6eMjwnfK8ciikJb9jY3IQs9M8S+0FWayWSCMzDd3aeta/7OP3sNfM33fewMw8LwkY88xL2bBYvseO7l21iVhVWeMzZqvIq4mPA5Mpu3DAYFpdEQNTl25L6/kOjxQkiZHJSc2FZJo8xnka4uO96ieVZ4+rTDXpGm6GNzs8L0ZX3beQZlCSqz6AK6jQwrTQqa0HqUFYrnYDigXTT4IGOQFCM+yLOQKNsl4gh8EOMHOUJSxBAIOgu8wiicMqA0XS2luDaWnDVBReYHU4rSgTbo3tq5mE5F4RY8KxsrFIMxTb0gypveN98C2knyRO478lnp3sWle7yTJsRI087xXQAt3uvcHyJRS5U4PVjw+gsvcvPKm4Qk/R1C4hf/8j/k7BOPc+KRn+TBn/r3SNxD11cImzdIszFbs5dZ+DFFqbn66iW279xAtw13rl7m8nPfQheJ+z/7WSanLvDIk88wqIaQpa9xMGvFXOGUpKWgZONF+gnSW1A9yne5XFWfJS4VuQJC0gTos1vktHYWtJXnmTMSaBASzsn7pYHCHJYGH8yiLodjDnbvobuO5ApS17JImmplhcXuDtoWUDpUMYYcKYwmdpHcLkjtHJUUxXBIomDiDNFZFl2mTZkmdoStbX7lF/8Kl95+ld//r/0brJ84zpNPfxxnS37rl/8eN15/Fe1FTw0Z00MPlJF41pAyWNM3WTWp/+v66grz2T7tYk7TRUJKPP/aTZ44N2RtxaA2TnP3rbs89803ef56AjNkIO1aUo59tzOgYkeMkfnCszosMAPHIgZ8vwMvY2Eg9z7m/s5N7g0JYvzQvabbGiOgvuVu3+uARJy2RDlw2AWv25bKKSpjCElLTI0GbS1BRZHIhiiWR6OIMVAaQ9fWcj+NEe8lvICsBReRkpgorJBRQttgFcSU0ClRDAYyhls0mGJAN2+xNjGYjPqZuiRZKFdAaLDaU05KzGBAW8+wVUkxmpCAED0FFVoZjBaBStYiGLJFwTIn3PtA17Qs5lOJJi6GFLlg9cgRSldgtCWgufH2G7z8rW+wv5gDipgsbWjZ2fP8/L/98/zhP/oyj372S6hqjctf/ke8/ev/lGMPf5ryMz+DLqRfEXKkHIz57pf/MTs3X8NNRlz8+Ee5+OynGY/WOH7qDKa/2zRtpukiupARlVlCuGU2iPdR3keMXCVYZrOJ8MgaLdNKFGhL7JM4cv/JV85QFCVdj13KWeN9pKre1YfppVjjg1rUo43j1Pu7zBcz7HiCtg5TOZy2GFdiVtYxhcU3HV3X4JQVS5/vyF2LrsZQluSmpnAFoyJgTeKgDbQp47uO2UHme1/7DXZuXOGn/pU/wTPf9zkG44rR6gpf+cf/kDe++jWRGE4X0Bv4QdjYy0Wcexmj4IXE+riYCaI1JnF0fffGAZt/+3nuOzJhr3mFZtai3AhwIjJw5vCO13kxDmivabJo3GOwWKUoqoLQ+EPrpOlv10uD3NJhRMqH+CIBKrwH0JCh7RLDSvdurITTGaVFxqn6FySESCocpevbM71P26eIcxJqJ4QQyG1D23ZEI9rikDNdyqAdqCjlozFkpXDDNXScktsWSOAsOWSStdjhUDzPWtRuOXbyskaFKS3VykB0ASnh+qrMkqBt8W0UBVQGlJByEgpCQJlI7q84prePog1d01LXM5p6QdM00tU3jtXBKuVoXU4ta1ksPC889zy3NzeFtKoNKXe0Xsiw3375Fi/8n/8yR9d/QYQlXWR9dcSnHlnjdDBY1ZL7d9M6w3hjAvYsD3/m+1k7ez+FHbBxZIPJRKAIMWVmC7BOs7HhKKyVd63vHqbcV1e9CMnaHmu1XPdK3k2UTDic7gGVhxIWjbGZsjDUdW/QyXLlNQpyf02z71P/+f4bZV3EDUfEzeukKZhqQrItBM9otMJ06w5Za4nw1JZoLWoxF5OGtSgyXd1IuVdVDLTDhY6sZqgm0/hEip5mkbh86TJ/48/9PD+1t8uHf+iHeOjhJxkNJ6yurfO93/5tMPu0swXRe1E66T4BMYldsiwKmrZFa03TtjRNKyjgLK4orTS3DhJ3p3syq7WOMkvZrUqHqcoevyMiCpQwxEKOdDFQ+8BqZSmVIZhICBGlM4VS2Jxpe1fJUsj5u01hS8xQzonlzSz14w6VFVZL6avUMuq2F6j0s3rTvwxaK2KMEgVs9OECE5eV7rvaWRZX61FNw6gybPhI0yRyMnSLGcOxRduMMhqTDKmTLHG/t0eqCuygEhFEYdClIxolvO69qchMhyVlWRG8J4VGPg9lSX0XOxsjUkD5SQnRY0wpGCZtRAPftLSzbdrgaX2mqTty6NCjAa4YsLN5lxMnz+B1xea8441rd6nbFq0MWcmcWyQE8qyUMcyioirGrJ44wfrDj5FOP0zTBUoaNIrQeZRWPPiJT6IqWD16lpw0o/EKaxsbFE6wGotGehfjcUFhDHrZx2CZgwbEjDUFutBYp3/niSpHr+jrtTS9il64tKzSQ+YwvEFUC1LxCcJpyYT/gBd1NpB9YrR6hHq6wA4s9WxOJFNEoV/U0xlKyV025xYVI4RGEhWsiEJyCmhTUa4Pafa2GFUVKgmCt80RcqLrEpv37vG3/uKf56XvfZef/Lk/wokzF/n+n/xpzlx8kO9+5be59c4l9nd2SMETgjCqTFEQ+m6sUQYy+M4TovyenOWBWt1bF5UCp1HGoYtCzPBFSVEN+1MmY11NBGIIWCPwgmp1lZg8YxtRJBaLHpXTC/dFtbskrciHp96dCYGSjOiQIanMwGp0kpM9ITLJzgu7TJHQ9HE8MRCUQjvbm1NERhlUEo5ZzuKQaj1JQxcChXWsjFdII8h+i6pIjIeW7Z0WfGS2fZPT62dFJpoz2WRsWZCVou0aBqUjtEHm6mWBqSrhf+selhgiqe2TMq3DDgaYoiJ1nZTnsxmuqkjWkk2JcUOMXlo3NSFE2v0dZpu3Ga2OUFrGVbGuMSbLnF6VTBd7TGJif555/s2r3Nm8x8Kn3qfeq/T68rS0lrKomKyus3byNKvHzrB27IyceL7D9GiYGAIqZwYr6+iyoGthPCw5ceoko9EQyCw6aGNmOFEYo5h3mcr0p2Z/d/ad2FMDChuXRB0RBoFMGrrOQwqSStL3Tky/eOnps6k/CBLyfrZdYpiWJbyMRT/Q8tuMh9R37pJcyWBjSNYalCzYMJ+CK9H9HDeHIF7XZg45YE2BLQfUIZAwpLam9Z7Q1DilKTSMCkX2Qq3IORN85mBvl29/+dfYuXObz//MH+CpT36Mh5/8EOO1NV577ru88cILBO+5e+MmOgoE3UdJ+VBAjgkfAj5EfOyLYiULxBiRKDplenGEw9oBzjmsE7ifkD0VbfD4ZoFuFaPxhAcff4rFdIc428QWDeQ580VDjJmQRRwSEyTdh+qoPhNZqmbaGPFkUL2ENApvm74Dfsi3iKk/teXF1Uakh6k/+g1SGaUeI2StBmfRWZNDwhWOGAP1fMaxk6exrqCeH0BOnFhpMTFxZGOIc56QHNFHjEqoBG406EtkeXtD8DJn7iLWSfWhB8KpTgcHOOfIWkuXO0XarsVaQ9dGlCvR1qC0Q2kHWjzRbZD0lsXBNqGd0vgBi3ZBV9fUiznOKVbWjhC9Z2XjBHM1ZJEsDz7+GKvHT3H17bdpVMAkEXcYo9AY4as5i7YlypRYVxJJNE1DM5+j8lAWW9dBjpS+wDoDheXIyZMcWZ+gdWa2yMzbyGBkcQ7ImcW0ZbRRvneaJbnhOaKU6Sk18gsiLkm9wKjX3hvX23elajR9BXYIj0T1VwpFDO+y67R+X+v597aoC1cyXF1j795tilJ2WWstSWlSV+Oyx1Va7o6hxQRPMJqUSjHm94QLihFWTWlnU0iJZA2TIyex9QI3r5n7VlxPZLoU8FHzxkvPc/PWDX7gnS/x0S98gZNnL1CUjtWN47z96otkMnubW8wODtCAR3S2QuSU+07qS6CkBeBt+q5lzoL70f09XLpamaDE57y8hy8rpeFwwrFT5zAXL9LM9ti/cw1d3oJ7OzSLBqJwqIWesrwx0RNMkAC4nMkxUmhF0oomZXIIOKPp1YhEZHapjRGonlmWsrpndjlcIYkVkIUYmjNRRRk7KWkkFsahMuzvbIq+eVDJxlY5SqOoipKEpRqPaRpP6FqmO7ushEg5HJLLXnjRQw7l3UuQFe10LqYU5/AxoOZT6FqM7b/vmNFFQVSGjMFqR04iKTW5QRuFG4wxR0+wGwP1bMGibshJsbI6YeXIUWJWAgKsVrlxcwuVFSfOXsQUIzoCPmnIAa0VgywkEpQha0fMCt95urYhtA1ds2Axs73aT/VAhEioKgYrK6ysrnL82DoYWNQwrxNurDDSLmAxjxQuY/VSry9agemsz0nXifFoSNFXDlKcyRUpRqlgjXWINGzZBn23+WWdXFFSjmT6zPXYKxCXV7gP8qS+8Oij3Lz0NikH5ttbDFZW8PM5PnbgZHEbMyS0C1FRVSsUlSQzhOkOpq0xOdH5hpTMoVKKcoVkxNqXBgGvInSBGCW9MeRA7SPd1l1++b//a7zyve/whX/p5zh+4Tz3PV6wsr7GpVde5K3XXyfmxHw2F8VXH6qWenZZ6kvfmERgkbUIA1Iv3EpIjjPRkbNkPMUYSd7T1Ava4Ikpcvv2Dbqv/jZPfezjXHz4ac7c/zBbN69w/c2Xmd+6zfbmDhGFReglfbWNDLtyX4oryBLD06p+s0FKcasQHjdKGkX9y2MQJVrq43fI4L1wyozRkgaZEqbfgLQx5JzF4QbkLjBvdllbWUFbi49tDweseptjoCwL9KAiB8EMK63xfbDAYDwhxkiIUFYjSAFILKY1pTXEWS3Y36IipkwxHJC1hWpAtiUhJEKYYbqAMVAOKgo3oq4buvqA4D2+naN8YrRxjPHqGsoNccMVWpW5vbXg9ZffoNu7y/FzN9nf2SZnRRckt0wj2CetDSYmugDWB8quo2kbFvMpzpUYTK/TVxA7bBBt9omTj3H6wnlsYTiYZRYhUU6UWHqzdPrrmef0iapPylh2xSW1tXAVUUfWJ9XhulvevH3sgYlWQA9V5eTkVe+u0NTrHpbhfylEUpQmmbxDS7b6BzjSOvfoY4zW1rl9+Srbd2+wefkKKFg/foLZ9jaxrenqBWYwJHYd2Rly22FLRx6soocDbNNg25ZOa/RwgE4KT6RbLMB3KFdQWoe1BfO6wYYkZoZM33UOvP7S97h96wY/8MWf4dnv+zzDByd0sUFZiykct65cE9VO24mEs7frLZG9OdODC/JhFzrGTAxZ3F1hLhGpOcr9vOvwviPGQBcSdddw5a03uHP9Oo8+9QxPfPRjFIM1Ljz4DHtrx0mvvszW3U18XsIGYQk6FE96b37vN5nU/1qXZGNxCYZWymq//NBz7mN0tLh/tMJpeTm99wiIXzYA5wqiD4SuYTQaittruWnFgPcdhbZUZYm1jrqtKQsn3SAk/2ywuiZRPEUpGdDOElIkow8PmZA168eOY4oZ9f6OeLJdQXYyc+4C2NIJWKLt5EqkFTYlktbMU6bJRiKXQkM/8OPY2TNoN2JxsEuxognZsxfGfOOrX2frxmXW19dR25vkLPZcnyM5KWknW0k8USmhvMf0TdKinjObHogAKHpS12DJED1lURDSmMnaEG0de9PEdNGytlYwcAafwZGZzTqGlepprLLIUoZ6IUmtohwzuEO7Xs9Wy5mmTX2bSzSzKkoAwe/4ypkUl6e3dNFdKaPHmHobZlYf7Ek9mKxy1BiSBjsome8dMN/aYjo9oF00aKVYO3OWuqmxaFTKzBY72BrcaIIrR+QQKcqK2DYYN8ai6A52RfyQNDoJsdIqBaMK13psB21MtDGREsTYsX33Nn/3v/1LfOs3/ik/+6//cZ759A9x9MwZXGlxxnDn5i2iT0xn+zQHfQRtv7OKXnvJHJUduO1aMkoC25EZcwwe71u6GKBnhAvIX+4+XVvzyve+w7XXX+XUufM4C6M4g64BZaSkN5lEEDUtSmgZSR12NNXyvtSPOlofMWjQiQKIXSYacFo+0KAzMUm7Vel4OCsuihJtnJgBQqBrPSmLHzsR8VZROkc1GYG1NL6hyBZjK7QVckrI4KyBEMVdpST9oiydnOw+klJk9fgRynJIPZ+xd+e2GF2cw1RCiQ0xk2Inz6ptUYiDzLkSUxYEn6jGK2KMiQGVEzFEnC1ZOXOKtq5pd6/i1iSDa2FX+OrXXufq229Sqki1MubImROcfPBBnn/pu/gceyqJpo0ZpbMglrTHti12scDOSoyxxLalqWeMRxMKa0Vjn0fSpPWZu1stXYocWa8YlaJWLJSibTM+Zk5sOLkX94s4hExdt/2oKrM6dFh9SG8HoPWpd6DJdCaGBDmieBd4kHuHX47vJrm4wjAYFjijhLKRl+OUD/CkfuGf/zbPfOZTHDtzHqU1O/fuYY3lYOuO2OJCpJ7VaCunUetbrHMQA2Exo44J37WExQzjLNYN6Lq5yP/cgFwWqJwwxZg03Uaj5M6ewmEZ0/WqnRATxMS1d97gL/2p/yef/X0/xfd/8Uv88O//Qxz7xle5dfUqV998m61bd9juyaEhikAl9zLOmJLMTK3cv2NOaG0x/T3ae8n+Cn2jYzl+SSmzMqr49LPnuXBqyO3bNe/c3Odzj6/w2Y8+QMDy1/6H53jr8lSSPJWU+F0Se6bWvTOrl4OScy/bl124CQkXNMYuS3Qld2SjsE7hlSbLLoFzRualWcY5hXPCTOulhj4GjJX7eVaKHBJdloC6bKyADWMi6SxBhDHjuznUNUVV0iwCKo9xw4G8WCkx3d6lsXM5dLQhWYUyToL3MuSmk9GazqgU8R00izmjySo6gisLipRBGaKPEDtiF1FRWGShXlCOj4B2dNWYt65tsbN3nfMPnuHCfffz2R/6YU6fOcvnf+SHeOG113njhefowciEnPAxoVXEaI3tPGaxwLkSqy3apx4gmRgVFZQVvigZrIzR1QZNyozGBYNCKKWGTNclfBc5sj7A2sPxBajMfB6EL6YMqlBMxlV/IpvlaoWkCK3ckzEGWxYMBr0PmH6RKvHMoCTUQBRojrZNDAqLtb2u/322yt73ov61v/4XuPbC8/zwH/o5Tpw6y+BzI668+grmLThIiW6+IHQtJkJc7EkpESVV0lYVvmvI3uOqAaoo8amlXcyxpiDGDp0KSJ6UG4n1EcET4/GqIGrnc3Tu0a5ZsL+xy+xOt/kHv/Df8PI3v8bnf/pnue/xx7jviafZOPEtbl2+yr3bN7l79TrXr19jNquldEReuJyzdJoVqBhQfXMs96eHT0EwwCiGzrA6GrA/n/Ef/PEf5A/+xOPs7W0ynSteevEq5yYdR05vUG9d5//4f/goP/8Xv87WXqA0A3JMzGOgiTKLT8r0HWwtozDz7jjDWWiDSC/LrAipp5ikjDIJbT3kJA2XnLBofMrQ87Or0lKUJbP5AqUzk3KAD57CCJJJW0OOmWQSPnm5j5OJykjelVJMxhIaHzP4BM28wZiCqDLBe0xREWIAn6Tj3XugUw6HQAajLdpaOu/RZUXQBoOhKgY9tilIRzwpZjv73Lx6E+Wug1KUK+u4lTV0PWZj4xTf/wNfYD494NzF+xgOjvLO69e5deMGlRJMU+pVfTEnuhQgggkKYzTKt+SDfTIRQscwj9E5o4YRpRVjNebo+fsohhUDKwsiJulltU1iuvBsrBYULkHuwwmBrlVMp00/BtQMymWT7t01k5VQUILv0EZjyoKislTlcnnK973k5xlNT1bNwpzvtYbvfn3Ai3ox3+Xlb/9z9nfu8Okv/jTnn3maB555htF4zFVXsH3rFoVx1Hs7WFOAjcznDVZpMKW4b3wA40jG0uzcwWZDtXGMHBpmuzsEU6CW5W5O5Ai5UWidsU4LEle8WcT+5CMoAoF33nqFW3/+Co9/6ON86Y/+G3z88z/CvfuvcPPyJa6efotzjzzAc1//DvfubgJK0pdSRucofG3Vc7tVL5JIklUV+125S5HN6RwDnDl1isF4jf0br2P3Zzz18AbZd4xOnmfv6uusnFpjfVIxW9QYDFknbI5UqqBGoWJcksLkXo0Sv26/sLUWFpdAFhImS4ke2kBUCMXVul6lpHt8kYy6gk8CCMwC72uaiCusnNYZuc9lTdYSqJd7HnjnAyrJ29x0AWcs2sjC9E1HLjSqcOSYeiijXGVUyqSuI8R46FlPOdM1HhsiIQSsK6QjrQwxKSorz3p/Z85rL73B3Rt36BKMxmtMNk4wjgMmep2RHWKaBc1iyt7du2zf2eS5b32P2e4um3dvUuhI4QoWqUH3V6qUUx+rI/FJKiZS8rT1HKeEmmSMprGGwnVsHN/gwiOPYgwydkSmJr5NTKcRW1m00YfACokxThwctLSdB2NwhWV9UsnIkmW0gxiPZrPYh0wYtJOxm1FLcah8KAJWEA2FAnKKGG2EKtqPutT7nFH/nhZ11pq6a7j62ovsbt3l2R/4MZ783Oc4/8hjrK5vcPX117hz5RJxZsFajHK4SgwNMUR8PSOHGpcDydforgNX0k73BDJfDfq5YRaiZQRtPFECoXEYhisT6sUM2zTokOlIfQdbTpVmMef5b/wm1955i2c/93ke+chHOXHfgxw7e4ate3epqgHf/K3f5u6dLUHkIN5iSaLIRCFk9R9K7umTfV50ShBhZaXk9tVr5M8/wdEHP8G8PuD62zfYv3UX9CXWH3iMb710l9l+R1WWonjKsui6ELG6YNo2tD0ZRfcy16UJX2aUWXC+uX+NFBL5o4SB5XSi1R3eaypnJdmRgDWaLshrJaF4RjroHgIJa8WQoZylaQOVFY64yoJ6JkZC1ig6ilFF8B0xN5RliUd0BEY7Ut+YO5ytB98TQDO96J2QEvWi42BRU9iCogq4ssXqTGs1L770Di++8Crz+QKrNYPJKm4l8/jHHuDc4x9if2vKuQsTVk6dZOte5JXvKDbv3OXufJMr129y6c2XQMMDjz/EW2+8LZlsWT67kCIhiycg5khBkoUUJefc+A7TGczRdR7/7GcpygH0G6fSmrpONE1gMDE4o95D58y9Dh9mi05ssVozKDSjoqegHP5WRdNk2r5ha6yjLB1VuRQ/9b9Pye/1IbOoG5TOaCzO9co4JeAMrd57Yn9Ai7owmdCJ73e2dYuv/fLf5vqbr/LZn/4DrJ89xf1FJZGvxhGamumtm+I6ckOU8ZhkcZNjxOCxpsAP5igK7HhF2GY9Kzpm8RLHFFAqYcsVrM1Mw5SmboSooYTeUSjVL06Z40VEL7117yb/5H/47/n2V/4Zz3zy+/gD/9of48SFBzh55izHz5zmO1/9Cm++8iaLqYzfVC8OSL3yawkzSNLmlPc0w/0nRvzJf/9f4JMffYhueo/R2jnubS/4p7/2AvXePp96ds6xi+d45NyEhx4+zpvXvPC8fJD4mhgpQyLkiA9iLln69Kx6z2wzI91RHUV1lKViCLlv9JEhR7GF9kmbWksvwPVs7Bgz2eWexJHQRlRJISly41GFJiQheVgkOM5Yh1GyyQg9xWDLkmgdQUHqWqw2jJwQP3zoDp1oy/fTJ8gpUbcd0yawvTfDkjhx7ChGJ3xb8MLLV/j2915F0jQsg1ICGs6dW+WH//DPUqydJHcNavEWef8NJo//IPc2W9rGM59P+ewPfY4f/xd/giPrG5w5d55/9E++zJ/9k/8v9qe7gNxoU+obgKRe5qsJuifE+oRbczz+7LOcvf8xUQJq8Qo0TaTtJF20KDSF6Zlu/aJOWbF/0IoOwlmUNayOi99xSoNMbOo6iMY8STa4Akrd909+V+kdg2CSMqLcW1mt5HTOeTnN/uAX9epgSJ0ayZEKHaE+4K0XvsnW5jYf+b4f4KGPf5QLTz/NeGODq6++Ij/g9iYhRHTWlLrAtweoIIHhrhoSPShXihSzPgCjyF5S/iw9qtfX1LUXHK0xJDTOVmACnY9oMl1KvZBSTA4gg/757g7f+PI/ZPPmDR559pOcf+ghnvrUD/Dosx/j+a//Fi996zvcvHKdg/19YWb3c87OC6KHfq4sVbniD/7ER/mJH/ss1HfYuvIWsZvx+svXeOnVu5w6cxo1Wmd2+yr3f+gpLjxwkeu7W8ScKFIi5yGhaVFdywSBCcwbj8/SOe2yoSCJsIF8OGe3KKLWGK0Jh44wBUGcVUpruiyryRmNtbIJhD7/WTlDAGLbUBRDspIxko6KGMUfbYChgzYFhkYiaKetlzxrbWSU4j3eB+pO/OarkxEhe9EzQ9+cM/gI87qh6TxdFD3zsCzFQtq2XLp5md/+zuvSBS+sZHOhaCKUR9coV46SCShbkkePgq8xes7RowNmB6fpFlOeeewJHvzwR6RKi4Ef/P4fZ+udF/iHf//XuLe1L6pElotM4xMUaKqeEHvs6JgPf+QxLj74GDlJ2YuCehGY14HB2FE4jdOixUfL/1PKcDDtmE3nwkh3lmHlGBdGPq/l0s+ZzmfarpN+kXEMxhW23yR+dx0twkXVT2Y01jnqOrE20u+ZZb//Zf2+F3VVVGTvSdnQZN/Hg0ZuXH6TnZtXeevF7/HZn/79nLjwIKvHT3D1tZe49YZE3tb7BygTyI3BFJbgW3JSQuVQSNMFg63GdG0LNqExpK73/Aa5H+mYpRGnsviRs1A8CiXlpe5n0bHndgcfUCHy+ve+xWvPf4eNM+d4/COf5COf/RxPf+oHOXv/o1x99SXu3LzOO6+9QV03GOOYHRwwn/ciGmMw2uB9pJ0FYtPHsGZNaqacvXCSi+cKHji24MjGmMnJc+yas1y6ehU7GFEaadiQYX5wQJwf4EJg3SpG1YL9WcsiCLtMa8XEGciBoRarnu7Lb3GcCTW1jpmuj/5JKuOM6tlm4PvhXUQwR9VgyEHdULcRbT3DoSOGKBUKcqpaK+BIjWPhRZlmlJhsojZsTEYcXR+xcv44B3tzdq/dY76Qs2YwHGGslUC9JLSb+d5MrJRKvi9tNCpG9vc7vv7im2wtWkptSKEHIRoHqZEmly6IoeDW1/8eVTHk6IeeRbvAw086htUZ/PyAV7/6HZ777hvc3N7k3t3bHOzf5f77zvKln/l93HnrJa5ducG9aYv1GasjpYKVgeXU0RGPPnyaD3/qcxRHHiKrghgSgUw9SzR1hy4MhREKKPRqwF44tFhEdnfm/cRZyuO1kekrlXcXXSZRLzIhCAF1MByinaUqeNey2Z/Wqi/pc0rE2Irmu+1IKbMxGb9bpv//Y1EXKPJwQFcnCivkjTbKPXTRzXn7ha9z79ZVPvmTP82Tn/o0H/r093Hq7DluXHqHW29dolvMcCGgtCVMO1Ivm6tnU2IETcTP97DVhNA1+G6OSQk7WCHkmtwFUEm8xikSk0SW0sf3QCapfvHz7jw6ZvG4+Ji4dfkt7ly7yuvPfYsHHn+K8w/cz4c/98NMdzd59LEneev1V7h39w4hytJIUaJSfRcxBv7Bb73M933yBT752Q9RHnmM9uA6J46M+NKPPoTfusFsts0r3+34+ndfYJpWWVlbwxUOVwwIwRN9IPtA13R4lalKjbWOwaJhWifRJ3ce4wwtSkLp+4VROEtVQQiRtdUh87qlaUQ0ozDkPr6n7mTc5WOiSJL9XFiLGmg6HwnTOSYndD9fjiFSYFi0kUFVMBmWFFZieDWG1VFJrOc888VnuPj5Hyeq8zz39/8mL37567StZ2e/I+llWKCM0VLMhCQdbkUSoYdzvHFpkxtbNZ1K+JRJWRqfhkCjppRDQ06G0NS89uV/xNAOWDl/kuLEUbQdcfzsMVZfewe/p3nl+a/xnddepWlbstFcfuMNnvnQE3zyk8/w6U88Cm7IwXNfY+fGPSbHx5x76lk2LpxkePwxYnEarwcM3IDQBOYHCR8bAesPrOCHyO82rpArzP5+JxFApSgoj4wLKmt5z8qDnPFeUTetUGaMxZRS7tl0yB99z8oSleBSB6CtQ2tLaS26P72XmNn3m6Wl8vuM0vupx++jqgYEq6nrBbHtqLsg8+eU8H36w3Aw4vSDT/J9v+9f4OxjD7Jo59x75xKXXnmJ3Rs3CF2gne+iXcVsusBUijBfyClUVBxs3SUbI+qftiaXFbFtSaEjYqhGQ9pmIT5m6HXdcnKnFPBJTiGfxdcckbzkNgTRYudeu2QNG2tHufjw45y5eIHz918gGGjqA2688SY3r1/l2qUrKGWZTWeURpFTZlhZ7jt1hA+d0vyrP/cJjp1/mNTtE0ziT//8r3D5ekANV1g5epojJ88yWlsHo5kd7LF59TLzvX3msxnT+ZydZh+lNMMCXE7UXUdspWzWWlFo0TF3KZCV5lhh+dJnj/LFn/0st8NR/vJ//ivMF5EcW2Jo0Fm81VrrPkI3YUxBG6JEsKZMYR1HJiWK2OOFDdqI/TTFyOkTxxlYS1EYPvOlz3D8kQ8xfes3uf+x82LWGIzZah/m7/7pP0VXdxzU8vKOhmOCj8zrA4zqRRllQR6uUlUlqhrzP/6DL3Nvew8VZXzjjGJUVFIdhcBHHjvOn/vr/zlrF38Ef3CDxY1vsnr/SXRMRF/xzpXE1effpguRy5eu8OVvfY1ZW7Nz6zbdfJ/1Uyf56Cc+ycbRDR46d5wj3EY1M7rqJI0+iY+aY+cuMF49ChHazrN6ZIVTFx+kHBeMSt1vZorisEEm8bhb2x3T2UK860ZTFgXH18RXTX9qy/04sbnraRqPUoZytWJQCsnGmsxAK94NxpFTetFlNu/OWMynUBSsH1khZcP6WKgvVkm44gcekOcmY7ClQNpNgSkQmmTr0cLqoY2B2eKAS698i3s33uajP/DjfORHvsDZRx/n+H0XuPnOO9y+dImbr7xEjAk3cLhyyGC0RreY0U7nTI4dZ39nk65ucNphswJjycmjE3RtIymNakneUILPtZroxWjSpaUDdfn4IrnvDC//1fnM1uZtdne3efH5b3Lq9DkefPwxzl68yCMf+hgXHn2U9ee+w/bWNvdu3aLZn9F0HbtNy729BbduOh687zKfX7nA6OhFfvEXfpWXXtuiGhxhVK2giyHZGnThUCnhZzWxiwQfaLuO5D0pKuoQmAmNmHE54PgYlG85qAMHbSKkyKn1EU88dJQizPjcx47hbj7HZ//F/5A3vvcK3/7qFWYLQ84lXTvvu+AKo4UwAgpnNYTMovMczOe0XcfG6pBhJbNurbX81cDm7i5GJX7sS5/myR/+AczKE5y4735UugXXXoX5dcZrx/jxP/gj7Mwa/tnf+zJdndmd7kGG0gm1dLh+hM2FAAPL9TVeenuTrZ05Pigg4ZKWO2+I6JSIEb79wnX+/P/t/8Ef/ff3OfXoJ1l/9ONkNWD/9javfPkfsVh9kK4a4+sFk6MbBO85uHuH1ZWSs099FKOMCFgo+O7LVyF2uMZj2zcoRzc5++TTtLOWsH+Tg3t3yC5w5PM/wMqa7ZeY6MedkYYpiFd6sQjMFzXGalxlGY8rBlamFMsFvVykIWbquiN0HcVoSOlkeqLJOGQS8u7aXEpNRcSijGZQVYwrQxeNYK7g9zTOgt/DSf2z3//9FDYxvXmZshiiqwoznrC/eZd6MaPzkXkX8DEK21rLN3j07IN84oe+wKOf+iSoxO7mHW5ducx8b4cb77xDDrC7eQfVNNTTfRmxWEcMnhQC2mlikO507FpK58RcEeVmc5hEqUXVlrOA1pMShO7yx/MZuigUi5jzoRY8ZXFNWW0oqpKjx49z7sJ9PPz4E0wmE5TV3L13k9/89V9n69adQy03KFbLgmMbY2liTRdoo5mMVzh230MMVzaoxmOq4YR2dsDO5h1mu9ssDg6Yz+cs2paduqYJ8bDMKgrDxZPrrAwtd+7usD31HJuM+As//wf52I/+KLee/wq7b72Iv/4mD3zuh/G55Up9mr/8Z/4+Cy9MsibUqFBD7KiqARhFCIkUE20ING2SkPgc0EoxrBzrqyMqK1ZTbSUe99/5k3+MR57+EGqxST7ycTDHSDvfBH8P0oR49bfQ9z3LKy9u8df/7C+w7cEMhpiyZDIacfHMcVJS3N5ZcHPzgLfeeofLb7/BMsTQKk2hFYUz/c+fKJWlKDXnNoZ89uNP8Oyzj1McfYCbt2eo7ChPnie1oZ+LN1y5dZ3NnS2sMSwWc+bTA0ajFZqDOTp5nIIqR06fPk2hC4rxKptXr2IIDE6d4KM//qM8+OwnWVlZFQeV0jjz7ngxpcTBQWB/ukArMM6xulZRWS14oqW6rO9jpBTZ209M554YA5OjI4wTy+3Y6j6N5d01lXOiCZm7t2fMFwvQmsF4RIiK40dLSmdxRiCVyybc+zmt3z9NdDQhTncZrx6haRZ0XcdwEZhMViTxUHVYq5ktGnIKxJRompobl15n995dLr/6Kp/8iZ/k5H0PsHL0BPs7W6wcO8mdy5dpmikHswOUVjhTUK6usZhNCfUcMxyhfaD1AdsjZHLwYgPMAmtrfdfLLDWJSGEtPmfpEsuTQGRG0GU5zXV/39bQCxWExbV58wb3bt/mtZde4sSpszz9kWd58KkneOuNt9i6efcw7RAy8y7Q3TvAWcNQawbIKCm0HTEHUvBM93dZHOxRT6e08zlNvRBEUkr46CWpohef+BB489o9RoOSHDNlOWBjteThh85RrBxl49QDzDZv0m4d4c2vfo37nnmYB579BCfOfpvtvRaVFL5esKh3qLsDfFymZot4MeWMsbqHDzg6n5jVmbqZ4kopzZ2z7M8Dm5uJB6uHxWueF9x75bcJOzc4emaCsZ7dy9/gyHrByYd+nMHaP4GFpjMGYyx7XvH67Zrt/RlbO3usjIbMZgfEnPuocCXS2d6CKpZT0corWzJNBd99c5fr22+wceyA0doGxy/cT7e7j/ZeQBeF5YGHnyRdeZv9zS18mwlBM93ZYxwlana4usbx0+eJTcu1b/5zkk7YtQnDM+fZuHgfKycuUJiK4BWlBedAL1GAWTGbRfYOajLid4hGs/CJwvXa/d81aurazGzaEInYwklUjtUUqr9L/64jNwOLWaJphcKb+v5NNbSYXgT1exll/Z4X9eraCts7t7DDCaNqSLO/Q/JzSJmycDhjqcgQBfvqUTRR5qh70z1e/MZvcu3SGzz2sU/x5Mc/ydEzpxlOVhhN1tk4fozrb77GjXfeJgdP0zaY0hEaMMpCYem6fVGaaQ1a4mJi00IvOCCKEEB4oqIO6t6zqxklEr+ke2Qv0thBKypM/8L1s80Q2GlbdnZ3uXblHc584xxF5VgC3WGZxdEb4BN4lSl6ckm9mGOnlSyy1FFPpzSzOc2ixgeJSm2iF/QQS71+7lnekbbzVEWF1obWi1f8WN1w69o9vv21G+zf2Obi6pwnfvRHuHNrh/HaefIokEKiW0zROwb2M8kvhNmGkEqJUYL7sjTVSqd7EESmMJaU4eZuw3Th+bP/8X9DOVjj2R/8PkJt+I2/+hc4evxh7n/6OOc+/Bij+z4Baw9w7dUtzt/3DO7ebS5v3uHOzi6zuhH9QAzkkJjtbLO7vyc20CynjYAgVO9P7LnoxvWd5IIuWxbJMlDSOd/b3MQ5i8mIqyxUPP/d59i6ewuLbNJDp6nGY44cWWdjdYPpwZzLL77EweY1dG7QkxU2zj/AxoOPs7J+XIAPxuCcpDJrlQ+Z6Afzlr39lqySmEFipqoMKwMpi3nP8sxZyu7N7YZAxJYV47HFWvHHm8Nm17tFsfwzAvYPwZMxwoy3iqoyGJBE0d/zlPr3sKjr6QHD8SrFcMhs61Yv0fS9gihhtUMpGJUFBui8RxFpUySExCJ0dLeusPUrN3nx61/lQ5/6HE996lOcOHeO9SNjTp6c8MxHHuWF515m584uIQVSDmTfgS2Ey6UVvo+MTUH8vGTpUsb8XpiB3LNDzIdoGLIop0yfGCGno+rh+0to4NLBJ5jXTKKtF1x9+3XZSXvjgGy4vfOGHsKg+lzqHqLYLBZijk+Bdj6nrWeErulVTomuvzZY3S/qJNFCRktypZwWkc6DrxtiM+fSy89z9Y0thidO8sgX7ieNznHpn73K6soarppI02VvU1xASpOaLZQJ+GREzVa25HpB1qWE6hnDUvGSFVzd6bg9bdFK89xrV/kP/p3/kF/6O3+K1Ye+yId+34/RbO+zduI4erHD6P7PMLfnuHf3TdbvfwQ3WSeGxLWrL7I3PcCVAxk3WjGdLGW4SiGwDN1vslnAPtpYUlKkCCEE6rplUS8odvfIMaNzpnQFhXXAgOQje9vbGGUojWK8Mma4ssqoqqjKMbevXufOa9+m6xbo9TEb5x6hOn6Ok+fP8+RTn2DgSo4dPcJoVKD18kTM5KQ4OGjZ25uTlKYYDgXuWFgm5dJamQ+3dZGmZvYPPF3wjFZXAA0mUy8y44FCmXeX5dLEA5m6FRFSillSQa0VvLOR+bTR9Eikd+ffH2j5jTIUow1caVk/eZ7bV96SkUtRERczsrOktqEoHFFl2Z0EPUebEz5rYsh41bF77xpf+Qd/mzef+w5PfPwpjp8Y8PknHfONT9G5I9y7e4s7167RLdZY3LxNOV5lPwi8P7QLXCeVTNTSkda962kp/QpKY3uYfU7qcLCPUqic5A6nTW93k4jRpcZH9+ys3G8GmX7vULLgZbH1zyRJBpa4rjQRTe5DCtqmEUdQFseXD5E2JeogMAOWf5YWXlnU8XB8EVOfZ50iezPPr//Kdzjy4LN8/uf+VSbDv8qjH/4I6898ka//3V/lla8/z8oDj1MdPUHKivFoDF0geAgqYsuIyaBCwoWOYmVCMJYYWsqyJEVDJnFn+4BbB3doYwYVMGgu3Tng7S//t3x4ZHjw018AM4DZFbrn/hru6R/n1s1IMmOqsfi9jx47yf0nb1H7lmxlk085SKZaWXFwcNBvpv0LrnrzF+92kFGKGBJ1s6CcFxRFKZRUBbEsyVWFswZbDrhw//10bUthNMWgotuZc/vaFQ7uXMG3+6hKo08cYXTqHBuPPMmJo2c4c/okVlkmayusH9sQ00e/0FKOzGeR/f2Z9GwcZOUpXcVkaITNvRwv8W51Na8T01kro6nO46yhqekFLOY9J606fM9iVngPzaIWPT0JZQpS53F61IuofueoLOX3Fyj/vhf1kYsPkdqa+cEWg9E6pqywK0fp5nOSWuCMI1SZ1LZYXRCHluFc4XKHIdKlTJuhWBkznIyoTOT2zSvc+XuX2Th2igtrz3Lu9Cr3P/kMZx54hO0HbnLp9dc5GK+we/sOqydOMW/m+Ls1bm2N+mCKCgq0PhQ/KCJGQVSqb6AtA+XevQfTP5i8jFFIsvksA+2WJ7jWootO9GV5zlg0BAmdX344ItmUk4QsHfnOd6TWEKJEyjZdh0+Jui+9vQJbOLLRkvIRo1gskeZMiqEHOESanPhP/+5z/JPv/Ef81Bc+wlF3k8HkNF//zT/Ht1+4RaMHTFyJG1akkAldCaYkaUdHyfbeHkVlsRqUG+CVZa/1tF6zmAUOZgvqxYK9vX0WQYL5VFIkEtPO8Kf/8mv86Nt/DVP9E05dOMVnPv9R9PoT7Gyv8dbr18hqIBVGMWCwcpRTG0e5u7/Pnu+wzgIVk6qiWZ+zvbd9aAsVEKM6VOtZrXDOytS6hxy09ZymKrFWUxYOYwzGB1LKjNaP8amPforNGze5/fY7vPbtr9DcuYoqNGZU4Y6dolg7ihmvsLJ+lNNrxzlz+gyTtXXWV9c4e985yuGATJ9AmBX7ex0H+3NxzjkjjDYM46GiLDjcjJYLGhQ+wMGBUHKsLcgqY4eGFGFSKczvWpxLL38bMvXCs6jncnCTKBVUlVBWnf6djThUJoQ+xvuDWtSFLri3f4OhHdL6iC1GkDVdM8MNhrjBhFIr/OKA2e42RTWiCwGtAiOlKZPlgUcfZP34Mb79te/y+R/7CC+/+A6vv3aNzds3uHbrJJu/+Wtcu+N44rOf4MiJM4Bld2MdU4gLTM8Tq6dP0TaSfTzf3hZ4VEwURUFKXjC1SwFKShjFoYZ7eTvRvdcrZ0mTJEPo86APhwG991na8RqVkHupAR8FVaR7VpXWWggmOR+C63OnUUFg/Qvf0bYNbRCX1erGBlkluqYVKWHXSVBBlAajVoiHmmV1rHn99i5/7r/7DdZXSs79VsvK+gYbpx9k5egJFoNV2p1dUsy0s6kA/ENLyIZvvH6DWbPonUH9HZYeJ6Uy2kKOQru09OmNue9lkPjW1Zrn/+ZzrJevcPbUMV566R6PPvUYobiBGk6wRcRgelaZYWArTo5XaGf7aO1IOVEYxX0P3Meia7lx4zpE+dnQUmaqDE6bXueuelKNwCtCU5OrAcsI4ZwSriwIKTDfPkBleOfl75DzAeOHzoKrGB05zmCyjqmGDG3J2TNnOXHqDCuTVY4cPcbJc6cZjiq5YmWo60i9CMxmNSEnbCFds6IoGI4crtA9y+5dqCAkfID5PNO1jUwvKieBFigGpcKZ96rB3/3KQFtH6kXTa0QNyiqKylIW/Xuqct+FF1NPyhmfoHofa/X9l9+FYbx2DL+9RdctBBMUPcYUqHIkSRVdwI7GVDkS2oirRhhbQgqcfuABPvyDP8Df+gt/iccfOs4rL77G7KAReRye11+9wemLBf/gb32Fb/7Tf8AjT3+Yxz72CS48+DgbJ86wee8W8+1t7t68xtaN2xSjEa33NLvbkAMqG0HFZNWzvaVUCv2deZlEqI0Rm2CKcvL2v8/2ofCKvkhSScrpXryidcYiVJacwedEzkvEjCLkhE6R2nsSCRMjKEtMgbrraLqOADz7mc+wfvYUTVNTT+dMD/Y42N6hnk7Z3toi+I6QIPVhBU6LU6jUhlFVUZYrhGKFrlihU4YVLbADHSO+a5hPdwn1gty1h3fYlCTKJfebvtG5V4BlcjYiq2X50kpMjIgdDM7AZDhkZWXMcP0E253jymZiZaNjUkZSTKClv6G0whWWY8fWWQwso/GYiw88yNETx3nkiWe4fWeLP/l//w+5ffmSdOP7OW3Kot8vrEal5ScgYQM+h0N+V0iBCxvHcLbi5W98k8GwYOXUOR742EfZ3LqDrUqUtRw/dR6nHWVRcObMWYajMevr6xw9fpxjx9dQyqDJ+AD13DPdnxP6DVhpwVnbomQyspSFXIdkc829FVLGUXWdmM9bsgI3GGCcwxaKHCJlKWX3e27EpKwkFEFpZtOGrqkha4w1VOMhOmvGgwLbO/WW8hfZ5Po8yg9yUU/W11BJcfXymwwHA1QnIH1fz6iGK+TYYpxl/94dqpUNQntA8i3OOpQp+OgXPsvB1oxz549w/Lij2JuwfXtKpRQhR1w5pFq7wNx/mXz3Oru/eYfnv/VN7n/8aR56+mkuPvow/mzH8RMb+AeOcutux3h9letvvEqcLwT3U2eyEkcUORN7jpQ80F7kn2PPle/LbKWxOlP7gMr0mFtH7kK/KDIZ2TRMYQX3G6XwjjmTtSJreTFDijQRqQpiR8wdIUW64OlyoguZt954m/uyY+P0KU4/+SiL+YyDnU3q6R6XXn2Da2+/1S+2HmpAxmlNYeyhoCRG8VC3vmVRzwH66NuA71q870hK7I/9BaJP4pQ3LJEwSh/ih9soL7RRcr9Uaomp1TilcNZSlCPcYIwbDImIDLLqOkneSJEUenjDsGTFrfPMQw8xPnKUM2fvI2Fofcl0P7CxepRb6grwrn46askUs7ZALV9JJbCCGCRdJIbAuCpwwN7uHsophkdXOHrmBEkpVk+dEiyxMoxGI86eOc/60ROsrKywtr7CcDzEWo3VinohnuvZrKFpWvnegWyFTGKLkrKwWCcHgTFauvK9YgwyBweZ7d0FMXa4qgIlSaRtnRgPeqZYv5iXyzqRRenYCVfNWFFOWuckeCEG+XNt7uGGHP5zXQfzRWJt/L9df7/vRX3i3P3ceP1X2Th9lrtvvs7gyHEW+1u40YQYPfVsis2e3MzpYsBYg4+R4XAF7xvu3Nvi8cce5LmvOl75+nW64KWB4mQX2r0348lPWp7+yIOsDyOP3DdG6wF/++9/hTe/900uPPwYDz9xkQfvP0W5cobPfnyDv//PX+PEUYNDsbPf8MJ3X8bvBpwCpZMwn7KSLqYzxCgLDGUBIyoqZwi+lUGYznzoqdP88X/9J/lz//U/5/U3LpFClk1Cgw+hp5Hmd9U+QA6yYXglJJXly9qlRBciKFGx+eC5fu0yN29exxhDWQ0YlSXOWsrBgLpp+hJ5iS9eXhkEhpCVFrh9DHIP94G2azCmRz8FL7/WR9K2/VXEWcchTrUXQOg+qzrFZW6XXDX0siRG4Ial0b2LyfRQ+k5Io0oTer47ShEaGZ+5oqRpWrbvbnPt1hbPf/cl9ncPuHfvDvV8TtvOWV9bZzqbSdPSaDmKUmY2W+BcQVEYSu3QxjB0BWvjAU8/+QiDySqXr16nWF3n/JOPM1pbIWTDYDDAxcT6ZI3haMTq6ipHj51kZf0Yk9UJ1UBO15QyiyZRLwJNW9O1rWgVlPhSdV9yDwrLoNR91SeVjeqfW0yK6SwwPWhQQDEYUw0KopLsq0GlqUp16NrK/eJMOROiovOZehYIKeBjwFmHcY6ubllbse9eFfs1nfp3IeSEeZ+r9X0v6r179zh+7jzvfPfrFNahXElOmqIasGgaBoMBYVZjtKara1ZPniZGTyxKjFZcev0NGr/JUx87xuCjZ3j95du89cZ1CgxJWXY29wnzN1nsHfDac/f4zrcNH/vQCX78xz7ML/3Sb3PplW9A+zab1y5gV07ymccKnnngGNfrTzB7+xt8/JnzDF1gmHYJ2fLbX72M6SLnzpykGo14681LpBAwSuJkfZJMqdQHkpVDx5MPr9GFxMTOefbDj1BUkTLNUMHyvTfvCdCO5YJ7F7QO4sW1Sv7ttGHuWw66IE2fZWMeeYFTDJACC9/RzftrO+bQfEK/oFMWIGHIQkdJGboYKaKXDSYEfNcRCvE3J98Rk/i0PeC1YuPkKWbzGd4HirKQzaAN2NJSDAYC+ru7iVr6dt8zg9VKpMBKgY6R2OOS68WccjCWxBAvyKrYtP3ztcQEly6/gw8yKqublp3dLULXEXyLyjBwjhg9ThIBe5mFcLisUhRGMx6XPHr/BR5/8imKlVW2Os+Fp59i4/hJymrEvc1tcsoU1mJLxWSyymRlhcFghLUFyXs0fdY3itl+R+sjXVOTkydnCUiIGYqypCgsw0o49RoBZ0hbRQrpnDOLRWBva4bPCeUKisKhnWyL1mgmQ9kEc69KU1n+e0aUfYtppK4T9WKG3JdlSmPQjAYOo5fPou+SC6ae6OWE/0AX9bHTFzjY2xJK5mBAih12OECnSFUU+Pk+2ZRAixtUhKZBh4RGEZVh+/Idbrz+DmsbKzz1zBkee3yVT33mNL/265e4e+se46pgUji2b+4ytJoUIq+9tclP/8yP8kv/36+yfqRkUCp03MXsbfPc90Z8+jMbHGxNGU7WWakCZz70Wa6/8zYPbUz5wtpJrlxdsH3rGmdOHePJZ5/lV3/5VznY3WZ1MuGTn/oI07rFlI6v/ebX+aN/+CNs7kd+66tv8M7Ve2zf2+TF711iOLQ8fO4Yf+QLT/Li3cR3nnuF1PlDqEKIsb8BKozVjJxlYzJkq1HstrP+1JWqQNIspUuelbwoMqMU9G5KAhBcGuOXfLQIhCiVR4giVvC+wzc13jkarbDWkEOgazu6GGliBm0Zj1cZTVZBG46dOsmd69dIITBZmTAYjZkezNne3iX31Jm8/P60zOATkJKmDZGua2kXCxbTfapqjHOGHCF0LamrIQa0LfBKAvWU1nRti29bmroh+I6mqemalpTkunNkADZBVJGR0hhtOF4Zzp4ccuroac7fdwa9usLg7EUeXjvK9GDOwXRG2NvGGcWwKhmORownYwbDkVQYpsBqQ+g62trTdcL1nU3nxCx5Y8pYtHEkrdA5MxiWDAcWUl829ySh5RJLOVPXiZ3drq9ELUpbjNVoq4lNZDSyWLP8Z/r7MAJ3zEgTsuu6w+BDpx0hBILvGE5GFNaJbl8tt9VEzBnfSva49wHeQyH9372oTVXRtS2tT6xMxsz2dyEEgjX4+R6xaWAwolhdBQzFYETOgVzXlGtHaOopqquxUbO91fKtF95hdaPk6c89yzf/8QKtHdkcRafEwCmIltjC7RuvU+TE3ds1dR05ut5y5facL33x+/nvf/FXuHR5wZNPXqBIp9guA4Mj9/HczSuMujnu6DGsznz32i2+dN9DfPz7Ps1v/qMvc/LMCa5v3qPkgEId5cknLzJemXD53gEf+tBDbB9oqvEApyHUntfevMvd7Tk//x//X/izf/mX+fbXvylOKjIxKxmhhURInohohLUrKYoa3y2XhiCBoW9YsXxpwCpRwZksqNi0fKP63+RjJBi5zugQ8G1LbFpC0dAqhcqR4KxUDT5KJRIDcT7l9uXLnLzvIuO1db7wxZ/mr/5n/xm7d6+zqxEKaBIhT8o9srjv6ku4QaYLAkPsQqSuG+pFzWI2Q5u7kBOdM5AChkyBJlpNG7z4q62mbVtiijR1Tedb6Wj3Uk+vNAcx8+gIRl1iba1CF4oLJysGaxOYDNmtSpwpCHPP7a0rzPf3qKqK4XjEeDji+LGjGOvE4moLWY19g1BpS900gksOkRA6GXO6AlsVKKdJCSrrGJaiW1AiWOyD5nv7T8p4Dzs7LSEFXDUm54QrlKC0QqYoDdb0TdXDLjlySitFTjDd9+QUSaFlyTszTrK1ihKyVgiBuO96ZwVZ0daCx27bDhh9cIs6+MTRY6epH3mUO6++KHcvLXcp30wlSmXeUawdoa4PqKcHuGpMSC00M4zvuP/+09y9s8mxwS7miVO8+codbr7zBtl3+OTZvXaZsXXYQuN9YrJu+Gf/+E0GOdGlzHSnZnenwxSWB44X/NJbW0QfeeXl1xm5A77z6vc4ffEi4yNHKIuKY6cvcPT+B7hz8yaXb93g4n1nOfbQwxjbYnIHOXDn+l1K6/jqV94mKcet2/ucWK0YlqWA3mMgRdjaXfB3f+lX+SM/+5O8+PIr+L1dGR/2YyLdq1PqznNtdw+tZREKzPBdeWACluF8yyJr6cQxqs/b6ifgKWe6LuOspoka7XWv0rJ0zYLGObl/aY1NBVZpUor4lNBZ0dUSYXTjylVOnlX8xj/6Z2zfuUEIvhfiBEkpVRLoFxFclYl9GoRWvVAiEVKgbRsW8znVcCgAh5QYVpW4l7RB2QI0TGdTom9JHrJvCSGQvJTnKSXRn2vNymTEyZOnmLYLHlnTPPL0M9zYnjKrSu7ZIdqtsZFGqNu7NG9e4czZsygMVVmwvr7O6sp6L04BZwWKaJ3B2EKswEn6NUn1DS6t0NbRZcghsjKq5Mqk9WFWlXFyhzYIpz0meff3dhvatsFWQ3l2xuIGGmsNOiuKQgkqO9MbMMRWGfqGefCZuvb4thHRUi/LdVVBYRRV6Q4TOJZXoKwUXZdIKeM7uWq9n6/3vaine/uUgxGnzjzInTffwC/m2MKKdtkHGRc5y2jtCNkZ2u1tQtOgSkdTH7C+VrB+vKIaHOPq9R2y8nQpce5IxaWQSHbE9r0tCldQDgewOODh82u88eoOw8JyYn3CF37wcWZRUU93ee6Vy4ROsL6LTtHFxM7OXRYHe5Su4Gd+6ou8/OIrVGurHL9wjvmdBcfPnOD4Qw+w0m3y7H0DfuFXX0flwObtTfyljmK8Qk6BN159m3MXTzCYrNIuarq2oRhVfPfFl/kj/8of5sLF87zx0gExJJwG02dXaa17UUWGFDHknoG2HG0sjffLWFJRr0lHWk4XrRUpLvHv6tDVFGMkGfFa++hpg0c3zWEIn0uJ5CzBR2LnifM9dvZ3SCQIkZtX3+bejSt9Ysl7FHRZ/LoBaSr6FEkoCkD3SaWgUVlGNNF72kUtzqgsuVhlzzEDaFJgZ3ML11NYCmOEo1Y4jOmD7HSmqirKasBwOODY+dMcO7/Bta7i3sAyXjlCUzc0W3ss9hYMXMGpU2cYuIqN48epxiOcLcFHlJVZOykTmpbsPY1ppU9SDSgGBpRFa+GJhSwnb1WW6KxxVsnduY+VdFru9l2U1dh20CwideNF7ZcT1liGY3nWxiRKZw4TOrXKfWNU7ssx9lryfY8yGbTCx4Sl6DX3WrBRVmOMNO1kCi5VUsqK4AOLRQ35/c203veivnfpbY6du8h0cZvh6irb8ynz+YKB8piqIOuSwcYGzeyAtGhx5QBnHSFGTMocPzOhpOOpD63wta8ueOtG4MTZ07x5w9C1HaUd0OZ1Ur6FKQpG5RHuzkZ86kfO8Opzl/jkpz7Om5fe5PnvXOHxZy7w8tt3GelAyELaXPiIypmVlTFrx08w7wKvP/9NckgU4wkPP3KO48d+gs/+5IPk+Q4b9cv8Cz+zwfOXprjL72BSSdc0zKczvJGXObad7MTFBGc1Mbek3ZcY2iQIXRI5J9K7tNfD2SRK4RB1uAyWRMqqcy81VILXVUoJI131MbganJKya3mKLg34IUaieTchwgcPrTic6DeHNnpSuyAupjSdR/VjKq01zlhi8v3JnA9n07bveEfA5h7AqDTvtgXFyRaC+H7bpsEVgiiOuSe6ughKs7W3Q9d5dGEpNIRsUYXlSLcqyrHxkNB2WCPUl7IsyCFx7SCDyWQ9ZPfuFi5F1oZDxmsbrK2tMhquMJms4IzDokmdp4kt40GBsyU5Zer5FG0NbjSiHIyx5QBtC7I2AvrvPIUtWB8PqEqDsQpjOExJUT0fLiPpG6CoZ5667ijKAYH/X3vn0iPXdV3h7zzuq15dTXaTTepBk3LkUHQi2k6QIJEDxDBsB0h+QwaZ5C8FmQTIKIABI4M4s1iAHMuQEUuKpDAxqYSUyGa/q7qr6t577nllcG5RGnKgiYlaf6DRF7XP2Wevtdfqb0/bUXmNFoIyUz2PngZ8qu+7nYfkSyFZLZOWPXiHkgUBj/e2t9zqmE7GKCnWEQDPhrDJgDPSWY917gtJ21dV1O+/+zP+8rW/pRyMIKvQOmdQlLh2Tj7eRkZBe3KIjp7WWTQ5smuSn5e3nJ7N0JT8+CdnGJlxeadkeyL49L+fklVDhOvIwymTaQlSUwwVmax5/72nVErzy3d+RT7W/OHd66hCkLUN25lk5SNNb7maCcloPOL27dscHO3TNUumly/TdoZpqfjJP/4DH/zmmL2XXub137/Ld9+4xB//6C3+6afvcvrwAbmQLBczBsoznMKtN79J0zYsF0vMYsHOSLBaHHF4eEyuNU6mm9P3b2HXx+WGmN5RQqS42bW2eH37AuBDb0HMF9Glkd6LXPT5V/0B0As00tQ+YDqH1hapMpTzaXgWHHhFJlMI28GqoemFNVGAkBKlFN7aL4sPoffHppe+il6k4kJAhkDnHdorMq/pnCFzabhj2jZZJZEypBCCZrngfx8+ogsOXeboLEXblFXJdHuK7aWjIk2T0KqgGm0xOzvj6GCGagzFsGIwHlNWFddfeZUrL91gMJqkXeeioCwqgvOoLCMvC1Z1zUgpLs7PcLZlMrjCcDRFlQOCVBghsW1LJhXDomQ4GJAXEiVDsurtZXvpgEvG0CEKbCcwjUt+6EqgiuQQ07QNgZSyWeSaKAH/JbZAgPOJ30ZKbBPouohSCmtqEB2SFHsrVYrWKTKJErHvitaFvW69E3vgrCXLn69cn7uoP/vNx3z+f/fJt4aU0wlts41ZzQnWo9qOl775DXZe/RM+ePsdtoTAxEg4nyUHUG9xFzmD65Hv/tmrWB/59MEJ9++fIqWiGE/olifsP2lwLhK6JbaR6MJAEMznFh9amAtOEMgybTEpIRlngtdv7vL6K9epTzUHB0d88h/vMTs7IdOCO7dvcDavuXPnFX78zz9j/njObP8zHj+8x89/OuRv/vopH7/9gExCVlaMJxPGO9vo/IytnS2KpoYQyITgzRsZ//rzxwhVUk0CmRI0xmKMRYYIXYdUvRvpl76djH1YQK9g896nQhWRtQY6UR/9jR6Tgb+WIglC1rc1YENIG3BNg85y8qxIEsLO0hpDe37O4eERq66FIiNzSYQjYsTb9KZdWzwRY0o6iV/w7vR/S8j0DhWityj2nhAVIbgkNgnJeMG7xJcrnbN/eEBrDePphLIsmE4nSBkZjSfkRYkxhkVjMD5SX9Ss5gtOjx4hg2OQZVS5ZrK9w+6Vq1TDkt2r15EhcepaCExTUyrNpd1drPd477D1kuXslCgj02vXGVzaRZZDLNA5RwyWMssYD4ZopfqCjinbO4Sel08JokKmPO56GWjajuCTxgGpsD654BZFgSrzpAWXSaWslUjPsGeHdDqEk+93Hy7Qh94JrclFzmBcoXTGqExmhEqtqcw0VrU2YLtAZ3yaV5WScjz+aot6fn7Mg08+5Fvf+wHZaAddnOGWC6hGDPKcuoNPfvEe7uKcfDjGtg2uSxa0Ughar/jovwSZ+BRiifGC2DWU27uYrgMvOT8PBJdenFFCW2vyskKo82Qu2AsluqVBSU0IaQFhvj/j18cN6IrSd6wOPkOEQCUVx/snDKZb/OLfP+TscI5WnsvXtvnBD7/FO798xN/9/b+wt7fNw/v7ZFlBUZY8HuT86R98HW8nvHb7TeS3v4N58jHXBg3vPgpcvSGwxiBi5OJigalbCBFTr4gxkvsMZ9IwygPO2X6fW+K8BZJZgRYC6/yzKbiUKUzOi14W6COlhkpnCJGm6L6Xs6b2LHUEuRIUueLkfMWjx5/jnUdk64JObZ0LgS7angtfb62lOzu14Crp4Om17T1v7OFZDEwISYDTmhapNUplaW6QF5hMUF0acefWy0ynU4JtmRQFRVGyah2LuuP45IyDp/s09Qq8R0YoNUyrEaPJFkJJtra3KfKCUTGini8YFRUMhpDn7L30MrHrEMD58REuOFxzga5KLl+/wejyNVQ5wnjfa841ZZVTZkVSb/XbXnLNia975b6T6UzAuchyaRLtJDQqk6hS4lygWXSMlGA8LslU8unWKh2+sp99rEUJwUs649McQbgUnYwkyzJGkxxUUsflSj4raFKfgPUCY6BtOupVAyFQlQNW83PYG3x1RW2d5d7773L3rbe49rXXaI72EcOalTV0rWX+P/eo8gKhJfXilBDARU+li7R+uDgnL0csGkemVojRNhpFMCbplHVB9B5V5WRaYVYXFHlOCJ4sz4nGoEYVXdchXUTY9AFjCPg2ErzBhhW5ihQouiCIUXLx5DHtyRmrekUV06ofxvHRB/d5cO9zrl+/zPHTGbZrCZ2lq5fEGRzsST76z1P2793jz7/3BlNxwcP4u9x6YwtVDlicHdI5w5OHD4k+YuoF87MZwll817FcrrBdcg+VQvdROKnVRqZUzOA9uv9hKS3TOmlM725IbbPxnmGRM+hFGkFISh3Jc8ikJQs1wcKxDewfHYGQ6Fzj+9A/oWRKspSiV6ilW1tI8ewQycuCKNPwbrfShIuaU+cxIlkkhX40HGMKWe9sR961kGv2bt7k6s2vM9raoV4umW5P6VrD0cE+88WCxf4hZ/OzNPX1gTy4ZJyfZVzeukSRKYJpufGN25ydHOObhjoEShsYX72CaRtGCGZPnlJKTd20HJhHtKsl5XRMVkiGO1fJtraR1SB5oAfPIMvIs5yqrNA6pZlqLXrhEAj5xSPEefBe0DQdwUu8T6rDEEktugTXBSajAVtjjVJpCUYr0U/N0ztcCInzntZETJcOXWtD8qWzHTrPyYsKqZLiLJPrnek1DxJT+kkfXJi4aUs5HBDRFOPquWr1+XlqEbmYHfDpJx9z9/t/wZVbt1geDTFmieg6yjgBYYm1ReVDxOoCrSXWeTSxT0E04Fo8BWIxRxQKbIv2Hj8Yp4m61EQiSmtwlrwosBREGrTSRJU+EkKkPbQgUnQOqf3JdJbMEETAElIWlTWUGbgg8THZ5PpmzF/98A2OZoaPfnUfRQpuH5Wa3b0hV66WfOfuLtGt+PXb/8bDJ44s/5DB1haD7R2uvPI19m6+yut3vg0iYjtDPhhxevgEgediNqOrW04OntK2DaY11MsVohGpmPOM4Dzep4jcIs8TV2zoacq0JEKIrJylkZJCanKZ9rZdgONlzcHCIPMmUTemSwF4UpBJTZlniZv1KZyNNZWWJFY9n5r82XQ1JErJsFTkFxfsnJxgtKR1isb3PzkR0JlkkGn2RhV3fu93uPpH32d2vuT06QF2ccz8pOLsZMHx4X6aB/jkHrLWkI+3LyEHFbnOcaYjLzLM8gJdDZBRoGOkLCqsc9THZzhbE10gdB2nucLbyGJ2TLU1xorIYLRFOd3BK03XGvK8YDiakK1vZZE45/X/KqRgvYgnRRL81CtPZyzO214eIJMmQKVi93VgWCjGY5X81S3PpvjrV/AzxZ/1NG2kM8n1R8hUmN55KDQ6T1PyXCeDQyn73Gr6RSGbhmR1bVheXKTQwZDRGct4OnmuWn1u48ENNtjgtwPPY6SwwQYb/BZhU9QbbPCCYVPUG2zwgmFT1Bts8IJhU9QbbPCCYVPUG2zwgmFT1Bts8IJhU9QbbPCCYVPUG2zwguH/AddRudnPocC7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# load the lensed image\n", + "plt.subplot(1, 2, 2)\n", + "plt.imshow(lensed)\n", + "plt.title('Lensed Image')\n", + "plt.axis('off')\n", + "\n", + "original_aspect_ratio = lensed.shape[1] / lensed.shape[0]\n", + "print(original_aspect_ratio)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(200, 266, 3) (200, 266, 3)\n" + ] + }, + { + "data": { + "text/plain": [ + "(-0.5, 265.5, 199.5, -0.5)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAADVCAYAAADQFoauAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d9xld1Xv/17fvc85T5teUiZ9UkliQo0EQhcQ6SXAlRJBBBUQryD6uldQ1B/FhldFxJcYBe6lhM5FUUpAUYoECRAIaUNC2sxk+jzlnL2/6/fHWuu7zzOTwARyjRPPSs48z3PKPt/9LWt9VhdVVSY0oQlNaEITmtCEJjShCU3oLqR0dw9gQhOa0IQmNKEJTWhCE5rQPY8misaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhCY0oQlNaEITmtCEJjShu5wmisaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhCY0oQlNaEITmtCEJjShu5wmisaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhP7T0JYtWxARLr744rt7KBOa0IQOoIc97GE87GEPu7uHMaEJTei/CF188cWICFu2bLm7hzKhH4EOe0UjNmI86rpm06ZNXHTRRdx444139/DucnrLW95ytwPxu3sMl1566bI1r6qKjRs38vSnP51vfetbd/i5j33sYzz2sY9l3bp1TE1Nceqpp/LKV76S22677aD3XnTRRczNzf2/vI0J3QMp+NG//du/3d1DudvohBNO4PGPf/zdPYwJTWhCd4K++c1v8pznPIdNmzYxGAw4+uij+emf/mm++c1v3t1Dm9BhTvXdPYC7il73utdx4oknsri4yBe+8AUuvvhi/vmf/5lvfOMbTE1N3d3Du8voLW95C+vXr+eiiy76Lz0GgJe//OXc//73ZzQacfnll/PWt76VSy+9lG984xsceeSRy977yle+kj/4gz/gnHPO4dWvfjVr167lsssu40//9E9597vfzac+9SlOO+20u+lOJjShCU1oQhO6e+gDH/gAz372s1m7di0vfOELOfHEE9myZQt/9Vd/xSWXXMK73/1unvKUp9zdw5zQYUr3GEXjJ3/yJ7nf/e4HwM/+7M+yfv163vjGN/KRj3yECy+88G4e3d1D+/fvZ3Z29u4exv8zuuCCC3j6059e/j7ttNP4+Z//ef72b/+WX/3VXy3P/5//83/4gz/4A575zGfyrne9i6qqymsXXXQRD3/4w3nGM57BZZddRl3fY47EhCY0oQlNaELfl6655hqe+9znctJJJ/G5z32ODRs2lNd+6Zd+iQsuuIDnPve5XH755Zx00kn/IWO6p2OX/2p02IdO3RFdcMEFgB2icfr2t7/N05/+dNauXcvU1BT3u9/9+MhHPnLQ53ft2sUv//Ivc8IJJzAYDDjmmGN43vOex/bt28t7tm7dygtf+EKOOOIIpqamOOecc/ibv/mbZdeJvIPf//3f521vexubN29mMBhw//vfny9/+cvL3nvLLbfwMz/zMxxzzDEMBgOOOuoonvSkJ5X4xBNOOIFvfvObfPazny1hQxEzHSEbn/3sZ/mFX/gFNm7cyDHHHAMYmD7hhBMOusff/M3fREQOev6d73wnD3jAA5iZmWHNmjU85CEP4R/+4R9+4Bhi3l7xildw7LHHMhgMOPnkk3njG99Izvmg+b3oootYtWoVq1ev5vnPfz67du06aCx3hu5ozX/rt36LNWvW8La3vW2ZkgHwgAc8gFe/+tV8/etf55JLLvmRvn9CEzpUuvHGG3nBC17AEUccwWAw4Mwzz+Ttb3/7svdEiOB73/tefvd3f5djjjmGqakpHvnIR3L11Vcve+9VV13F0572NI488kimpqY45phjeNaznsXu3buXve+d73wn973vfZmenmbt2rU861nP4oYbbjhofMGrpqenecADHsA//dM//dD3Os4D/+zP/oyTTjqJmZkZHv3oR3PDDTegqvz2b/82xxxzDNPT0zzpSU9ix44dy67x4Q9/mJ/6qZ/i6KOPZjAYsHnzZn77t3+btm0P+r74jvGx315+ydLSEq997Ws5+eSTGQwGHHvssfzqr/4qS0tLP/S9TmhChxv93u/9HvPz87ztbW9bpmQArF+/nr/4i79g//79vOlNb+KSSy4pOONA+ou/+AtEhG984xvluUPBW98Pu9weHQoveO1rX0uv12Pbtm0Hff7nfu7nWL16NYuLi4c8RxP60egea74NcL5mzZry3De/+U0e9KAHsWnTJn7t136N2dlZ3vve9/LkJz+Z97///cU1uG/fPi644AK+9a1v8YIXvID73Oc+bN++nY985CN873vfY/369SwsLPCwhz2Mq6++mpe+9KWceOKJvO997+Oiiy5i165d/NIv/dKy8fzv//2/2bt3Ly9+8YsREd70pjfx1Kc+lWuvvZZerwfA0572NL75zW/yspe9jBNOOIGtW7fyj//4j1x//fWccMIJvPnNb+ZlL3sZc3Nz/I//8T8AOOKII5Z9zy/8wi+wYcMGXvOa17B///47PW+/9Vu/xW/+5m9y/vnn87rXvY5+v88Xv/hFPv3pT/PoRz/6+45hfn6ehz70odx44428+MUv5rjjjuNf/uVf+PVf/3Vuvvlm3vzmNwOgqjzpSU/in//5n3nJS17CGWecwQc/+EGe//zn3+nxjtPtrflVV13FlVdeyUUXXcTKlStv93PPe97zeO1rX8vHPvYxnvWsZ/1IY5jQhH4Q3Xrrrfz4j/84IsJLX/pSNmzYwN/93d/xwhe+kD179vCKV7xi2fvf8IY3kFLila98Jbt37+ZNb3oTP/3TP80Xv/hFAIbDIY95zGNYWlriZS97GUceeSQ33ngjH/vYx9i1axerVq0C4Hd/93f5jd/4DS688EJ+9md/lm3btvEnf/InPOQhD+GrX/0qq1evBuCv/uqvePGLX8z555/PK17xCq699lqe+MQnsnbtWo499tgf+r7f9a53MRwOednLXsaOHTt405vexIUXXsgjHvEILr30Ul796ldz9dVX8yd/8ie88pWvXKZ4XXzxxczNzfHf//t/Z25ujk9/+tO85jWvYc+ePfze7/1eed+f//mf89KXvpQLLriAX/7lX2bLli08+clPZs2aNcvAS86ZJz7xifzzP/8zP/dzP8cZZ5zB17/+df7oj/6I73znO3zoQx/6oe9zQhM6nOijH/0oJ5xwQjHUHUgPechDOOGEE/i///f/8kd/9EfMzc3x3ve+l4c+9KHL3vee97yHM888k7POOgs4dLwVdKjY5VB4wXOf+1xe97rX8Z73vIeXvvSl5bPD4ZBLLrmEpz3tafeokPr/9KSHOf31X/+1AvrJT35St23bpjfccINecsklumHDBh0MBnrDDTeU9z7ykY/Us88+WxcXF8tzOWc9//zz9ZRTTinPveY1r1FAP/CBDxz0fTlnVVV985vfrIC+853vLK8Nh0N94AMfqHNzc7pnzx5VVb3uuusU0HXr1umOHTvKez/84Q8roB/96EdVVXXnzp0K6O/93u993/s988wz9aEPfegdzsODH/xgbZpm2WvPf/7z9fjjjz/oM6997Wt1fAtcddVVmlLSpzzlKdq27e3e9/cbw2//9m/r7Oysfuc731n2/K/92q9pVVV6/fXXq6rqhz70IQX0TW96U3lP0zR6wQUXKKB//dd/fUe3r6qqn/nMZxTQt7/97bpt2za96aab9O///u/15JNPVhHRL33pS+W98V1/9Ed/9H2vuXLlSr3Pfe5T/n7+85+vs7Oz3/czE5rQgRTn8Mtf/vIdvueFL3yhHnXUUbp9+/Zlzz/rWc/SVatW6fz8vKp2+/yMM87QpaWl8r4//uM/VkC//vWvq6rqV7/6VQX0fe973x1+55YtW7SqKv3d3/3dZc9//etf17quy/PD4VA3btyo55577rLvfNvb3qbA7Z77A+n444/Xn/qpnyp/Bw/csGGD7tq1qzz/67/+6wroOeeco6PRqDz/7Gc/W/v9/jI+HXMyTi9+8Yt1ZmamvG9paUnXrVun97///Zdd7+KLLz5o7O94xzs0paT/9E//tOyab33rWxXQz3/+8z/wPic0ocOddu3apYA+6UlP+r7ve+ITn6iA7tmzR5/97Gfrxo0bl+GMm2++WVNK+rrXva48d6h46/thl3jtuuuuK88dCi9QVX3gAx+o55133rL3feADH1BAP/OZz3zf+53QXUv3mNCpRz3qUWzYsIFjjz2Wpz/96czOzvKRj3ykWLF27NjBpz/9aS688EL27t3L9u3b2b59O7fddhuPecxjuOqqq0qVqve///2cc845t5v8FKFGH//4xznyyCN59rOfXV7r9Xq8/OUvZ9++fQe5Fp/5zGcus7SH9eDaa68FYHp6mn6/z6WXXsrOnTt/6Hl40YtedFB40KHShz70IXLOvOY1ryGl5Vvj9kKsDqT3ve99XHDBBaxZs6bM7/bt23nUox5F27Z87nOfA2zu6rrm53/+58tnq6riZS972Z0a7wte8AI2bNjA0UcfzWMf+1h2797NO97xDu5///uX9+zduxeAFStWfN9rrVixgj179typ75/QhO4sqSrvf//7ecITnoCqLjsnj3nMY9i9ezeXXXbZss/8zM/8DP1+v/x9IO8Ij8UnPvEJ5ufnb/d7P/CBD5Bz5sILL1z2nUceeSSnnHIKn/nMZwD4t3/7N7Zu3cpLXvKSZd8ZYY4/Cj3jGc9Ydo3zzjsPgOc85znLcqPOO+88hsPhsqqB09PT5ffg3xdccAHz8/N8+9vfLmO/7bbbeNGLXrTsej/90z+9jPeC8aozzjiD008/fdl8POIRjwAo8zGhCd2T6c7IR4A9e/bwzGc+k61bt3LppZeW1y+55BJyzjzzmc8E7hzeCjpU7HIovAAsUuGLX/zislDqd73rXRx77LEHeWMm9P+W7jGhU3/2Z3/Gqaeeyu7du3n729/O5z73OQaDQXn96quvRlX5jd/4DX7jN37jdq+xdetWNm3axDXXXMPTnva07/t93/3udznllFMOAuRnnHFGeX2cjjvuuGV/h+ALpWIwGPDGN76RX/mVX+GII47gx3/8x3n84x/P8573vIMqKH0/OvHEEw/5vQfSNddcQ0qJe93rXj/U56+66iouv/zyg+I8g7Zu3QrY3Bx11FEHlY+9s1WfXvOa13DBBRewb98+PvjBD/Lud7/7oPUIBhkM9Y5o7969bNy48U59/4QmdGdp27Zt7Nq1i7e97W287W1vu933xDkJ+kG848QTT+S///f/zh/+4R/yrne9iwsuuIAnPvGJPOc5zynA/qqrrkJVOeWUU273OyN8M/jWge/r9Xo/ciLogfcRYzswHCueHze4fPOb3+R//s//yac//emDDAKRhxJjP/nkk5e9Xtf1QTlqV111Fd/61rd+IK+a0ITuyXRn5GO8/7GPfSyrVq3iPe95D4985CMBC5s699xzOfXUU4E7h7eCDhW7HAovADPuvuIVr+Bd73oXr3nNa9i9ezcf+9jH+OVf/uVDMpxO6K6je4yi8YAHPKBUnXryk5/Mgx/8YP7bf/tvXHnllczNzZVk5Fe+8pU85jGPud1rHCig7kq6I01dVcvvr3jFK3jCE57Ahz70IT7xiU/wG7/xG7z+9a/n05/+NPe+970P6XvGtf2gOzpUt5dI+aNQzpmf+ImfWFbxaZyCCd1VdPbZZ/OoRz0KsDWfn5/nRS96EQ9+8IMLeAnF7/LLL7/D63z3u99lz549P7SCNaEJHSoFH3rOc55zhzlJP/ZjP7bs70PhHX/wB3/ARRddxIc//GH+4R/+gZe//OW8/vWv5wtf+ALHHHMMOWdEhL/7u7+73ev9R/SMuaP7+EH3t2vXLh760IeycuVKXve617F582ampqa47LLLePWrX31QoYlDoZwzZ599Nn/4h394u6//KLkoE5rQ4UKrVq3iqKOO+r7yEUx+btq0qeQ5PvnJT+aDH/wgb3nLW7j11lv5/Oc/z//3//1/5f0/DN66PexyIN0ZXrBmzRoe//jHF0XjkksuYWlpiec85zk/8HsmdNfSPUbRGKeqqnj961/Pwx/+cP70T/+UX/u1XyvWuF6vV8DpHdHmzZuXVU64PTr++OO5/PLLyTkvs6KH6+7444//oca+efNmfuVXfoVf+ZVf4aqrruLcc8/lD/7gD3jnO98JHFoI04G0Zs2a263odKDXZfPmzeScueKKKzj33HPv8Hp3NIbNmzezb9++Hzi/xx9/PJ/61KfYt2/fMoBz5ZVXft/P/SB6wxvewAc/+EF+93d/l7e+9a2AKTennnoqH/rQh/jjP/7j23UR/+3f/i3ApMnYhP6f04YNG1ixYgVt2/7Ac3Jn6eyzz+bss8/mf/7P/8m//Mu/8KAHPYi3vvWt/M7v/A6bN29GVTnxxBO/r8IffOuqq64qYUQAo9GI6667jnPOOecuHfOh0KWXXsptt93GBz7wAR7ykIeU56+77rpl74uxX3311Tz84Q8vzzdNw5YtW5YpcJs3b+ZrX/saj3zkIyfWzQn9l6bHP/7x/OVf/iX//M//zIMf/OCDXv+nf/ontmzZwotf/OLy3DOf+Uz+5m/+hk996lN861vfQlVL2BRwp/DWnaFD5QVBz3ve83jSk57El7/8Zd71rndx73vfmzPPPPMuG8+EDo3uMTkaB9LDHvYwHvCAB/DmN7+ZxcVFNm7cyMMe9jD+4i/+gptvvvmg94+XQXva057G1772NT74wQ8e9L6wsj3ucY/jlltu4T3veU95rWka/uRP/oS5ubk7HQM4Pz9/ULm1zZs3s2LFimXlFmdnZ+90GdjNmzeze/fuZVaLm2+++aD7e/KTn0xKide97nUHWQnHrad3NIYLL7yQf/3Xf+UTn/jEQa/t2rWLpmkAm7umafjzP//z8nrbtvzJn/zJnbqvA2nz5s087WlP4+KLL+aWW24pz7/mNa9h586dvOQlLznIi/OVr3yFN77xjZx11lk/MFxuQhP6UamqKp72tKfx/ve//3aNGbdXjvEH0Z49e8rZCjr77LNJKRXe8dSnPpWqqvit3/qtZWcZ7GzfdtttANzvfvdjw4YNvPWtb2U4HJb3XHzxxT9y+ekflsLjMT7u4XDIW97ylmXvu9/97se6dev4y7/8y2Xz8a53veugvLcLL7yQG2+8kb/8y7886PsWFhZ+qIp9E5rQ4UivetWrmJ6e5sUvfnHhA0E7duzgJS95CTMzM7zqVa8qzz/qUY9i7dq1vOc97+E973kPD3jAA5aFPt0ZvHVn6FB5QdBP/uRPlp5qn/3sZyfejLuJ7pEejaBXvepVPOMZz+Diiy/mJS95CX/2Z3/Ggx/8YM4++2xe9KIXcdJJJ3Hrrbfyr//6r3zve9/ja1/7WvncJZdcwjOe8Qxe8IIXcN/73pcdO3bwkY98hLe+9a2cc845/NzP/Rx/8Rd/wUUXXcRXvvIVTjjhBC655BI+//nP8+Y3v/kHJlcdSN/5znd45CMfyYUXXsi97nUv6rrmgx/8ILfeeuuykqv3ve99+fM//3N+53d+h5NPPpmNGzcuszzeHj3rWc/i1a9+NU95ylN4+ctfzvz8PH/+53/Oqaeeuizx9OSTT+Z//I//wW//9m9zwQUX8NSnPpXBYMCXv/xljj76aF7/+td/3zG86lWv4iMf+QiPf/zjueiii7jvfe/L/v37S4+KLVu2sH79ep7whCfwoAc9iF/7tV9jy5Yt3Ote9+IDH/jAQTX/fxh61atexXvf+17e/OY384Y3vAGwZNAvf/nL/PEf/zFXXHFFSQ697LLLePvb3866deu45JJLSpz6hCb0o9Lb3/52/v7v//6g53/pl36JN7zhDXzmM5/hvPPO40UvehH3ute92LFjB5dddhmf/OQnD+oh8YPo05/+NC996Ut5xjOewamnnkrTNLzjHe8oSg2YEv47v/M7/Pqv/3op+bpixQquu+46PvjBD/JzP/dzvPKVr6TX6/E7v/M7vPjFL+YRj3gEz3zmM7nuuuv467/+6/+wZl0H0vnnn8+aNWt4/vOfz8tf/nJEhHe84x0HKUz9fp/f/M3f5GUvexmPeMQjuPDCC9myZQsXX3wxmzdvXua5eO5zn8t73/teXvKSl/CZz3yGBz3oQbRty7e//W3e+9738olPfKKE4k5oQvdkOuWUU/ibv/kbfvqnf5qzzz77oM7g27dv5//8n//D5s2by2d6vR5PfepTefe7383+/fv5/d///YOue6h4687QofKC8XE+61nP4k//9E+pqmpZ8Z4J/QfSf3SZq7uavl85ybZtdfPmzbp58+ZSNu2aa67R5z3veXrkkUdqr9fTTZs26eMf/3i95JJLln32tttu05e+9KW6adMm7ff7eswxx+jzn//8ZSUpb731Vv2Zn/kZXb9+vfb7fT377LMPKs0apR1vr2wtoK997WtVVXX79u36i7/4i3r66afr7Oysrlq1Ss877zx973vfu+wzt9xyi/7UT/2UrlixYlnJxh9UVvMf/uEf9KyzztJ+v6+nnXaavvOd7zyovG3Q29/+dr33ve+tg8FA16xZow996EP1H//xH3/gGFRV9+7dq7/+67+uJ598svb7fV2/fr2ef/75+vu///s6HA6Xze9zn/tcXblypa5atUqf+9znljKdh1re9o7KeT7sYQ/TlStXLiulqWqlbn/iJ35C16xZo4PBQE8++WT9lV/5Fd22bdtB15iUt53QD0NxDu/oEeW2b731Vv3FX/xFPfbYY7XX6+mRRx6pj3zkI/Vtb3tbudYd7fPgKXFOrr32Wn3BC16gmzdv1qmpKV27dq0+/OEP109+8pMHje/973+/PvjBD9bZ2VmdnZ3V008/XX/xF39Rr7zyymXve8tb3qInnniiDgYDvd/97qef+9zn9KEPfeiPVN72QB54R/d3e7zs85//vP74j/+4Tk9P69FHH62/+qu/qp/4xCdut1Tl//pf/0uPP/54HQwG+oAHPEA///nP633ve1997GMfu+x9w+FQ3/jGN+qZZ55ZeN1973tf/a3f+i3dvXv3D7zPCU3onkSXX365PvvZz9ajjjqq8KRnP/vZpYz2gfSP//iPCqiILGsjME6Hgre+H3a5vfK2d4YXqKp+6UtfUkAf/ehH37kJmdBdRqJ6B6rghCY0oQlNaEKHOeWc2bBhA0996lNvN1RqQhOa0D2Xvva1r3Huuefyt3/7tzz3uc+9u4fzX5LusTkaE5rQhCY0of9atLi4eFAYxd/+7d+yY8cOHvawh909g5rQhCZ0t9Ff/uVfMjc3x1Of+tS7eyj/ZekenaMxoQlNaEIT+q9DX/jCF/jlX/5lnvGMZ7Bu3Touu+wy/uqv/oqzzjqLZzzjGXf38CY0oQn9B9FHP/pRrrjiCt72trfx0pe+lNnZ2bt7SP9laRI6NaEJTWhCE7pH0JYtW3j5y1/Ol770JXbs2MHatWt53OMexxve8IZJQ84JTei/EJ1wwgnceuutPOYxj+Ed73jHnS7QM6G7jiaKxoQmNKEJTWhCE5rQhCY0obucJjkaE5rQhCY0oQlNaEITmtCE7nKaKBoTmtCEJjShCU1oQhOa0ITucpooGhOa0IQmNKEJTWhCE5rQhO5yOuSqU9W6HrUkaklUCAmhQqgEaoE6QRKoU0JEEE0oFSD+AFVBsQckRBOooFmQnKBNaLYHOUEGbaFtoc0wVGGEPRqEBlDGU0wEREDG9CdVkio1So9MDdQkasT/Axupvcd+zwiZ5H8LGcpzGRFFRcn+X6uKqqIoDZmWjPr74zp2fagQBC3jjtlRIAOtP5OAikQF9kjQE6hESWLXq0SpBJBMlsxIMo1gj2Q/s//eCozE5q5NFbmqyKmCKqFVIleQRWixwagPKGWlajOiGXKmbTNZlTZDq9BoohVBBUiCSAUiJBIJoVYhKUirSFZQ7GdWstr8odnvPiN+r3VKVMl+r0SR5PtMoIfSU6XKABlVpS1XsIf6PbTAUGGYYCTQAI3CyB85l4nv2qrFxWJr2SbxR4JK7PdKbNOL+L2D+NrZZxWJ+8++GNl2lJbXMyItkuxk2PpmKrLfK1QZxO+nyXYWblk4PFOrnrJhmoTSS75/UZIYTxCMIUlSkESVhCQtYCfCuksKSCyP0ktClYSRQqtq85VAxNdB1D+jtj5icy/l/CUStjRKIomSEkAi55YqiXEx8TOqtkuXnVsFcqJF7T7EOF8ttidIGdTPs4AkoZbuO1WMJyTf/6rQZqEh+bWMhylCq3buRJVaIFXJvkOUpLYdNe5fEiBkn7M4Pwo0qjTZ7kXVxiRxR+ozkwTVDFrRIqiqb3ulqjJZKtDg+7b3s9q8VHTzHVIgjlmT1d4nyfa8v1fHzk/HPSEhpBTH03h7JRmVRM5CEkg+1+qfU5dNSWzxbD5qMj2Gfn9SQUoVVaqQVKH0aLG5qCqhXwm1P5AapELrmlQlKvF1S0KqezZ/qYJUQSWk1AMqkiSbRxFaaqj7pHj0BlD3kLpP1Z9G6grqPlQ9enVFPejR7w+o+wNS3Ud6Pepej6qqEUnGi7AxSFUDxoc1Vd4FveuEPp6KOc45Tjv96B/2KN9ttLZgEXEsYnI1ieORhMnIlGxfqHwfLOL7UJM9lyFp6nh1/K6GRXK28z7SwCBCi7j46GY25t/OdrcSoh3WqHzcFTZG/4Tfj2GP2vGGFCzS7fAkjkWALNlQh2Y/wkqj2XiSOG7R7joVfq5QP3cQpyuwSBZxpAfpACxSi41VRAtOqkRAMiqZRpQGg3GNGP7ICE1SskDrWKNNhkM0JaRKaEpkg4XkmMzAIgqpNYGtWcltNn6sxk9aTeRlWMRmLLBIhclismERIW5UMTRn8lid0wQWqVzGJDGRj/9eA7U4rsvismYMShQhYbPbIoyAURLaZH+36pgkMEHgBIwX2sW6cxxYwwZTIZXjkSohlWEvKsfgkqic94mvZcKwuRij8LsUv19FJBdZmRxrJsfNFVDpciySFT532eU/8MwesqKRqWhJfhRCeKgLkGwCQeKwVTYaFxMx4yIydmN2CO2k20NCAGBSR8UAncSKtWW2/agdSDK2upSfIcQrxBUO8YPWvcv+dgBfVCEc3rgQdKGFH67YjJKV+C+p0haGsJxBxMGG7hCNjzYFSPXfbby2j3q+WMFMQ+CbIG3JyYBBJbk8LwJt8iELZFEaByWaDJBoJWgSO/jJx+XAOEBXpUJSKUuVs+91FURtLBoHoAj2jolWauBR1JiFOMDPWYy5+0Ia2FRn0r6hRNFkY5GE78AO35tk1fJ8vBbXTA58xM+jHWqosx2aUWtM0EDs2MIsW6Q43K75jCsb/prNfdwz3ZjUlcu4hnYASrNpNcYEWmfa2XiIr3etxtRD+RONc3J4Uu2LNA4qK2yRQs8DY3K2EcvBMwYHLlCNP2Qgqca2s3kugjPYJ4VZm5KRnJkaIy38RcTOhJgwT5XtTaVb6hhHRlAH97Y8ptBkv4uM0LowSojtPwfUuIBBTEga2FFEfR5Uyh7ImBIdR8u+z8YZ/MnuL9Gq0mQlqdCrDSCrC1b1SVHn0QnxcyIuYH2TxVT4huvuLeYzxl2RccHj81MROrraaz5edQUMpYASG3N2XmpKTPY5rgIA4XtdTKCpK14J0Cwuj8UBVIxPx/iD37MPWsGVPgOIScV4d/BzP6OKKXOjbHsipVQUIdVM5TwPcZNUNmUZtTWUHIslZFcylESWZLJNXFqoKZZIKspQMDZ1kGTGHwNPFZCzgYGUbB8HqyTnch3KnvLFuh1JeaCJ7nCiMAU2YyAp9ov6CYwNoaQQFP5EYJF4xrFIwpmD+DHw9/keUHUsghTFoxtPJ8HLJf0X8X2vhCGqM2aawtEp4pSrdOC9wyGBRTRYle+TA3BG4SEOFjsO6KBRXTZJwW9h9pQyaSaDa8IQK+V8V87TKkK5NyUpFSwCmsT2qChtGHiANtk4WjEe2xkoKcqB6XUSdmaTd7j8R0nJzm2WbNtdjQerK2qtn+M4r/HlgfeSCpK04BBR5y3Z1iH4fdkZwUPG7i3JGEYJGFBpwbKhrBm/kU6MxTXNpu68XQo/abNvrTCOqU94MXoGJk5ISmbUSJXhkZTswimRXMGu/GHz54o4yZXawPLJvjO7QV1s7Uy5jT3ja6728C1ia3mITOTQ+2hoKpYik0kGyLMqbcqk7Bsj4aC00+TFV6TAQRl7JfnBdU9E8TOIAwlJSCrIpEx4ORSFum8qGqB0BzS0cbNpUaaZsUM6dofFumiHwIWFJKqQfCK+wY3pB1INz0Zcq2iKjAvDAw3m3b3EDJgFwaw2dVL6AvWYVl0FEwmGk1paVxhGSd3LlGmSMvKpaf1zWUCTKRu4woHvU/H5s/0sJLXDHXqjZJPVxEHNNmZ1wa4ODM2iLAVsiOueSbtrtNmFXe4ERqxhgsK4KGfoAEXQtaIAoCFgQmmIea79vhsR2qTFo1G1Zq1oGrOw5KzFGmEL4wOQyi0IoWSkzqrg912J0BtjwiIOgMUVteQ7QCWMKGRRt463FEuVuDVOKXs2lKrYM9Xtnc/DhKpUYGcBUSLZBWKnzIojpQIGfJ5FQ2G1q6h285KC6ft32Xyr/27qQuwrcWFkZ8i9Bahb/8XOuZ/njJSlT6rk7OI5tkfu2FPy+yq2RxFb1yLSfYAqZc1D7ANjyq2NyPQtt4yKWeElx44xQQ6x9817oSpU7jVMbqyJaQwlIDx+IpglUnN87TKgpG61KnMY96bWcVsQM+L7/VTlLjsLbQYazQYGJID9mCUyKUUR0Gxe3eTWR7+e+pxLNabQKCYQHQhq7CExD0hhy5K61zUjksoaJee1LYBkkjoHDvlDRdZwXnZ8zcDncqkrsevcyIA4aBKHaalGJCBPIJf46V4e9e9JFSrJPdx2I5KVlGJP2l5MRdOIAcjYH93vB74tH8bFJs1z5vzUxUYlJosz2XQuxrFIB3YLFhk3LmBgGemMnB3GCGxywO/SgWApV/VzGOcVOsFUsIi4kpGo3VJsRgwd20fhtYjfXVlweaP+SL5PIdteVwPfPoiCRYTs53rMIDMGqA/EInE/lQZPdTwiQpXUIyuCfzpfDCwCqGRyglaUxqMuKlGaZF4OxDCHGVCUnMyIKAEPE916iWGPwvsD2rmXPzl/Esx4KI5FUmCRuF/EFQ1XwPyskR0/JJ/+4j3QEDvG10NZDYNn0mWGaFG7aNLOWExarrRoYLDkeCO5QQOLWhgloW1NZmh2Y1rIwRxAqEJkzOCZKp8w92aI+W9qEfP4FZ5FUTTsXhwBi/PyypVhF0BF2XAsUpTdjh11mOsQ6E4oGt2gwDZhdldcVqXxDa5op31qZ80fF16hJ4eloFMuYlXHvle677fN5ZNm7H4MvndvLuzVGVAtSq1KH3vUhIuwAz1hZ+78JNrNrICkqoS3FIeTg2YhdyqeuDDzMKsO7sZvwULKtxBqmSBu4UjUmHu+TolecrCccC21s06Y4BZyJeTU0iZ7zd4vjCpbj9jkbeE0IEnRSsmhaBQeauNJJTxJ0WzhUlnDBIArDAcKM7tIis3NGHB0YSnu5g3mWvxcYVWNz4kJ1qJkjIUUhacnPCqiHY8It2vMfIOfSVE76BrfZeNNlQGN1lfELC7ip8oPcXg0ykOKBpCc8RbXst9zlSjhLOH9iR2WBVrNDviUgEUpdnBIAunua9nvhy1pYfyK7ccxDuDTbNaxVFkoDi44JNSFlMwqNOYBCHyclTKHYY1yxkR4y+z6du0SWgOQ3YOhBiKTHwgDyh7G5oImxwYTQZMWxT+7JSqAvFmgbS/nAlDEhX6YXoIHJeeVtsjJAULwOIeX6LhyUT7plOz9rULTQlUB0oVXZb+/NraXf53LXF+HcU+GOIDzMSg0KJW6FySZkhHgpi2jsi9QF9Ae8OAemQJ/0JxpHUSEEpb9vIQHqMUAuyMBX1tDBtkVNfzMm2XVD4qoywAtHunYY6YQ2Z22MQ/ZQ1KqRJLKea0rL+6JrFyoZ1eCxXlFDq9ayDGl8z4F6KlSN9m+ciEKQuqEzAwjS1ssJmr8WjtZqq4IF+vq2HWKPCr7qXtPKEuHrU/DkGTZs4oZrQQPy0khl30RgJRDxnahQh3XcQRwABZRYQy4E9gTMCU4a2fxNyfHAcw6Tq50z1SORXpE+FQYWBzEYuNOOoZFFDRpZ8hL4kbBsXAqTeWzYTQw5hEhU2HByGUKw6wavEMLVuuwSK2GQyoPZa2TG7+SKyDSKRk2t+7FS0KVWlOsHK9I5XzFz3jlzKdxnk+yz+uYPXoci0gGrYyxtrnb/yHsxceEjytkgMjYKoccUIgQAY1NFB5JOnwgfv6L9ztsjRLh6yH3tXh27B5dpqQwdtjPFEYQx2IpFsMZX0oWDpqTyRxTNtzYTgKpx7BIteynJlMGk6c3RIqD4KFfaopH8uezr7ym8KynEtINUiKMxhmWs1XCS3iocOTQFY2xK0Ycmg/TXU8mDBJmtQxmHgw9BKa6EBDfcRKuHDOzx3bovtMRhIHOZMCtxDOGPtkNsmhe2IayA50trp9MTS5hX/EfndjrLpXUFlewGFgJzT68Hw4iNfsht/CC5Ic6ue3QvsEgrOuKjDsuffuUmMkeQh9xjXRcM6W4w8wKYoCdpGgyZSEnaCuokuVriCu7pDFhLcnjhpNZ+jxesBbKNUL5QTtXa+7M8H4gKZ4JdRNLcne/y4HOupzHeHWyvaIuDCCAOIU5xHNjxiOz8I/tqbALRgRT8X5I59lufK/GdVIAKrrvq1Lwm05AiAiN2AEvppYACikZyEm4G1VKWAva+bDK8RTcEuOeKu3mVzC3ZXZA153kuE539owZLD8ehyNlOsAflvLk82Bx9BlSWJBi/T3PJeS4dFOgWIhSCkwhseYBCRxQSHyX7wVzRxqrLFYzbG2JuXdkocks71ndmZVNOXW/f3LgbeutZEm2x9WNMYp5tJLL/jEFAxJpTKiFQDImb/HKYY0MBap1flg2GOKhibGzPF8s+1xVAbIgRfhOMiUoMEnYD4rS43McVvvx2SQspRFC4MqYtMaHLF7b5h01y6bdqRS+2bpglhBosXY4eNRcvHmaElq5eSg3NBEa5B8ILtudC/sle+RusRijJrTBLHZlTMn4FzqWqxLz5cJUK8iJnCJvxPcj5rOxoNyYM/P2pGpMoRE3MImFPUgas3r7Rhe6+VeN3ZoMCIX1ojA6Cp8IXm2ac+xpHfNORaaLjH1UxhjM4UWmKNjNRd5PQnxPYfImCW3ulNXOCyxjCrCMRUt5BHvIgjEsEmJJA4ugSEplL9sxK7Zt4gMh2wPI16rUkgsmqQof6PIC8L/DgA6mZJSgjsgF1LHoXSqSZsMeGrsosIjhhA7rtGXeKKhHDhqvOBbpEeHbUnJiquDVjIfQG9/Ofl49xYWUMg1acIiI6wUCSOXA285FfD7JWGg3HR8SVzJUsZDHMQUj1j0RWKQzBBT57F8e3s3xLVF850pR9IPnFRzizxXsAB5hMa50+XonXDG06xdDZsivFKbFuJ561EOHJeoMrSSyOuoMLBLGzsqMHlIJGiFTqbtXFftM5CWGELTcuORYpEOimexGkw6H4GO8XSwS93MIdOcUjTFL2sh/9ojkPcbAeJfsOC6iKMtbxD+RnJJIy54Pxqxicyp5zG1d3legLGALFyDc4gmVnrirD6WnFvMet6JlTMtj/CMZprjL/RDGhrKELtuclcEk07Z17Bp+r5G/0snSCKvqWJ/lYtijj9AXe5j26cn3YhujKhvahXzKaMq0KRmgqKRYfMXjGEnujhMxBimJWlwLlkSbkiWMJ4+NLDHEmKXRlTtL0ncLQwspkvjLqqcxP064jgUVdwOGJ2RscyY1i6hZBsZAztg9ShEWyw9zhJCJP4d0UXiRaxIqZPbnLL4/NPixgfhaK8ZMNQltjCh1Ckbl8xcxbJI68BTALxKWI1Y6xpJcCBUXsIQGlmndd6uS3Lpr/+UibTjgxB+eFJaZPOaasXjrwFAG3G3OhEiEZMwyVa6FJx9LgAWf28jtoRPIMqa8ZRVogxcl56kOnNUyrLLzMturZkiIPSOCxS8LoHb2i/AkJOny+85ueQurmyKoGg/ojN3ie9Oe1KII2d+mIJsy5nKanDPZPRTjsd4hSttsljeqLj/Axu+he5XPpAqS7R5t4hweSXdmI/ZXEPrTA9YcsZF6epZd37uJZv8eC+lxL0rtw26yJ51LKme3YGbUeI0DPwO/uXhQMpaUbefNObtCmxu3MCYidKQtAMh4Lq7EqCYPM0m+2hRjEdJSpao4GsASbMMDEIn/dtRbMy4YEiUV/hkhGn5lNUkhIrTZeLMn/riFJRuv9DgRU+Ry2ePlehFG7EqJAUyJxe2svQXBpbDUEJImgvJYzum603OIIOE/G0kIWVeCGzkAixQZIWVflLNZ/u2wSBdPgGGRZaFT/p5gMpjBTjQU5ADqqUOijgNMfjsQFfNgROGcWrv8puUsPgwKy7FIhDCJG2mXYxF1LGIAmzEsMnZ5V2c68NipRt1GKHmVPp89gZ5EInVYzMX5qs9ZhC+mTJJshpCQjSmZQTSmaEzBruqE9vpo1aNpGouakGT5C84srOiOyexg4IK4VdQVqez4MMWqC4G0yh2K+48F51NaFDafHJvXYvVf7qFMEsavzoge+QvjWIQxLKISZ7rs3PJ3eEQ7h8w4FpFihEmYMVjHz3jBIhVRfEeqhCRX3AKFuqJRLKwSKmF47cSxSCKLutKsxZpnDoLkxq+8DMvge/9QAcmhKxpxwbH5UCln3f82a5sBW9dM3ZIUiUzq4QDJvQDiByKV6whEBYgAbjHJblm2OLhw/4YW2LmwasyrUier1NTDDk2tiVoFiSBOMEG0LB7SXuqVa2VziakpT+H6T2I40UJiOgt2Nz2RGGpq2LiKFWOOvy13xKwHAxH6cbglLObG/OxgdHkToRNnEc8FsvdnB2xxkqKQgZYkoZrsrjZNiTYJTRKrVJXMAmlW9kjmN+tBkoS6Sb4SqLJtRDQOt1WnaZAuDjz7xh3TkMnOChLUWUpoW4lelvAgdTMlaPFodNYGvMJOt+9NqdBi6Wq1q+5Q/s5qoSPqCpB/gziTgeTKb+Vz5Apaqko4G0nQCreA+uLnsIyLgyePp5bQQfz1cY1UMQWOyhOybL+EtTYUvnLK48YOUzIw6Uwu/hZP7sPOsWLrU4C+hNXQ1mfcGiUOOCIwwDxhrsjRbRT1HJnwMHT1VbrvsNh6sXCVuBji1nDAxyVEQqC6cii0ByjYSdwB6GNV3x/hqQuuKM4Ag6fYe7s7TBqKiXtK3GVfu2LSjvH6wlvKbfu/CtIoJPVQ3gPuS0BbA2S4oqM5F4VNkjA7N8O6Y4+nHbY0+3dyn4f9GCc+6P6w4Uy+9rHP8I0Pv5eFfbtN6crmZQ1xnbOYV0Ms18UqctmaLqnNaZVs5f1/gq+hWEhTHoFUVlUnltbXIPwb4fHNftYlJVRqGrGqUpV7tCPuWB2AmPKXPRQjhG83T8a+WpdhVfE2SVSeCtmknYyKQgVdSFWHQ41fuExQRTST1Szc4f2IeHUk5GxnfAi5CAEg4uLC2Df4LMY6hB4yfn7GhPlhRX7TMfyYitvDIuJFDwoWidkwTxQaybHqymlY9P3C7tkoyj9hKfZ1Ggu3ChQQJtCkEfKsXXVOvLCLJGoTkOUmIoJH/B7j9roKVdmwTzYsUvC744JKO+UortNJz1A+7dWQtYHh4v3jlbAMhwQW6ZS3wCLFC4i9GHvX9Gp7TyjNiFJVQm9qQK3KEpnBihmqFSvR/gzze/Yzv2eXVcoSN3hWbqx2JV3BvU2uQKfwSKkD7MAidoeZyGWLTVEOi2sFFCMKyfIkahFqHTM8e9hpd36jYIt2c1+2SidVSG4+kJAPFgbZYh6DIso1vAPqWDSkYGAR200tFp5iHorAIlYxDw9VkyryL6TwIvERqxvecuH9ro50cYSYocS5b4Qexj4MnBxAKzSkEjr//elO5GiMnWLpxFjwt9i0pGDe5hIz7a/TukFLIo94IHOoC5JTUTJaNcuwWesqt/kEE4/kvg60F4sEFtdfp0ydzN1nLkA72LWG/SKXzavagTur3CDUmqkz1MkrtGgas8bFmGONgj0FUDRLpdmuwjrXKRuBG+OzFam4KfsIfSrP0egsWWkMOoxbPCRG40w0u3ZqZf5ysfKFVWwkiTpV5pIbUzQinyhiVESyW+c8rCeDtBDVEMzb49YfDyGJGbGSmVIq6qhzMtvYcXRMUemBeZ3GFI0SNgWIl74NS04JOot953wMn317dwf6uoC4guJsLBHSolEGIFRXCR+VWRN8z4nYwa5d0RDP0bDpGLNaKGO5Ju6TCGaGlJwAey0Zo6EyS7KHnlVYBCWSO0uOW8kjJOdwJedn7i62Nc2Sy2smNLr5QsY9o2PnztceZ9qVM+sILaCsG52ASdKFVkB5TSTWhbJ+WT0BOYXly4NkVGiUUpggzl8SLEk8whe0E/ShJAX4NCVKsYpjdm+m9HaKiVH4ihX7hO8pf2+xYCYDEuIxx8J4HK4FblaEh7LjkxIgQ3E+FdZTKblDLTDV73HG+edwn2f/PIsLPbZ/45OccZpQ67UwtZF7PeYRzN/6XW78xuXsuelmMsnmSJyrJooy2MTY4vxmO7wldtpBU4nUBCRnUjMCaQmrZNgrkyRaIoE7FUOF3WRCqJ2xCRFLZELcvCwZD5dxTqGElynOr81+myqQivDaopbU6xVmDbSGh8U9yOExTu7hQDwUTsI44YBXBc3ZDQ1S5iOUceg2koVRacdT4g0H/oyPhS4pnQJ32JOfdYTi5TkQi4SgFN9oXfjzeNhieCXo5EIoCh4+ZcYJcVwlZK1K2BV+ppcZ0ZCyvqLqym92ZSMiFxJViYpIxWARxjm7R/dsqJT31njuWl7uGezK33ZcsjNPdKtuqpWWf8Vf6NROj0ahM3z2qLAy+2NzKON4q6P47uQGjCzGs5IIdQW9FTP01m1gkcTC0l7qqURODbnKVKtXkTSzuLjAUjuirYz3qrhiGFgEMQNvMFf8PBUsAuNYRBEH93GeI+zTt0imVLKqgJ5a+fyYy8jTi/Mqkl3RkoIsQs4kDIsUXCqGReLvLOPlZGPfjeOiVDBHJAGIY5GSFCCpYJHKIywkKk7FLnBjR/hECBlDYMQOS2nq+GKLGZTVBxSlamx/5y5cyjXikB2HQndC0cgs21babbSw6oZ10hIu7RG128MaLeDxdQrZtr60IRjwjd+5eDImSHLEpql4eAnF0ju+6SPuvo7EJTEttQ/0cmirAaJj8/qiExq6epiSJUNXgiU/xvh9gyXCmqWIVIXXxGhShGE4WM8OIzpmEHGOpgj1SPTU8zKwBKyoAS3OSQuDcFRu8k8C+aOVuR7rBDmlkkSe3NtRJaFxJSMsB43vYQ9D9gPuGrB6wlXr484OVsS9LWY2KhblOC4BrpCA+p3NR5KXbsWUjH6GnsqYomH7IZQ+k+ThEAxFww99KBnONQt7Ke5viiu8Uzg6oZBFPG47ESXgrHSmWak1pSKoahF6yXrJiCRKmVoHkKSIG1UHH/F942zP3t8pRREiGKAYOoZof7fOjIKvHdaKRnjVNIBBeDt9IV3JBTUFJI3tm3K+bEYLsIgwBgfjobaYIqMeOhM7x8PrMGWBANd0/KNNStMa0BYPdxIiDMXCvKrcnSlBimc2rldKdysGicVBcwgW/Iz5uFuE7LUCAzwtC0EEai+HKg6w1PmKq0Bla0eIRYjW1hX+CHnoysuq81Q3vngJaos86vZl6ldsOH4Da44/EaaPY+NJG6i3/it529dJu25k9YqKBz7rUVzx2XV89X3vJzfZ88GEVCVqq2Xd9d7x9U8CffEKLJqLtbUIRgd4ASrU42gTXVJ5Ea8yJkoFkgWM2elS219j3JMon9yqkrPVdqoqsVClstEiqj2UBfs20c5H3XO5QfLCFYEhCkDpzFIWwVDRigenuHc6drUpi60pHZo7L78rfdnr/+vY38H/bvesFfC7/PfYqcueOqyo8/jCcvkvwReQOCjLsEiIyhJmmF2+ZbfY5irQe8EEBhJBNRH18QKLxH7QA8YSBrMUCoZ4IriI90YyT37KneQMnh/x9JEfKY5FQrmIyka27w30BRbR2G3BTlWA1t5TQqJD5VgunYQI47ZiNHUJaRbHImGKi+mx79LK5XUSqMxzYZ4Ny/9MCaSGmakp6ukZetWA/swUTTtP2y6i2lJXLb11K9i3vybv2mXKtCdvVmLhrhHyjK+vRzEWY6y0wfM6Ku+TzvsRJhj7rOXOVBlThrJaWFu5T+nWosDUVK4doW2dF73jzbYPS0aX7xXpDDlAVczG7o3w/nNR4S68HFkMi4Qhw6pcJjdKdjVTcW9bEQbOTtX/CYUTH3vwWreRESHABYtI7Ex7e1E2wrJ6lysaZQmluEvCRY1SYmwLwHMrYQjjCGNKANk3TQvaSrF4awh+lIg3idJcAdBIQu03XCuWkKnh7gv3pHZAFvFEcClhVJ11hzGNvjtyEXcXBy8e8f5x70nw6nChdbAoyBQMy3uQLgzGrx8JVcXrcsCjcniDgxd7qKniLhirWkle5DonqColqig2aaxilc/BSMytHI38qqSmrCRFKqX1pjoqvsbaudvLwQ2rQlh03AMVa19pwK4xAObIOeGVo8SqgPVS5M/47EkoE56gF58vq+MQTBw0iY7vTsy3FApjN66uMZK9y8C+Cw5XwioVU7jUmEDUvi+J+r7vxBWASKbrwtO0uMCDmeDjjBrUFkNrL1rd/WzhfFmL5bxYo8KgHREjnVw6LKlOqQjIEHwhvILJZbDqPhSdrQMPlIj2EvOPdII+5ryUNnSFxpJjlc465ZZ7okmi+7IcaeeUaFuKR6k2e0JZ1/DadeEsEaIRu1X9ZqJAgq+nKx6WkmnvFEfTOfahuMeHYjwqE1GJl5uO+y7CqKsspXlMoPgYvZ8UmpU0qNhw/DFUgxl23XILe3fuNbe+xJnIpfRso6BLLQvW5c6+e9WRNM0ZNHuXqPftJ+3+EiuOPIn+jCB1H5HWlLRUUdd9a/LaNuRsNakkK21ufO4pllvGywY7CRKMxpQAOj9lRhDN1M4niu2IkEOQGHk4VA88STW5xze8WFljHl1BS97JQ6PIeSqNqooxzeeyRXw9whgUZ35cAquFomHe0EZMsYz9Z6G8wUdBXMkowM4ttiFhOkODezbcs1ru/Q41iO75O37Pf34q56ZDUOXcZz8TqRrj9Q6cIrQ4gH8CIvwmt2EA8jMqfgC1wyK4XIpdGBhRXSZkOiySiB4ZnafevBn+vNhnov8K0t1DYBEYT0ru9kMV73Hh0klal3ISRoVAjEGeFC5tZwjxT4ZFvXhdNBWlI2lUMYpCCjaX1WAASWjbIa2aJTJVCfFs6SxYArd7lvp1Rb+uqKpEYsCoVZqRGRnadp66P2BUQc9j1MWL3Kgbc1tVwyKtGRpp6bAIjkGVYnwJNBYIosiAwBLOEw03WlRF5M/UMbeOuItBS7rIFdt+cRhbl0Vh7Aj+4709iAgK8WgJG1sunjPDerZenVKnyaNDfM+V5oOSfD/Z/ohqgqqBEbu1ja0SUVJJOp+P9Xd05KSOP+xidNFGlDNGMerRpZgeAt0JRSOumorq05bRa2kgFaXMqkx3oMRBmnTW6pwtBKHNlvijDkKtsyQOzhLR1dtWLeqH22OUI546lapElo9BAa7W6M6bqTmww4XGOOBfrtfHgnQupiiZaIdyfBsHCBpPKLcAmLK//bmSMOpegSg/Voc3A8vHqHzTmaIhxNZWouukM5Ck1JUdjpSSlX4zDz+pMquGVsowmeWwDwz9MUpWVm4kyjBJqVylHkKVq8C2Au1y62q4bgUDB+qaeLDC5KFuKfYLEe9jUZP2zlwAVViUo1pNxyDcVTxeus+hKRJBJpa0oAEciHCLsDLLWF8XB5Nj/1ouhvh+66xhQggqA3DmSja3atWFidtt04Urlp+qxUoQHjLxfJXsGb+iSsrebtZjoqIBUVBxT1oklQOcQzmv/zmphFBKCGxCM+ywma9jCIjKjRb2OdsJ48aAOFelJK123oMQK124oSkW8XxYCIVwddv6V15KNISGxLjUwnVytl4s0dU7GLpA0Xhl7DWJ8xCKgWZTNpwfRiyMOoBFzBKaQtCoW+NTKiBZkpClRrIw1OSg2ys6VZ0gIYeQsNdaETb92GbOeOKzWdq3h5u+/lUu+7+f5bbv3UqrmVFrAn3YNswPW4YLwk27FxhpSx9hcfd2vv53H6c/OIIjVmfWr1vD/m17uemK75CzdYwV76jcYlb3ejDFOQ+/gA1n3Y/brr+eb3/qEyxu30pW66depZoqm5WxzS1N2xYLHeAJvl7b3UFdmx3c1YnKGozQQbRuK6kqKtkSuLEFSlHUQSycS1zAKwnJlXvQ7ftbFSTb3CVRUracODKMJDufXi50RV24pYQkUyQsttoMGiLJFJpQnnJGK1xt7dBlEk/yTIlU2U9836TU3W1npTxQ+BtPC/l6OCsYQVKwiN+YW7tbxyJhza8EUtYCysybYUC6J2My3cMhs7qH2zRfSnlEMpINixRDBZmcPIwS20M5GxZJutxzEsqFNT3zZGIVotBK8AyHPXRKg2OR4CVFRgmi7pdchkXUz0CEA4bUSx3YJBtwD4VeKREKQnI557gjLQe1FuwgZe4H01MMVq9BaRmN9rO0by/ajsyL7GXpq6QFjPcEputEr6qo2oY9+/ci0qPuCb2qYphbGC5SixaFUUTJdXhkEzOzc6T+NM3CkMVde2DUWL5EhN1jvEdyzEjV8d5yTvyskBH3EofR6kAvaYcGHIvQYZHw6qh7zXFPfKfficNj6QB6Wef4tyukg0dWEN/jWETd2Jkxr4dV//IQrzy2b3w9VUNpLrYLojVFEscialJR1XJHDKNk86ZyB1gE3PvXeZPu+tCp3NngTFPAY0YpViIy1ntBvcZwFSEyPjmuGYM1lkM8oz7LskZpAQNSUuoxrUlQFzjO7HFre3aIq2qldWN75OShE5EME0LfV9zrp4WO2Yko9QUaD00I8MnY7Cqxq6S858DrdKEZAYKi1KnpBV3FqfBgWHMc92pIuNyjWkCXCxwjSz5X4ppeqsS9HObZ6IeiocoIZQk1hUNgyQ9JK1YONrrQGnCP7zThHuClVHvC3aNaFYvwWOFZys43zQq3/yGeMl7heTTqOSWMeZPUvAvFxe3cWDWiTEMoWxxnTh14hLBceTw1yas6OYvQhGazWJab9V0RoX+FDbiVM2kX7pP8hEk0GvRLZJGiaLQ6lriak9VxtwiS0I1QL9GXXIFAffw+Hksa06JsFEZ1iIf7PyMZWKQUDYjKKYK73n2xQ5fq0VVTyVAEfQjkEMkdSQnHGhfXcb0KY7LZw6JqP65K54mKksW1mLJh+9+tWW4VM/d47G8DAePhg0V4JfdojLlm1PlnFitSEF11S7M75y8R8tjkCNui/Bt7tCfCYGaKM849m80PeQSz6zaxa+t2rvz033Hz5V9hOGxovelHrkzw7l5Urv3G5Ww+7yw23u+ZbDzrIRx7/hP51sfex1c//g/s3LXPjkWbGDbKtvlFPv/Jf+HM8z7Myec/29dlRF/2Mrf5bJpB4vL3vI+bv/VdVCpSJTRNY5Y8VVpt2HjUWu711Cew8vgHcdz8EoOVs3z53e9kfude4xYKKfUYTE8zqHvknFlYmCc3Q1Rdy9Yor2GeJ02WyGt43jt96Bjf9QkzJ5VxTXHlwTwukeha+dm1nIoMBXj5SSwSovXPxVqGchgJkmXnqlfb0YxoSxJTsVuP85ZUW3muEvvU2v15EmeMQ9X3f5XMSh+eOhk7BWGFTGGIASkVuQ6mw17ZUMci6od3PH/NlQuz8wmpiiavHsaNUFcmW8KT2mKl5EcO6Jd307LfUlIv/kIxKGQ1y3qEMrUe6icYIK9S7qpD5TAqpE5ulVMdWMRkZXfSg+GHO9XXrXjVbM+pX6PwKf+rJPzGfZS/xfcmJWogiTA9M8PM3Ep69QBGymjfXtrFRcQVaVM+QCXRZmgWlpiaG9JbsYbB3CpmVi4y2reDxfk9ZFrU96umTEummV+iWtpPf8WAippcJRoBmZqhqWBh5w50aehVn1wix14VqAY9ptetRapZdDZTVT0Wb9uBjNrivcne0C4lm/nsVqhujgJQOk9Jdj4rzdYbQ8Pj2fHwIv+h5E51GM9kdAQeuBO7k0sF60V2UGI86Vvjby3Ih3EVMbAiZU7MOBr5gWFcrWI4wX4cm1lUSoSN2QCTNylEPXIjIizCHhxbkvAMRxqDFkXG4dghY5E7oWjEt/sj+2HKWuosV9lcTj0VeirUWahyZQqGClVVFQauWH3gmMwigONo+1qORcOBL5Vk8QYuY42nxmCmz0enIEgmwluKxVot1rckpodiEMuUQVIX1mE5KbpsYoVw+xO/oWOvhlWcZGUTTQsOK70BV/O6CJUnXYlYsyjroZFKg75whzUOgiI20OI+IarXRB5GnfD8DUWr8PRkRmrhSkuSWcKUtixWacoa1WmZbcuFHTM3i81JKAWokFNYEgTRyt7vMchSKhKYEHR2bMwwYwccS5brER3bOyEQqVEx6a5+YmxLPLTBLc9e6cbVLtTLvlm+SHJm4+A9V+TsIVUqXdNBgSgh1yVsdopGCIAsHRMIf2Spby5FZXGl2mNBzXRA60qGtB7ikhXNkfSlCLUfL/XwlUgS7jZXQJPDksROWcyldUHGz7r666Fw+dkeO7dx1qMbdFFCy3sj7KzjGtCtSTFauADLDhLcMOrKhnHlEl5DBOzQyZf4XtzyJcnjV92KRVgSC4Ma04fCkAFR6jH8gaBeSCM8qmNN48Q9G84PAOoaTj3vDO570bNZecJxyOJtHNus45iznseX33MEV37qEyzsa5mZ63PC6cez4bQTaaZWsv3m/Vzx2X/l7Dqx9uzHsH7zmZz91D7bb/gu+/7lq+Smdc+KGeav+uZNfPx/vYVH3HwtR597ASeeczRpuJd2/7Vc98XruenbN9KOfOVSou73mVkxx+zGDdSr1jC3bo7U7kfYT2/FGk59zNO4+apv8e1PXooCbbY+AM3SkD4V0zMrmJteyWhxnrZZRHJLb5CYmpum16sZLS6wuDhkcWGENhaGFQJQAdVsaxwWPwHVltxCovb5y5QSuZ7Vre7ByL5Hx+VPsW26Fz2KdAhKVitZPq4AlKpY2vEoUqbKmV5SN+pU3bWTjyPirAULuXUAbGfFAVV473xPRgrleNjZ+JnrwOs9gMaxiP+dgCpHWXuzYNcuX+NnpaYEJzXFLbBIIpVmfc5obPUjhyoMhIw/tCgQlcLIlZBO/h+AwIqSYIwmhwxXwwIpiYXQRU8ubI/dLhbJzgn9K2JMhX8QUQSJYJD2dYLFVHvAsPi8JWFmdoYVa9cx6A/M66LQzk6zsHMfzb69CFDXiempPvX0gJwqlhpltG+Buk7UcytJU7NM9WtEWxYX521s7r1rRMnDzNKOncxoy2B6lnpumiY3DGXIvvkhadjQE6FBvbytWAncQQV1jVaV52YBdY+Z1WthaYnRrn1IwvCkdiFGtbgyrxBAsVSoEkW1QdsGbQXJreEO0dKxXejyRqVgkVjdbj2DUxjfiakfe34Mi7RjWMSUjKqEPIE4fvJV9ZyMMGolr4CWcueBUjecJMQ7ANrfEpVbfYeE47ykZWQzooezwKqDtq7wlGCqgoojV7co4XcSixy6olF6x0uRyua9wC3zloAdoT7jNb9pHRRmtwqmiH1ljF/YyLv49oAbpeqvLZB/t6q1nCfAZoAUiZAEU0qyKK2Y+z6LlyWTTqMzY0HyJLv4TptiW1BbnNA3u8rM44ykfIIuRCf+s2unlD2+2l1X7v4yj0+i0i7hMIkngldC7ZW7LA7Xy28KqIdGpUpdNqlXAPZcAwcr4gMXD1bvSrO5gMS6+RbGlygdyKMpY0sXnoK4hSaZwlc8ABJu1vjdG8iEmXcs6c0WvHIA35I0GgONJbzRbeLY7CqZ1r0Jtund3Z0TOWUD7uKHW02RbcUs561YJbPGbOqW6G1uiGIR8492cf1+w2ElKoCzTGoq92+mNNxJpmV3hBKbvOt0iooNcXizW1ddqJji1FXCarH9PF768HCGCwa+s6fq4uexu7ci3PE1kKqE81UUwzSBDbNnpwXPMeFpV8sBSAxlWnPG4J7+paFgtNopNJS3dPG9UYKwNLgqiyCuJJnXNvu+TBHjFtfT4FFeYpexKneEpdpV6SRef95Wu64scTgs3NmHLwrTs31Of8i9WXn8kbBwA9x6OTJ/A2vmjubeT3kkO773XXZc8y3OedBJ/NiDNjMz2yAzysKKR3LV13bwtY9ewim3foe1P/ZEdlx7PXl+N6tWzLFnfgFSw4jMyqYmNyOuuvxW9t70vznm9EuZG2RWTiekv4r53ULNDFNz00zNrWHuyCNZc8xxHH3ayWw45TR6644lVTW9wTS5bdi/7Qq2X30Fe7be6tOjbgQA2obh0gJNbql6A6v0NjXLmo1rOPGC8zni1JOoBzULO3ewb/sudt5wIzu+ez1br76KdmnRDUKUxlURcx97JpSQNounuZm3O4VlWGztWod7rmuVQhEiXRiKbVclGruGIQNXNEs/HV+34MGqGdGGipZWaqJ0ewlxEeNj4X0pFmyvn98pyVrCKihKz/heIk5VUdAPb+7h1Do3DtwQ8tmxiHnISkCKK24Yy84RumhzqykMBE5lr1iT2gOxiEUl5MJIKjUvVZWTKyXLsUh4uBOgYn1jTGwqHgNo69f4PlIpMfIqSpQfTVEa20OvDJN0WKSTCx0WKYCV8J2EN9YUjZRsznp1YsXKlUxNT1FpSzVcQnJDXQ+o161mf87oaImVK6eYmRtQ1UAFo7SShcWG0d4dVAypVqyibYYImV5d2/gruiiAlGgWlX3bd5Om96Fi4YIjSdAq/ToxRYVUNf1+TR70SDMDZHoK7fUdh1jRjLZZpF1cQNvWMVzsffvdUqq9dmSqqJKFbPXn5uj1e5b/0QzJoyWaxUXaxSXywjySW08Gt3F3PX9ie4THsGvHrETOXkSEKDmnDovg+DeMGO41i9L6bayg70sJBh/7UWJVGTOA+hZ0zKOl0tQy0LfMKFUiBzznKI8px1mzGzxtzqx/iY/J/2vx2qnacZJDjeK+E4qGb+WiRbsjyAdbFAz3akYoS8bczYVnJilNW8C8IN7HiMiGsoNvtxAVZcSrVOUs5tHIQqVdMci2bAKLo82YglGhHtZiFm9TNrLFyFc2XnEJ0x3UMceWRm1p9c1bdFlCQNqnuvKTpgnbv1GnohalTp54mmL+vBoFpmREslEoG1E5K3kIBa4QtFgYBJ4ELpUzKVc2UopmOkIY2KSUrZXC5Lp4RQPxIpZYOUrKKCkN1pixDTwe1jXcmiYeJ6yWW1JrVMuyO680GnwRpmF3iPkp0daZQqZ292U37+PgvmPQ0MWWBoYwYSAei+0HLwoO2FL7w5jBeMlYcXdBKBed89L5dDD6Ai79+pGAq2F1iPHEnsh09lAHkARDjMZonVdFc4Baq34S7C2rFR4N1yx0TO+wJMFAlUTNLimz5XLa19cBeOxb/3Dw33HXohL7Xce+ZuycqjHbNq5JMN0OfsWF6+SDHMNjIdg1QJxEWmXAjy5oUsb2ihAY0T1udBzDSnTbWWgJAOEAxYFKKOyglgPn/u9Q/JPAqrVTrDpmI/RWIfu3wtIS7LoV9t/CqmM2ccbDz2P+WOWsB5zIlO6jufYKUr6VmVNuY/P9XsT2793I1V//FpuG/8r+vUM2nXk6m84+l6XGC0Y0if2LS7QL+9D9u2lH84yomG8gVT3WrlvDCWdsZHrNBjJTrD7mKFZuOoLpNaup+gOk6kM7hNEOcjPFbddt4Zsf/yi3fOMKtt+4nUisjZLo+Dq1o4alpkUkUU3VnHbuyZz6U09hatU6mL+edneG04+k7T+YfdtavvOZT7Llc59k/9atDqQqO2f4fvK1DuWtVRe44uqjL5ZoS5VMLBbDuXR8xninJ81ndb48ZjFGiyIwDlKT5iJnILkFcUSiRqRCqqooFOO713i4yQTwuHmvhGc2EinejnE1oguxouzP7rTAsg1+uNF4i2U6z1OEoJbKSLhi51091Ys7CHg1JCnnOrCIo64iI8LAgHpZU1rPB5ASlpO8eqaF6gav9vPuWCSa4OJA1Dq4Z1Kly7EIwWfsHkvpWrHzb0Y4e64qa1m4mP/uLmIgahIJlUVVqGGQyruNpwRT/cT01BS93oCqGZKqBskjJC9RD2aQ1auQ4X7mVgyopEWaJaQZUU0p1Yp17NMVtMMF6sX9CJnpmWmoLXQn1VKUeXPNtCgtI4EWUzQGvYpeXTFV10whjPoVTb8i1xVtZf29WpQmt5Y7NlxicedOhvOL5GGzDIuEum1h1+ah8Do5zM3NMLt2nZWDzQtooyg1umIFeallafduRnt3I8MlU1JKFMvtYxFbX4qhvHO0ybJVsRy7cSM6rnyMYxFZlj9csEgRRX6G3dNN4I3Kr++eOW/HXlBsnHyhOyvBZsRlVy5ycYzRER4Y7XiS99IYb/x413s02u7mbBjdJJRD7WFVVlHKgH6J73ch6l3THbz5pGYX/NqV8ixFKl3Iiy+YeDkk8b4WcesJr5UcAEIsGN74Rig9Ua0k/CkdpIu7Wn5gl1Ms2LgY0GVL2U1QVIeoqDwZzJQNC8uNGvB4Yo+FS4X7POrBV2KJn1XyShMOQlpRWnclSa3mzai8y+8B3ozS76Gy7w8zRjQwMkZoTXLMy+IxraKM3IVquRu2BToLoVnYom5zrUJPK3rYI8rzVmNlaVFnurkmR+UL2qI4ilr1pcjm6I5rWJG1KCxxICLxzfaBFuDOWA5RmKxEs9XtVxMc0aclGh8JftiLNWFsd/vpjOpqRaGhE/IEAxK887UWC0THOMZVU+m8Korfc+yjcGFWBaAW4XXHp/Q/PVmiprcmc69jxxAduqsSAVDGR2yOiqFWIDexTI4Ew1NJVwlvHFoFw49zFIaSWBxxoVSes9FGCpaHgxtbrTwM0vBLjN0Sfse9cBEmCVLCyVvfE7YtU1GokisaZgm30qV1xDj7HVgeh3lOpFczHGWqCqpaQdbA9EZk5mh021XI/q30Rts4/uxjkY37WLFqDcMdtzK/N1Pt3snM9JXMnjjPec96Lkt7b2TQ7yEpU1eLpLyIti3a7iNR09Rz0FtLm6domwVUp0jSo6pr6kFN3e9Db0CSAalqYeEGmj1XoYNZZOUp5HY/ad8WaObpjfazZt1KFo86nl237GbE0MsNC6URmtr6NKo0bQu5x8zGGfoDGO29ga1f+zS3XvYZZvsLbDztdFb92JM558LnMLtqFV9937sY7dnb7TccjC9D4fYjuy2gzUpKlkdhgNJyxzzKsZzdsFoGEBjnASafHLy510ELGvASu1FVrkrk5EmqaBfukDo+lMYOegCACKMQ50fqwCq8X52SET8DDCz3v9v8HsaKRsRAL8Mi0v3uPARkGRYxl7IvYPazHVgkrpWdh4zNv/soEWmRXNlZdyyiqgWLjAc8ZUeUEsgxsAjB87LJXi2xHaUynG2bcYOnb1lh+RoXAOwecdUCIDtgGYHqZtCsxLBIJZBq41uDKjnYnyKlygC7tAgt9JT+qgGpgX5dI7mBdmTz1I6oa6HesAFlidQTJGVSncleMSZV2RrcVhXSq9FUodJaflrqyuvbw9oQLKTMSBcZtkNaSaTUp9GM6JCUMyotg36NNH2WmtYcx5JQS2qj0mTNmYmcV6GqEjNTNdO9BNrQLO5naX4Xoi11r08arGSwbgNLdc3ibduRpnEs0oUf2b9xuNQiGFxGaFm38TV0pcOfC8OSxpppnPMOj4h7uERCTZHydXGwOyzi3k1/ZC824SegwJf4aPCB8LB1SozLrcBOijf2C95jeKTDH13Exl3v0RjjVAHwo/pTDKPI/XDntL5QHsufxRhAgOy4eXHrbgkP0e7rJE6XM/bQWeM1Jayh8f1ddYRSRx+zIoQGGsHYXY6hjAGT5SpEXD/5z3FlA7p0rs6KApFbEOXtSkdQsZBBqaKkplotZPEmcJJKRE4pZSeUWtYxqlYybVK0huRJ39SKVorWglRCXYtZSaJ4eLL+AOGJ10qLpc/Cy8xOauFwmUrdveoAqBWlkUyWjLZCdPjTnCBbulilFbVW1LJc2SgZCGoz1uZMW1m4U04V2rTQepK3Zqv7r51XKQSruRzHvBsaXX79cLiSG2FTZKGOBAffY9EkUj2UafxQBTcPoG/Ax6uHJa8C4TkcBjD8JAhQGQ7Vyjw/uWw228tJsUocauE/pUPn2F0WBuF+sxYDOg3iapTt9OWw4fCi5JI9qq4ZEHReIAHYKLk3GbP8N2ixTiGep1QsL4AYiK80fFLLVbISvx9M1t3DVsUlmnC1JTbfVQf3sKh7RBzQiBkPskR3Z4+382+OgHm7J8yi6i+GYlV5CEOW1I3WeZaNN7nF3LTg7JKsTsKxZ5/FSQ9+NAuNkLZ9lbx4KzTzMFiPrjgCZo5GF01pX7lxDWlwGtIILCiLzRS6U6n3JqZTxYo1c6yohHZpO3l+L0t7trO05zYW9uxgac820miJNZvW0V99JNMbTqHacBoydxIiU3afuh+a3ehoN838bm7begtb/v3fueWq73DCmady+mOOpJ6apWnnSM0iK/s7uNeDj+HIez+UHTffwo7rvkdV1VQeTts40EuppqoSo1HLUKe4+l8+z+YfO5Yd2xJXfO4KrrnsBua3b+XYdd/ivCffxPHPej3HPeih3Pj1r3H9l/4Nci6gPxFKqJ8itbNrDarCDO4CyXOkKtHiTQvTUVc8IkoWQ9QfNUVVkIj9d0ZbdpNURLQMJE9aNRjk1T5AIbrzRCigfZ1tXvWcrS4MlmL4MN4kY9XZIIDmQRrWMghz+FGULoaQk2btH69gGEm/Vr7Twm0kWdOxNqXi1U90S18MhWrhVGEI7bhIrPU4FjH+VRGloenmNsL4Ip9GtERdhewJA1zBIh7BMXaVMX4v/l0dNgkKBWdczRC1/K4weiZV79ElTM9MMb16JZqgavbTq5R+lajqKaoaq5TGEAZCqvqk1jo+SJvQtoZhRUoV2quoezUqLSINSVqyNuR2RNu2MGrRpPSmalLVR3pT0J8i1wMr8yyKJFNqRFuytgybReYX9rO4uEga9OmtHCCpZ+/TEakeUa8aMJpdgd68lUYbSCaALTLAKl/WWGO7pIkkNXm4QMU8uVWapRGjJaUZNVQMmZlrqVcexWDVapqFJUZ7LbSrUxg7KV1C4NRlvVvAxA3I41g2ckRbtVyh0klbDbNmxjwm2ikR9kSgSsMiFr4iaLLcDJGuK7i6x9M6hBsOIQm5CkVDSrPfFCA7gXpZZ8Z2W/ymY7vK7bYlpLTrVnVoWOTOlbfFDouPsWxw+xnamViJLDFGnsBKpWZLNpbKQwBUynwmxZsRSUnmMQ298x+MNzbrGpLYjYbwFp+/qOYUidQlgUi953NnZHAX9rgCgWv/3e/dAujYo1M4xBUOg53hyYgcDCvrWyfrjlnVVhGqqqzZXC1ClarSbdoqiwBJSi11K82byuJnKlrPdksV5tXwxiFqmflIUTRAKhNYoWikmHTsBq0cq1U9CSVDIp4tBLGVzSCSgbStLBFcKnfVVYh65W2JWGKvoSWW8G2CuiXljFQVOSlNatHUoiOl1Uybs3ugSh0HRIwLK6boZBe6JM85KQLCPpE9xK7NQuOFA5LfwsjDlbLvtU4s+XoXBcDrBDtgyG411GTgxRiClajMMZ9VpqR9hIaKhy44GEh+aLSYQMIWZhG3Vo3JQtZGVDRYCFvQwSLm8CLBm7l5KcIKyNpg3U57JBqisSXeD6LDFVIAY4S0gYVARJ5FSHDTQeLkiocueTJ+uNpxxT9ZNpI1avRvCiCHeoKcW5+Dz4iW+FYJE5Ynl1gN/zFjSRoPhDEAkFPcuxZ+FtZOgwKdB0scfCxkZWp2mhMf9XhOf9xzqOpFmsXHUS99D0Y7oHc6rAZOqpD57aAV1cJ+6M0ajxusIK06kqVdNyEbTkB709x27VfY9s2vsOPWrezbcRs7t+5g/+69LO2fZ2nUMOgPuNd9pznlvA2s659EPTgJUPLCleS9O1jau5d9O3fzvWuv58qvfpVrr/gue7bvIy8NaRaGnHT/q7n52pvYeeV1HHevE1k9NU892MqKtcczt3qa7c5Fm7alN5gmSY/RaJHUq1i1ch26YweL+3by1c/vZsPa93HuU36OC174q9z36Xv52j98nC9+8MPs/dh1/MwT9zOz7lhOfvjjWBpWbL/q28jCHuPPxYAQzfu8VwhRFl0gV11hAnctlG7emJBOlfg+CIXDzm/xKlQmDcw7XPnmsr3WJusfYPuEUhCDnK1pW89DfNXNDEmWNw+EklSe8VwEsRy0YnMdwyiKRxJQuVcuddeg24+HJwUWwQ2XQDmbY3fmXiQVpW09oDWJ9XERk48hzos3STFrfcTcSagTATUjBDeMTQ7itMMB44pcFTJ8TJcNLBJN40yh0bA2AOOGy66HVzeKjgeN29vF9/hYwVTHIh2mqYBeVTG3ei2z69dR1Zkkq0mMqFMm1bNU9JBp48XRIE60ttCxVlCmyHWmnpmGqT7Ddshoad5744xo1TILs7cqSL0EvYqp3hS9qVnoDciVIAyR3JDVylkPR0P2Lcyzd2GR+VFDk1umJFGTGS0uMZpfJA16JISaBukN6PUr8lA9FNXyMRK1nS+pqaseeNnshWHLYP9e5taspT93DCuaEft372LPbTvYP6+sWVMhU32m1qynzTXD+QUrNCHjWMQwcGfwdOwRUSq+GLFmgUVSthzRbr29HDO2l8yg3jXeM8NF8v1nOES9olZ2fNWmMGgYdtTK+AEJMzC7x8gc/sbbNEfxHyll+sOAHifJ8oyMP7ZkGlIX1QKEh69D3T+YDl3RKKews/DH2eiClLSEobjTGZHsAM08GmaVMU27hEmp4dk2e4OoGHwcaI9hj4UJ5jDuygkh3h0uL1Wm7m1xy3x4O6TTF7rbQ5cdTtcly1SO/w6h4cYjF6YQSd49LMyhX0G/J9Q9oepB6qkpHMnDojxZSapUGu1FLLGFULkXx+8Z8ZhOL1+banuIKxnqnQtTLZFniIoBVvHutW6YM4AG9DSZGzd7mcXo7SC53FvjiUwKtJKoqMgOyK33h9fOSrWHfSWqlEqZz6hLLl59pZUuxahV64ZrybQZza1bcU3BEO+VkR2CLVN4Vb0KGaF207ZCalMJycNj4ZNbuaK2tVkmx5zUeWwVXdHIyZ7PlYc7iUBKxbJg3ozgIJ4AqHEgLT4/wnqSj0fHki7iu7MrGQ2JEcrQ/x4vLH24U/YeEXHuIzSpw1MOxESQ2qz6hg1DqQ8Y1TG5yFdIYv0pXFaXcBL1kILShwg3PlRdWE1R4MLo4J8p/hEJMBI8wN5r4GEsaMIBahILyYm/y1iVAn5VSx0Zi2F2VSbc2lkzSgVVok19Gk2s3LSRtUetoO4vIXoNg6kF8swmkCNBVsFgJbphE9LcQN79Hdi9Cx0uuMFgxNxRx7Ji3RxTJ5/F4tIC//6Rj7Pli19mYf8Sw+ESTWPhhzMr5zj3EY/k7Mc+jekjjmF6xVpSlWmGtzLc+j12Xvttbrj6GnbeupMNx2xi5XFncsRxiduu2cuw17C/VW64cTvbt3yJ6bmjaBphz85FVp15OtIfsfOGG9lz41aQRNuY+GpGSwxWTEGaYbQ4z/6dW6kUZnqJxbSCL39xJ2tP/zqn/cSZzKw/k/MuPJq0+iy+d/nHoLcC0czM6tWc/uhnsPfsrdz4pX9k301X0zSL5NHIvVrJvd0d6ItqYTUgYqEZxkQDFJrlEs3UUhEhkpTiHdZ3IwWzDd5A5NtZbgWuEKsbwKIwivjeJRkzN9EUlYECVEr3GDsqFikR2kWHlstniCp58RlXiEsIx2FIt4tFtETMJpTOiSi295NYiJwbzMwTaUCxokv6Nyxi2KRVunh7/z0e2bFIyJfbxSIaeEQLH4n3pzyGRfz6oSzFLabxnzKGP7R7rbvLwCH2BsGMZpZXKl4mP1FVMD3dZ2a6x6AHqR660XNASn2q1CPJAEnTSBqieckxQQDkZF6J3EMGU7S1srRrH6OF/SbvSpEaqHs9plbPMb1mLdVUn6quLQmbEU2zxGi0yHC4xELTwKBPf3qGKakYNh463VoelDSLDOqKJlUWPTGYMaPkYoMMrXIc3rVdJJnhVu2cA1RVGDxhcahMtSMGM7PUMkWamoLeHIt7dpF6A3IjpP4UU2s3kqZHLO3ZRTtcoA1cFFiE7NZ9x2oeU5m0q4yKQuUGT/GQ7VizgCq2jQ2MRehoWekIkSC598I9G36v1mtDkFSRPWyMKvlHbB00uSoa+9TDO2Xs+60KvylQofTYXVobwobMiC7Conj+4mAcAh2yohFOhAMvG4pGJGNDRrKHuRQ/YSRJJbJ4UykPGfCIA68ORKmwwxgYi6ReVbXSoJF1E+8njMdSRjF+8DP2BsGtiEQEuN9beS/lKtbTYfzglkCZcufLD3dHxbshFsLU6wn9vlBPCWlgykblBq8qKsy4Raz4cuOqEiqQM9PUgdoDlY2qcqubtwKXyi105V5DC4/kfLecgZcqNmt8ld0bpNbYyBbeJHN2S3RSCw5TiZ6hiZ5U1KmmkpqqMi9NlVJJUDd3tlK1mapSGjH9vfGwLfPVWMKYu8Gs6pK0dmCSkC3ggdC/SxWnFqoWUmsfJycrTa8R/uZlDXGFVbv76oJlwh3uvirtvGdhhW/pwiKyZ9NpdD8V8cohtnQW063L9lVS8aoiBFb1h43DvBlSDnaXTdS981AP939G0sLGQjyGtpVptSGaO2kB8eJCThwU5mI1CruhB9dRqYWkhZFJPd/GFAVdxh4p7+n+KGd9zFtiOUxjYylC3cdgW8AUolAT1PZD9AUpOLC4ZtKyQZTT6WAHaaGumZqeYfURG5k7cgOrNh3FuqPWsGquZdXsfhgtQP9YaLaQRjdBfxphJdBDZZql+cz8LfsY7dqN7r+FfjWk168RGdFbNQNVn3r6CI4+8wKuuvTLLOxZoh2NyElYvXED5z7ucZz79IuY3XAMmvfSLmxjz43Xsv2aK1i6bQeVZNZt3Mim0+/FupNPY2r9aRx95gV879pbuPaqa9mxb5Gbt+2mGr2fn3zKj3HqIx9Pb+UJSLWPPFjNqL2JLH0Lv9BMzspopDS7d5ecpzxsEEn0xLpp79knfPEjn0Tnd3DUuQ9DB8dw9BknceIZT6eaXo02iVVHHc+q49eR7tPj2HNP47bvfIldN97ADV/9d/bf8r0C1isXMBpn2+efbEUxLPw3W6+OaIIGmPWwC1nImOzSqLQXe0Li/It7QKOqVCrcS1KFSA+kZyGFERJR+b6BUsUvdq74QIuEkM4jFnwkQGuw7jFpQuQH6eHLQjpFo/wR50d9PWKezEBmibgW5CRquMQSlK2MqVmIPdICSoXCwCJilwr9zKtRGRbpGsEFBopcUJtxC28raeCAeUQ6ETB2/ukMGcGWovnfciOnLlvT5RJk/HmoUk2vVzPo9RhM95mZrpkawGBaqftC1ZsmpaElh1dCSpV74xTNDdoEHjPeXLnCjFRov4L+gB4rGbWLxaAjNfQGPWbXrGJm/XpSf+ChWC25WSIvLdI0IxCl3++TZmbI0wPa/jTMKvPDBpaWyBmG8w2ZPcysGjC3eiUtPdq2ARWSDqmkR08z2U2dQvJqclIUjKpyQ67YmZ2fXyDVSm9qjirVzKycY2q6T92bpk0ZnU6kfqI3o/RnZmgW9jFcWmRxfj9Ns+gGg0ykRTO2R5ItsBVJsgo61jC41eLlUDccJ4nKU8Y0uo7mhh3F5V45wflALBKFIZy/pCr0Eu+pFpsID04Z32d4Tkgne8Z3Eo4/LKLCcwrLrr7z2aKHrGhEyEeXp+AMVTux2eVKRN3djKjdpU1iLkqBlQ9LDgq8s2fyTuE6dmzUnlOPYwzNLGhc0YlnxrV9HXsurjr+ipR3dCAu0XlGOtVl+QEOQFqVpZHyOcG9FZVQ9RNVX0hTQppKpIGQelDVqTTkSh42RTxYbqPoEm48gduN7TrufvHnLNlciuvM4n8tubTFLf8Scb4dEywKTcl+lZLkVmFrUHmVFi8ah/c6NV9GquinRF3VVFWPOlXUtXs0aunCR9RMRXmkpiTVLWkpk1ImVS1t1ZJHLbltSW1T7r4Vfygo2feWHeI2Q52F3ELVhLIhrlx2MZAl7wVKgYAoB6BioVSRXxPM3jBnp+WHi0hjbj0W0g53F2MfJeqyJL8DLUIp9tK4gInsC1O3xkvnjR/oe4CiYdux8MDIPRhPC0/l8GZjzsYVfZ7s3nsSqLyy17J3eMW3LybQieR+/1ERgMGTzNXi8SvMACKMe2gp32nnWzuAE6Gf/qil+1zE7keyaOGK/lG7WwOIGfeyuXtHBWZWreT4+5zFpjNOZd3Ra5leAYmGxV3b2XXjdbB4C9NHnEG98Xyoe9BeC8yjLAE1Czuu4Wv/96/Z8b1F1h53JnmfMtds4YhjV9Jr5ml27mRm9ijq4zZx9Nmz9Gfn0J270SSsP/44znvGhZz2iCcwtWYNzcL32HPjFdz6nW9z2zXXMFMtcdQxG1i1Zppq0FKvaUiDIcISvakelTrcyrC0v+GLn7+Z/Tds55xH7GTzQx/NoBqyuCDceu1eWo22U3asbI60VAdDbXkTyiAJqR2y7buLXHbpFmav/AgnnnVvTjr/Caw+6iFImiL1lNkjZsnNPM3iTuY2rmJ6zSNZt2eBpXaW63d/Al3cQ1cf0JBjV0xaiNKw5aiGBbAUG3AwFX03cICpIdc8FjvWXYxvVI4cg8ME6IlSp+p70+SAeVItSiO+08c2FkolMUY/V7FhFSleNqsy5IaRCMsRC6k4XPlICT9lXIFa7h2wtL3wUppS2XqOnmqJjl+Ws2XT64pJolQsDGOER2IZV3Ys4gWtCnUcely6dK+FShiP8oqvtb3a8fjAWJWHZ6p28mM8hLaU8sXxR5WYmZlhamqK6UFNvyf0elCnFpWh5frUDTI1S1X1SDJ0HFKZhbxdZGH/bpphptefsXwxHdLvR/hnY/fdn6ZX92HfTrQFSUo91WfFujXMrl5N1ashtbTNIs3QSsmimX6/pq6EplJSTximRIMa34wCNh46u3++Ydg0DGZa6tk5mjabUWKhBbUw0xoLLbKy+pU14qxqqmT5X3UVxlzDPEtDGOUFBoNppmZXIbKStrGcuJQyzWhEO2qoZJp20Kc3HEFVk/dlsg5LeLSF1nbeAlXrH5daIbWdshFpYOpRISk8TERvJONBUZbYOpancvbRSO/osIi4gUMDP1bBP0AqsSaT5TvxyA3fP4XBSfm97F3nIVluD4eM4xfKvz+IDlnRUCgx53GwimAnBHSIUPG4YkugNINvFMayC4hElRW7knuqiWOYIz6bsZh3wjKw/PCORaFgfSGMxhO0pUxWR4IDnrHJPDjmcTkYjCuW4aJj3+F3k8RyI3piLbmnEjqVyFP2u/SSxSh6HK56EjgpamXbn+GeRSNWXa1scFE0/FB6IkrlKQWp6srPlllSLd0vReNuYn5tztqqC2GL4qM5ufKRqrH79JwMapJYUlhVjT96pKoi1YmqDkXD1hwFbRV6oMNsMaJ1RnotMmxJw4ZcN+SmMc9E2xZLVQiXRgPQheDWsaZM1ulSPOQmZy8HXFzdY1JBOiEOKbzxXRyte2Jsvs3SqB6aJqHcuRKFuNLou0BThJqp57IopeKJP6SoUYqdkHbsXOlBe/ueQHGGCnN2ZBChZUXNLqi8E8bjQLAwhmQCuuuwHUmy6h4C4xjZ0Uec0VZtj4hIqcIS3WDBLZkazfLsOxRIYiVXS3M+Yvx+bTeaRGnEOIMdSOnuN/k1okpWBqZXr+a8pz+Ozfc7k16vYX7HDWy5/Ftcf90Otly/g2237uKsE1fwhE2ns3rVcTB1jHXj9JacirL1O1/lny/5CCPdwAmjNczMzDG/0GPtUUJezGStmV17OtKbQ3UHo3aJNo+YXrWWez/5v3H6Yy+kP1B2bPkSN3/zK2y94iq2X/ddjjx6hqNOX890vpnhjTuR4QJ1X+htPI76tMdQrbs/J9/33nz3si+S2ttYNVAqGrbvyFz+2Su5YctehJZ+6pOXeizsnSe3pYq82zrMIIVoVw1OElPVgKlaWHXUJo57wGOoppWjzjiNVUdsoqrnyLQs7dvG7huvYTQS6K2hSdMg06SpHsc9+CmI9rj5y59kuHs7bt92Q4KVnzUJb4c/ctkqcYt3sSKFAU3AY6bxtY1qSJUzK0ltsQZZx2/zTqRo8uEKQez54CHxWuSehZAPZSONI1uW84fud/Fjosu/Q22O0/JLHFaUwZvB6jKQL2OP8CbpGDDLAQYjBt1LwXXl3g2UaYVFTkQFHy8cYp/qznwoEak75uOqA5lxRaP7XFr2TntNUC/I3CkoUb5WYq/owVik42j2imChQnNrVjM9M0WvgsSIYbPA4tCjAVJmVhrWsEDqzZDrAZKsIpRIDxVhNBqxf98+A/LVAFIPtIVUeQR0TZqahV6f3A5pq8oMBP2awdr1DNasIVWQm/20SwuMlpZohkN6PaHXq8m5YdQ2tg6jjDYL6PQKtDdDPTuNLOyxwOwkqCaGbabZv4QstTStoiOhHYn3frBw5yryQquKlBJVlUiptr+rRFVbw8Z60GcwtwIE+oMBdW+W3AjaZJAhbbvg8rqG2goHpNRjOllY0sL8LtpmiGKtGzJWQSw6xNvaebUrN3YpYl4FOkN6pyQ76JOQVKnbz47X1PFiYJEUWMS9FxLPO5/qGr7aBoqu9ZowI2gygWM2ZS3yLXZWZ1y30xM+1fG4gDvDQg5Z0ShVGHynB+AeBwfLogo1WUUit6ibJ6KLT6xS9jrHMZniLmi3boqVPwPTMkSKnlOO6LgSIRx4yKVMS7zeLvuMjMVOdlOYxu5CDphQPegbO/KIXMIgZUnfUPXNDccgoYOE9hPaS+RaumQ/SYRHsqvmJdTaMUurugSkbJUEErb5JJVsryZZQ0AJ5hnMKYv3A0l2eDWsP3YArOeIzVnrIUGtKk02L0Ij/rxgSpFE/oInhqTKytbVYz8rq0ihvYTWqQhQNy659p1JVSZXmVQ1VKlFLZ4MhpAa+zVntXj3bFWpLElJi7KRHLA3eHWNEKxjVoaIuc1q8Z9Zosa+795I6HUXZlGmXbCHUmc5GanzIvmhRnD1K5VjKuKWMdHSyC+jRGK7uvDrPBidoIlicp2CPL67D1+KkLRMNvDmIQ3heTDLcC7vDUuRQOEVlkPrIME7nEZICNj6g1cOEpv3yPtMBfBr0flKfHeJXzVrk+mF6qAzlfVI4AUJPDRCYw8Fi06FZ3XJvOrKhCzjFWYdFRqx68xu3MiJP34u6AJXXXkVl3/xG3z5C1dwy637WRpZVaytt+7hqCM+zkNWztE/5dEwOAqRvt+lMLPuGNasP5Jrv3MTW77yT2zYuJpN997I9Mr1jDTTm1tDtWIlsIulPTczXBrSNLBi/TpOvM/9QBuu+9InuerTf8/267awuHue6V5mw9krGFRDdGEPum8Hef9e2maeZtv3mNp1K73z57jXIx7Etquv5msf/xCZmkHdMkgwt3Il+3cssLh/iUFdM+j30ZJ81EmTbq+7iqgJkZqqN2DdcSdy1mOfzPHnPZD+3Ay9wQyp6pN1gV3XX8EtV3wD7R3FzDFnof05GsU/WzN7/BmctmYN/dkVXPfZjzLcdWuJYTfvuxl2ks+hhZR6pbNKS/x0KBSKGXTiPOYCAk1xrMUqC5rukUq1NRUPG5SoTlWZwEjR2MuTwUXpkpDHZVBsNPe7SlSasldLCLEHYBvOyT6PY3HhMm4PP7yo8wzKHWORMNI5FiklcfEz7claySu7RSiLiNJ6UQhbAftcTq605DjHy9ek++7l8Q+KK6ESKk/32SjyYcqKEP0xAoYmpaytGS0YKzLRIZTlyoZQ1X2mZudIkhmNllhYWmS4uGAVpvoWvt2OMv35fdRzA6S3yvrdeLyNJKGamqI36DNaHNEszdOragbTPXq9Hjk3VnCm3yfXkNtMmxJtqqn7A+oVK2lTxfzCbtp9u8nNEtraWaoHfVOgspKyVZoiN2g7IucRuiLRXznH1NIiw107LO2AXCIthq3SjNQmLztaC0zC2FmqzcOhVXIsUkOvop6eYnb1Gvpzs+DhjIZTW7SZZzhatIpwg2nLeR01Xuq2pa4TM327drNnBzpatPX1EKhWbB0VcSwiRMlyyzfWMZnvWEQw47HSFRcorinfVcX24OFW4fFxLGIh91LycaNqaRQ0Mg+nY2sXpBo7tSQr5wOU6c4bXzy5jBvkY3cfGt2p8rZj4p/sGtu4lb/b8tJpdOUgURrO1Lj1ma5sq1VhsI2epLLqQDJ+fbtO4R/a3Wh3QLvKT8vZ6HKFo7MIUCDegWpEUCcA49Pe72LZ0R5Ts8b+SLWQ6gS11XjOAaKt9bbXfQ6XuH0ukokqFa+W5d/tbvYmCW3CWtx7QLB4kmGWTBObIGuxxsZ+cjZizQPL9Q3WtqolN2CEgfYWq9IUiUFWu91qpyWpEXogNVrV5LqiqRJSV0iVqKoarf1+rYNg5ynw1J0k0EhGU+uKS1PCjwyoe2hdSwldULxem6pVEkqWmkW2r8leQlYqP2JKCWtosYT4Vrv766zMHjSVrKpDNOMzZS08IWO7KORWCK8xWDBuoU2ubGgkkEp0c3FPCwnVyo9v1y06LJldX85xZePwpQLSxRSsWjproxl1xs5eMOlxCuUAiDgsQS2UJRkrbImItsKhLSYbE4r4WbDzZgA/Erdj34XV0XL83J09trqhwGQHBLE9koBkV5y8EILrGJZ/YvoUlQuT1EapxIpdiy2rqwFf+KevsuOW67ny8iv53g07WVhYcoUks7jU8o09mbe85+vsWxry0GfsYMWJZ1JvOAupjgdm2XDS/XjSr72GKy/9OEt7dnPU0es5/tQjqVPN3sWt1IMBNA3a7GFmzRwP/dmXsevmbVRpRJJdfPPvP8dVl36K7ddsYXH/kF6v4sT7bGTdxjlS3UcXa5ohsDREm0V0aYHh8NvIug8zff9f4KQH3o+rPv8Zlvbuoko1db9m1CR0qaFONdoomUUT9FVtYW/iyllWJFVU9YCZ1evpTc2watPRHLH5ZE564AWsP/k0Un/a1iaPWNx1E1uv+jdu/vZNzB5zP1aeeCZa9dHGwIxZrqFpE9Prj+HUn3wG0qvZ8pkPM9y1jegWm4v8MPCf6HXGBld0syjiTcdKmSI63h+1S9WRQkpjEie8mcuok3FVMbJJkTLGQJJjgU7KWtfwsHCE4lAOjV+5k2TxreElPewpzhNga5bGZHqHQTosIsv4c5TlD3lYqZTfO4lvSCJJRVOeN1BZvB+yfDydsTIkyjgWCeQxjjM6HmKfzowXDYn3Ur79AKwlIZ8or7ZZUemxsG+R3A4ZDZdAG+paqMxtSxZhvk3cuntE7u1mVQU6PUvdn0bEqkbWM3Os2bSJ4d49SNPS79UMBqaMtE22pONarJ/XoGbVEUfQNK1b1JX5PTto9u2G4RKiLbUIUzM1vVoQTai21nQZpWpByDBcQhf3wOw6qtlZ8t49tO2Q1me0cc916TziURuprhA1o6d6YrSkRK5rqn6Pqu7Rn55iamaa6ZUr6M9Me+gjZrwcjsijeYZLSzCYo5ru2z16M8AWrKyvY62pNesYJRju2gHNEsVjgXi/JLGzP3Zm8UpmFp1hhrYWV1CK4uEirbVCOsX4QCr4I7DIMrR6UFhll2c6fh5wg6m2HtLpoVHQemJ7KkY3pWtYGHik6ypy57HInShvO348vDawL3jnBZByk+OVn6xLo4W3WMuHSIahm0CECG2ISQzncQqBDiUhq0so7UBZWAKkjKWblPg7czAlP+4JA6CdHWnMi1OmPBjbuI43NvUqY39I+Vw3Wg8NwxrK2A2KS6po2mbzYhqxb5BKvDm7MaNc4mztudgIrTecWr4V6biiHwQxVdxK/wk0VIyAITDK1qyvUXVA7t2LkwEDa2xlSgbSQ6va4herRK7NikBVW7fbqiphR0Wf8hAES2PIZtWjKYyjdQaKWxE1CbkV2saVnmx5GWZh9GMrap3fI6ZNWTYHbaaUjR0itHTuxG4H16hWnuxph1s8L6XVCNnya2vsdU88812m3ZcXARCWROvHkGiltXk1LOQW/O4I57FHR/cMRUO1sZOtZtUvcaB+XLPiFt0xJi0hkvEKGQHarMeGWXDsZBrDzp0Hzf0HmluitKd6wn5ybxhZ0NT5UZIIeNK5huUYs3ZGcYGUbL3b4n42IZQUWumq2AAl5CupmiEgqecJhatd2DtSdi0O+eoXLuOb/345M7M9siR6ObOwNGRhsWX/UNnXKAsZvn7zEq/762/wkC/dwi+89NGc+oR7wUzf5qaqWH/KGaw/dpa8tB9ZmEd33cz+G7/JvluuIW06kxmdReqNrDpmM+duOgttG0bDhq1Xf53rv/JVbv7WtSzND9EkTE8JRx29kpkVq9GsDHUvTQMyVKRpEVFGDElXfYWZ07/DuuPWsnHzZm782r+TW1hayKg0lhAqtu+HjVAlq7NmhitIldDvD+jNznHkKadwyoMewoYzzmVm/VH0ZmaNT2hDM7+Vxd3Xs/O71/O9b18HU8ex8d5Po7dyDTlnmsVFRosLLOzbRR4tsXLjsaRVKxlUFf0jjuDHnvRs5jZu5LpPfpi9118FTePedKxCTLLQuDrC9LKYHcT3RvTzUVUq27C+c/ztCI2YRxrp9oEZH0xZsd89dEtB29aSOdWlVVgsg/9jink1zgYiz0wM6FRURMNRjbCJAkaMw1QipVrO4U2dpM9jUvpgLBIKhRZPfkKp3OhZaaxrKGyOLPz5kNsuOIlmoiaj3Z5AZ0AYj47o1JNxw6cSnjvzolrCbQ00EmPtimWksetE+IpdsvNmhKRrVckZ5vcvsDS/SK9KFv1TmRKfM2hrvRWyCs1IWbptkd1LmaOOyMysnTELiBjGqadnmJ2qqbJSe4O+3Cyh0qD1FKmukV6P1J+inpkBPxOjpXlLnF5YpMqtdyK3HkApYkgiHE27WckCzcICbX+I1j20P0Wzv6XB8rbaLB6RAFE+v6oSaE2JsKgqpKqRXk1vZoa5VSuZnllhIVL9HpVb/qFF2yF5achwfgnNfQYrNxjwb8wkmdtM24xoJbvBtLbZrmcYpIpR3WN+9w50cT/kSAyPpr2Gz4IndOWTxbFIVJgMDJA6/IiQpaKhcoWowyIiHq41Fk4eWKRSIEVmRxTbNf4hy/CoOBYJ47SPwYtjEAqPdHik4xf/YYqG3UA7dozia8ctugkpXgwrL2tHIkrLRghFqZgR2pa7OMUnx4S9WxBduEd89/Kb1rFxHjwhucTGd+9qPSksZYMYwZTGy4laHQMZe/XA4KoDrETjioahS3P7ufvWDktnUVWR4vqK+zTwkYqm2oXuWAx6RVfH2foDGAyzqk6WKH2g7apTjKArGUy5TovSOJhuXblQT+hXzGIsWD5G0hpxj4akvsUyep34VFdFwfDM9IMVDcXj6W2jCy0pCU3JOUnkFLXpEzSCNj5HTYK28ZJ2jUFLbSl1EXxbanIrklqeRhb8YAvNmKKsJFdwlxUhBHyf+mK1WQsjJ41bCuzdVcRPxdZzZcOHMD77Y8qENSxSTYUx5PKzqzql3UXvESSuSETYHsSp6krvjb2ZCF+I3ilG1hMhu0XYGiK5xTl4jCRUvFyo+Bl3TTcSxaMstykb4t9HiW+NEJMIz0oJPxc4D08WNqNqBQgYi8HNmOIreHy17YHsIYkiwkiEfRn2Nw21+4ina6FqWpYWF1maH5FHrVVX82uDeSsXR8p3tsKN3/42x536EfrHPZg0exz0aqQaob2jSHViaddX2Pq1z7DtuitZ3C30Nm1g9erTkTQFo2th/mqkWaDf38QRJ5/M2U94Lntu3ckt3/4OWRtWrhqw+ohVVIM5mmFLKzVto+RhQ922VH1BtaXdN4/uuYXplUew8sgjuPHrPsfZ4aC60SX4jCq9Cnp1TW/ValasX8/x557Dcfc9jzUnnMFg1RpElGa0l4Xt17G4dw8Lu7az+8atbL32Wuq5E5g58UHMHHE8rVQs7tzOaHE/7dIiizt3sveGq9DhbmYf8gR6c0Omp1ZS9VdQVbMcf/7DmFq5hi2f+Tg7rv4Go/37rXs0UWa7RdTAkYhpwBHSUMBD8ImyVyheK8tzS6W7u+29RIqSxgmvClgRncQjJMo8fJHDGNaK8E7bWFSc13nVmTDRgSwP1XGFvXhLRO4BrKTj0Vr4+DKuEXY7k9wSHowxLJKkwIFlWESXY5HIvVqGRXAsYqivwyKqRbEsXoyifPh7wKs+aunQrAQWUet8PT52V2Cgi6UwA4t5NCLgyipZ5e4dcS/NGK+KXE9NXkVLGGWYH8HC0iK9pd2QMtR9r7aWEKZIJPJoHh0u0I6WyFmoewOq6VkzAuoQ1UW0bVHpkab6pNVr2D9aIi82qGYr4V+nMjMKXTVRMaUjt45HRi2apkAGtHmxKPWlB0z07fIEypRq80D2pqh6A/pzs0zPraA/M0uv16OqvCR1HkHO1udjNKIdDhHpU0+tRlLfeqo11v8jWuXmdoncDKkGs+ZBkhrJFureS2uZqnvI7p008/vIo4ZOYnfyv9MQrWCNSlc6tnWZnwNXqvGA4JNod4bNsxpV1EIWxOtRn0pIUnner395GBwk1Fz/WyNmInAg/pxhkuzGvOym0C6q587TnVA0DqTlFlj151zvd3ew34/QaXkOHMJyn/2eDeDi5VcPSIjBD7VfC0/WAvtiG0M3ActUDsf4sYZm/em0wZy923AeVyNk7ArGzKK/dTw4YNJjHsLr0mZoMl4ZyUquhX9MXBkJwNW6SxMPG6pCKCTvrF3yA2xuoqKXdcJuS8yfNR+0Znvh7u9G6NurIHHblBILoPgkhdJioUqVVGbJTdZts5LafDFSk1IPST3wRLJKLGSqqirqyurKx9ilxJXFonfjqyJROlXgSfRSCakWGIKOlDyCthH6TaIdCbmJjdU48ww4P8bk46/kx18jTCeRc+UMbpwbiLkrfa9FvCOJkhdDCVtLxdsUlcPCQt7FAEeMdky/gjcxsjOh7kqtCuC1cKrsParHVfhQgQ9vMgOweEpGcArKyRJn0NJtXNuP2gG2AATQnTULmXMfoya3DANksgtlY+viTReF3OBMVYoJp6tJIQbWXNGwmvoW6oUEkw/w4V1ikVLozZpEdpDDSj+GymjetIywp4G9Qyu3OT03YGaqZmblgP50j8WhsO3W3eTde2hyw1RW2gp6rsj065qjNp/Ov195K2v//gNsOu3rzB5zBvWGE6hXH4fWq2jbzPXX3sQ/fPgKbv3uTaxYdyRHPf4kGExBewvsvRx2XAcLW6EeUK8+m+POPoc9T3gGu256M0t79zI102N6dpqqnqbJLW3qM2oT7UhpRw2iUKmSRiPYv4P+GpiZnTH3Pwp1DdlCBlNlVWIi1wpq1h1zFGc86ic55pyzWX3ssfRXHEXWzOL277D7pmu47dpr2XnddTRpNVTTLOxrkZljWHv0vcj1NLtuuh5dmqdZWKRtl9AMzb49LG69Cdp59m67iXb3FUzrJmaOOpuFbbewsNTjyB97ILNrj+C7n/8kN33xs8zv2UF05o3tp971XTUbfy22iIjpDznlpbP9rObi6UrFWGSlsGuXJ53yQSVIVbmVNrmCbDw5VIjOlW9jkaxlrCFzlxu8HLOEcq7q/C4Ohhyg0R/e1GW0dZ7gwHduGxrDIm6888c4FhGJHhp2/jPZDUGMeSyMh2gWxyIag3BQ38nawEXB1xxHuuG6C5g1hVwt5CYH6jBe2fUu8D2nLq+890J2fpqorNKlWJhUnSLpv7VWA+C8zidGzQtc96fYv9hQ793FtC7Sm5qm6k+R6j451XZWtWVhfkQ7aql6fVbPzNCbqsnaQGNgPOuSKQzVgGp2gDarWNi2iLTWWDiK1Vg+ghvdVMnZY6lja45apJdI1JArxyJdzh1YaFSK0vpSM5iaZnrVOnqzc1SDKap6YKV684jcLtIORzAaIl6FKmeQNEXdn7ZcjtYK0OSmQb3apaSGVGeqrKQetM0SVQW57iE5U9WJmZWr6fX6DHcNGO3eRTscotrGdqBr8qp+JrvytBY2WaFauSFN3IjpXvQU4VquONqSkz0JHNdEtWAsxyHJkuGD7wi2uYuhIeSXOOqQZLg4Q8kjpTJ8KYnMWJhIh8jv1Pm8E4pGfAl+dLq/wlYXz0aLt1Yi2duYZ+uoLZoYFTMQkWjcWZ+7sqvBxClmCjcc+Fnx8JeiXXTCvQCWpHa9+BkHPBqpRRiHw56WSDAeVyzsZ6gc4m7tcHWXWH9nIPbDNk/KVn41Op+nLN5wW4qrVrwMbDSDs01iG6auhOQJ3zkSiRU0W+WMNrducTdhmDRTaQe8xMdoEVoBiFOx4ZfGhgrVGFNFPN9KgJSopKJOParkVoRkno1c1WgytpjCE5HccudKZmyWTnG0eTJnjylaKSeqDKmxA1PX3uBwBAwFGQnVyIoEWLdesxBkB+0RQBaBTOYihJzscLdqSkYw6NBCAyREF9QIg7EqD4JWidQTpLJEsOw5NpUrgrVEF/pUErDAKlHEDdt9ekhQSqRk8ayalJJZ7DvXWbBv6FBfx8XmYUwqxbhQ65ixZ5yHOQXLtf3YJdGVqjtjyrSM8wAVcs6k5CaFyLVxbGU9EuISJrTjNYuZjSBJLZWswsMX5SztOlC5p6QYW7RTdsXDENrWzmVVxi3kusc+FfYPRwyqHmfc73ROOf/erD1iHTMraupeSyOr2HbjbXzlE//Ely/9CvXCIjN9WGyzdTgns+366/jUNXvZd/OIB373Ftav/SpTq9bQW3M0S70VbN2rfOM7O/nyV3cy3DPknGPWsX7zcYjMQ3sbjPYjbUaXFmF+N7L0BfpHtJz2oHPYesWDuOoLlyGiBlqqCuoKrQc01AwbqJcySZVeqq0Pz2iJvLAbbZc8jKwUaUQxryBJyNnigY88YRMPvOh5bLrPw+lP70GG16LDaxkO13HlZz/J4q23kBvYdv1ummaR2aNORKY3IFMr2H3LTYwWr4HRiKoWVq6apic1e3ctolnpDWZpFzO7b9jC/EyNLH2bNbftY35Py9TazdRr5jni5COZWfV4qn7N9f9yKYt7d6O+7mEDN8bpZarVdmXy59TlhsX3W4WaCGVCO/lAKCWpQpPxy1IV0eWjvRaWSANeWbty62MI0WRXXflZcJnnvxY1KQBdNkCp3dPgyvvhScvNSQ67yyvBSaHbe9mNnESpX+lkuogZCeK/kFcFi5QZ685+yLYx+5yNSceQUvzjiikAyftYedEWC2lzJVYUbUNpdAOHhALbyapi8JTOQyCVMD0zxfTsLL26pqSDSkJzw3BhP0ujBcysJcWMmxSGS0s0rbWgy7mlP1yi169p6z51VVtftCVlOFKSJvrTfaZXTCP9hOZsMsyxQputvVubRsysnobRDO2+/UiVrZR91Rom0my5bLmkHtudqedpta3jpkQrFp5sWMQMkpUkN3YmBlPTrNywkf7saqgFZYRZUPss7d0HrXkns7lMyL2+hVelilE7QtpFC31S9aI8plilntCjZ2A9tdZAlpHnGmf6dUUSGMgUraxlQWFx1y5aHVouoJnb/TSKe3+kRFNkb3oR0qbbj84rwpBQmTEz+qOlnmES9dxfy2s1w2419rOS4DB0Sq4IJcCmtb2bPNdVtTHl2T9QMHbZZak8M57XfCh06IpGcnW9WPKKOB3T2dw1TqJxIG4hZsZEU7LFbZ2hxmSGh0DGrhel6ATT8Eu/jgiBStrNQh4PYnHw4NZDVwRBoBMLWq5jMduUhjwtJQ3MwXjk7/vCOVA8UPi4wcA1xEi2gZyt3KFmbyjnIUAkQdqEtEJb2y4QNfBqzVeSJ1U74K47S0iwPc3qnhNllJXUWsKoqJey1Vw6UUdV5qRWV91mPJV5TW49s9AsoUoCNWjtFvsqUafa+2RUVFXtwrGmTRU5JTQS+tPY5vax5rImBvhycOOEc/ME2Xt1VIlUZdQiskqRq1TbuFoszjG30FQe1pTtOlEaM85EqYcudsAtZKyCXBUAUKSHxcyULr7iniatBaltPbTyfVtVrnhZ11V7uN9LMa8JntznTDhV1hTJEl7jbGRXnCvXNaKjRCSo1nQbPfb4nbMm/GeiTkDbHVoDzXixq/oUHg+wyh1l74xdx2Ldfa8q5uUT8ya0CtIonYsCSoUxV76t5HKyzu14jodi1uJkvCAMwkkolctqgyOFFQfYqTUXI4si5lnMkHN4Ie3MUdX01h/F/q1bWbFmFec/4WHc7wkPZc0xG6hG87Q7v8to+3X0jljJ8T/2QE6+98nMrJjji3/3KUY5s7AIS42d+YVbb2LXSPnEdrjiukU2Tu9gpvc92upKWq1J/Zol6aGjBaYqOPbYI5mZqxD1vvPVAHqzUM3AaAj798K2rzO7aS1nP/Fx3HTtjSztv4Hhwn6mJZNSH6l7UE/RyoDcVsgow1RFv+5BmmK4exf7b9tmqn4WVKysploShFmSqwH9mT4X/OwLOe7+j6Lur0R1mpRvJe/9Br20nU1n3ov6nFPoDRbZsW2ab3zk8+zbdjOpvxfp98tR0KrHzIppNt33KBYWB+zefi1VPWDlpqPRpiXXPXqzaxnOrGZvnmNqVcUavsPUDZcj1Twr15zB6Y99KPXUNN/51N8x2r+3CPvI0alTAqlo/O/KxSHJwz7EvRO4qS31S6+Nsl/BypnXPct1q2pvkJZMRnoFqlbE5VYn1MuJl8Cs0nk/6LwZMmYPjI7FxaLvlApXPkxJwLUoYMxYQYCicSzS8fgImyQlqyzkhT8kxTz6xd2blN27kD1cUjycyuuHdRYOH4A5nA6EXkI0IR0PC63UPjuORZzpGWgfwyKto8TxEO4kFanfZ9S2pCqxYs0qZlbN0ev1kDZDO0SaJVKvRzWYo796Ftm1i4WFvZ2nKwtkaJcamjaxO8NS0zJYUHp1Q12N6KfEIFX0qkRdQZ0SM7N9+lPJmxIJVFZlsh0lUqs0uUVYoO4Jaf1K9reLSLuEyIjkHj0BUmPAPsCAEBb4hLQt2uYSFUGUlXf5XKXaoifqmnWbjmIwuwqqflEMc7uEoFQrZ0wGJ2gaYXH3fprG2+FqWjb1SaA/OzAAnhcsMqPfIw9atMlU2qfVKZK2SNVHR/vR0V5yHlri+ZrVJIT5nTshjwwPObTBcz01mlnHLlIrrlPyAFPqQGsx2pqRE1cupGfh6WodmpHKCigVw2dEwogVOjB5pEQggPFfSDl4kno4e4VKW4zN1gTRTtWBieC2j5dnb3w/uhOKBhT3rUYib4SkhNIeyVN2qnIy67OITUSLJfBExYyUujCk0M5Tgtx2cKJTHsYS33wzmVU/+I1JHXUFxZ7pbANWJ926voZWoSUbKZBEQLxx1u4HIAWPsrGrW76R6DRNYTaKFitHVlM0mhaqVqlGWoC9qPezFDuzfY1FsXmzZiz2YlWLlVNMIVTsXpPH7EqTadtsmnS2JMUI3zEGaBqpOIBLY7ObHI9VKtTYQVbvMC4964VRVRW9VFPXdemXIZLQVNGm5HkPdqoyUR7QKENXKUi8H4LtZPfwgGgyj0+rZulIoFK5uzQjUpv3xZWqplHa2q0fbuo23pm8qgLFQ9aKl+clWVlUCY+G772YjEo9X8Y8FrkyRSvXCbyaFp7QJmLJ/LV7NGpXRysXNCWeMgRJ8lK9VUvt51PUYnMRWzf17lDV2N47MBkRX/vDlTLq1by0eDHDkmjJdHbGA8IXizCAukcoPBli3o0S/WdJXI4TPIwlK1RKJMjh8dHWMNAS8sKIU0qUagh3kCz0SyiNKbil4I9QvKnGgsL4YePLrcXRG7tRGneDa0rctmeeLD3Of9pjeehzHsfs6jlYWGC4bRvXf+3fufXyL7Fh/aUceZ/zWXP6+Vzw1Mex5Svf5NabbzEPG401qUxCv23IDdy0S9m2W5mpWga9ltUzA1asEiS3TAtQ1cxODZDcglamZEzNWdzq4l5ktIjm/cjifth3E2uOOIXc7GPXtp3s3Hobq44dIdUMVdWnnp6impolL86Q0xCtB9QrVpAGU8zv2MbuG24y3i42r1HJqwUazcwPh5x+7zM45twHUfdnscISq8mz50G1nmq0hY2nbUQXboPbvsHU5rO55bSTufmjH7fY69lZUm+auTVrWH/KKRx9r1NYf/zRXP/vV9KvRmw67TiOvNe5qPSZ37uX27buYHFxxP7de1k79V1m2s/D7q9D3kqaW8vcaRdx2k88mr079/C9L3yW1I7MOJOSG8FTZ+QA0GyAw4FfFqGRaMYXoQv+cEObdQIfN82FscHkSPGSS4TlRrhg5wkNri0ehxLKs8Y/Y2Ff8VSoK1WRi0Wq/ugH+u6gUubN7suSgy16QN1QU0Iegajs2CYBMZBuYY5dLmBn8KTDIupd34PBtAYALbQJNMJgUS97rOGY9rF1xtLkRk3LETHhZ1gkZPQYFinolC5Bt6yqlHDeFkWqirl1q5hdv5qqrtBWaduG4dIieX4/g3o/U3Oz1LNz9FetZn64xCiPbE+3HhqqZgxpNDFCWGiVQQ2DXoY6UQ8sXFNEkAp6vYq6VrOwa/KqmjVSJaQR/n/u/izWtiw7zwO/Medca3enu200N/qMPvuWzIbJTiRFmZRM23K5yiobUhVg+KFe/FQvRgH1UICBeioDVUChILhkG7It2xTVUJTMziSTmcnsm4jMyIjMjL69zbmn2c1aa85RD2PMtfdN0VbQhlEO7cTJc+M0++y91pxj/uMf//iHDIVSlBI2yGTCSjKl9AwluAGEvQdJ4s35Xo+KQmhM/sWQkaEnRcci0ci+EK2yGsWavhf7e+xfOCLEBpVEDkKmpZQNlIEQGooO6HBOmswIw4TN8YnhDZcZxRhI7YR2MqFpEt35mjgE2qalnUzRDGXTs1lv6LoeyUITOlTOGco5eVhTBkXiIXJ0gdwX1ie30WzXwQ85q2Z4Na0QHDea6yRUgOnZaISw49hZoth1ThFJtQe2qmsch4RIknE+OlEtxkQ/Qw0/WwIdCoRYSAo5bfEyte+3bCNHXXfbDqCf/PgXP959olGJVQdJFcjtMgv17YzNKzuBs74oAw8B9eEP4sEZ2RGJxG1w3J7iuK63JhvqG4RRmzO+HD/YQ93QxZhlgmlbR5Sr9a8YCNHqRYlJkiqXpKGY7WlUy/6qL6zbyu6Cjfr0g1ijakZtQw9jIX5siK+tXMkv71AskwxACvY1w/tVzmPXpsrO6t/S6raYBfXx2eKN6IxvVUZrNGMN3DEJCyKNGOi1ibXek9DY3I+UEilFmphIPowvRjs4a1WgEMZFMValxjUoYwwlmN90LZNWkX0o+ERvzEouqiWjIogGQgmEGCx7j5mYAn0KSImQC6IRVMgUa7DOziSFmrlbI6YBzsjYqyIuKQigUcegZpUMm3eiTSCkHeAgVW4VCRq282B8HUlNNqt0TTD2yhn7FK2EK1HHhLNIIUs2LTjVAak+tiXLus/ey4+qY66BqyaeijCMUkbbL3YdatZaD2lPPtzKoza41iUmnm2UMYmx36i/p9QSuSe14OvWExyxYYs4AVA8+TMppGupfflYnl8ToC25Abgcwl+/7/aigbMBbq/O+einPsJnfuMvsXfxXrRkbr/zGt/4wy/x3//On/DOyzf5xPvv5nOHt3josQV3P/EY1x5/lOO3rpsMQZJVbvrMhSYgSWnFNN5tCMzawP7C9m2/7Gw4YAh0qyW6WcJC0LgP032kNLA6Qbtz0GIRaXNKezjw8Gc+wdf/7o+5eWPFg2UgNomYGuJsQrO/T2EgyIa0l5hevBtFuPn66yzfeYe9vQkH995Ne3Q3b/3oRU5uvEPOyqYUlpsN93/oftrpgJZTZ5VPQPbYDJc4fv4rHFwRJosGupZIy2SekKGj9C0AVx66hyc+97Pc9YGPEydzhtU5DN/ivsf3ePinn6TZP4DhdQ4vFfaO9vnhV3/M6sUXaB97C53P0RXoZknsz4g//q+Yf/RTPPUrv053csrN732dUB1zxO+rKlGy390wVo41VEOA7PfZfr6aYxBNLlVoCNUZiuJEuxEbKqbTxgHweBJptbpl/Pn6Mdq/V1nOmI9vAaQlK9tvi/dqvKcfdSiOf4xtdn7IbLHDVi45Dt/zWEFNTHScakNtqmX3eoUafX1fe7goWkar2+KknzXTbrFIZcrVxohbkuFSIULx6tMIWIARQflr2DbqjsSqa/KHaCnWYn/B4tI+sW1QgWHYsFyecXZyRtlk9qcJJgNTCTBt0KZhs+52zCnq6xNElCZAcel2jOYJN6hZ3ou4hMnfT3QSGaLJgkOiDpeSUghisqrp0ZzljbXZ0Eeo1vEhWR9GiHZtUhBoEyWBdB1BB6aTiEwaZDKh08HOhhiIXgmcHc1I0zhWH63vIKLDhNxv7HwPYZQa0QY0YTe1CYRpy2Rvj3Y6N1zVD4R+xTRGJrMZgYjmDTSQUoTjDbJeksKanJJDeiUzIPk2NDP2L1xAh0K3PIOg7rBl63HEItj8jkJV9lQCVCzZiEr2KoZEsdlkKUATt1gkeEVDnMDX6H1jTtybY8FIQthRJKPKIogQY/HKrOXvaEHF8Ihqrc/vPhwsjY93h0X+ghUN3xj1SK+aJBg31lbXbIexaddl3MTqOnkpFlyV2vimrrX3IBF0PKOlKCWUsaphGFpGOYJlYMFfmnhA8LYWtdZaYxK2PtVjlBKoMxrGngZnIEbQIJZchDiuB2vakp2ESGtwsdeUxRKiwaVLpr30zNG/ZjjYEo0WIxYJ2PRKNRedFm8eEnM2ij6UT4kWhjSCFAO8saA5ULK6ZsgjnVPHxZOPsCPxSSitmgRJ/X3nYA1HpXGQ3QRiSoTYIClZRh3iKCuoeuQxZca/PoIs2QKzWv7034wUUoaUi0vLcC9ZGddz9h6XUATJQsjBpEyNJU4USx/wnhctrn3NWAKDeDkwjFUi1eD2cy6T8onrJCwwhaqDFBe7RtvMYtfPKhjR55G4xr82/9b36glxTfxFss1PKMUqI8JYkhwoqGYXTNVk4yf7Md7jAAGcVLDrUhCXIVXSx2z76sbfDWdjP4afwVWKM2IM38u293b124JUo4f4E8+nWxBha98TljvkD+pgxlnHXXTjiUd2hjOGMkpUdu1tBQghohLZkLhdGpqDPT73b/46h/c+QuGAW689xxf+/j/jO3/0JZa3Njz8vrv5xC9/ivs+80uko0eI3ZQL995Nk2q7nkCBvRSY+/uahHp4BJppQ2wimy7T9+bLo1G4/sbbbG5dJx6cIfESpALzY3RzDsMGCVbxUIVUOt7/uQ/TvfICB1eBtBj7l8JkQnu4oLSFySSyf5BoD/Y4u/UWL3/zOa5cmfHUT93P/b/wr5Du/xW++Q/+EX/6n/y/6fo1q76QGuXuexeUzatweoJe/Dg0LaKZt579Kl/7z/8Lnvj4T/Hw5z7K5PBJhjzn+o+eo0hgyAOzKTz+Mx/j3g9/ghDnoIXNyU3icIOr11ra2QTKD9HjbyLLW+xN7+Leh+/ipBOmiwk6u8omf4funTWzvY42vYysXmD/nl/l4c//CpuTm5y/9iPQypHbWghAKybF9Nqm3+Nt8gBV+pogNpZkhGikpcgIDJBdkGFS1BCs+i/BCRD1hk0P5aMhAoXqGGP74s7YMKpwxhhs/TG1VvLu1dX/K3x4c/u2fHAnFgFGYiLcAazcucmJNsMighRXKdQkY3tk3oFFrKpk8mT1OFXhelGXYOsOFhGXyVpQodp8RE9aa2V2JFRxOWgMd2CRilnqrTQiPBBSYv/yEe1sasqCbsP56Qmr83NAmcwTs8M5cX8fTa3FxZToiydHPTvXUQkSGIZC6+YtSZUOJZaCiMkHiwjDMFgztGCVBBQNGxAzwpesaBlQzLlocbQg5I6mUUJjJ6eRuZEYjHBMuJwnBnp66DfMZ0K735IOL6DzI5bnZyxv3zKJohiz3yxaSNn+XlpYwq5Cv1qyPL5FM98n7s2hXaCS6PMaGjOCkUlgemmfyWzPEistIIWmzbQx0DQBygY25yAd2ghhIWyKIET6wex0bRkWoEdDj872WBwdQclsNmvbx8Vk6iUEVz1UMGn/1rp+vYJKDNZvEuOdidKIRWq8sGpGlEjyBCaEWiWqSUbFYvhBa+ssiDlWqFc4ajJdsYiREnXdlnFb/U+JHH/BREMqIth+eMbfYAszIiSMIW8wNr42qkhtwPIbZcAt+NN6s+XIRVQk7p/FIZgzn2PJuBoWiEUH8RNegtrUT9GROXDyyNywtvSPvQ0H/Zaf1yZ2xswvBMvwo5dag2yrMMUrFMBWwoP5Y9v3lTJscT9OVYlC1EKr3jgfoEnQ5sJQglmgiSWmEm0BpaDEUGstlmyE6C5KanMkSrZS6Ogw4lWf4s3pSYUGoVXdVkXw9xqEIcAQxdl8sUSjcevaal8rtR7jwhfFmsbUJSq74iwR21dClSG7yVaxak5W2izEQQnJGuLoXFOoQqlJRq1eFWMDatmx+HToorV9f5tnj2mwHygxWNJhiWC9wbaINag1jtckI1iZ06puiSqTiBp8dkatcEjFo9aLQi38eRrqL2YLbIUGqOYDW4mbkv2rvnLGZ9p+vLcfIttkP7Mjg6JWfuyeb1lXP8plB2SNFE0Zq6e2fqX+EbutO88wJiniCWlNaCp4q4yyOqHhCUd2n/EUBJvq7BCtwFhvkRoDLFBntfdmccQJFUnIZMpk7wLzLnPtkQd56KPvR5rLrE5u8p3f/31e/cZzTKUlXb7ClbsXTCfC6cvPcnr9JsfdHjdef8WqnRLMZQuTChro9V2XhBQTKKw3AzlDHpxkCYHXX3yDl559nifvegBprkK4YuX4/R40I2kKw9qIoJO3uevCjM//q59FVjcoRDarY4Z+Zde4ibTNHkfXHmK+mCKh4/Xn3oDrb/HhDzXcNX+Jaf86aR6564nHSbOWsl7R54FpU9hrA+iUfP48Xf4u6fAp2sU+B/c9yT0f+RTxwiE0ezCfU9aJxaX7ID7H6XLJ8OYrnL36Vbr7LxOaC5zdusnrzzxDufljpg+/D8IMZIrEQ+jeIWxe4uKFltljV4hNIkwuwvQuNusJdGvSgRLyOcNQ2Lv2CHd/6FO8dHydsjwxSZ4nBsGb4ovEMSF1mEbUSDXzQKINNw0JkYhVURPEluomU5wkM6mPOuFRf39rby44gNVtPNHie0mjB3D55xDANvfYZcuxtWA/8T9rL///7WENVne+bT/EAyY9jmp1iopFTB0go1PYdtidnQvVKhYqiYHbe9bnV4vWzhCWMa5vezDqbAiTn2yxSD2Ex9hRic1QizOyE4sc8vjP1r7JWsUKIRJTAxKYzqbMD+ek1FBKZr06RbsNEweljfd2ln7NOg/0BM67DZusoz1qDaVgs0YaFI2WXPRZ6IdCEqEJbogRlH7IDJuO6WxClBalRQVCo0jI6ABagpvVFNIs0l7dh2zzsks2Fj1KJGYjWaVpSSJ0KKt1z4SB2UEgtB0l9WgbmDKlWxo4VzECNLXBXO36tblehRmEQJrOSXv79r3UWEJQArGd0ne9VyAL6JoQWpM6Dh2lPyeFjumkITbiDTrB4n3pSdNELA2lL0gQStMypOg9GBGNkImk2Zx2r2PIxfvSbH0kx9BBTSI2aPCkNmyxSHWVCibts4qooI6XI42tVXGVhngvsX+/rp66rrZzYeq9dpUIoFoci/g5OUINSy9kROQVSG5xTa3cv5vHXzDRKNv/8OFLBJ+uiW3wpEor0GKVjCTbVm98u4lLTijWjGUXI7u38A4LjG3IQiGHMk5ytqtWW7t9w+w0XIWwA+rUAKXZDFo1II5MD14eqhvaAXINRGH77xASKQSa4LMknCkZkwe/UyXUgSr2unpnPE2bbFUF9Z6CUGyIYRFbtE0QulToUqEvhUGLXR+zizLL1yhb22B8EJFfH9VAKUoOSs5h26+iUMtFVbKV1CRTdSrlpP5I8IsYrTdBk7lhxSSExh0QapUfs/As/v414K491hi+qzt0EoIQlRiVJpgLTyLQRqXJSkziMzM8wAuUIgxZiFmIJRBzIRavItjkIaSYfaZNZPaAbuc2Jdr6S8X18WqbsuBZfhB3erGXm4XRkSTj76M4QyBVZ10dY7a63hq3DDxsQQS1V8arSZY7yzisrSYv6pIzS1ArF7G7wf/lSDSCZ2RVivqT76jKROzTnT+xy+iGUL/v99GrG2NGUZO7kQHYVjCQ7cAj44trRaz+mjVvU4TsRIVVUup3fX269juoAYys9jw1UdIQGLADIjWJhz70fp747Kfo6Vlcvszs4IA8RF7//rd5/VvfZvXODT74i5/jno/+LE1+k6sPXKaPl/nKb/8D3vj+j3n7hR+NVyMIZkygFgMq6EEDOUPJA5oSqjD4ZMhQCtdv3Oabf/oMD3/kCaaTq8j0IYSEThQ5jNDuweYMVitYrZDhhEY61jScn52zWZ8xLM/IfQdFmS72mDz0IeLeJdbnx9z8nd/koXs2LMrb5LMZMjkCKTaPwsGyqrJaD3TH15HJQ+hdd/Hqt78K4Y945COf5eCeq3zsr/8tdDiDzasMZzeRcMje1Qv09KzOTrh144yv/PYfsDwbmB7dz2YVODtecdAENK9QTUh6ANmL6GqFnLxC090g3nUXUq4hm0Jz4SGay48g3Vvo3n1omFFWZ8yS8uBHH2dz63Xe/OZXKcMwsoe4EUYIYdRcj3xzrerW09olJjISUTJKPFSNYNDRecd/1kt2WgGxlUFGKZRqIQRrJDXXwu363k0c/sfUUXeSMO+9h1Qs4hLWEYt4XI41sVB1wtOIw1o9HYmhsSp1JxYx/6XtIFH7cR37LCq/a60blQeW0cmnSsor2WH4wiN4xSJUKe1W2radg1ElSTuSGm8Mm8zn7O8fEANM2imTSYtIpFudW8KsmdnhHs1sD7QnNJGeyNnxMavVmvW6oy8wFHNxMjUIZhLjOEr6QidCDJkUhSaKjx+wdTfkzGq1Zu9wRsCG9Sr2HCGo2a/mQMk9JQ/koSDRGqCLuW3YdXMXxiQB5jOQSC6ZsDxmMSvklCmSkDahSUglEGONrQ7GGZDUorFhWK7I/RlxuiBMErNLlxkKVu0o9rdCO4FwjpZMzpnN2TlNgJQSoRg2bBth0iqSAlpaRAtoRktm0EwzC/RxQlgPpOmE2M9cxRCgaQwvxEC7t6DPmXK6NKAVbcxB0uBJnq09wyKyBa8B6gT32ktacH/94lPDfX0ECd7zuO13Hmd5O7Fcq99VSVNxYMUiqpWc9d9XSyOK1Jlyfz4WuTPi/I8//uLSKcoOPRh2WMWqWhfTtWLZepU6MB7sW0AgVB2pvfyMD6Gjond7kxllEAfFsn2b9SKO/SJBbay9YFaLwS82Vuq2he371y8Usn0NWg+BUN2FvOoSzB0khUgbaoe/gSAtBe8zN3cj70DOijVEqUmiehV63C3JiZHojEwIkKLSJ6UfDBgMRbezRbAAVWr1xx2L7N1HbBiWNRPXYIV4z8W4cCpbYkx8Emgp2xKx1EYlLzmESHYWjxFW7y4sHTPfej8V3L6NsYm5HpSO04kR2lhog5KCVb2aolapKfV51BkRGKK6TjEisZiuMwd3YYieIGR3pbBNgxYkVrZmm81bcUy83ciCVU001JM5m7guFGcTsribllqCTNnxu/d3WLeFlc0t2ciOM8QTSinbTKQW6sZAoIHkFqwmJ2KnprFb3djd6O/Nh4WOnRBVAZQISHFjBKnfYktR/ITzDl5Jkjr0r/i9ULbOL2Mq4r0VWJMdwRMDHV+TSZ6seS+XMjI/Fj+sTLkNt3YARN2GwiA+5bXKZpxdKqqUIiwuHPH0pz/Kg0/fx+rkTQ6ffD+haTi/dcrL3/wGrz//YxbTyMd+8QMcvf/TDG8+g56+wPza+3n0s7/Aj//sP2Z9fMo446VeSwzA51H2IeRiidTQ9eSsDNX1alCkdHzjaz/g4997lkenLeHyAaRLaLhkjeHNRehvQLoNw1tsTq7z9htv8uartzm/bSgqNZn5dE2rPRMRGNawfxEt+9x9bUF885zh9il68X7C3l2ozBlWmzFWBIQb5wOvPvNdHvqVU9LsQfau3OZ7v/ef0Z4/w32PPUpYPMbbb5zx7D/5T4nLN5jsX+GVlwe681NmTcOF+z7M5Q99nsWjH+Pi5QntpEdzT3j7GWL/KmzehvQUtDP0aGOVhZCI0log0hVhsU979yOEfIQ88kmKHjC7+Qekky+jV57iib/0c6xu3+LWj573teWSG69kBjHXwRxkTGAtFpjO2UvLVl2vK9EH/6mYjfLgc49ilV0J4z2uTPa4lmV714Mzl+Npv3Pi/6SMqj50J2z8xK+8tx5/HhZBRixSzx1rtRu7Qe/AIvXMwwGVyC4WqUmG73ndEgxFi5FRfw4WMdLDk2nxGC9VKLQD1fyMqYSheLKye1ZrrYSG6INEA7FtmV3YZzqf0mhmOl+QmggFNv0Gcs+0EY4uzJDJHqVbMwwraKa0+/ucnS/ph0yv1ndhGMVeVPS/G1ydMwRlGIQ+Fvoo9CXYwFs1Cd75quNgvSEln2chEaOXIWhAw4ZCjUUbhr5n2GSyDxAcq2u4kgOF1FBKYjFNbIaejUJJLZomFEkE7QlsuwZKUbr1molmRCaEWFif3iTnJWEypciCvleWt29BycQ4oRvsfsYUaSYzpntzpvMZkwaaUEhlIHbQ6AaJGZUWTTO0UfKAYYuihDAY6ZoawnTqZ9EUSoPoOSGfEtOE6eEheVD61Rqz1ff3LFu8rNh6qKRsJT5HLOpOpDZzI1iPLwGtWMTPQgkemxzzjtjXF57NdKt9ibrFbv49IzJMsWEKorp2a8uCones5HdPfv7FEg1/UaZhqbt2OzfjDjjkP1NzdHPSMC5AxAMr2VmJyhLuvOg7Nr3L9tmW+yprMCYLfp/qpRBRs5asTF9QOxCEkYUYP2OBpojNSAgheNk7IH5AmTtBJIkPpqtAvxgDr0UZCsYmVm2melao0Ct0O+9BsM0lAWIwB6W+h36APit9hr5AXyxB6YlWHgtipU1/Lya7sUwX8Z4FFUou5FwZRKCWdZFasCBJsLJZPfjc7s+kHuZdUBc3BXNRcPlI9W83Ztg2SyYwUBgwtiQgLjWwjxShTTCJwiRAK5mI0IyVr2xypYjLlixwRyIZxXyeiiV6uwSAbM+aygaMk0R9zga1yqVb+ZJtalsbViG1AFA3dg6RKOKa/+i6R7OjG0GsspXauGzO/q2MCzfr6Iy1myfI+E8Z2Y2E9S1kTzgyu4fULqvw3nxUDFSHUCWLcnavfV9Eb3SoMytqnKkpx/a67QAmMYJDtznCthzssSkX9b3rz1MsGJsrjf2wVucYD7wWMGzF2PRej2eetKiY6YRUQKFONgSnSAr0CNdXPS/84Ftcf/Pr3HznlF957JegzDm7/iJvvvA877x1k/t/4dMc3XOVvH6NF7/1bVavv83Dn57z0BMf5ef//f+A3/q//V+4/uqbmIzDXXHQHTbHKml9HshF6XOxiqBCj8kV8iB8/wdv8F//7d/m3/53b3DfJ1bEix+E5h5UFkiYwSRCL6zz23z/uy/w42deo19PafevEeYHCA0n58c0/Uv0p8eEr/wBe69+n7zpSOevsTrdkKRh/+gBiAtgyvnxLTQPNE2iGWDdJ7765R/ziRf/S2aP/Xtcvf9R3nngw/zu3/6/sz+9TTPZ57U31tx6/TptFC5c2CMt7mL/4CL3feqXuf+nfpa7HrrMwYVE0yY0v0P/2ndYvf5lVsOrLC49RJg/AOEAWTwF08tQbiDLW5TT27Be+sTfKZL3LTC/8E+JP/5nRL0B6Te4+P5f4+4PfIzTV1+mDL0B1KyMU7kdMBpwqkNmPe5U0kd9brUAElA/6EP0Rl9PAq2QvJVKjcO2wp0JRk04xiRBK5DQ8TXVZvD/gR1o66Tum/fioyZkwMi2jlhEt+QjZuhSpMIk/2Up4/dMq27wtUout71Y/vhzsMiopIARQ9TXUfzPWIW/9n/az2Y/f7MT14RdLOLPIs5Kx+puaWBzSIGudKzWPb3C4vAyqWko/Qa0I4oyW8yZzRoGBlabFd2mg7kwmc7Yu3I3q9dfZ9jY7w+eLFnos4MxDkqOSj8oaYDk5GffQFegw6THrDPv3DxDUmGa1Po3ESDZBQgFkUwpHavzNcvzjlIECQ3WGRpsUB+D+f4vz5GmI6A01lpNEwK5mVGksdMwe3UQGXvjzk5XLA6vEyZXiKkhpAkn1982VQcN6w763uaJNE0mNA2paZkd7LM42Gc+i0wboQ2FQE/cdIS8IeQ1ElZoaG3uTZxDE83Ktt9YdaD0CEIMDTkogUjozgirY0rfI+0BaXpEmi/oN53Hjp889Q0bG+4ACUoJupV1y7Y6riLjLLqt1XEce0MrBqxOsNTE1Y5YqvzGOxH+XM7S2v3MtCRJsXkfbEVSd6YX/0skGtXpoT7/CHjE5+2aLKLY8QrUoUdbiGQsgSUZkJ1F1LENo06LrI4IFKWw4/7EDqhz9q5mZGPeY8nYCD6Ko0ERoQRldM4NOiYsHqPMWrfaulZLwugNeu60FCXQhKrYt9eoUSkZZLC/FbJNIY7F3GpsloWz3exobbG1UaJlyyUrQ68Mg00VH4olG50KGwft+IJMwQbEjYmFM/dZ7XlKVh8UVhingRY7uGwSt2kDBy9dau1NCHUSZKBzNl/VBuMJdnCq617G5Axj/o2p2S6T4HKwJkUrwSbMNi9CK0orQqNKkmwwXoUi2fF4YNBsAUWV5NOzsycdSdXTjkiRrdOekVwmQhrGs1m3CecIWtmetDVRGf8toz46e+m6SEBGkWD0gBe2mUUuO9IprMKkxZvVxVkD9U3vjAQ7fS7+tVrKr/KuCrDrrNFtsvHefBTdpgsSLGENnowr2wbwO+6PY+lKKuz8RKUa3FXGwNrggTGLJcLRE4SM2Uw3mLyzCZC1kNUqjZXSDAE01/TC/kKfvf9IbF2b1Mq13NzZE5K1WL+/T8HUyWVeGw54/re+CHnF4cEFfuHfX1LKHsvb17nxxpucnq1467W3ODs5Ybp4GtoraNuh57cIp89zePkCadoCahIef73qFycIYyUjoP5v6xPrMQnnbLHPz/zSL/PUJz7ByekNnn3uRRZH3+XSgyskzdA4hcMPIpN9hl744Xe+z7f+9PvcPC70wyl3Pf4wR5ceYHHpbkrfsXppxq3VN0nvnLFZv4ggbJbKoA1pvkdz8SqyuITKwPUXn0eHTBMbrtz/INPH7uJ7z/whL/2z/5bHFw+S7v2rPPrpv8Tzf/L7fO93/z6L6ZJL7/sAkQN0fUqazplefJD7f+rXePizn+fy3TOmiwBlTX/zWU6e+xKv/ck/Y7j5Nvf91GeYnp8h519F9j4HsgdxSlFheeNFTl96nmG5JmzeZt6smKRA/8oP6F75FvHmi3BhQpAJkiZceOBhmr0jVjffNsdBsUZXaCg17oedZam2l1UYE1aDtW6HW3wNB0YGsqavUBWc22pdnfBbH+KJhNYKiDqyDbtBjJ1kYzctrw9f2fIejSN3YJH6PiuxGZyUsrP3TiwC1ERkxCKBRLYqq2znSuX6J/ysFsciY315TEj8ObXGBNmSI8Wr6ABSJ3w75pB/HovU46n49yVi87NEIDYMMXF7uWIVYNG0XG2UOEmQ17a+IoDJsFNoCc2EkO3+R+1pUrLqgw5OaKsnOH5NKhbJjkUGq2oMzRaLDBKZHF3g6GiPIJnTbgPdmokMyCg4a4BALrA+X3F+smbdF0pW0qQx57rQEFJA+zWa1zAoqj0E63VqgppMsWnJsaEXGDadETxBiKFF0oTz8zPOb15neiGh7QXSfAFnU1anpzbbZrIgBauSp5RoJzNmB0csDvaYTYNVMiikskFWZ5SzY+g6munMKlJljbIgGy1sKpG8oWw6ymZA+8EmnxMIXQfrJaEffMSIDQCbtFO6lNAyWEP4uGq2W3b8zE8ccbJD1NfEw3GC1Fqduvyv4gUn0AwvSxVS2TocWUt1TFKrtIY/tv0chivNOMgEXo4Ax6LA9v//xY93n2jInf8WdjdabRuxjL0Hm3658zLGJEKyZW/+dYOpYQRiNcmojeE1kdhixho462hAezHqyYax6Lg/846sJ2BzPdhhHdgmGlGceU+Cuq1YTS5StCEoKQVSdK9isU59yaY1HIYa6+0wihpIodBoMY9qCu7PYIvV9VOaoWShZCFna3zOJWw15GI+4UMw+Vi15UQKWWrDtxozlrcfg3+UUqjaMmNBa3DB9H+h6h29ZOcVpgrQwQE0vlRVt5IjrziU6K9RgjeMCdVBxeZvBJoYaIMYwMPAXrR6iV0r8ti7YACp+GERicEcyWIoNpXce20sAYQUxYdUCKImIysaiOq9PSpjubumIXd8rpcITwSK2Z+aDNgSjlJXk7MHUrWRisvnZPSfrn0wY1+MN7Jrke3h5Rt97Onw1bwNIjXxsFN1uxve44kGQA1tBSRW2WUFDMYEm4GE/az9ivzEM40nuEuXZDzE7abA1l9Z3ajGGcki5GC9QkkNRJiEzedr+KG7+/O7NSRVHzoHoySm1ICu9i6tmibEpuHi059gtcq8+dIPODnvUM5ZvvRHXLx6mWYKkhq6TvnynzzLPX/n7/Jz/1bhwQ/cS/jIPcTFvbzz7B/zjS/8Pidvv4Mo7s1uDHZU6N0limL7kSjmp68uzymFIpHP/epf5m/+h/9XDi9fI+dzbr7yLMcvfonVj25wadrRDm8S7ztF7/pp3nrhBzz7xa9y+3jN8TJxvuo5+973uHK64r4PTzi690HChfsZ+h8jC6HMWnOrmgxIe8DkcEHa20Pbls3JLa4/920mkykhzWgvXuHSYx/jxRd/yG//7sssjv4z7v3ly0wv/zSf+Nf+HZrVCSevP8/04C6Gfk7PBFkccdfHf4Vrn/4lDi8nZvPIsLrFO8/+Aa/82R/wyo9vcnq64H0f/Usc/txfJy0eRthgNndQcub6D57jmX/033L6zgl3Pfkz0B9yeX7CvQ/eRZCGbv0cw23Qg0Pme9coJTM9uMLi7vvZ3L5B9PWgXu0q3hpguV4YZ7qMyj0/tOt+F7VqrDGNftDHMM7HqGYCIRR3ndoijrFC68B6/H0Zd4hvk92Khux8jZ1+jrqvAu/FRwXl+OcxlVIjmAoy2s9W98dRbcUuFikEtysW7FwNfs8ilRiqcGoXi+iW5DTgMmKREZ6Ay1mq8FjH16tiBGOWHQIFvGfEX0MUU/gFgRhp9vaNlFqde8UUhCUpTZFpILaJECPrTc/Z7dvMDyKTvSlhPmEoieH8hO70hJCzVcwdX1kvmp/zjkU0mzOolmKxr/6swPzwgAv33ct8OiElJQxLuuGEoeuJ9EjxKoC0bFYrTk/OWPeZTa8MuRCGJanJTGb7NJOGEhvIvQ2ji8HirleCQ0qQIjkGtAwM62XN3yAIYdLSrwM3jjccyTs0h5HS7jM5ukCnStcPSNsSslV/Y9My2z9ivn/EtA1MIqSS0c05m+UJZd0jQ8t8uqDdO4CSKEPvRLolE6XrWR+fsF5Z4/kwFIoOhNgSGiXQUUgEEZpmZqRQM6FrZshwZpwkMmKRojV5qJWarXwOxyLeoWCV913s4s8x9nJp8LhQ446dtKFeNFXDrB6k/lwsol5BU3UsuNM3tEO96fZOvKvHXyjRqNlW9ItQLwZsm55UdDzfdTehENvIUdQySKmb2cEvLqfQLYtY/GvFE4mxRxw7YKNs+SCV7eWo7GKFknXeRQnb1xU8mbEmL7vZccdGzOY1hLEZqoliE7qjOAsb/OZbErPFoEqVllXIWG1kB4oBG8/8aznXWJjaiCw+t0OtyS0WNGZLknyIXA6KBrs6mYzqwKADuWSK64KL2kfVlsOOXajgFrb2OQfogtIHpacwEDCjVdOxZ4o1uRVLwtT9mevgQnPTdRveYP7OKSQa/0gheAXGg64zcrj+XbWCOoNupk+1hEWT2dmGRgkax6a1iDVVZY2o1hpINLtczaal1cIghV4LA+qyNbmjibNuWB11Ooxs1NhzZXtuTEa2Jxv+xcBYknRAMTKbPmUT8thLpEHHxLiyBNnZBPVkQ0fazhaZeL3wTljxHn2I7QlvcxrDlSXqYRQO1+P5DqkI9QrsAi2/h4gd+qpOIBQqayQVPGBMf+cVi4mbG2QP0DXRFdGxarrLPOEgo6441J6n2v+N+Kd4NXWyz4WnP8Hb3/46bREmIbLu4Idf+APueuAeLt//CJ/4tb/M22+c8r1v/ZD/7r/5FsdvnfGBTz3KXQ/dy9A+yNf+8R/ywte+w+Zs7WtJx/ev4tXSus7EnI9y6VCsyjFkJUwaPvGLn2b/ylVEelK4yZWHj1hc+kVe+trX0Js/5NJswozE5vbbvPBnX+SNl1/l+Lgn64LF4pAQA935KbfffB0lsnrrFe6eTZheOqKdTtG+J68LUTOL+y6RLj8IBF762h9z8upLHFy8wlqmrFdr8q23uPe++/nyN55j/g+/y1+e/R3u/cyKB97/CQ7+T/8h3/ud3+T5L36Z1c1jSA0HVx/m0gd/inYmTKeBkhMvfvWP+eY/+C3OucLlj/xN2nZG6L8CJ88hB/dBukZloXLf8fI3vsJzX/k6m02EvfexODxgP7XEvYuk9gLh8iPo2U3CvR+Ew4foViu6smB+6R6O43dhGKjsIn72lFEj7R/RyBpighC3eQYOKGSrQbakQtDQoDFRJLhuf4fM2Pm3ARMn4zzDsSW6TSoq+ad+OJsUaPv9cQ3DezeU+J4Xj5JCfb842bjFESMU2sEisoNFErUvjJHdBa+P+DWsKpMxifQ4X4tTSV3GTDUr3wLCmghusYi9Rg1u/CGVoHDxXa1kVblMDNA0NIs92Kwhusw4wrA+g8WUZj5lcemIYVD68w0nZx2b4RbNtEVjoisN5ydL1mfnAOae6WRI3tZodrCIJWjmeGkWtepNpbPDGdIESiwQe6QJSNmjW57CsCZSKJIZhg1npyesNhv6YSAXW8NFYCgFGXoIkZI7QhJCm9Bo3++Dm+m0idw0FCmsz0/ouxXEBhByP0BcE1Li5HyFsmQ/XCceQJzts2jvRU7P2Cw7i/2xoZ0smCwOTWERDDh356d0t08IRCbzIzt18ymaO5sLEidYz5XJq4duxWazoh8K0mRICckNMTVoDMRZRouS0gRt9xiy9bvO2xnSbbwnyypE6onFTxpKVNnTiCGyVcZIXsyLVTCoO4m2r7kdUlnBpfV1j1Tq33ZFxSLjQq5YRAMFMxeyEQYuGfe/Wtf5nUDof/zxrhONnWZ4KynBqEUXrYKSqjP1F141p/59s7uFJMVma1AQDYgzhKE2r9QPubPvA3/L9eLWXoPatFUvqJUvt+VoHAuagkXGjEzrmxDMRSQKxac/VzvZEM3pILn7kkSTVRW86SaYXGgQSwCy6+vsA2MevEktBmuOsmaxgg95oFRbVRGbFxIKEgohFIIPCJTgjW4SMF9vTyYwJ4ReB3oH2PhhJPVaKZ5s1eaiSIn2fjX46xahE2Uj0Kk1jPWq1jSGZeHbQ9LTlno9JVAkUmJCY4OElhBaJDSIpLHfIktliaprR01mTC8aHXwXsSmuQ+MVkvo+gslWogSSRGqjdHBnMnveQmYgS2aQTDe4yjBbBWlQ19CznQGymzCLTw6vJ0Jt3KKwDbg7cK/+jHgSsssAVDGh/3PMltWT3Jo5a7Covp3XXsVTtZKxrWhsN/h79OE9DzZVdxukxB1f7D+2AqqwG898fdgn8Z+oDJCOSaPUTLESGJ4MhGBJKs7cdEWIAZpYRlmbqpDzCOGoiUXdSDVRjcGDbvE00GNVTUjMVz8xu/s+Ll86oH38bq7qx1lcPuTSg9e4+vhVwsFl2v0JH/6Vn6Pdu8iVv/ePufGjH3By0vK1L71J+sKP2Jz9Hjdev0m3WqPZxHTTWUtIDatVh3QdYAd08UMqZ/XkyNgwuxRKWL2MlGNIewgdIh2LwymPfuYXyKcfo0kdYXHE5rUfcv2Vlzm7dcLZaSZrR5MLzbywWbecvvMGpzffJJ2/yqOfvIvF0WWaZkLebJBuSZqumdx1H+xd4+Yrr/HMP/wtNqsBiUuXQy5ZvfwcF9vE9YMrfPHb73DW/Sk/f/02T/3caxzd/Qk++Bt/nf37HuGlr36JW6++yvziRRShGV6lmTzByZtv8fyffZ2yeJTHP/9vMLvrEb7++/+It777Bzy2f43Lsz3C5Z+DuAesCE3k8qPv5+5Hn+Cdl17i5K0fMotXuPDoBdJ0Rmgm7D34ELNDpb36CLkcsTpvGAZhMtsjpJY8GIFQV2epQL5WIIMNEtOQsEnniaqxNjLBiKfacRt86KnZ+JkMovbvBdlasYZgP4vHqirrhBpzalzxPfHPVf/gTkBga1v1z/mx98DDpIuuQth5E7oTasd5GSMW8eui1SHTySpxC3yKxSDTqI4RvGKP0RdMfhKLGNaoc8O22MJf10iObrFICdvnGX9ebHZGEXt/JdYGYbGZNW2kiRNio8wnLbP5hGY+IUzMunV68RBNLdw4YbNc00tkvSnkYUXXnbHZdNarEr2TIrorZfbzxS35ihTDInh11LGIhOLXaYOEwa+r+tehXSwYhkjOU7IWNt2SZbdm3Q+UIbts23sSKOQysOlWQGY6b5GmscF02N/MCrlNDDGy6TacHt9kGKxyO1QArGomMSFyusz0smShN2gPQaYHTC9dIc57yrpDhkJop9ZvgaJxQtd3rM7WCDNme4fQJJYnt1ivTkkaSTNFZWFJVzKsEvcWNOsl+XxlDlkh0EzNMYs+IHv7NLEBbSgyJ2iDJEXbCUNsrGfLZwpkrY3tO2e/r1FETDHheERVTAYXpHKPW9m/Lyx1AVUtk41mTCOAUupQKaXK+f3eVyxS48pONTVQ2xfqv8JOsvHuHu8+0ahMQT1zoTrM2WvXKvTwYCpVqmNfa7HZAa1Ys2eF+8WaM+xgLNtNnREG1zVWqGXX0Jur3CJtDCA7AEx2mM56jUcmARxo1IstYwYlLp2KnlSEEHy6q1u8+vfH7G8n0TAGflTLOIAXcsTnMgB18rXim0TH3uIcCjmIu27Ve+wLIBR3n/Cko7IkWjCHq8ygxtwXL79Hv2cy3gsv0YewLdf761SBLMrgQLxXoVPMYrfUexDQnes92ouO7hgJQkJSQ4wNIbaINCA2PTx72FYt5lxBbaqz6brRteWG8YWcTGtvfxdzC4o2jCxKIsnWCyFSfJaGJRoDAwMZdCD7h5ARKd6w7RUE3d0odk9HyVJlEn297CbPlZ2sRfFQS5reCzD2CFG8FMw2wfAOQnWWxES84r1FW8FU7daof6P+rzZnvVcftWUWtmxfVYAqds6PEoZxB8uoiQ6ebNQgVIGZczT2W1Jtl9W11vb72zTOk0a1Bscg7gADdp+qLGpnfUhNqv11im5ffyUtahqYvSpycLjgF/7KB3jop/Zo5GmyPsXk8Ij24AIxTYlNg4gy3RM+8HOf4b7HHuD8tReZHl6iL4mXv/cqX/2vf5Nh9SbZbbgv33OZT/36z3Hpscd54Zsv8ZX/8jc5X52zTYrKuF6r205CGPqeF/773+Onf+bj6LVfQMIRsEEk0M5AZldQEqKJtn3DrEETNK2im4FueWyzeUphyB3SnfPkE4dce/he9vYODBxJZjLvibOWyYVHuP3WGV/9x7/Hjed/iGpgvVwiskGI6LBh1s54+L77efN14VvfO+aNt7/Or7xxg4998gscPPFJnvjsz/DARz/C7ddf5fS0550X/4wHLx2i4YMsz24TFnfz0Mc+z/7DT7FZD5zdvMGN1zp+9Gff5fBozuTDB5SjjxOkI8bCfR/9NEf33MXt15+nO32Ho4PI0WFEUqBMFqS4RBYta7mbTf8Iq7JHzj0hwOLag6xv3aQ/P7M+NTFyqlaQROqa9iTAE5Aae1WizxiqoaPG4R3Jn2DxFJ+hEYyckuj9ebsA1h/juegSnzsF3ruft49dh6X34kM8Psh49juHYxvbIqUY7qj/FozwDNgMqTpfI9br71SOgTChciBaiTbHIrsJnVWMTDpdEw7G11OxiH+9osKdj1qfLvVeqEmt1BlUSUJqE0eXZuzvJ+ahpY17zNqGaduQkiWzIoJGYXJhn6PZhH61QSXSDbA837C5fpOh91goQpTEfH+BNonVcsXZzRvjeyd6siFG+IGfik6wbc5P0GEfbQ/NXQ8/vkImxEgmkfNg4FzdRVTsnmkxZYZJKXo0D0znDe10Qkl1LzjiE6XEhk0/cPv4lPVqaVikeCO/GIknWHP3kAvLtbK5uWGht5kd9MS9I5qjiwSZQG+OpEPeoJPEIJGSlV4a2r05uZ1AGVj3PbopNKFjHpXQCjlNyX5+p6N99qcN0+WKbt253EzJvUIIhKGn5AmlzMi6b3s+Z3JsaKYLdNORh97IdXcNqNZIFkKErdOnf/b1WxMIqQlBlVxVUt//bXbNtlZFvT9Jtz1Z23k8lYjz2FEbigJjg/mubCqylVJVHPJusci7TjTGPTRm4gZSxecThLKdp1FZw3q5EjDBm3+B5PvOZkvssAayyx74UCNGkgHEGrwsy7b/LmOQr+UjtiSkf83wsIPkCkaq1AX1YXxKSjYwr2n8czL9f/TkI6XoPQK+0Is3sXqfRhm2TEXxAKTZb2AAGYyt0Ow3MQoSPViJbqVi6pIl3c7k2NXe1R4A0TDOYxhxhi+QKidDGIe6VFkTPuHast0aNk2vaZaL3oRehMFda8ZAJMGYjeKJTDF5kM37sGF+0iT77HWuyg5rsQpFlRjZUJFM1kzUTKopplgTn0ZnmV1yYNvCGvaiv151Zxf1SfC5pvs++m6sweT6POYONmjV3cv4/3Vqbx1GWEGD+N8Xi6j4grLt53ZzFTyreA9NUW/K8mSuePLpB2KVYtVDZ1ti362HsPMKx1dZV/l78mExoZinve/98fAdg19wYLWtGlXPmN08o4qrDPhvr2EdeBV2EhHYNqIbCPc0tVg10gCHVVjrAHErBlh1DU90Rnzmsjj7p3piUgkRu6HTgymrH/wJx+E1Dq5cZe/u+2jmSlwVQpqhuYU0Q8OUuLrJxfaYyw9MkfPn0O4Gd3/qCS5e+T/y9/+j/4ibb70BMfK+n/4In/o3/wqTo3t58OMT3vjO93nua1+xHS+WHJXi6ZX4USUQSuFbX/wRf/n3/hOu/JUD9MrnqP1Ywg3g1CP1lOmFI+576mle+OYzzJoBEaUvSmRJXves1jd48vF7+fwvf4L5NFOOv0NILUk7Cm/D4fs403v57pde5sWvv4D0GXyIaNNigCR30BVmoeW+u65y+dqDvPbaG/znf+8FvvedV/i5z/2Ia0//GQePfo799/8CJd7FA+88w+LSPkESB1cf5n0/+78hN/uE2JIT3Pf0R3nhK/89v/eFF7l88Gc8sHdE8/49mDwNTElt5uCBD3Jw7cOQbyLn34Y3vwnLE7j4NF26xgvPvER3z4QrVy+gRDRm8mTBxY9+Gs1w/sbLnLz6Y7rjmxZ3ou15A5Q1lWVMHkQSBBuwFmK0XrJQ40y1D3fabaf3rR5qu7t9C6p1uw90q5i2Sb53xoYKJu6scijy3g0h272+g0XAr5Vb3FuVcSvzrlE1AS1qTodsLeaL/9zYK1s/PGGs5EPZeRHRwZk40WjDXf37Ndbs5BgVi4wEKX7mjPIWRYJY5dXaE2gngTCcIV0hTKakNCU1iZisxyyEQp2GjQzEyYAEYejXNAzMD1pKc4n16x26Mb3oZDFncemAQqTd26PfLNlszuy9OLk5qkrUqrP2uXB+tqE/uc6kbdC0D2JujKLZSEQKaDH59GTG+nRlz2nd0U72FLT0TGYz9g/3IUKfN45rFGEAaelL5OxszfnZkiHnEYvYQC7QLN5jI4SYkDShU+XGccd8gH0NTPeUZn5E2rvgCcfG5nVJRNoJaf8iVU5LKUg7YXki6MkGkZ7JHmjD6D5Fo4Qwp2lmyHwgr1cMyyVaBmKYo32mOz+j0BCaqUvUAqGZ0OxHdJYpmxXDeoUO5g5Yeza2pLCTAY5HbLh1GPGJ9dI6FvHPu0lGJfpRJbhUy/qKKhYxJUvtMRtlwh4XahVEuROLVGRVd1vdc+/m8e4TjcHjYn2x458bx3yYft5fjOTtgd6gNKK0BRqxjVRhw6jN30kMKrO5W9WoFyKjZi1brzOMCKNeELsYYQvkqIlGrQYY41nlVZZoBFISmsY+2kZok9AkoW0CTbLqRvJhfdb+pdaY2XtzV9DtoJ+AT3e0YDTaJA/Yya8ur/IqiFUSlK4o66KsijLNSltsmF3K0GRF4/a9CrXSZAtMQrABImNDT10wtn1DRbhG23iyYBrRKDbgSHwyci5mhWmb29mcIGgxJyXRQlQbYy/RKisG7tT6bwKj9jWi40yl2nxUSoFsQ3CC9hTNFO9UoOAVih3hkKhVh5JpFskQGiFmS3JLrg5lheqTEPHXUEmCnP3npLrObjEuLlPwJNKG84kP6aqNanH8XrWjtURjC3JRl1pRDxdG9jBrdQcTbFS6UkIhVxar7DSC7ewGvePo411u7f91PqpgrQSfTOofyd938CSuWNY8NnGLVhLCu1dGZqcCDw+kaoF7t/Iq6kn0TvVie4+MWcoB2x87IAYVb+C3LwYx97XaJE7ZBmZzcaulf0UkcJ73+K0vvMM9L85pVs/w2EPXeOgjTzLfC2ze/D46nDFdtBze/xj79zxGvHQPQTdw6xV457uk9GUeeeLf4bFPfZKv/NZv0SelYUk8ewtpGiITmAOevFeiQQmoZpvjk4v1aWjgO2+s+KN/+g1+qf1/sP+LLfHyT9ukahpghWoHJOIs8sFf+1UOLhzy3S9+mVeff4nzsxUIHBzt8f6PPMYHfvr9HN11H7ee/T3OX32Wvf0pzWLOUi/z0muFd86f4fjV1yl9b7OD/F4OWW2Alnrszb2BPh146J6rvNkof/q9m3zre9/n/Y+/wSc//gKPfeRPOHr0I+w99K8QZu9DEOYH+xwNkZunNvfkfHVOs1igRL787CnHxxt+9kf/gI/+letc+uSvE9tLxO415PBhZPowpIg0C8r++2ByGdn7INeD8qe/9/e4+tS3OXzil2kXV5AQaWZzBpbM7n+ag4ee5OD6Gxy/+DxnL/2IePYOXVZs5nEF/GbhHkRtwGfyBGO38l5lrM4TBkexGSF5Jl0lf1GdYRc7qypgHZvDB1PaSwhoCaYb35G5VjggUvsUlPfyQ7Kf5/U6+NerlcbY6bYD9sV7t2xCuJJKMNkUW/JAVcfqgsoWixjoFgYnLlyfYrEomISkiPdpyPb+bO/AT2ARB/PiuEd+AouEYORmk4TQRM77QlgP5O4MydkGzNHBqrfkJAakmSCphbZBpVCGjpKXaCm08wtMDuesb67RoISmEMIAWEIjrUAnWzmXr7delU1Rm3OVbc7VySZzfLykTW/TXAzQLtiy6WOHByEFZhcPSTGyOTtjWHVotrM5pch8Pme+v0dsJnSbU3K/drdPSwI2vXKel3RdRxkyQ19sfIDWXlCLzeL+9SEJEjIpNajA2VrZ3FixtxYODjKL+Zo02SO1h+Yop6DBzH3KYP2tfT/Y/KE8cLzc0HXK3lnHdH9NnB/ayZM3KC0lToxoShGaKUES5AnDGtbL28TUEacQaEzV07bEDKmdUqZTymzGsFqjqw7Ng2ERdULAk4rqMiohIiEQolVB6wgG3BkV4ugO5SveqvGlEtJbM4R6buYSUHVH0urPJqZsUY8/8M9jkTvT8HePRf5iiUbNgGrMxHB0VCVpsYBIRXXVQxxfgG7AlWuJKJjkxZ+jsC1xuqCd4pm1SWhMVmTg0XT6vt/9b9QtXZs+oXbpi2AbrMquRujtQN17MFIKpAZS6x+NVTdS45Ox/QYHqdp+RTLe27F1ksgRq27UGQp+YhjOl7HDvXiioZXYwoB+LIUmZ5ospF5ohkAzZNoIw2CJG8GAfQzQFJNoaW0CEgPfpsyprHutMMgYTKp8DGddUIVR2lMtci3RGBCKmHQCFaQMNhxRM1EyIQwma0oRiQOxRFKMNGBHqYCQDQBpRnNhyNkaLEsmlt7sH136Rama+e0BoBWI1ywzKCFFtMhIXVsMUoKYfrLer5CFMASsX0ZHCb9qldT4upNAkOS/a8mGBrGNPg7O2a5zVXMlGitlnoSKj52rB3vRaBU8ojf9Q45mQ5qjVWayCiUHcwui9idtOzSqWOw9DhM8A/MDQ5UktfNE/f+tsmZSzQqy2Fa3dLcVrfY8+UHvsaQ+UwgY61tqoFVnhnQMvKb7NSlFzdVrtctbonBRHOAgxBFJ9EWnaq5rIBATYbbHZjLnpVcy68sHfOyjH+eDf+3XuPt9D6B5ya0XnuW5f/qbvPblP+aDH1vzxP1PI0d3o6c3UJ2wWa4I63do7vo+D33kKb7x+7/D7eMl3/7SdziYdxxcvY93bva88fwLVObVXptPK1KrSm5KoSuwzoVVUX77a6dcu/gtnoz/MfufXZHu/iwSW2AGdIbiaJlcvMzjv/orPPIzn+fma69x/s5bMGw43JuyP0+EVpDDi+TpVV568zluP3/OpmTeeecGt28smTQzZrN9UoQcI6iPe1LMvEEV0QEJA0FaSreiEeGeg0P2Znu89cZrfO2bp/zgh6c8/tXX+MATX+FDP/8clz/5N2gufhhJ++zvJdbnZ5xsAqvjE974wTOcvPx9gma+8/KKH7zxKg995R/wgY9/jwfvP+LphwpXHriH5vJjyMVHkKP7kXs+BXJEHuD1732TvFqiq1PYrAgLW0PN7IjjV1+kP3yQw8v3cPDAAbOLd3N69X5uv/Ad9J3X6dZrq3rWSKA7Sag3ileHv7H/j5p2hN3s1vZ3rV6gdo6F4BbOdk4WoJSM5jwCWiVbAlUHzrIFFmOFZFc29R5lLKr8WDIQqkS4cnpOdo6Day1iiksPR9ZXi2GRaKXmiAGsqkK3e2J6dDDFgapbZvvzRjF5UcU2Wcaivx2lbIeP4kmIYKRS7aupldeRSQ5ibpdNJDQJaQO5ZIYm0h4s2Lt0mfliRiMCfU93cptufcYkFeJkgobG8MgQTC7V92hY0xxMkXPQrrDqV3A2gCS6LtMPHSUxysDNbtdAqJRCyNmu+SBIL1w/6Zm3ZzThTdLhJWjnJlUTGwScvXohbUNz8ZDFwR6569F+sMnYIZFC8mCbUGnYdBtW68KmCKe546wfWIMNDS6mDMnZx1J5jFNr0EXK4KZCgyXtTaINAS3K6ryj9DAsM/vTJYv9NWF2kRAm1H4QLZlhGBg2HZvzc9ZnZ5S+p1srJ2c97c010/kZTROZNkpsGohTlCkqLUz2rKrQQR7WRshHgRR9vkgglim67NEYCSmZ1W6aUpo1ZbWCvqeUeuZVutywiGGPNCoqKhYhhDGpxXsciyeJipFpRd1FdCQ4MOJHCtlHAxS8R7iEMdGwqfHWFJ61JqH1f9U6oBIX/+LHu+/R6LyCsK322tfVyo9BDdzZ5h47qhwIeN1Dog+g8aqIeJ4lYxvbWMqxzV0H6+AJhzE+jWwvpEjNAu0l1R6Hyi6IWGKC2MVFttMJojdAjeMwUzC00ShWflGkVaRR72T3QFDLqHaXxj6LWsGQ3q/T4Jdi8M0b7AaWwfz8BzWbzeJauqHY9GLJQhwg9dB0gdS4+1WARpRGIJGJLiGLSWjFQHSMgZILkmvVQrypqL7A6LMvDFyZNMsbe1S8WmEJlOkPbWH2FeyW4tPPraphr6MnBSHFgPQDyS+Alfts9mWwk9FZVqUMmTxktC9oHiyYlYHq2iTbaUjjBkEDUoJZ8Hn2r1GQFOqCsFkoQQmxjNbETQzkIVJizxAzxQcsSjEASk2QsezegEGi6q/NBasCCAcTfnBXjWJlrGrSIlhznys77ZAChlqWFshSyCFYb04I1qezU0GyjhN3/RpTjZpuvDcf0WehqlcZ6r01eUG9lm5msCuL1O0+9166O0JeTRiD2JquITAGIbkccBiDcmUp1SpYnsQGBw9JZBxmFdSbZrWCeFuXo4kB4rK4AGmCTPdpFofEgwts0oAG+OCjV/m1/91f5eojjxCGl9HlW1x9eJ/Vr//veeEkMBz0xL1DZHIBHWBI+6w3kdQJQRIPfugpHvvwh1n/6Vd469Vjfuc3v8509owNCT3rqJPOoaDFkrSclS4XGxSard9qk4WvvzHwX/zJCX9t+cc8ftJx8WdXTK99iDA9sr4NBZWIDC/D8gZxcZWrH/g8Us7R/hTWt9HTG7A5QwLMHvoQ6XXh+Pu3eP355zl9/Q1mSciTQglKO99naBtK7vw1WrVHc0aD0sSWXLKTUoEUWxbTOZf23sfp+Tm3Ts/4zo/O+N6Lt/je8/+Ez77wEo9++lc4eOSzTA7ex113zZmfDayOlbOXniVtbrDfKtMMm6I899KK773yDJcuzPnsR/f52ONvc9+Db3HxoTdo73of6cJ1ZHaJW9fX/PAP/wlJCm0bXSFpgCs2U2LfsT49oTm4zHS2IO1d5uh9c+u5eekHnL78It3ZiZ91YkyhLSyq4UgJAYk2ANaINpzIMPLCDFI8bfAKRl33ErZSzuLJbT3HgndB2xIoFrRDrV7X/aPj79THe1WCGXrZvj0PhSYbdCyCWqXdNUtbmZg6g6tGEo2xvYwEhq1P+xkjKf2/xRISRyYuc5bRPbPUJGKUvjBq4sVfoJFg9efKCNaoXw8QQkSbhLYtMm3QBqQos73E0V2HtIsWiT0iSjNrCLNLdDcFmoLMrGdDA5Q+UjpfP60waaZMz+cMt0/p88Dt896WylAYJDOEQK6vSaEvBuw1m4JABgidmInBMjM57gnlhFAy4fCINJlAiIQ4oZGIYNbBhYyEhmYyM6tW04Ub+FBsTlW7oLSBfuVDBnuzgDFslxGf5aVFRyyiYljE+mkE69XMbhAkpBRpYkOKVjFcrwt509Gvb7G/WDGZ7SNpBiSvjhVyLizPzug2HTpkJ6gKywKcdKQQWMwT89mGtulJTQ8yQ8lISfSD0q3OTTretoS2oWhDkEDUKalfUYJNe4/FnDknqYF2QlivbE5ILmN/hEp0sjw6Fgm+bl11oeGOCtrYL+FLvI4VHh0rJYwkQx2ZUKcfFDEjoxKKG57oOGzahLhlB33s0p/v7vHuKxplK0uSnWcX/++Rf5FMbU6pB0tt/9Tg5Rp2mirFGOixHIw5Uw1+6GcxpxjFAsn2j7oII2xLlvaE27xrrLzUQOO6t9qEJYIbfoglGUnsiiTQVNA2U5qITtSSDzcHCfVFFKUUGadKm1OU0IuMF6sMUJvXK0edMS1j7/M1KpAZMuigyACpV5oOmijEpKSg5tblkiBBaaUGQ3fHCsHjYTAHh+LJEBFKRNWmfJcKZN0jO5c8ak/rwRV8o6uzNkWFXoVcLPBUpn6QQgxKCpk22GzwRm0+uGpgbCBxuVX1JnflFMNg56IOHoByQbSMfs81F5RgmtqglcUQqpa/RE+QnNWO3iikMdKkgMaIDhGGCEMm9JlYCoMH01KRPy5Bqzd6zKrvnKFRS8UVtW6n0ZoFXij+WnywWsElcplRz2+N9VbsL2IVI2tZtyFru8lFHjd17eJ57yYaEswpxpJrbE/iWMzlVPWwj2LfkB3mxGModzhWjeLN4sRChQl2xVIQojJKeIb68+LPKCbV2yg0Xg4tYxXD4sQ4J0iFrMKgSq/BGLfUEqcLpgcXmV+4ymL/Is2k5dbNHzFthY994C7uunY/6Dl6+wW49RKiwr13f5hf/Nd+ib3V84TJAqSByQE6u0hpDtHplHDhES7dfy8/97f+XSKRV777DGen5yxXK5pgiVQUZVA7IPpiPUg1EbKqhskxB4VuyHz5RTg9z3z45S/y1DPXuefxpzh86HEOH/kA84uXiIcHhNUtuP02ZbNGmg7VDRILkqZweJ/Jn9KC/YMn+MQDP8MHziPf/t3f5o//P/8xdBvf9gOiPUcH+5zGQr86A7eFsHnZulPdsMZnNBNyx6ydMrt8lav3PkAvLe8c3+brP/oBP/o73+Tj33qFj3/mT3ngAx9j75FPc3T0JA8/sM9bj9/L2TevcOvNjiErfTFjCw4u0Vx6gD/8xo/5+nde4dF7j/ngk9d54oOvc/Xh62zaK3z/Gy+yfPsdJtMpabaA2JpZRQFSsvXTr8ibFX07J4uQminTux7kyuKAyf4Fbr30AutbNxj6MvZtaClIyVCcMBNjJ80BMCIhuTFH1WQ7SbETX2pVtzLiAUtOYk1AdHsdbUXfCZq3QNv3yygbfG/GEVGv2KM7jjpbbLLFIj5nazzdtgypxeutk19tqq2N5rtYpFQswhaL1MaL2sOBYxFER1kmOJmB7si8a/QWr46blDcI5mzZNEg7IU4aQhtAeiQW5geBOE/QZJANaEGkZzKfcxQPIK/QNjoIbaBv0C6Zjf10wiQ0HNx9kSKZ5dk5XTdQ1JKMEswK3sxk8CZlm1BdMkivhOh4IBpeu3GmkDNd13O4WjFfTEiTljBpDCNFuz+aC8ZaBne9CtazlKJXfSI0genkkJCh3L7F8vqbRjp6/A1AionesYNSyTgZ9c+qJtuKEogho53JsIME2qalSS2isFx29Mtz5rMV09mE0EwgTBBsDklMDUUSQ+khGxFpkqbEIC03b3WcnAzMG2UxKUymmZgyRVs2516VaBpC2xIanxgmkQA0/QTFnebUro2ETEiJpm3p1xv69YbSG8AKtbKx87lOH7MGaacadlwyi2zXJjBiIirx6XFGNTNeXMfp+OTyOvTSDHvU5rXtpBY/Yfj8rvbsu69oOOCr9rZ1w7jccAvclZ2tu5Up+e62TzWtcq1dBRVjdSLUid72tdpgnnTLbAaprHLY/nH/IybVYmwA3xI3utUh1q/7m5IkSGMJhzQQWhD/CK3WvUET8angJpkJPhk2iJCDTZnsqPKdQv1fVmt8Vs2UnMnBnKKGyuwWh0aDmENCNFlUrO9JFTRSNJCL0BdoizWxh5GZCV6WhVpK0yAoEdWEqpfHPGkYgjhAGYVkBJdupVxosmPzIubEWwK1Ub+ofWgWS46CO2dJIUtGZbAAHJ2pIYwNRsHtcMGCUCaS1dhYsdooIatLv+xgTcGboAhEt8pSCcYSJmf7THxvWDyq+XLHYFZ+Q4Q+IsNAiAMxF/qsDF610WKs9lgI122iodsUe5QhVO969UVf9bbgv+rrUuzsoboiBbVqSsCaxMSbd6yUacWv4Sc4gy1vUNPz9+4jO+skyNhXUB9SagOzpxOeMNg3HUc5gCrUeOOHu/3IaGFdt7cqo6bXZuc40ewoYaCMwGDwpDAET4xh1MlmEp00rEM0kwQF2obQTpnM9pntH3F48TJ7BxeYTmZ03RK0MAuRvWZl70cL9Cs4fRU2J7SlcP+Vu4H3QTNH+xNjoiYL2ovXaA6OkMO7YHiHa/dkfumvv59XPvNhvvLbX+LVZ79F31s6OpRMHTsmHlutedOqpoMWm3yOreIuK8+9PfDijTP++NlvcTB7lsODORfvvcJd1y7wyIffx5NP3Ms+p9bYuDwnRkjzOc2eNVam2SEyPSTML9G0B5wvz1m98T0SGa3WrUSaINzzwD0chkOO33qT5TuvM6w6qtqx63p3mwkGyBFyCEguFnPbloNL93D3Ux/h2lMf5Uff+Rp/+s3v89Kr3+RX1i1P5EKc/SkH932az/zGr3L58pzv/KP/mrdeeIFBIexd5vJHf4bzeMSN19/gjbevc/vGmldeusmzz7zFPQ++SjvbB10wObqX0J0RZ4eU2JrRBYLEiG5WpGEDQ4doJksgZ4tr7d4lDh5uifMFxz9+gfPrb8MwmGwmhJHwqiYYdv5UG9x4hyRiTDa8eqdqTfQh7Mz3HY+8mog4dSa4Ftikqv9DkWIc+Lc9GN9TD1F/m7KVVdbw++djkZpUbeWP9aG6xQh2n7YxvsF6Bkp9Qk9mzNHOQ5FjkcrKqWz7NWqPmYUQb9R3OUhRc1aySobL6VIktS3NpCW1yVwp6U0q3hakAWns7Ii5I4mtsXbWUMqUwc9UUSFOImHWkCctfUwM2jGbFrg8oV00HN88pT87s5kXZAYntLJfEy3Y8N/BZWOuxzEzo3p+CateOF52TNpz2kZo2kCaCO08MZkkYskwdJScrZoUHFyFhNJQRBkkUUJgKOYQSQpAMmimanirmYBGtBsoXU/JJhMqBKvMiBCzn8VDdfEslJAhFmIjtJMZtHOG1YrV+YpuvWK+D6kplGwSztnRBRRhefM6w/m5JZ4SSbM9ILJZHZO7gm4yw6pj2ihNk0ESqonYztBciJMWaRuCJlSKzXxbR5JYRVMUpGQj10ohpkRMLU0zYVhtbE6ICrFiD4mIREtUrOu1AmaqMc1oRlA3vjut1DxiC8NNFhhqjxdW6ZMgUCwhrC5ru66vFY9sd9C7xyLvOtGI0T7qPA3bpLZBq7tD0mopZ6+hwrPom1fHRhP/fd/AtZs++AA4cS/dmoAMCJXwZkxyZJQAVXBStZpRAnG3BLPzWisAqcHEzJJqE1bwPgPv2WgCsRFCI9a7kbaFj6AQ8xg3rJ1GrCIYKprx6kUmE9QbnTVD6r1Xobhnv91wCpZoeD9JsFOGXLLpNHNk0wfWE2HWBiatNYw1MW9nbjj4ktoUKqbTK74oi9hAlq1NqgXKhPG/6u4ROOiXDLZXhb4IXQkMBGvSF/s7wSdfM+BN8DYtXAd1EKhutuLXWZWUArFEehKCW946CLdJ2epMnb3GouasESQQJdYBKpZ4iR3S4h6mMhjg9HwfQQghkkKEMCDSE3IhDoUhYPpEb5xQ1/WpOjsUzJrSs8nx4EK8rwirdxD8tQf1ipAxEuIMg4qg2V0gxOawEAO5BEIJ1rOTxTXAO3vk3W7Q98gjepYvoTZ6b2Ng3Qe1abVWFYARIAgWazL2S7UaaBPcnWdxsF1jVVG7DyFg1xkbZFfJ0K0SWzzG2OA0iQkmM8r8kBLnFCY0zYyUAnnoaVNLO50zm85pZ3NmBwfMZgs0D3TnN4kls1js053coKxvEGbXYO8BkOfg7MegPyIcNbC4x97E+U10vURXtwiLI+K9HwKE/lu/zeaHX+Do6G72f/4/4M03Cm//8DmGvERzGW1TtfYF1AtVczRnaqPaPpyGQlKh65XXu8xrtzPx7TXTF4+ZTQIX/uR7PPXgnJ++1nNhXoipoZktaOYHpL092v0DpvsLpnuXiIuLnJcZX/rdL/HK177NlExOgZASk70Zj3z2ozz9l36edHCBrmt47Xsv8uzv/He888MX0NzbXdcIYyXcQVkQJCbr39t0RAJ3P/QYF+++xvUfv4+9+Cb3f/43mNz3Ud784t/l8snfZ/HYz/KRX/1FHvjQ03z7t/4+N97esPfIh5g/9BQv/eAHXJhPmEyESYCkyjtvnTJ0cPHKwL3vf5L2ypOsfvQdmsVF2/u2sBCBvLlNyhvTgetAiFOyFIbBYlQ72+fw/kdpF/vcfuUlzt96E5ZLiz4pQmqM8d6udAqYXboPiN0mDnbfkrO+tem7SrDY3tpxf+AV1FIrI+wuhB0Sjy3R916NLTH43pYtv1gvTd3zaXQ4sm9WUZq3uYyV5frYxSKIydh0zBIYyc2IV0d/AotslRLbyrr9PZvVQ4pmc487GoZi/SSCDbR1iW9qGlJqCFEQycQQaGJDkEKImdBMiNISh4FYBmLofOhjsmuRM1EKOWTCJJJpTSJ8dkxY3aYVgaPLrPqB5foUymC2s45Fist9i0LJ1W7f1p5Jl4rtV43kQegaYdkFc+qMQhMLKSpNC7NJYC+ZFNWBFojPCYsRQo+KTQfvNXB+eka/WdJMElSSOsBsPiMs9ugksR6Es2XH2fEpq3VvuLBiETAc4oV/HQlERfuCJKVpJkyblrKZIPQsDg6QMGF1/A5Bz5A4IV08YjqdsLxxg36dCWlKTFP69YYg0WKpY84ymPogRqWZTonTGXmz8YpGcCwTES1OulrfRkKQXBAZbMZHtsGRGibkOCNvOks2MoZFdpu/xcwlRrLBieY7BtuqZePRDZDMic3NDsQkaIKSikvnoxHHwS0yi4opXnbxOtu48xeNHn+hREMiW6bEs/kqIhkTDd1aitazLvh/FD/U7yzl/gSDI0Iau+3FZVRVsrAFJVmqv4E9R6AmJu7KHwywqztcjVtc7KeN/HFrWxGSBBLBPkskSqAJkSZGmhhoo9B6RaPy/yqQ/EWJumtTwm1vjR1I6I7JqwswVKEYoN9ax9nnkAO5y9b4PGALuS/kPtNtAstJ4LQNzFph2gYmDfa6UiEmHZmeVBvfJbhLmIx9Bloz1gB4Y1Ej5iBlbk1Ko4U2w2RQVlmYDKb13hRhU4TOkw0c5Iexz8Hux1i0wioS0YM3qiiRrFYhSkWJQekCBvolUGQc0+fAyYJ8EGvQjviwxJrlSUSLW7wV74Wp71EGckgmIXNP+qgyCpLAGW8JY6JRNDBoZQ1sc++u0e3y97kOmNQMLzEGMb/pQNVOOyMUAqVsKzNKIGmklEwY7PoYg7D9G/b/775E+b/2h7hGuq4P0yr72qnEhVOUo60zOyyleEl5R4IJ+MTkWj2zvVl7uLLdGqQmfpUJKaZbDWKBMHv/jLQNzf4+iyuP0Fx9mHTlATYl0y+XtM2MEIT17Zto7olt64lsIE3Nj31Y9fTDhqYJzI/u4db5hPU7zzM/fBxZPIZefBE9fgWme8jsCBqbqq3dhv7kBpuzY0q/Ih6/Rr7+Y86e+zPk5i0mT/7rxIsfZDH/AikJKXoVTiqTWxPfMsoffRVbTFWhjco0qPWtINtKCAJakKysNxu+8J0l3/524eefTDx1T2Rvv6dslCHb/SJFupg5P7vNd772DV789vMMp2sDVU1iNpvwgZ//FB/6y59jOrwFN76KpsLhR5/i6P6/wRf+9t/lre9/FyWYC9BkQjOZEGRi5EtoaNoJEhsjCLqOzfU3yd2Gey4f8eGfepSLFwQZbnLfp3+N1M4ZTm9S3vgDrjzwi3zu3/s/88ZLb3B8LpyvOg4PDrn3vmvcWr5JomfaJtpZw2wxs0TxwlWm9z5Me3iJxT13E9LU4ksY0M2SsjpBujNKt4ZuTUytu/gVypDpCrSxZXH5GpO9A84vXebsrdfpT07RXMve1bluh/HC1uU4oK8O5wsWQ0OoM318v1g3x/hfQcRc8fB4VL/jcbOC5F2IANt99V58RCN4qSFjp+MdqORmGMcCwJ1YpJ7du26XDj7YziwwLCJhG/dNym04J2slQlxa7BhkrKbGYD2CyWQ00jbWaFuKOz0WKMOOuY0Sg/1OCMZjR7JhkNSCJmLpSSHSpClNKKRh5Rb5JqWJxblnHVAGYiigPTF3SD4n6kCZ1Rk+twmN90wUm29VJc1mcw9k71XLhkNKVnQokAvaD/RtYJmESWPOnG2CJkDbFFIvHJ8pSYSjaWDWBmJSu29uGygxQFT6nDlfrdj0HRqFGAzMpyg0Bwua/Tk5D3T9kmmE2WTGYnGVm+/cYrlc02MDSwnWaB2C4TdL+ipGsGqvDANBhLZtmM+npCZSVEkHF8m50G029JsT4nRBe2XOZrVm2GDvPUHbzpFuSROEJkbDijHa7LCmJTRzJM2Q2BAkMYSqVhDrh8WdJx03xSgU3ZFDi5DCBE0zcj8w9IPJy3G8M2KRcEdibFVOOzdNwWfEdRUV2yyN4nhKid78rcEwn4oSNZoELVuEqS0G28dOWeSOf/2LH3+ByeB2mm3dTfBtNYpKfL5B/XoZLWSDC+2Le057JWhsng4Sto5MUdxW1Jq+jUWwDV60Bgih9y1d9du7F998htUH6WyH2ImDbCNVK9Oj5pZAIBGJGgklWsJUIrEEs8JToanVCiqT6vpLLAghnnS6PZ3N47PegkFlrDQQQVNwXa3pw3OpgMi4LtHBG/uKDXzJkXUXOF8HZo1VNKaNMDFHO9qkNO6iGEOgCcaQxGi2aAQ1Zr76vQaQJITGbH2Nubeei4nD8L4o3aBMB1gPsBmEzQCrLKwReiIDzvjHSIiJEJJvBjM6HsG6uAmvABTXUvpAKq9eBYIlBhIglB1lrVu9xZq9272WYhm41jqaOwtlVQasoa1Ts+hV9em8EighjhNSA+KVEHPnUo1kFWNsNLh+tkqktqmU7WNLIGzQXvHX5mNsJGx/ljL+PpgFpYRgG8AlYXVKewletvaN5rCcrSbyvf1QiRQGYBs3xEvf1TXKgMCdieaYaMRocgnXLtQmzqDGvlSLQHeVNsDgiXz0PZ+LTfgeKyfUzhehPTzi3o98lgtPfYrJ4WUWF6+Qpnuc377J8vgGQ5/pVyvORBm6DSrCMHT0eaCJQvD7qFpIbQuTCxzPn+btl3/Affd8kLT/AHL1U+j0CJntQxa683Ne/cZ3yKtC7s/h9CUOjiIpvIlIomfB7IO/Rnr612Ay5eLDDzFd7LM+W9mh4b1BlfQ2cibQikkIwGSnKEyCMIt+1vtlBB1nE8QEXR44XhdeXysvf3XD01cSH7lPeeQe2DvPNMtAOVbevn2dF1+4zunxGbPJlHWJRM0sWrj7kXt4/Od+mumlI3j1e8jZK8jmOnLz+1x76K/ysX/tr/En/6+X0W7F1WsLHvv4vVx45AHOytM884ff5uZLL9MeHKFxgjYTVqszlqfHnJ8c89TTM+77wKdZns94+4t/xOLK3Vx+8iqdXOHFL32Zux74ARc/9u/w0NOPc+v6Ga++fIPhyj089JGfYdIt6W+/TiMd0+mUxfyI2aUHaA7vR9oJ+5cfZ//KvaRm6iA20G9WKNCfLUnLM5ZFkbPbZAL9kOmHAWIithOmqaGRTJjPmV+9m2E+o3Q9EmxgX86FfpzGbPcr1wqcyIiXrfnV/j2C3bpfPCHZbcWs3w1a4+Y2+tSejfduanHnQ3awiMUK2VY0arxQD7eVGVe9A4uY+tafIFq8kZ/EIk54hlCJCEsm6vDPSuCZSY2DQSCkRDvfJ832CE0iur1xKT156A1klww5GNPtBBwoUSLJjQKCRoIGYkioLCjrjjAdiHFKSgtziwtmNKJDpl8tGXoYhkLpOnvv6v2hMRL3j9DpITlHmyqeIvSWqFZbPsWTDZwUL8qg1hgtqkhxxnsQui4wSTYKwD7vzB/bMM6GuH0W2JsE9qbKdFKIjXofrDAw0PXKgBKbSJRIDJaQpFnL7PIBtJFh3TPEwqYf2JSe6d4RTbjIjbfeYaOKNA1pPrGKQljQrXqkKCG1hGiDg3OBUAYUZTKNTOf7lF4Yzs4QAk0SSmjYLDtEepr2kDjbYwgDm7U5W8ni0Pqj6F2laH0dMU4IzZQSEzElRBqrRBQjnIec6dUqICS1Lt1isshSsvcPbpPdmFxilUxZkksliWXEr9skwAk3qcl0TVq2piqhTtf2pLy2HagGw8n4gVmxSN5ikUroCZ6c/08gPt99okFtiFSq2ZKxj5Zs1EnPWxbBmrFq2V6CW02GYsBKdsCX69QlKurfr8ykyM7GlsogVPDhw9C9dFTlLQRrNBzt6VTvuEDC1lcYB7gRH7xWAlIikgNhMAY9uCwD9Rvgvyv1ZC82JKj4+08OaJNEkhRSiMSoxKKEHAgS3Wo3oqFY2VJMIx4AycpQrCF6PVYAlM0QWHXCKu0mGTbvo01KG4xRSEFoU3CWIdKkSIgWUKTxpCy5LrSJpCYQkiJRLfsWSzQGTzRaTzY2Pax6IQ3QqLDWQEdkIEJIltkHc5tyJalJm7yvojjLFNQPPr9eUa3Jrq4pmy9i62pMLoNNWq89DbUEbRZsVqLUomPSNgxqDaGDknMZ5wlYAcokBqZYEtBgzlzuykWdb69CrLXDynD5IVZq0lltFAtW0RBLcusv1XR4O9/bHSOI3sejaAjkEMkhMATxpNoT4nG1/ctR1ch+vXGnnDp3R+s+956lykBaUN1qq4sn+GjlV2wlGGjeTgyuAzDN3nnbzG16dq+aKGQtthZEaOb73PuJX+SpX/8bHNz1AFGUpp0wdLbK82ZJvz6mXy+BQkjRXdusOjZ0a/rNmr5bUoae3Hd0dNxYRb7yZy+yuPplrjx9EeYfJMyfQBhYn7zI9775W/zB3/0nXL33o1x7+oMMN24xna1p54dIM+fooUTzyCcJaQNynWtPP8WVhx7i7Pp1hpyN2ChO5Pj1SMXZM7F+p9YTiiYIs+A5O2GU5NjaNpZxWYzFTECflefeybx2rFx5cWAxXTGZ3CLESL/saKMw358xm0whiHnR03Bwccb80t1Ia84ulAG6M2R5i/DWF7j22L/NAx9/iunqxzz+RMvFvZeIw+tcffIDTK7+W3z1v/pv6AaThBSFYbXi/OQ2t27f5vqbtzl75duES5+g00T3xutcfuoKQ4k88+I+z37lj/jMcs09n/mbXLz6QSOgSsfmyQ8Qc8f5q9+H9W3aSWJxdBeL+x6D+RGhnTLdOyDNZoQYUc1kHQgh0qQF67NzWC0Z1muG3LNeLVkulyw3ayOSZjOapiXqQBw2zLTQCrSLBXsX7mVxeAWKslouWZ+d0nedU3IuI6wMpZMzEuSOJGNXQlVlQNVEyc4j32Rum6pUyZD63/mX42Fv2YxMKiYwRldr3uBN2JXj3WKRyoxaQlfM0tV9+7UOe5KABMMidSiaYREfELyDH3al4IJAjDR7h0yPLhPbyUiiKYWhd9lmHkCzk00y3iv8bJFsoF/EybMhUPrI6vaaRbu0BCPNQBZuMrZhc3rG6c3bhDC16t4wkEImRZMAlwlIalERIpnpfE47nbJe9+bQJdGwmdpU8FyPG4/FpZi8eeP4qRShHwpdCkx6YdMoTS8mn2osd8FyOpoorLvA6aowa115kQqSBlNUtIE4aZAUXR2UiY0w3WuY7U/RKGRJ9CHQRGiHQseSdHiJ3M0ZcodMEhoyOaxhfsh0ccjm5AyJjSVjREpRerWks+sxiZPMEI3kPtPElqBCt2kZ1reZLQpheoGmnWLalB7mYtbReQMUu4d+PzS2qEREEhDHPrk8OJFchCGbvtwGI2ebEZLN8SqrIGJ2P9X0RjGralIgxpYQDbIX72mluoD62h/HA9gCQsTX0k6yYBjGEbRLROvoB1wVFN1swpynKklRKxr/CyYa+JtQ2TKA+EYzS0n7WoVqVLbXwVQMnlmLmDTGg6RXkexNekZlA6+ccfQDMYTaEW+JSwUfg5jcJofaDO0lpXphdoKzgYy6qbfVmCg2qM1mXBrolByQHJHBnq+UQBnsF6w5zLX6I9mszrBbBSZJIAWTXw3BhthVU6u481GdtMaetDoxCANcgzAuliErfQz0Wemy0A74NHOzvm0jnmwIkwTTFktImkBssH6TYB7dMSZCE4ltJE2sByUmhbB1xRqKkgYb1tP00PRmuRt6a7wKaterJ5qzQozEINTBgEXNHSKUWo72io7rPU0uFrFhfzbgqricrTjDKmOioeRYqx/mnmW2nrVKoDahfTA9JoP/e7CZHTnbezIXBaxJPowrgOCJkXWr2H+jMpodoM6AqYzOWapWzbDdWO9jQUu1TDQhg4jd51pVUXfMKl6BM3mLz/4Ym77GcPEv1cPydbsuRe2KB/H5M/Vn1G66t+FYpU9qEp7vYC6j9yWMUiyqjKreZwxoOiHAzpWtzW6oEGcHTB54ikvv/zSXrj3K/sULNNF+7/j622w2HefnS5antyldh3mUD+Suh2I9Od35KZv1Gh16ct/TDQONrHjk4WvM4kXC3iV/hwFhTi4Db/zwNf70H/4+L//wDTbdBYbUcHm2Ye/iPaTYUDY3aKaJ7vQ6y+tvceGh93Px2qM89Kmf4pVvf5OUB3eJsXevagxsrQzHIvRSrYQhRWUWvN9S8f1o1pYafEBq77Eq+u+IJenXTzM3TwYmSVi0sDdLhHaCYNcitS3LTUc/KCkWJE3QsIc0R+TSQtfDsIHjN5lde4X3f+YBpjdu0py/Qn77VdJM0Utf5K4nPs89H/kkr3z3+wzDQOk25NwhEkhHV/jas8+h/+k/5hf+jY6HP/1x1us90nRNU6Zc/cDn+frvnvE7/82X+YXzcx76hb/J0ZWfJus9bDZryupJJosF5fw2IUKc7aHTIwiB6XzK/uGMtm3MdjYXpAysl6cGCNa3yDfe4GzIDH3HZrPmfLXkrO/ohzz64wvGBMc8MGtbZosFV9s5i7seZL44YpYHNsszVqfHrE9PKUNfa3YGNPw8sqbuiortHKxNgZXCyPXgUIerUgU8FUyPS476LGNQ2QHJ76WHnbsukWXn7dQ44gBX1LGIVGcndQWDS0jchEP8l5V6ebWCEscwhkUKflJULKIyOlKBUGJEJnPa/X2a+YzQNqNuPg8dDG6m4pmR/Z6Be6M7HWNls3QVl0aGDJM0pU1TpCRKZyYsJQQy0K07Tm+csl72NClQBksu02xiRG3pSNHALd2SGFomk5b54oDlycqkiwwMjEvNqkGl2qAYRDVpldLnYustBooWSoG+CHEopCTEvvaomHSqjYFhKORGyIMQUiE1SmqVZiZm+ZwiofbEiliPxywynTWUIGRaonTE0JtqQwuxGdCLU7oOutzTFWu6Vla084tIgbwZrIqulcg1y/DTZYfkUw4PoZnNkQZMTBpoZoes15nT41Pme0qzuERqF7SS6EKgBIHSIpohGPZRrGoSguEHdW/YKjXLXXYsYrOzOjWDoMH7XvLYj6ousw+Oc+pihpAwZy+JdoKVYtPFczZJXpUZF0VKsUqFurpH3HUqmNzbqoCy7YH19V6oJEbxHtOKsRgTlf8pj3edaGwZ1u3m1vF7VvbJau5EdaFKbSSSMjIrtUKjlcEeD/64U54TtsNILCuz5m+7AcHLmbW0OYQdByLv9hr9qgvOZPvmGO0iatZnwMcsvezDHJWiDU+LgT77zMVscp+KdOwvqR/YdmGqVjpi/R59jMTiDlJSEw7TSCcto8d/1u3zjOeD1p4BYfDrWhtmS4E+Q+x3qhjBekgmMdA3ZpebcyAXaEWs2UxM4kRKhEkkzizRaFpISRFPNKK7T4WshKzEXok9yMZulQxigHpnrsQoPRa75vWhBTTtOFdkvPpgh0Id1hir7M3/e1xgo/rK0KYSKMWz/VLLiWW0kLc5HSY5s79T51FY4pbFnkOCW9kSUbEAgSQCEdHgE3mF4MMDC7JdOqVYNUPMOUt9Hajv7bGRua4NTzCKswRaE5TKvkuhMKCkmnbgLeWMNNy/BFUNLdY/ZWZRvmC8ulWtCxXrpSjY182LyJlEj3QWCdhGvpHZ9UqZM4+5bKuudZKR1HvjOArwvgABAABJREFUkSdNZkzvfZR09UGavQOm0ymzaUMgsDw/5+Y7b3Hz7bc4uXGd7uxk1L3mPNBvVuShJ+eBkk1Tq6UwbHqaGPnkT72fT/3Mp5nuXSCkNchtKC8aICxCt7zB2a0zRDPd6Ru0m8TjH3qIg0sXKKvXyeev8crtOV/59vOU05v81b/Vs/+RB3jgQx9lOl/QdxuX4Bjb2riMSpKZI9jcHSWTrYFR1PTdYkl0dfvLMdEDq3Wh7woJs9QOMMau1mPMJAnTFGiSacolRFJKPPSRj5H27+HkrVfpypq8OSUdPYDMLjDolGGdiSUj655040dcPZjTnTasX1/C5pwmBWR1nRSPmR7MCU2kbMxSNgrMD44oErh1/SJ/+EfPcnr89/jLf2PJxcd/ibd+fJPrb7xM7udceeJT/OBPrvOb/9kX+Ve7jod/NXHpyscpm2sMJ8cMp8ds+g059+TlirLpObp6yD3XLnPl7gO6oizPy1gJ7ZbndOtCHpb0N9/mZN2NuuqgsGgSZTI1kJIaQgjkXNhs1iz7gfXNYzS+xsG1x2gWl4ipZXIwIc0WTBYnrE5u02/W1CYkqWcbW3e7UYs9uhZt4+0/BwQqQeckXRm/uV3zYxnkPfj4SSwC2/ceKovsJBH1617hjFI7wvL482NVRLZdX6pqYN9ltTreg+1flNqAK1g1fzKlTCbENhHbSGw8bmthGLZ9EPa3xGQrameh7V/1JEkc9AspCrP5gtl8n+mkQRMMuSClNxtXYOgy3docoga1mVaT2dSnXneEPDD0hZPzNZvNhunRPrFpmM33SOEGiWzScVUzitHt2rATaGu4bAmHOHBXJ4VcJlWEmCuzDikobQyU5IYP/rNtsD5Jy/STJRptIk4Ti8MFzaQB3dC0maYFTS1ZGlCbP2ON9CD0MAusRNC1xfQcFXOvyeY2GYRSbJ6QhmgytGAS6Vu31wzrgf0LAyHtMXQDm1Vvr3G6YNl1nB6vOOAW6SDRTudICvQbKH0AHbaDhIv1lKS2IWhg6Mo49LgMhTL0NgB5GBii0pfMgEGAImLD/czAnxAaTztNbmkT0O3aR28mHwdJJiUOPWUYIA9bTOJKHltvXq1wBQYhOlEaKDpYMks2XCR1UPbAtsOvYpGKTAPbHfjuHu860ci+6nZLhePDF1526cL2GMcbYXwDq83dtJQ+ehUjWrQIvocVq2o4Y4EDM5Nr+b8D5hQUGZ0hZFfr78113v/iGZ510SP14ruiUqwiMtRyEdbkPDhTn4ogTo2WIKRSm/Z0ZEWEMlqYFmGUhAV13XmxjxjNgSJJPbytEdIawuy11PLvHc3bDqZLMcYj+xTs3Lu/dxBSsGbqJopb0mI9BiKUaBtLYiK2DUxawiyR5olmHmhmwaegW0N4YSBU//dBzWoyYbafgo3l6IVcgs/pkFFfWIv25kHvVQsT4Y8sf/Tr4QSzJ5TWSxKdSdmW9vxaBksuYwWo2ZKFOshHnWWq/QzW5mrmsKX2FtVkqE57Cl5fErPaM76qIdTpi9VNS3x/qlez1ErxhmizbXAEGIz50mx9HaWMyQdeDQwFskaX8tgJp6VA6S1xs8W9s6lrklG/9h5FBzsP0Z0Dyt+PlXy94iNmAqFU+UdgazJ8ZwM4VHDl1IF/0yb5CiabxPeWrbXa7FgE2vkhR498kPaeRxiiMdKpSSiw7jbcvPEOb732KqfHN9isl2xW54xygm7NsF7Sdx39emUMdAwMQ2a5WrE/6Xnq0cRieoa0FxDtoHsJXV5HmjnSzrn21FV+7d/733L95VdZtIlr91/m8GCPdPfTdOe3+M4//S/4J3//S7x1Y+Ceu/e4/dpr7H9ow8UH7uXyQw9y9q1b3mcczK4wWrUwCkyCJfxRBdXklZ9CDEIbt8l9FtNID52RExElJqFRoSle2Qg4OylMGquipiBIjEznLZ/4a7/Gh3/tbzE5upvlrets3vkucXqExAtw8XHC0XNw8ipIj04voifHSCuoTtmc93TnA2GSmPUKmxvkvEKHHjZrKD1NSqTJzOamPv4kb+/t8dzzz7D523/MJ3/jfVx6/FOs0g02m7eIfc+Fux7ixuuFv/d3v8G/rv9PHv7l/wOX7vkU/flDnL72CuuhI8VETIUHnriPhz/5MQ6v3U9qImno6FYD694qU6VbE6Yt5aQj5mxmEoPadN9Za1WdZmr68pQIMbHuOtpuQ99tGLqOrh/o1mv6YbDhriiElmZxAWkmbE6PyZs1lQAb5xgp9rU6a8M11z6qDHb2g52dvtDx+UwVdNzBRRZ2sOR77pFhnEUo/ETnmhNzpq6w7/qP+tnmrG2dmLxDOopr0iVgpFOpunaoWjV1YFjP+iIYaTebw2Rms1GagDRijdpAHmworVBsoKzPodpa+OtIIGaRrVS72JzgZhq8shsYiiUZSiGKJfmhadi7eIncb4wQaEzfr2lKCVNWq+sc31xy3g8UUdrcESbQTlumk5bNpnM3R4OW0TX7dgY7+ekSvlEr4lmeJUfiU60Lg2xXZY4mgTaVrG5tfDFigrYxC9hpQzNvObj7AgdXr9BMGoJ0MCyJEyGHCdLMUekg9oRGCUM0fZcIOSe6vjeM6qZF5mJn8a5kqPtE1a6pxBaawMlyzaY/Y3bQkJqZ27psiEFopjO6TeD2yZrDdJP2IBAXezRNZLM8Qwd1lyZo0oR2uk+Q1hyu8gAyoGrDSOvcinrPRwdLl5sTEyL1o7HBthoNNxXQbIJukUSQFnCXs6BoEwmxUIYOhh4t2dRD7iglYmoeI9iCk23e0FoillbsYBEdwEnkOwH/Lh7J/EUe7zrRGIxMBnYgTwWKVTNdtsCBaIWoyrQVLeZLTWRroB99wYoBdvVmcc9SrP1VRq2xTVP2f5vD2haDBR2TjWq3G7CbFIogQyFTBwbWUG4sexZ3lAhQklvAig9PUyH5zIhcBAlWtjL5pg9RqzMh/KXXCcIavIQerIqxrWiYQCcFsX9XnRw4xVIrA5asRA3ELGNSEvzw8XyD7ENO6gDw0tg9CC6dSESamNCmQdqWOJ3QzhKTeWK6F5hMolc0CiHYoL2+DHQ5EIdM7oVexpdGFuiD0OfAUBKUSK/RZnRYpmXAmjpwDvoBryA4+1EXz9hs5GydB1krce4kkWKN47WybYFXfLKlyfJqu09N3ILL8SqgkmADzkoIpv0OiSINaIPQEEk0mogljhFBMcapJismH6wHg+kqxwYtuxuWcOVsXzerNWTs5TDYXNQvxCi98sQmu7yMn/xg5/N796ESvG6oo1tLBE/QbG1VtlXEp7z6l2oloh4Ytg2EMLKMWz279WvYPshYlaMO2xoUBom0e5d48FM/z8GjH+J0eUbQjr2LF6FN9MPA+dkpt2++w+mtG6xOjgFFmglDt6EMnUl6up7Sm/SliDmI0bSsS+b01dd4+Ytf4PKi4/BDv0S68ADoDO2KE9OJ+cGcJz//GbOpPT8lpDkyewxpLnLy0kv88RdWvP3aTQiJnK5w81y5r2QWF/a5+/1P8sq3vmnJU7AJ6FLUBuup4aQcgvvNe1MwSiNiwz0x+cOQC13X0/dmqzB1XZXpq/0eeKLRJJNCpCSElJAI1x65ygd+8Zc5uPYoIZ4yPbgA9/+qaZUlwt5HSE9BPLyKHL9J7jOFQIx7yOQym6ElHytpr6WVBWV1m/7khGFjUqvozFzUgdhOSJMJe+97jO6ee1kczMmL+7jx5i1uvfJjVjdeh+WavbZBHn6al58v/Jd/58/417sNj/76hHuf+ARnt27yYwWNgfvfd4EnPvtzTOeX8EY8RIxRLUNhszzj/PXnibIhTuZIjDTTGbnribMpzWJBaFpPUCfeGBppcmbPmW4UYtsyXewTg/nU90Up2ZjZmGZMD4R8fkbu1nVhU7eC7xxwMFqwGLGdhbGTcFNpPj+la9UQ7gDVesdzv7ce1pS97eOqZ8KIRbgTi0hUPy+yJ2tCwvCAnd0j42XPqNa7JLV8uoNFHF9TBHNdTA3N/gFhvrDxTSLENiI2XdaBW28VFCmkaExpzlDIptKohKKTqFmUECIZZdP3rM/P6VohLo6IMqFIIpfOLJExqd1kLwELA7YIyAQlMeQNJ+dmWBDIRq4VG/vWpMB0PuP85IwUbH5NVpMgV8v2GofNKUtIGFEYXTIW7VC0c1gtafJjmyEoJHNGG6KYW5dESoyQEtI0xElLM21YHM45vHqJ2f4BTZuJMSEyAy0MmulzJKRAahvyeqDbqOHhHGm0kLqOWBSRhMaGQnFrWywQYsRfEWu8TiESQotMEgQh01A2A0PXk/sNWuw1NLPEZhM5ub3mQrrF9EJLu7cgRaFfrRAVmibSTA+gREpvi7FW1INiEqt+DcH6+sQl9QHMejM2aGzQYDhEpCGRiBoIxWz9ncEmxtYkVWIEeh38y9hnFCh95++5IMkkoJV0M/OBMpK1ARt3YFIQjxfZCNyKRUZ8Nn6MZYR3vWffdaLRiVmmuqvclqn1f5eyBcj1NShqWvgRtFVJkwU/i3u2UK07vr4dZ/DDdvPVElMJNkSu9u1WFyvzkrZKRpRqsys7WaTdjOwXSqklIq+O+M+VUfNa5RyM7h944nSHZ/aYsJi0xQ6CajNnTxAxQUxCTTYVrClzECHH4BUfG9SmDkArOK4SMNQrJKomT/Pqj+IEuCefmty9KQWGHOlL8oE4LSSbhJnaKc2kYTJNTKeBdhqYtKarDsFStC4LknvoYQh+zdQm+jZBSDGQciDmRBii9bMUYyuKVqCOl4t9/cLI0llZ366PqdkswI/aMZzZceY1uEtVwHokioJEIWcse/cNEbFm6iBWNWrwypYE1CfAa4zk0NiHNKi2BBqSJncd8wnr1rNHLtiE0/rSPMko2NC9LIMnxNl+KfoAHS2oWOYfCsStbRriPrYyODgsdl+D/vNb2h7v/SQDYFCrNCXZAoHi91SdVakxpBKKW7kU4wWp16baBcYKr8KWBLGhsbUR1tdwgGay4OCu+7j3o5/n6gd/mi73lLLmwtEFLl2+wmQ+IW961usVy/NzY7X7HkkNk+mUIIEB6GLnrwAmiz16FbrNCkU4uXGDG68e8w++2PDWrd/nwy++xbWPfY7ZfR9EZh8hhDn57G24+TWQgHQDbTMnXGiR8ibL49d45o9+l9NXn2fWJkqTCJM9js8E1RXNdMqFe68iCWQwpzmr7BVq4x8CQcK2siZQeV7roYJSTF4YEVoRilt1qVdjk6i72AkpFk/Yo82GiEKMiatX9phNMkF6hBvAKYQrwN0j6NV0hXVzjTx0lOGMFC0Sx8Uh7aW76dfHpAtHhMUBN94+543nX6J055jZgsfiYkxhFCHFyPzwgNBOeOsH30f7nstHwvs+8T6GoeXVF17hrXdOWd73IK99/zb/8De/xW8c/n955C8d8L6PfpBVX3jxu99hdmHBZDbfVsSK0m86cl8ow8DZy9/j9IdfYX60T9p/kqFAWuzRzAPT2Yx2PifFhpgi7XRCmk5J0Sw2q6RMQmQ632NycAGNDUPO6DDQa2EYoFclhQnN3M+7vjNJqhqZZv0ALn/ASRpRlx66XYTqaHpbK8tOl9t6GJOM+jMVLLz3Hp1sex3vyKHAE2w7GMcZABWLiLPDHhPMvavs5F9Gdu1Cq3oNi8vRRswXos1K2Nsn7u3b3JeSSamhaW09GDFipXvBTE+MPKvgUb3KvwWMJutxw51+QErm+Kwn6Cn0mbh3QJzOCWFBJiI5U8q5mztY87rGCPTk3LE8u03u1paQiZF9FCzRCEI7SSb5KdtEY6Rh1faDeJXFhD2Ge6rJhhQdp2fXGDN+RFNt2JDgSNZECdEAdWoJTUtsJqS2ZT6fMZtOaKcNbaPEYEMqIdBXy9EwgdJThg0hZ+uoDIEkDSkPxNAjsSWnljIIeTPYGTvKzt0SveAuh062aGCzXEEpxKC0sylaoOs26FDMcayD09M1aXKL6UFLs7dgI5FutSQ1DU1K5D4gUryNAB82rGi/QvtzYggQp2Yo0DTe5J3Q1KKhoYQEMiF6ohEwLBIQNAuiRpDmihcC3hRuBj42tNmJ+cG80OpIhZIraHTyu/imqddHgexYxDFmHf5a61j/c7DIu69oqFUcgmdpoXhTyXgT7/yQWplRv+KIs5k+tMwZGR2boazEK05d2ubz0ptgWrvgzV5BKNUGtyYbDizr8D6pbA52QWtyJK5ZK6ouGbCG0izVhUgtAxS7uTbp0+QI5mJVfJFuD/Pxfas7Yaj1hIyDw1RJWMkuewJVgrGJqLH0A/Z6ss+BADzR8KBq5ACpGGglM1pT2saxaxSw585DYCiBXCK5JEx13SL/P+7+LNiy7LzvA3/fGvY+wx1zqsrMyppHoDAREwGSIECCIGmSZsu0KMoKhVuW7H5yODo6op/7wd0d0R3RD+6njugISXa4bVqyZokURZEECEAAiLmAmlDzkJmV4x3OsPdeUz98a597ix22QVLRofKpuHVzuvees89ea33f//sP0mBMg7MNjXU0Ti3qWpc1+M8WEPXhL6mAjSpKk3Gsa5CojlwSLRKqrL1UIX62VWCqHYWpXXTdV0mVJzzyi6FU5x7F8KSw8ZQfRf2b34+P8QKVUseKZUNzUgGgOif4erjYeq2lujdk54jWE01DkkavCx5bHKZYtatNUKpZjjodlM2BRbUgViGcJaHXOkusB46+vmLiu5rNUorqPXLVeiSFXEzONZG9VEvksvGxPnHYHpf5u5f8e+3hGIOvTlEEOcFGdFs9Me5Mmc1UKpeTgklNB6QCHuNeUs8jdL2O3vb1uCdbS7N7lnse/xBXPvoz7D74FH23YPXOG0wby/6F8zRTD1IIITCsO2JQa1I/ndXvJ1jn6cmUFCi+wRqHn28hQw/Jctz33Ll7wHFKvHb1mFvHa776/Nd4/I9e4p4rF/D75yh+TlivONO9wOXtwNn7HmD/8qO0qyM6u80z33uVb//jf0HolzTekFtHxrAKmZIHMD2T3V2lFFIUZHFZ96yi43DrlB7YTBpyKsRupfdvEeVXo9be6taiQaU+VTOGSnfwNm/c0ZT7X3nPVC55gdViSTp6DfJPgjkHrKHcQmQHmJHTbd5+5ivc+O4PKWYPa4Sd2RHn7umYuAlb99+HuXeLdncHdi6yuD2lme4zLAIxDJs9oOSkIaAxVrDekENH6dbsXLqP9332IS488iFEdrn4/qv84X/3/2H3RqG/9BAvv9bzr377y/z6fIeLn/nPeeB9j3H1jVd5+bvfYmdvxvbZhyjF0C2OyUyJcYuyuMv6zWeIyzv0E8/s0jap65jv7DCf7jCdz/FNo9Mha7He0U6neOehTs+N87TTGZOtOa51DKEQhpq5UPeREGEdM8l4/GQLkZWKPOHE2dCMegDRbnpsJjdbwSntBbJBl//ni4L35j6iAbRZ95Ci5+F4mcaHnsd/qhaRUgWy2jRoLaJfOF67skF9KyJW3VrGOgAR8B47neHm25TJlGQgpYCzgm0d4uTEMfZ0sWasMiykVHZ4bWBKBVHFqPtiQfVBISqRpw8c5sLQL1gvBuZtg/deQUEpeHomruDaBts0kB25GJbLjuXdA2JWO3GREdUu2JJxYmidpRmNUSpVKp2qRaj0dWtMJY7UKVxR4Gykhad6/Tcll6AgrFEtZ66skJxH2FWRezEea5RN4KTQGKcTU9MhNoBYxBlKKoRuSezXxKxOl0ky2YvmUTDDNxCKJ8mE2HvNpKkUan3dIKRKqy1qo1/rJRHBeoefN1g/oWCQMBDv3tV6spkwhI7FwQLvPHb7PM2kJXYD/WqtTUBuKUMm9YE86E1ncoLQ47Jm6djGawPcNuB1qpNcQzaeLJ4iDdY0WLQWUd2vbFwxc9F6Rx2Hc80Ny9UmN9faUvXKJUdEEiJJa9cijGkv765FyuYNNFnv/7G+t6hpyhiS++etRX58jUYx2DwuyEx97psD/vTHBkyBUZNScT82tBPhhJdY6kSDzZ+P9KaKhsmJi082QjHKNBELxdbCZTPNUNeoUXB++mMsTMdpRQKCriNF/4yiDgO5eg+N0xvlb2LKplDSF2g24vdSu1gd10ktfqiLt4bgjVoBg9qVkXFSiBmiLaR0quguoyuWboYua6NhGYsr6riynNDoRj9kgey12UjJELMlJUvMddpQHIKrfD+rEyCTavp7qj7RmsMRN05SKL3NWCQIxhrlE45NRqrv09jg1U1oHAeNgrtRxDjS8N4lKion4keD0QT2+trGqU5CG4qUddqngs1yyr62CiUxJyiMMTplcAbxluQcxnqM8UTjycqE1XlIcfr8kzYbhAJRkZuc0CYjjenp42x28yWbV6W5GicjzRE0GGPmMll1HqhMXV238iktgjYnUE5FC3Jyrd6jj1wdX0Yxty7HSo8b1+pmDlG/pt4imlIrmwW9ue3roX1yaXR8X4FNjFhcO6O9cB/nn/oo93/oE5y9/2FygXdefZbFzau0l66owHEIDOukIutxsug9zWSu72qM5JJoZnPE6tRKYlZBY+nAOobcscpgrGFiEkMvPH/7Ls8/d5WJJLIzRCxGhHt2C08/sM37nixcvrak2XqLq3cSz3zjORY3b+JbR4pUW8MCxeq9WRpsO1MHEokUsmZ4FChFQzhd47nyxBM8/KnPslxFXvzD3+HO26+RkiKaYyGkAkNAwEvB5dF4A5zVd6lKBMBU44oR7Bgib719xPFbL7P18DVk/igilylyl5Fwsrpzje/8o7/HwRs32bnvw8z27uFuOmZiwJzbxbae9sKT2NkuxU+5cOUCQzzHi1/5JiX2lDjoWVHH+7kGT4HBlJYklqOjQ179k3+NTzeZ3/MBhnXP+sYryLBif2eX9YUH+Parz3P2H/wuv3zf48wf/ivc+8ADvPi11/naP/pnnL3nLM10h+3zD7B//0+QhoHF68+xePMlhnWgZYJxDX7idKKxf4Z2uoVzjpwzJSfVmBmLdVaZCFmnMU3jaWsBqniVIHhyLjrxFCFl6HNGTINtC4UVuRZ1mq9RdWUVgNFHxdxF/7dJD3/Xo4xHwrt2DpH3LmCRimDz6IWUNwDT6VqE8XPdFkyVqoxTeS2K/ydqEWo9YnSf1t04I8ZB0+LmcwUW2gnZGkLoyDkgzfTELIbxjNMzMUmdlgichlVk3OlLISapoJRsbFGtqD37IIkYM9164NgIjVFNozGaXzGfeKbTQtMkEEsfC6vFStOlMfV16cli0KwOxNJaz8Q6bSBEbbCj1bMu16vj25Z2vgW5MBwdUoYemzazUeqArd7P9RY02vpKBWxzOj3ZqCBoza0qxRIilKCUWiMeY4tqQo3WjiYn+vURQz+QZEY0DSFFbWh8DSjwDZI8RItrpzQz6MKKEjVTY3NWw6bCRExlvhhCjMiyo5kOGDtVjWkMld7oSExY9x3NwSHWT5D2DMY3rLqBYX2omoogGo8gjdrs9z1lCIDFGo84r3TwpsG0DcU3ZOeJYkmizYYZtRrF1mmRRiKUmithUlEmR9JahJxqE6kA0cjEZnMv5829p3e0VF0Qm1pk7Bg1B0yBpZGeWDk7/EVqkR/f3jZSR2JlfKcYsxA2AhfYdD9wMk6jLuo8LulTCngtyGvBJhlK2hQIsikloNTFkqsOodQmQ6xsRJim3jSSTxb7WIhvgvrqxltKJhbqUqqUnTLSY8rma3POKno2hmQtPqtmw1ptHuxo1Uml3FeeW8lCrlzPUgsfK+CNQWzGlkJjCpM0eiyXWihXoerm+mjXalLBVYBhXCi17q3IGLVj11WfYyFFdaZSO9yinyOo+6soKoCtY2GdHmEcMqKYRfUlBg3aM0VTuX3NCPHF4ItVrcZoL8x4KcumQhxvg3TSn9Ve9OQQNJWnKrVpVO1KBZbgpFCv9X2M2pjp60yklLThyKUi32YjzNdphlVPT+8Q6xHnMKbBiAfxFBwqClenBZOEEoVsS6VQlWqXO0679J4dqVGbu0uKLliTVZdRC2ipOiIFJurI3GSKSfp5M0I/qRVORvjl1FV8bz/U3pdqf6ioa6mHr0ULXEVOVHdTqFqcOu3SWaUl1IRdqm7HykkTJ/XWK0XAT2jOXuLMox9g/+H3s3PpCtP9PcLQc3D9bW6+/goYQyiF9fKYbrWi6QdSzpruaj3WWLJttIBsCzEE5RAb9WYvITEMnZph+IbiPCEX9qcNuzszFuuBGCL9kMgk7JDABLKzvPxO4e2bd/ne80vu2XmV+bQhoWt+2nomk5Zunekymt8R1nWbmmLMVKkSRQ0IShFmWzs88NGPsz48Yj4N/PRvfoF7n3o/wexx7solfv+/+r/THR+BrYLWXHQvEtW9qTZNwZyRUyKVx55Hbi9CTHV/jJkXXlvw/Pdf5ez7n8VPzyD2HMJM11QR+sUdrr78CquDJcvuGfbuS3jpGK4YrHWk0BFvvwq3A8b0bD2Uue/p3+LO2+9w9fAOKQRtNlKv6BLVYtIoYpiHjsWbr/Kt59/k9e8+z/6934D5fcSuMJltsXv+CjEJx8dH/KuvvsCVx/8HPvE3nmJ3Z84DH/lZwtAxmTXMd/bYOX8JsROOrz7L7Re+zdHBbWJMTJIhDx1u+yzGeaDuW9YBkRQ0iC2ZQRu+BDkmFedzch45a6rQW0AaJEZiUnXweih0uTCxDa5JlKEHCsZaBUvqNGPcBeRdh37dXAtQqr//2JTXIlOxtpOvPj0kfk89NnTyitJWFsFpRL3+M951tWpBrPu0qUXTCHJVQKxkKGYjoE1V42Kcx81m2OkM004ozlGkMMSeEHuwVqcYUhkJVWsouYJcI6fTlBqQV8HLoqh/GuupXGnYpRBjxrlCwEJKSC4E0elHsgaXBOsMQzZ0cWCyTrhKNc5o7aLsDq0axuwFASwWjKexnolzlUqltQhicJMpISqaPN/fxrUtBcN60rC4fh2T06mzuWzMcDRsVi+p4QSgy0kISfN+QtIaZIjgE/gMyx5W68gkDRRxFGnqIaGoPEZd/jTfayDjKaJ1WDYemzM2JEzMmAGc8ch0n7zODL2ikqrPrUAshlHba0RL6DRk1uueYdVh3Rpsg2BxTvBNQ4yBkguHiw7XHjA9MyWLQZo5UTKi/QSIoUQI/Zp+vSbEpACpWK1VfaMNh1MKmTiHEUfGYqRSdIwlU7USxVQwVDaBdVLrEUQ0841ENhrytmmijNsY5ZisjbNU/JNSa5FS1CZ3U4OorlZDhqklx0kd8uetRX7sRkNiYhQ5j+F8p/oIXcT1G47Ay8jp2zytUVBLHU1KbSDGfIuSN5MPHXVVDh1VSDs2NFIXcl3QJ2nX1YjthI6m/7xQhea50ni0Ws11thrIG1QhjwFeJFK2xGRorRCNJZhMYw0+GayzOGuUroVaCCqQL6dGXZuzGkGF38bqwe6kFsW2bpCl1HTI8fpmpXApbK9vdp0SjPkUseQTnnWpN1HJ+jprUZyiblghJIaQ6GOii5kmFXymNk5jcoStozYHo3gdU2lgQnZmMwZNdQyqFsBCdlaL840GUUMIR/BzbCIYz0vGZhJdLON1M1ZFp1JdbVCxfkYnPSkXYsrEVIghqV1cjISYyEmvmd6cWjBlYyjiNLncudpwqPCqWE+R+utqV1F0TKb0PJXP6fBV6pZaC7qStcmoLSkqysu6gYmt93T1PtmMzKSiBuWk2RAVqGWTSaYQjTacI+Z10m7/r6PRGK9HljqercjqZo5Zxld8gj5FxVi0BZSa3ita5KuRhB6IUpH4UhQBttv7zC4/xvmnPsaFx9/H9s4+5MCwWnB0/Q7XXniGxZ3bTM5dIAwdse82NrW69sbnoPclxuC83RC7fG2agushDmRjcNMttn2D8R5TBrzzTNvMfNIQuh7J0FpwraMvgoSIFGiblt39GU3Tsjo4xDtL4x0T17KMK5arnsYtsGmp6bJM8O1c030Jei3E8b7P/So/+zf/M1JaYZbf58y5BtO/TpO+w1Of/hm++88f49oPvodktbEuAiWpZmbc0xmdKPO4X+v7RpYKguhvY4FgLUtj+J0/eo0zj3ydpy9cxk4csEM9ydm68AgPf/QnefYPv0i3POL41mvc9+AOZy49ynS2zWp9h/W1l/HpDq0Hc+YJJpe32b94kVvPv8gQB1K/pqSgm7l1lJSxNEoDEWhzJDUXWKwy/WuHiO1UqOkceXXIzFnO7O3zxlszvvGvXuBDn/s9rP91ds+dY7JzjnYypWlaDNAd3uX4zZdZHtxkKILxM4b1mrC4gzt/L7iGHBLR9LqfZJQDXUCSEEKAqNTT4iqHOtcQM07Est4bbcYA7xJDLcBCsfhmirGCxKD7zQaxO7ULbIZ4sgFsTju6MVJ9ZJyuj5DNuyci77WHpLypRUaA7/TuOH4e6ZljQTxOUKUWBWNIJWM9UnSfGWuRglKKTNNi5luY+Ry808agJHKIhNCrHbw/MZcZkQ/FnLIKw0PtkbNsWAqakaDAaBHNU1D7b90j+0qr9flkkm9LDTzOmcZZbJ28pKTBd2pWI1oTINUcxSpgmrRm0qdoMcbTuobWOxXHZ33Ns519ZmfOkUsi57U+7xgpuWNrb4Y9nBLTCopWZhFBUK1LGvMcalMnJlfkPVd710IImSFkfMzYkLERTIJbh4Fme4WdeYxyR7Q4F/B+xmxrlxiPKFFplK13+OkUVxwlRXLfKcOhGAwRax2lacB2xKKshzEMVh3ERoMMKhBctCZAyKEgKSqoaqrVvViya4ghsjga8LNjUtmhGJ1WVkK1BvDFwFAdCRUoq6YQuWCcI7sGMQ4jhiyOYpxOd4wDY2vGl0A2qsWphOq8qUV0wlus1O5O/7mMd7oo40QNCUoF8fO7a5GcT2lqSq1FtOnIRulzo5W0rqs/fy3yYzcaJeoQMcnJjxmL6/Ewkvr7jZ63Lm7KiD6coM2jMIfx6+pmkcvJ15u6aUoW7f5rV3YibJNTvFXl6o0e/FSUFEql8WRGUUnRIIcKjyvyqQu9Kk8Lqrw32nQkY4kmE40hOIu3Bp8y3loV/lXniFHgrD9e6T8nIimzee7Fs6FwjRdKr0Ft5PKYZq1IfYr65lMXc0zqWmJRRwZFb6vdWEYrhpDJIZNC1CYjJro+4odIEyJ9zPhQKqIwNhvq5awhakpDc5I2BSD+JKTPVi2DNh66IGKuY9JS1JEj69RIm8TaCNbESeXXCmM4m5QxskhpH8aM/Pp6/SrtLaekzVNIhKhuGiHpR0r1cM+K2agblCIEYpyG6RgdTRajAiyNSq9ZGpiqZVE6WK7vppoGjMeaUBRzrodcqchDHQOTUc/wVEdvyp00I9cNo1+fq44gF0oaE83LJlekrgCqKoDR4LX8GW3l/l17GKRql3T9aiZcpZaVcVwrivRR1w16D1mpRIRSC2OKTg1ROgR1DTLZob3nAXYf+xB7DzxBM51ijSWmwHpxyOrmdVbX3+Dg2lvgPCElFseHTBrh7KjPQnnX5Ew7m5BbT7/uGLoesoYZxZLphzV9t9bi0nn81hY7xjDf2sItO3W6ITFthL5xmKChVkYMJRbO7sz5mZ/9ML/yv/1lLty3BcWzuLPg1us3uf7CKxy/c5vDVaA/OiQsO3LXwzrCXgNNQ/WSUYDDei5/6MPsXr6M9weU+DOQj5HDN2HRs3PG8bFf+ywvnt3m6vMvcfjOtcr1pTZVVXA8AiNWkVHdm8vGxWUoEGIhkMnGQLF874Xr3Pq//Da/eXPFJ3718+ydv4hpL4K5SDN/gJ/6j/+P3PvII9z40TPsnTvDQ08/yPbFizD0lDvXWN5e0OZj/MXzmPMfASwxDOAbslH0WMSQU0CyfjR7Z5ifv4eYOsqkYFyLGCHHntAPxF7JHd36kBbD/vYWi3vv5aWXnuPFP36ee3/1LzMsHZNGLY2dM5RhoLtzg+H6G4yW20IgLG8QD/dw9mnwSovouzWpZKy15BRxxWCSJfdBKZal0K+XuGOnTjOTidL8RnS9gm1GhMZ7Ysr1WBKieCaNxfiBEqKeWYyz9vG4H9H4Ot0oZWMmUeqWqyh9pZvVrxxBv/fqo6R6TlYgSxHqWpe8qxaRza91JleNRCqjIleqbgZqsqde2QLFWPAT3GyOmc4ozhA3vPZU9XlR9Q+N26yhXIs3MVV4Xq0QjdcKP4XK+RWtZXJO2hSkiMQqTDc6gcqlEGKiU/121UVInYYbtCfRJO6trRn758/QtBbBUFIiDoHY9eQY9FwsAZIyMjwWEU/yDRPXoKQYQAz7Z/aZ7m5RJJLzlJQiJXSkIGRpsOf36ZxnOO4ZclCNIQpCSK1FCmzo0yPomWMixkRIiX6ImCEiIWFTwURgFeDqXYrJ7J2dM5nUmkQc1s3ZPX8Z287olmtydhg3IUvLMAg5rAmoA6c4S27nCoRaIXhXC3Sl1RdGMLzgnMF7DzkrE6bOgJSVMdZBasIjUtO5XaZbd6wPB2RuSFH3yJgTKWdiigzDmtCtCRU4ptZDNiecUQtszezS/TNTg/+kuhxlQ5aaY5FNpVuazVreuKtVcp/+28LojlSKrXumU3Czskty3SNGtEi1pnWSdqoWyRXsfHctoo34iV3Cj7+H/PjUKZ3KMFCRgdPThXH30nrzRBfBCY1qdPJM9dKMSYTq/DA6Oug3Gy1Ky+g1LKNVZUWVQb+zaNdVKiUFqQLqMu4WdWIwFnR54welJ2bK5KwFb6oUp1FDUapgO4uKjpI1JGMJLuOtoXGWxhVaC37UMdSshxGx14Jd7cykNhXFnJpyVLG3GTUQY09cCilmUkjEGraTbCJzkiY5lMxQVIwZy3hTjONfbWBJ2mzEkBj6iG0jvh8/Em7I+KHgW3QMWwxWnNriWqkOVHkzXnQIQdTpQXUPFqzZCPOD1do6DYUYC0POmDqBKRXJdjXzw1Iqb5LarRqk2IpijNMuvdHGFO5UkUFFRjIhRvoUGXJgyIk4voe1YamNPRijqeXWYY2lOKdFi7FkGcPxanFbTgnXSrUGLaNi4KSfV6vlrJOPXAVY2WxQB83lKBuEUcYiIKd6UKlj1obutaHQsWlwSl3YNTaNP6t39b+LD1snDpuJaKkTcpH6d/r3iK3386ktbkRtUdrcZjeoVZV3Lf7cPcwfej879z3O7sUH2LtwL4c33uLgtVcp3rFYH9PduUm+e4MUAqaZkTKs12sOj7wG/DlDDELMiljmomhfLok0BIxR9LLvlqyWh4Suo8SsYsJ2os+3QEiZIQRyysQQNbU3GWIBk4UnHr3MB9+3x4c+eIZ7tgbmvmDnE87cc44HPvgh8q9OWB0tePMHL/O13/sqz33nGe7eeJu4voUjYjDEVPeAnDEpksMKmIBcANuTs0XMLeT8B7HTi3zsl3+CD376CX70gwV/8Lf/NjdffA5JoQoj651XueoGNVKIddJqjHLHqU5sAdGU28Uh66MFz92K/N/+T/8tv/hvvs5/+r/7BfYf/wxm34M9z/zco3zg1/8ahNeR4QhJieInymm+/hbrYUpKM7avfAZz/qMsl8cc3riJn2+RwwrPhHa+hW1aZjtz5rvbnHvkMfYeeAxnMxAxptFKJwWGEOiXHavDFbffvMbBO7c5OFrgJw1vLBe88K3rnPuZV+j6y8y297ShKIXV4pC7z3+X7vrrGHRvD3mlCPiwosQBYwwxDHVSkbFWwS3rWz1jUqmZAZaYIqvFYdX17GDbad1XFZEbi1Mp0DinIE3SxjliaewEZ5SHXepk+130p4oyKn2ono0bnYD+bS6nm5KyoUz9/8g53iMPybpHhLozllN1yAhaQj1razPiR5Ci/v2mFiljLTPmY1Vqy2QL285g0iqXvkTC0EMKG9C0lFR9SbRZCYqE4UWtb2smJ4lMrihxNgpTbaCrnEgpqD4hV4Q910ZqSIQS6bOyA2wWPLJxvYq5MJu2tK2jcUDSRsJYo3bK0ymyq+h/WvesDhf0qxUuZVqhOh55Js4rkk7BGMPWxDOfTauDUlanuB5S25CyZ35eSFtzVoeRg2u3WC9WDHVPj4VNLVLqKGmkUueoIZhxSPQ+YQb9sENC+rgBItNbd+m7JRcvzZnMZhjbYoxHrLrMzfYG8pCJA4TkME7I2RA6paa6dpfkd4mdYbDQzhokgE3qyoSojso7x3Ta0jQtY66EYDbA54nWNFOGsEn3jqgpx2oZmDYdMWigXcyFmCN9HOjWC2Ls0EQvBdqNUZMXNag5qUEUPlRjgFHZo/WzgvJJ7VAVJNfidGMSoYyRyoKpNSvVuYxka/PYIKfei0wF83Pa6IlzUmxU96MxG4VTdcipWqRYToIrf7zHj99onHooAnDqD079Oo1F9OkXVRdcrCLuWB2kxGpxbkX5/ZuZspwUm6ZycbXZzLVY187m9BQFToqQiqFXtMLUJS2bAn8cZrC5uLpJ27oJq5hGCKOtqzEUa0g2a9K2U+6bZLBO1AnKWRpRwbaRmp3BCSa9uVRF39hxGmOMetKr8LletJTJsTYIUScS0UWyyURJBBI9QocwiAraNf06181VR3UlGUoU0lAIfcH1ib5PtH1i6CJDFwmtIzaW5KF4FTK5YvBiUfG7BgyG6jrljeCcwXiHBEPxhtIIxsPQQGoKcSiEWLBRKU6p3szC6Mdfkev6XhQEdasa/cK08cyV7KmFflakL0nVmmSGmOljYkiZIRdiLpUfOqLbqs0Q5zDOKa/W+RN+vYyIluppEqNg7dTvRepBNjbFKLWkNjS52E0jVIzdBAem2jZW05KNO4od03fGEJiiKIve2MLp/0b04N2pnO/thyMjYonFjicQBjQDQmorNU4GT1PIBEJtKgxyanxcKL5heuY8uw88wfZDTzO9cBmLgWFNXB8TQ2C5PGBYd6xDz7BeUIYBSQWvCn9SzoQwbES3ueqjUk70qzWh68gp4X0D1rJeHjOsV5Q+kPtB94NqMZvrAd1FpYKGEIkhqdZDRmc6iFJ4++aK9dde4vqbV7nnwpT5/g47+/vMzt1Du38Ov3eOJz5+Pw9+4CLPfu+jHP7oO6S4hLLUhqjAECIhZUrqePP57/Ph1W2cP8v64IhbP/h9Jhyz/9ij+FmBw2v4g1d47GO/yI03fomvvP0GKR5hTUaSIaVSoXAtekSsTlMzUOmEUoVSpURNzQ6Bxlk6Cot1zzPfepXXf/9f0By8xOypz2MufRaZXEJkn+IHimkhLShxDcbSnrnAmac+jHPgH/wUOQcWt2/SNJ57H72CtRfY3SnsX7mHye5lnLcacFoyEntK6ii506lMSpQUaCSxte05u2u5/8FHSOkBupB47bUP851770MOr3NwdUV73y6+0eYwrFccvPwii1eeUcedouYgMScVbCLkNKiLHQXjHa5tsU6PUWka3KTRCcVkgvcNJWdCPxDCwHB0F9t0mGaiCcXj5CxvWNVqgVkpCwHdH504rLMYp1SaEiM5p3rW1RnHqFEYo95FNmePnogjCFMfZfO/99xj3AXVcqNshjPjNGL8Ta6A53isqiZsPN9PapIsYKxRm9J2CzPZwvgJiBZquTpIlpLVCAQqw0D1FLoqtDmIjKGAJ9dcMb9Kic2KjJexyayUohLrXlZQ1x8KOShCPmrWYkInGUC2BZ8N1jmWayixkPrIvHW0TcO0dZpQ7jVE0m017M/26ddzUr9i4kAawQTPpPHa7IoCjI0ktlqDcZ48DIS+J5MojSPhFXiIgen+FnZI3B0CtkTN2kIncpkT8LigGVslKSUpOjAhE4aMC4mhC1gnNK4lBQhDYbUYCAeFaRnwsgXtlrpTiSfKQJKMM5V25RwU1Ti4JPR2m1ga+gKTrRY/a5nkSj93DWKaCnrWvK0xzK5OIbWTO2GmiDjM1EMqNClj1zOKeGLf0XWZhFUSSVKGxbpb03erqrs5cSsTaynWVvdLi4jVyYa16tg5TjTE1Um9UrqLaO6KBn+Xzf08MkXUEU1dy4ox1VmtnLBA6mox6KRNcmWQlFwbLKV4M1L+ay2yobTXRsMwNh6nV+GP9/hzNRqbx8k+x+Zny8YJ9KRoqALuKBAsJMvGbtSZk6ZiLDDKiFIWKhoM1FRPfX2mCkX1ileCi34UKiUHvXC5VHoUtUNFf6/Ef3USSlUsU3ScJuPoU4QkhmDMhiakdJiCLfaE00zNxsiG1kgN5avTFVMR2cq50w60jqKqc4R3Bm8FV3vGkrXRUE2FJQyRZA1REhFhgI0DjITqp5zMZlOL4yQGS85CCZBCIQ6Z1CdSF0nrQJo4UmNJXijOVI1LzawQqzziOslwRgjOVJ2JLhS81Z06GMRDP0BoMqHPmCFjQsKGUQxWB3BV+zFSNHSiZzYf4/IuRREnioralHmkqEgcktLBhsQQMkMoDLFU5LV23WKVKuUcxluM00WerSVZnciMY/NU2AjrRxpKou43J+p7fQ9tpcTVDz1g7OY+1XG52sxtJpTaH9fpXsbhFecQR5aoG44opcwwUsZ0wZ92Zxob6PfyQ4rgJdUmTa/gqHoIWUP89NYeIzVPJh+nB2AU3Vx9O2PvgSe4/+OfY++hJwgpMqzXlL6nOz5gvThi2a3pQk8KPSGs9adNZpgQMc5jKAzrFcdDz9CtaxGtXGlTA9j6lBj6HuscOUO/XtKvl8RhUCeqnDBtSymFEHqGEFh1PSrahmkjhAzLXPDoKPvZ59/iBW+YTjzndxrO7Xq2poa9rYa9Lc/ejuPy5X0e+fSn2b38AB963zbD079Iu30FkcLuPbtMz97Lwe1DhlgIJfPit3/I8fVXmG5PObr5Dt//vS9x5tw+T1+4F3e+helFBAduqgNJAWMqLWkU5uey0a+NQV0i2vBbCo2VinjppKaUzO7Zc6QYiOsjcix855k7nNl5EWunTMXCvR+CycOIXAF7nrh6me6FP8RJwOaB3QsTSrNPvxrIBx3GnuGxj3+AdmuLdi44D8KC0i9gdZvSHZO6nn61pFutiN2Kvlsp4th3SBlovcE7aOcTmtmEyf4FHnrkQ2T5PCV5ds6cYXb2ImIsse84uPoWN77zJcLyGGMdZuiRsEaypg7HmCgx0E4nNHv7+HbKZD5Ty8pqD9m0Fjfq90SpCIvjFf2dnm55hG17/HQb386UTy8jekltCDQYsRQls+h+VJBscMbXAEWHiQOkoa6QkWe+gd5OKmzqeVY79lxNN7QReY8+6jlNGeHGckJRHv9N3XBHjeBYi1QmCmkEPq2A1WRvv7Vf3eWUokLOpFj5glLqng3FVADE1MJNKvBUEpKEkiOQNyJ13b+NTvFS3hSAJeVKKaoFZByriUp1CZGcAiryGOk5NQw4CyVb8mJN6AyD98QuMDSWedMRvWXaGBovTFuL39rCty2zLQs7e4hpwQhu7lhPW8IwICOToUSmLtO0DUOGNPQIgvWWYhpSmZHEEoOnnxhWrTICJBqMgZRqFgja0BUxxPGaRsixkIM2UmWI5C5QvEGmDSaBi5nSWdZHiS0XEOmx4sEbrJlgpSU6SGWgDEeql2wEzAyTPCY1DLkFDK5pSVl0Il3dKUvKkCOmRG3cS1Kqeq4p4kXNHKBO2hlngwCWpmlp59sYP9tos2KIDCHRrQfWx8fEqNOHMXBa6duG4ozGMjhXjUMc4tSqOI+UJ1Qnqo5cCsJnlE5fqtreFFNxea0tT8BJrUW04aM2IKqdzaATr0oHQzKurg4jyu4YaxEjCVNGxcdYk9VaRMYW7Md//LkbDTn1+U/3G4wjy7FQs5Cdgril0pLE6kRDm6exTyqb/zIaGjJ+j3Ez5tS/NbW/skV9oY1ELFbTKuvNsvEhr5qIkw39RIRdsr55I23AiFTnKhWiJ6P6A+XK1Z9ddHoRQQ9oq2++w9CKBlxZw8Ya1lROYBmLWPS6GAfeCo1VAbQtULKQbF30QWq4XxVf5or0lrIphE1UGg7VfSqKitdTRRIkCjYUzJB1RNkFytpSWkP2o9uMrZkbVouIJNgkYM3GPjihnbc1BucMTbJEZ5lYQ9Y+paY0pyqarmFho+iojBMHfRT0ppU6JpDNDUM1Acm10aCiPpk8qDtE7BOhz8RQqgPVSTwN1bqvGAtGUQNjHcU6cm0yxgNi02gUOblN2ICCVf9T9F6tN7e67tURYmEz5SBrI5JTQaw5pb0sIBmRjIg7Jbh3itKYhBWHlaTJwUm5mTUH/dR/uuLMu1fbe+oRkbqBnYRexrpFFmSzkeioWadAcVy3hQ3aW4rgpjPufeojPPzTv8KFxz8AxnH9jRdZ3XqH2PekHEkx0cWBfugq9cRgrEcmUxXm2ULJkW61ZLCOXD3nNbNB94WcVSc19D2jc8ny4I42GUWniQUQ5/V+SokicNwHYqz2m2RCFFZB8AbmTmgpEBNhlbkTBhYHqsbxk4b9C+fZngufObfHE/sPkucPkO6+iA+vYLyD6Ra757d55OOf4trLr9P3S/osNGcv4XcuUcyE+bldLn3k49hhwM52tWBpztMvDnjje3/CG9/8MqkfECu07ZT1eqWamXrAlGqAYESRVFOyXq9KdZUoiBeCAdbHOFNw1pD9Dt9/W7j/+dvMZz/EuYRf30IuXCPP7mM9WH745a/znd/+R2y7NZcuzbn4wEV2L1/Bnj/LfG/F2UuXce35qrdbIkDuDlndvMrt19/g1tW3uX3rkIO7xywXHYujQ5aHd0lDZFgPmJLYaiyzxnL23A7nrtzH+Se3cRc72tlFpvsXaJoZxloN5rt9i2vf/COW11/F+22lmwxrJHe0zjJUOmZYd2BgvrcPqPtcWPcq+gw9ixw3mT96DyW61ZpuvSR0PX4yZWsnwRa4yQzjHHbTbBRc7RWKWEKKdVINkKuFuN4jIh5jwZSo55rouTVOXzdnqYwSTkVBDGZjw/2ubKL30ONkGPPuKkRO//34N6cA2lyPhlIpvirlMzTzKe2O2hUbcRU8SNpfiEDMGwH5xigBPRsxRs9gdJ8gKVKs8/CCKGUCUxsMyaojJEWKQtQntcgIsOZx6l3pcrEKl7PmUKVS1HETrWNisYQCfcnYZDVAt7GY4pFi2Wotk6bF+RZJPaYMG7fOxlr63TmLw0gRzSeaTBomk5bGOTwNsrdNDAlpVdeYSktIkdh1lLDGO40/EGuQEDXmpU6jk2gQoAb5GiQJJhVMzNiYMEPEDAbphbwyII1OAYxhcQRzG/F0KsZuC8arFqsUS7cMHN1dahNpPNm1WCN4sYg4rG8IwRAGnTQkMqSBEKOeD2FQJ6s0aiuqAU8xNTSi1nBlpHw7rJ1s3PeMOFJJpBAU/OwC3eERsRtIYimbmkLNRLKxiHFEMRjrcN6DtYQ6ilOKrmawkZPWAVkbtBRrDZTyhiEz6pONFb2pNw6XTpteq6Y1uYZSjm3shootHkzGSKJIwhiHMRmTHVYyySTV4P7pWmRERJBqwf+//PgLNRoVINiMIzdp3a4W1k4L6Wrkg6l/XmwtSmvuw6bJqD7HJyhwxVyMdvy5TirMOJYg1wAZ1QIoVUkLfjNyz2oTQRl7y6QfJpOqpZfmF5xkGIwOSPpcdBSlgnEl0evmra/BZfC50JZCEYtUxF4tYA3WFKxV/rnUkXtCaRMYLXScK3ij1reuAEkXp15ojbeJxRAqzaZUWo/qU3TCoJMZvbFdXdzJKvUHrZVxOWOT2sDJUBsOrw5LAc+QlQeqqdiGXClRyQrRWqK1VbNS8WZRZwhTM1ZsLphw0jyW6oqVimixmMephjabxdTxnFSxcyXVSm0whdojZkV9csg6Th4SqU/kIVHCGN190hyMjmamWiBXEQDZ6g8fAxdFTvEPC5W/Wf+u1M6Jei9Uh4Ii43SKKgNRjnx9qwD1/BaKLohsEKnWy8ZgUp2EqD+zWgZnh80Wh4b/JU4v7mrZXFec+TMs7n8XHwVIKE2ylKw2h0AjghelKeiFLoqG1RZkdEtWqVPBTWbc/5HP8L6f/99w+X0foS+JuzfeYXV0xOLggBQ6TDtRt6ik6Ex2lgYV2cmkoaRAjgMpDAz9gGshxVgzY1Sj0XdrlsdHlJLx3pPSQB4CaVjXpFcViY6IVUxRGyjrWMdM10calPMacmZVicxOYMsrEKFAg9GMHGO57+FH+Y3/4j/nzPl9zrYvs2Vuw8FNjsIFrn35m5w//x3OfPTzuPs/x0//1b/Ctbff4eu/+y9YxYDMHH66jWDY2nM8/ct/CQYw4XnK0fcp0yd4/aU1X/w7f5c7b14jW2He7vKpv/pr/OCPv8PVH/4QMUnvZefJIWKRet9bUs64+haJCFashlWWoEBC09D1C350N/D37hTiMPCx1LG1uEW5+iJv3rX84Vev8cd//DzX3rrOzBo+93Pn+eWPP87Ok+/Dn3kSs76KuHOIuaT3TJkR44IXv/k9vve7/5K7128QIxRa8C0xZpaHA91K809i35H7gWMSF+45z6X3Pcrs8qNcfWPJXjtw/tE9mqbFOkPOiW55yI3vfInjF75OihnrlIKV04rZ3ln8rGXZg/FTYsoc373L0bIjxkgMAymlzRSsFHXZMd5Vo4dIialS8cCuO/puzXS9ZrZ3jna2pc5VRQ1FbLVBFak6xartSrkQiSTRos0Czjq8Ecg1wPBPjSh0Wqw20KYizKenhLxHGw19jAfEyZ+crkU2xYmtx4FiTtQtFbFqG+y2tpntnqWdbSsCHVWcHWOoIJKjiKliYMBUnyqp0wwznnWpmtZkTQiv/OxcEiZGJAVsncynoiN+m6OCT6YQK0PDmFJrFK1H0obnXQE3ymYCL1J0ci9qV5+qTiIBrm05d/EeZhPPzA00JmBypFhPXixxcY2ZbeOaHfYv7IMkVotjjCm4Bnyj95YXwZ3ZJ4RCSEty7EiNZ1hCd3QXco9rDY0Vtra3WRyu6JdrpaUXSEZR/WR1D8HUiXXRgFqXMjYq+0G6QDYQxdMTKCFTgtKtdmPBTRPZD6yL4+46cbQIrIPqfSdbDZN2jmtm5NzCoF6ibKaGSo9dLtcs7h4SBrWjNiIUWyn2uZ7ZY1GeVQvYWId3U8R4+k7fM8RrMxBzrUcC4fCIvFhonWPNpiG23mFbT3IerKEIhBJJUcdqUot2nfJXrWc2is5nNd2hKECn2E9tYKUyK2pGhq3NsFgqR0BOEr7L6YWhC0WqIFk5BVqLaD1iyNUaaBSDy+azao/HScePC3r+uRuNAidIfa3JitHvKBasq8CyO2k4rKGmMG5qwbpfnIx6T0J3tHMXqDCznHDTik4x9GbNOEmqjchgjMVUL2xGES65BoUVRDKmCrOMLUqbMrqZm/r9R6vZjWtwQT2sE3ij4XmxTlk0PRFahAFhUjej0XXXGb1O1oDUkateO/1hm+tQBXwyaguSWsqCkPx4k2khrrQi2RS90YqeNRWqKmijkY0mqFfnVoyFiRRaCk0u2JSREMmDIXhDbw3GZrBjQ3QqodrUPAMjJCOb/I2cx2Kd6qGtXbkKoyBW2lQZeWYyTrS0MBNXC/Hq9EQW/bex1AZA6QclZHKfSF0i9ZHUR/IQ9CCv6j8Rdauibt6bjKsqVh+Lwc01lrGYt5WL7pCaDq73kd1Q3kaEUOklSfmmIqSc9AbQXCT1rKb6Wlf6nymCL4LLBivaZEixmOJQf+9Izo6Sozpl1OZH6pEzUqfqGbkxWHhPPkRfl633QciVSiBU0wDZSMBLrry1UzS7JEI72eOjv/Efcf/HP8fFBx5lvneGt15/jVvXrnF0eEAIAylHWmOwkxlheaDjZqPZKlkyeehJMWBy2iBaDYbYD6So1oimCDEO9F2nwVjtBLpAzkH3I6PG1iZHIoUQBibGMJtv006mVSycVI4jhlISA5k+ghUFSLZah82matXAeeHpJ8/zgY9dpN27D4bzyCtfJt99iWSEq/05jn70FoR/zhk748KDP88X/tbf4u2r1/ne177OM1/9Y1788n/NBz//NzDtJfwESttBuoikFdltM5Qdbl+9zerwmIhhdnaXJ9/vOHflF/j9vxO49aPnFSXPeVMYUBv4IgZfm2hrhXPndzl75RK+9dy6cYtbBwfcvLOmGzJv3Un8t/9qwZef6bl45hZrnuWN2z0Hx4GShacevMAv/OZP8alf+yxnL96LbXZZPvdD+jtvcuaeX9jg1GEdefaL/4of/st/Qt8V9i49jdk6wzhhGLo1WzvniUNPiIHGZu5/9DKPfOSDXHjoSeZnL2ObOa9+77vE3OLaGRQhdR0pBo7feJnDF75Jf3yETKboaosYyZx/7EM085Zrb94mFG1c14sFq+GuClezugMaazf7uBGBQTnvJtc9XiwWBTeG9ZqCFoOuaWjcDNM4BdHG4sEoRUpE/f+lJC06kep4pIFuxakzj1SqjhmFoPVRpNJBpdRJrL6VOuB/jwIWpxsk0dchnNQhUhkVp8+9zdS5AqHWOmZnzuC2dmkmM6xzDEMihYGclPq0mZEYIaaEQ5R2Pa6JrNwLk/WKGhHNc4gJiUnLsopQq9NlpTnnustVCrGYgqmgJ6C6TXRPiLVApoJhkUIomquVTCEmzRajKBvCAq0Y3MTSbFnatsHhsWGFyYNqxsTBEPByiLGGZrLL7vmzpJwY1mvWqyXd8jbN9jnEtTgpFIkQG6X6GodzHpGEdQnnC8YatncM7WSXwxuQVj0w1iKVvlNrEWr+mZdCKzC1lvl0wnTqcVbPzDAoOLwQFSUfrQfaaSa5njWGgAqpm4lndmaXdmeHJA1D9OTFmrjuyX6rCpsLMcLi4IjVnUNSzDg3Vf3myNqGzTkjFVxsmpamneBdiy2OEgocHJI6BT5TryngsQvE5ZK4OCSFQXU7Up0FBZrpBDNp1KZ9zMTJmv8llba6ua2rBlFB65HGpBUFI2VJUMoWqvEVUNAEdc7KKVVuYKr1W2a0UxJEw6hzddPKasJji9MJWrGUohMRNbc5AWPHWkSbjJOPH+fx59do1GZhbDY4hRZgTyYaG423XsNqUVl/s+F6mXoQGxW0jEizOaGxcOrbv7vZqO5FUjfVwobnvaFh1WYuijY6ZbRtzHrDa9qshuaAXslqOMBI46IW3a5oOnhAxdciGSuG1mgAX2ugkYI3BWu0MDUiVSRc5zAnkJIW1qNzUe2CrUARg1NICykZ8Vpu5qobaU3WICALMahQyOQRfa9FsNXXWlqDtIJtDW1rmbaGthFazYyphXgdC4/5ETU3IBlDEVsDCzW4MBjDgDAk1YsMqN1uzFlpTFGfT0xSu/OMLWbTcBlntANrLOI09dLUwrJEqv1gJktUc4FUKDGq80M/kLqe1PeUECrXsuYxWFdvFp0sGQOYykesUw1t/fV+E7G67Iqj4ChZKVZGHLY4fc5F9TkYSLY6XyXNWDE5QDYaQDeGSBoQCdg6MVGqlVoKuqw8VqmbiFT0ICWjCz7JZipyGqw7+XxKzPmefVS/+aJTBmeElE2lr53YRKvDRtJNuAZf5gLOt3zsV/9Dfv5v/ReYyRYkQx8Chwe3Ob57i261ZNUtFW1MgRg6hhgx4+FohBIG8tAz2kmXes2ts6TaeFhjsVadSawxrFdLchMh9MRhgJyJueZt1AmMoBQL5z2TyUQ35woMlJI1l0aETuA4JDQYLOMawcR64CVDO8lY0yL2PPhzxOkblF7YaT0f+/A5jsODPPf1r/Ng99tc+lzLg49/ip/5y3+Zq1evcuftt/mv/8v/is9+7yUe+el/j8m2pzG3OHN2Fz/f4+joFd585k9YHR+xjpl2d59P/LW/xZknnmLn+HWe/tlP8dW33qTrFkjRRt9Zy2x/H9NOOL5zl9j1kBLt7hY/95s/y0984XO0+2foVgu6g1u8/fpVnvvWi9x44zqH7xyyWqy5MRhmuy1PfnCfSw/fz5WnH+fSU09x/uH7cR4ohnhwwLXvf5OdJ38SzBkoQux7XvvWV/jRv/7n2DLl3OMfwO6cZegH+sUxuTuCfsC4KfPJHufuO8NTP/kEl5/4IJOtexU8wJDjwPkHH2fVqzlEHAKpX7O+/Q63vv81Vjfv0vUDrZ+Qkxb2uSTWt9/A7z0B5x/C+23c/ll6GfVFusatb/DOKyJtLd7rweesx5kT1K/kjLWOnAqu9WzN50ymU6azKba1WGs2DbVzOsUfhupGVwvOlAvDoLlBKUZWIdMI6nGXs071R4t29L5mpG/AZvKrf/xenmgAjPpNvcYbAPN0FWRO6pORRmURJnt7zM/fU92WnNYbVUMx8kxKnZqkCn5mqddWKuiZc92fTmyF1UFfdYkisnETSnCiNSyZSLXnNdUZc0Qmi9YoGUMxloDQ1/dOxeZqKw1Kox5qM1I2M3ChkUKwhWCEKBZn6lmFYK1lOrdkGtbLJe7oDnbb0jY7bO3ucxgzoY/cunaLvBqYbe3ozy6BEXOTPJDjCrEZaYTGOs2imTY0wwBpm1VJClTIKF4XpPHQOgV5G4NrLLOp4+yFbfbv3afdmuC81ZrEFC2YyRgLg62v0Dj8tGEym+JmM2Q2g3ZCzIYYFbhaL5dkmeq5kgopFNaLJevDY8iGpp2pIUwFewuZ4gBrsMbhvdfv72ZQnNYfvTah3rUUM5B6rUVi1xNWK8LRAbnrIEUVp4tBas1H6rGmIdsW00ww3quof6xLRGoN5DBooU9RO35THA6rLJ1SM+KKuv2VupjVxrneAyWSktHcuySIixomGaAEt2HcqMWtukcVEpKNfqQqFk8nVO0RmKgr7tTq+/Eff6GJxkhg+p9a4ChzZAOjjO5QjMVEpQ9t/viUwp06DqIKXfTb6K9MLd5MkdGISpsMMxZ3J8hoqYs5lZE0ZerBL7pQqtZrfFWVhbNpMhSUHj2G1MvalRqGg+DF0JpEJ4YJ0BehKaIuOpvrpHoTrUeq61RF98Xqzy0oMnO6uRqbOFvdELNRPQdWJwE4lNoUIKd6cxQdoeTxwxpKY7Gto5l52plnOnNM6kc7dfiZpZ14momjnXh863CNRbxBGkN2ZjOByEa0WS4wlEKXhT5r8vgQS3WZquh0qe+XgDOFxgjWqae4NFVM7mrORamuFEVdWFJNMSVqMJIubG0wUtdThl6bj6oyl7G5tEbHzxasNRhvsN4gXoVYeLNxeBB0QVMciKeILmwxtdHAYitdTel89WZJCYooMpWKjnts/RDt92296Uul4dlSaVPGUiTrHV0nOJJBkjbMapB70tzGusryZs7x3m41YkEb5zrFlEp6DnWsa23BVR3USbtVPxvh8pMf4pO/8de5cuUeugwHR5HFwR0O7tzg8M5N1osFIUca01IyxL7H+gbjW1zTEpMKehkbwdos5JwJw6ANgXWQI9572skU13hkWRj6tQImxquAeLVSsWbWLAUphb5bMZBx1VxhHRNzMwr5iuqwDIh1LGPGhYIlEZ3+uSHy5vU1ITocc46uv8Lb33yR3b09ts80xINDJuf3+Pb1KX/yje/xq+u/ywM/t+anP/8pck784A9/j6PXX+IP/vt/yL/55/9SnWEaeOCR+9nb3+f2zbu8+b3nWHcDZjrjM7/5H/DJ//C3aGYZO8lcemrF7Nw+/VsrMAYLnLtykU/95l+mPfcQz3/p97n16ktcf/smR4sVP/zmc1y8vMNjn/5p5pcvI/ee575Hr/Cxz36MYehYHiWWR0vmrdCeOY+b30Mz3cc2DiORUgLENes713jt69/g1qLn4iNPV1eewp23X+XVr/5LVrdus/XAR5ievUgohbJaYZLS3KxvcO2M3XvP8b6fepQH3vc41p9HappuKYXF0QHL5RLT7pFjJMWesDzm5g++wcErz9J3ay0uN3TbzBATB9ffwV96nGf++Es8+JFP4s6cxTctc99irFUE0hh84zlxEXSKNFpHox2DAicpq0NVQYW527u0WzOaaYNz4IyAUWqMrQBVyoaYIeTahOTCuvOsuky37un6NTFlGkQnTZLxYjeA3EZovimW62lbeM+2GaVyUsbnP9YimzO1np1a+dfPckLvbqYzZvtn8d6pxXkWDXzNgZzrhFyoglltNsScnIGm0mj1zKmavRE8TKPTj9YtWQxRjOomgTKChdaQsqn6Ln3CYszGiKRQiEYIGJWGyBiWnAm1XkhArAGypmismxNhXRLLGBkyDMXAMNCve9rG4QWN5vaOo96Sj9bshtu0O8LWfAeDMKyWSOw5un2X9YFOPQr13hUYwkC3WmC90oom27u0O2fJKeOG6jY1NKQhaiFsBNM2zM6dgcmUMKxUp2gF1xhMDvjSM29n+K0JjXf4ieAbj/XKfsgGbCvQNhTfUFxDsoYg+hpDKXRDZHG8ZBUSfjYhRaWbhWGgOz6ixIR1Uxrf4gxaIZqiOhtrwDts0zCbTWiaKSU5nVzESCqFPAzEIVT69kAaetK6IxzdJS6PyWHQmyAJSKqgo1ByADGEbsW0bfRs8GpOo8Wdakq0HrFI8dpo6DuKkqq10aAySGzOyoRC69uqslfgMqtuNUedcDpjKFYzj8QYzKBnbkmaOwI1FDTLRrQ6CsptGeHN0WpozBP7s9Uif/6Jxmm4deTsnpqjjAu9/KkFP/Iax6ZE6sYn5WQ0REWKNnz5ikKMbj8jO4xazGrwzqmnViciSm2rkwSjdKNU6givVPX/yLPMbCwzx8tZ6uREVekqOM7VszckIVghZHWTGbIwJEsvBo+oeCkr789tGlfZCIR1TI5GvzsoqU427Mk1G99gUxerQ8dExqgAyLpEaDM5CiXqzwNTM0AMSSp1qrG4xtFOGqbThunUM5l6JtOGyczjZ55m6vHTBj9taFqHaXTikBulZkVjKnMUYoYhF4aAuj4NwhDU0jZFlPqUdRO2krHG0lJoreC8YBrRgt/pAs+MieOKBknSYj7FQAyBoVcOfdcP9H1PDL0u6lSJoIKOQes1tlaw3mAbo/zIxiGNo3in3uGm8vnwUCwleUj1z4pF8EqfqkiCTiW0gSgVlVKRu62CT80bUDGWjiNLNpBMHRdr8yfVxnm0XYZxXet4d8x4OXFcKlWP8acNEN67DzUJKEQUDtgETXKKKifjFFubVql9+faZCzzyqV+g2b9HD1cDKQcWxwf0yxWFgvMtWQrWNWC9NmfWK03KGBX/5YixBpMVnCiogDsONYzPWlKJ9SBs8JMJftKwXq5IgG0cbjpTF6v1ghIGzGSmNLoQMEZoJw2CYd1FpGlqIFLGb6ijOkVcJC0CZxm8AWLmRzc67hyuuHw2c3z7Bi9+5U84d9/9PPmZjzJ56FNcfec6b7/8Bj/8zm2OjiO/dPe/4f2/2PGFX/tpfurzH+Ht55/j2g+f5+ja6xzevsvbr13l+3/4XUxOOKuNfBczl+97kKd/4bO0c0ORiEzPYmraeCnqsjTf3uKjv/I5PvT5j+HPfZiHn77MwdVXef65Q7749/4x3/jaM9y8cYfPvXGVJz/+Yc7cf4V2ZwvrGqaTLWZnZ5x3M0pt6tUEYabvfrlJXt7kzptX+dE3n+GH3/oRD33oKZrZWYTM6viIV//ki9x55WXavctsX3kCJhPS0RF5GEBEBdVY7N4u97//fi4+/HBtMtqqmUisjg65e/Uqye6oeDpFYt9x44Xvc+vZb8KgqJ8RdarJSWlPxVjsbE6beo5feY7bO1ucuXyRnfsfoIjFeo9Bg9WMtaqvQGkMo/7LWnUMyilQhkGbE2NpplO1xvV21BRXdJVNEatuhXVaXycjRgTv6h6SHDk7+iHSJSjiIMXapIwrrk7vqcf0SDMqI5nivfgop/7P2HmwgV5H5P30X9VaxDhHu72DqdNNDVAsFDUvRow6Sup5bSsgYTb0LINSYbVRO4E/Sy1AUlbK8WiLrsYshmgtySYV9YqKuWPWxO6yocHI6H+CKRArc6Bk1XCO1tkFdZ8qdXI1JA3180lokn5e9JHVEPEuKwvgYEGYTJhvz7F2Tugjq8VAt4iEdc9ed5vZXmF7tgPzOWXoKH2HxIGcEt3Q069Xqksg6f1jLdNpw+75PcRZZTC0EyRD3PLEXmsw8Y7Z2X2mZ3aR6RbC9iZPKfRLiIHheAUzRzsVJrMZTTvBTRp84zCNg8aRvVHatrHEqh9IORJiYL0KHB10HB0OYFtsseQEKUT6xYI0BJxradqZamGryYW4olRxaym+oZm1TCZTKL6CiwmSOtn16zVDHwl9YOh7hr6nWxwSFoeUEBkNhcauU5B6hngaB12nQaPegp2o4xRG98Qypn9nD2kEQQ1a9WmwnxmRc9DpjqhJwFixUozqdOMYbqtOqeNHtloIS+X+R6s1cBJNk1dWgdYjuTYYFfZHTgGghVL3kR+/FvkL29tuhLvC6AK3ARHGxV9NgBhp+ErVQacZcuL+pDShzZcxquo3B/OIWlcOZh4/101EL/rYfaEb9zgeM/UNKbWBkJPvMwqERz3GJurgdDNV9R6jDWQSdSmIMTEEoTfCughNTrhUw+5sIRp1clBmmUIukjVPwY68xZgRn09oXUaq5aQG25UyWu6aDfPHVhG4Gy3Z8igTVmeoZMxJgIuzOOdo2obJxDNpPdPWM2kck6ahaRp82+BbT9M6fOuQ1lK8IXg95GLRKUVMei73MdMPQt8LQy+EXvMzUlRKmtH1ixi1+/UiusB8patpc14FWDXMJ2hyaugjQxcYOm0sur6vTUagC0ERhpS0eKv3iandq1iDdRbnDa42G6axSOvAu7q4PUW83v7J6QFt9NcbR4NykhZOkc0C00ZxnEYYiFVfgiJLxYFENlzUbJQOCCciwhF9GwXOafz15mbLvMvalRNc/88iwPp38WH1mCJkXQ9Oiq4DGXnjY0FUUb2sn41rufz0T3Lx6Y+SYmYxKD+963r6dYeIZTLbJg4BgwffEnJ18SqZYbUkDUO1K9axvtLXalYKKG920EwMpLpiVb5tyrmaLhRSUtvJkgM59KS+w1qLyXPEWIxzzHe2cUboQ9Lnb7QZ9Q5sLPQx04oQijYbfS54KxjJvPzS63zn9/4553/rPGceeoyHP/NT2P4dth54gNTs89y//n9x9+3rxJz54jN3eefOkl++8bf5xBde4uz7P8kHPn6F933yKdbLgaPbC269/jrvvPgqV3/0KkfX3ub29Xe4u7xLEEFcQDgECuuu4eqP3ub4zhEhqVD/yacf5IP/3q/hts7R33oDt77Dxb01Z37tp1kdL7j2yrO8+MJ13nn7Bo/84dd56v2Xefx9D3PxoUtsX3oQe+EKZm6QHCmrJUUspAHas0TZ5fWvfpuXv/tDXn3+KrMrH+behz+KsXsMq2Ne++7XeOPrXybGhp17H6Y4T1gdk9ZLJEWs89C0iPW4nT3OXtxjMp8BPTkeEI9ucnjrFodHlihnMBNH7laUoePgzZe59u0/IhweKEffCykkoCfGgnOOYgtb+9tsTQ3eQ+47WueYTmcaoOYavPGErN2wt05vYGsQZ7XQENH9LQg5ZaWNGo/zDWLspphN9VxSqk8tWquuwhYFd6Rq/7yDiYfYWCgNpRQ1HsjagBgiOKfritPYP3WKOE463rv7CJzsidTPo0vlWJNgRqKm1DNfaGdbtPMZxlZqrdVpqauAnxRLrLXMmEFiQJH5ojkm2FqLjAyEsZaoTyiWcmrqUDYamUStR4zSp5D8rkJxZHKoqhSKsXXCX7Cjg5GwOYtS0ueWKART6GNSt0tJHC06Dm7fZSIezATaObEkBmkwxbI4uMV6EQgDhC4Q1pm9LrG9t6bd3qbxHtdu6wQ3J6bDQOjXDF2n9t1xIJeAc5amsYjTqX0KnmBX+InBeE8WQ7s9Y+fyBcR7sihG7xtoZ7sMqwnr5R1KKqyO1ggZkwc8c7yb0rQzjHcUb4hOgalUkmqUimVIlsXhgqOjjuOjSGKGdxNSNMSQ6BdL4mKJwdTMG62SHOP7r0yEXLMsnLGQIadICtqEdcsV/TLQ95FhiNpkdAPr5THr4wPiELTZhA27JwPGCuIsTetoGoP3CoL6xmEnvmZqNMqmKKaKvzVXQ51r6rSjBhlraVDezQwi198rI0TheGXc5KzfwmTUYEi0FhFksz7GkOyR0h8LlapZ2NhjUzbaDDn1cVLV/C8//mKNBpwU5lLF2COfahxjGuWvWwviBJzRN6AiwKMWQpO7a8VVuUzjRj2+eRs1OLV5oNSLpVoIFeqOPKjq/isFMy5mowElJteOqH7PDSUlU/Myyjjtri+y/khAkv6MLEYtLwUGEboieC/4qILqYhLJCI0pOMmaP1FvDFOk1qEZYwVn0RvNKkcOq2P0jbCNip5IVi/m8QCzQqoWq6WYTZNRjPJ9xyK31FRs3+ho0DQecZoxMaZ74wziBHGC8aJpmw6sFXXIyipAikmISlUndELsUeQiQB5KnazotMYbfRcsRTtsDRchmzqAyzUFPWVCgNirbe3QB4aup+86uq7TRmPo6ePAUDMLxkNS6sFsaoMhzmK9wXuLbaxmaGwmGl4/pH5ku0EUJLkqtBjdr+qC3PTzsmmGN7kfydYmI0KRjatJtvX+rPetHmV1ylYbtnHcNxID1a/75GdtfmZd0qPd7ckx9N58CJoxE+tSZ5yCFkDqkVvqRLD++4Rh/9LDPPbpz7N94RJHRwe46y3TfXVDyamQEYahIw5r5d/Wb5tHxKDoPpBygaGnpEj0LcW5ysFWZ7Qh1vG31SDGXEO1Uhjq8y/0qyVlvSL3a6XvlaJNrlHLQmMNk9kM5yxHw6B5MFpv4qTgBVa5sJaycbeLBdY5Yw30127zD/+b3+as3ODxn/sNrjxxAVbC6s5rvPnWD3jxm98jrztmzjJ0kWdf7zn6p6/x1ptHfOLTz/LQ+x9m+8pDzPYuMbt0gXse+CBPfPrjdCvP+vAdXv7Oc3z7D77CW6+/zvf+xT/Ffv4Opt3lR998nu/+7u9wdHhEFzKxQNtmpm3PELZ54Q/+AI7f5sqjU/Yu9txz+Qz72y1CJAyB5390xEuvHHLft97ipz51hU/+smF7Z5+8OKR0dxHjdN995+uwu02++FdJfeChD76f2b3v55hz3D7ouP7Ss7z1/W/x+re+w/L2ITv3PcK9D19hcvYchzdvcvvGQumNsxmmmZC9h4lnvbhOdyws7xxw5+pNDq7dZTVM2Lv/I7jpDDcMDIsDbj7zDdY3XqK7dUPtOacNxiWEnhwXpCTIdA/SgPeWdjLHNS3T7R1yvyYc38Vt76twu21xRdHopmk2oEAz8ZoRVYGUFFuGbqKgVikUURAjV+MRoVIxDcpP121dMXOp2kYZ/13GGWHiHab+fgiRrlexmISIISLe1oJYNyKpNsxpnJa/R/uMcW2PtLANG6yObRJsrLFLHp2hwLYt051tmtYzEr9tnYQrZU51FKYU/QZ139CtqeoyBOqBW3+o1Pey6JRJlN6U6v4fyZoMXrQG0a/PSNb3SOXdSZ0sxWwKODJqY1yEmIpqcMa3bKyHkuaLJ4QkmQHoSNqcpoHr127TxMTO7jlasUiB1WJFjoXju0uGLqhRSy4cxUwfEl3Xs7teMZtPmLSt0pdcg5s2TGYTLfBzYL1esVwc0w89w+KYdnuGiCV2HXFYYbxoNoYxNFuOdsuSZcJ6cQRkmtbjWgtMiIPHNmo00YVCWgwEAJdp5h5jGkrpMTGdsE+6BRFHlH1Cr5o237TkwRPWiTys6I7X9McrSko0TUM7aXHWIikqa2LTZNRaqRTC0JFSIqwD/bKnW/b0nZq0DIO62nXdmtXRHYbFghB61RvWgGMjBUzGmbSpfRtvaRqPaxx+0mBcNa1pvHLfTaMxBMUh2SHZUrIKwbXWsJup2UiBpIyAutK1S9FKi5Kq9a7eJ7mC+eM9ow2DjNg5IBXArnl2Y9GSqzvYWKqMmrTadmzqlh+zFvkL2dtqx36ywE0GWwv00cFpDK1zVotX44yOlo3Z0HtSKVVAlWtqt9kU9k7Ku2hUei7ry9w0HXU6omR3YTMoFqqqX/nvUjSYr2yaklONS52q6M8vm8ZnTPEV2AS36DMoDFROfcl644YETqcjwQi9KTTW0MiYiK1Nk6kTDi9V/Z+FgNAUQ3JjzLsoBQtO6UTGyVmpgvGKlo3Xpd4ZYgVjrQbrGXVTwlrEO4rXSUVyhlizOsSOblwFa9R3GXNiPzturOOkJ0XVhcQAcdCPEFUnkopUkVNtAoqOmsUoTQWrLhQR3eBSSppcPhRClxQ16ALDuqNfK1rd9x1D6BhCT8xBrSIrImErd9Y71WOI17RU5xzitNEQpwhjcY5sPcV4Ml5zNjQ9EmEUaJ/Q8sYj7WSqUGcKOdfXVOcLxVCSwRqlOhgpddpWLRHHJqOWzlJRrTEU0hq1XC11FD9uBOoYcVJwn5oTvmcfuaiNrTWadJuzqYYR+kpHjU7E0AiUkpns7PLhz/8aD338Z7h9fJfXfvAtLly4wiMf/SQJg/gG4xwpKsfaNhNN+ZWGNHRKxwPiEJRO0w86bXNCVJ9U1c5YwfmGpvVEKRiptBijomRFqpSqqXaIBuMmiGs12M95bOMpZOXpO8+674li8c4TBgUdrCSMgS5tZKg4C0OBHCHkzL/54U1e/S//IZf/zlfYnU2Y9CtF8YEh9AiFuYdcDOtYuH4Q+Cd/fIuvff+Qhx94mY995BKPPnGGs+fnzPbO0WyfYfvCk+xevMg9D/48H/7FX+W1F97kK//wt/nu/+H/gW093fGC1cFdhiHQhcxiCPzJN17nZ1/6Hvd84DxnHnuMgx8F3IXLmNklLj4CF+9/BHnpOZK32MmM933mI/zEF77AfQ+eZ+7usPrRtxju3mH2/l9icu8jEO7AsIDW4eQ2jzy1BXef5/4nPs7zr53lG3//t3n195bYUFitEna2w4Mfex/v+9zP0m5dYL1Y8eyX/phb79zC7ZzBTGfM9vbpuzVf/B/+O87sb3H2wafZOv8w3PMUc2nJxtEfH3Jw821ufPvLHL/+Ah2JfnnEViOktIWQsAbSECBmclxA6skxkI1jtrfP9v550p0b5MVFZlceZLq1XSmbBusE31jdA0rB28LG7x4BWlLSXTzEwhAy1luMAyibIhcRpdDXM2PkYWNOCgVnhOQKxglOLG1qKtqqUygjFp8SjVP9wJj6XIHPk63tPdpobJDV2rxL4V0T0VJAkhZJrlDduByznT0m29uIZEK/wkimbZwak6CmHLFmW5Sa1KpZUEUplaaQ6m5sKjihZ6OKnkeWBKO5Sj07CyeTC2Py5nuVCkJlI5tg2E11Ue2QS51oJCO1iVK6TAZGq11qLSKip0xJQrEJQke3uM12u2TiLK2oaYASCrTGGV+CIRE7oQvC4WpgPluyu92yM/VMG0vjPdY7jJ/gnMPtbjPd3aHveo7u3mF19YbSgHMh5kT21alIYB0jO/Q00ynYLVIYMPMJtBOcazDDAhgU7GwM09052xfOMNlpoYE4LLUZm++Ca5AUwbSqV0gD3kEe1rTtjBDg8PYdSEopjxnEWtrtKfOtLZzxSMn0q4Xq9bwjGQWJUozcfud2fRMbYrbE5Ai5KF1q1dEvFqzv3KE7OiaEoJTcUnDGVGC41gEWnZpZzR0zzuLbRvV+RR1QjW/BtWRxGydKyeNHdZoaJxmnNJ+Z0e79RDNRkqkgRKXQi7JiTG14S6VTjnVMHkH8er/ayt80Rq1tTa1DDPpF2kqfqkJOab1+nMdfSAxey/nN47TXvT5/U5NntZjyxiBWnQ+kZjJsEPpcVAgXdWScs5ZnGaVW2MpvN6MlXH2dJ/W1chZHIVWm0o3qRqNAgtSwKYOQN9zVUZtd6mRFOWpZGw60AZE8vkF60cZmRqjISYRilaIVTaaXxMQYJkbD+3ylTpj64Q0qjs5qN+ZEHSLSSAGqUiAzotvy7rGpCopHsk0VudcC1liwvk6QrNEmwzmMs9jGII0gEygtxCYrlc1F1X2YEwRNalFVxkYwl4poqDwixkKI6MEZISf1gS6i3D87nmqiZCBtiPQ9ijUgJ4RUw24iw1qbjL4LhHVH3ykPMgwdKfakEoDEZmQi2lRZb3CNKE2q1ddo/Nhc6LRGXSX0/VdhXr16Ut+TUidnY+deThEATS0W9FSAYjCpukxnQ0na1GnzbCmiHtdFtJE2tbkqpuqGjE70NgnrySJJHahMViqWwdYgu1rUbqYb7/FHyZscEyPqCGdRhzbluJ5Y6OViwLY8+MFP8NTPfIG+O+YHX/l9rr7+CqsHjrn4+BPMz55lujVl5+x5Dm5cZXV4uwos9aDPOdH3a20oqOdqTvjK0U5FBXPWtzhnsc7QTtQi21SqivOeyWxODKHuewMhR8V2GocmaUNOgdj3ZMmQofWOXqip72oHaxIYY2hsISRFQSMFWwxTC6tSVPMVE7eOMsfPv8WWNex4YdYI+1sa1EZR3vberGHPe7pUePzjH8e1La9/74e8+U9eZeJe4sKZhiv3b/PI42e5ePmb7J2Zs3Xv/bQXnuSpxx/m/v/9f8zr3/lJvvL3/0cO3rxKCnmzRtcx89ybh/yD//4r/EZJXHryZ7n3yd8gXf8Kh699g1uvHuAnM/bPneOhpx/lI7/273P/R55mOsvkm69z98XXePv5lzj/4L3sXvok0s5hcpk8uQx4JA8Q3yK99QJNu809l36ZmXMcvXlADJnBeGwpyPAWttxF2KWdNGzde4F1tszOXKDZ2mW6vUNMFvezf41mPsPPtsmxqPMKge7oFuub13jn219i+fZrxJjpwxITl2S/TUoBLzVozHjwDalknYANnVJU2gnGOaKxnLt8mXsun8M7NZoeqa1awZ+cvFJOnR9Cte4UfCvMJnZzP2rBrJRTjHKlpU4wxgkEsFn/RpQ667wWis5b2saz7oPeU8ZpsFtWR8QyFpSVklVPLez/CrYTODm/R971CM6MFFUjhna2xWR7t04kF5QcSFbLKesUQsytiqtVYJ1JWadPagyTN4oMi9Knbc3NQkYAUCm8zhQaW88YqRQ4W8BVRx/0cx7BQjEUGe0/3n3W6j6Yq4280qSUXiobreemfBS1/N/UpbGQTKZbJ6bGMLWad9G6qimk6l+N4I2+pnZrC5zhaBjo7qw4csJWY9maOGZTh2+WSGPA6zppJp79e/fpVhOO7txlWK9PnLZEKWMhJ46Pl+y3jun2HrgdpKwoslajnInBGEe7N2Xn/BlmZ+b4qQOT6IeBlAb8rMH4qcIyYsjekKNOAXNaE7sFmQxmh5QjsQsV9LSVYTIoCm4LFEtpWnJUUTy1NkliYLJDikoDD4PqMULfM6zX9MsV67u3iasFMUVKClr4iaOMBjQVSDfeYxqL9YLKsrQewVmKAzdpMa1Xd0/sRoy9mRoI1dmO2vjUIr+yRETA1LFnyaYGJRtNiycRs/66SK7siqzvh61i/VqLSAU8R7pndtrolFJrOWqmV9HGJG+A0LEA//E2kb8wdYrxPodNMRzNaeqPbETXtoaW2WqdKpXas8lqKEK2hYCOHE3t3nxFC0wZBzd1g67jzJFDmWsPOMpLx03+pJuQU7uS2pKOdJgseTP6HNlf44g5V3pVRpuKTRpwRTo0HVTpUlkMSRxR0iY0z5sayGVMLebrJMeBc2q/qo4R5aTRqP7JBS2mc0FHshQ02DCdEvlVh60iGBJGBGcKxhW1GK5yBPHgfMG2BdNmaKC4TLZqtRdQbQUZbOLEBSNXIXwsaqUbMjGqlW0ImT7AEERvbiUZI8bgZfQUNPqelLEZVSvcEBNh0MZiWAeG9UDf6UfoekI3ELqBOAyUFChERqcyQ72nnMF6UU1GYzCNis2NG/Uu2s3nMiZvZiJZ7YmLaI5KKkhOihbWBaSTJEUGxgZudEEaAx2l6PtUjDYVTixZkvLQa7sro1bGmo1/uIy2w0502pIEk4RSDDbohnMyQRkxC9ncl+9RIBLgZB2h+oxUagBmRS5GekKm0JfCuSsP8djP/CLt7h6vPPctbvzoGboIN29c5eDGdbbPnqNpW/xswmRnl629s4wS+jD0DEOndAirVAgphZgifQiYlMjTCabxOGsxztL1PSlGfNtUh5n6vtiWnDK57wgpgNUgLzLkEAgpIl1DXDZkMoujI7xXM4iQEp6CNeoa5y1IMrRWEexc1FnIitA61TnFAiHX8E1KNXgQulj0Xkm6nz7yvsfYf/ASb7/6Nvt2xS//R79A+U9+jRe+9RLf/9I3ufr8s7z85jX+zTevcW5/wpV7Ztx334vc98C3OXf5LLv3XebRBy5TfvMX+Wdvv8XixlUaERorNN7Sdz1f/J2vIsdv8fnfWDC77yd4/qvf5q1nniHGGZcePMMjv/FZHvn4J9g5u01Z3WDx0mu88cMX+e7XvsvNN97mr/zNe7DWUPIdct5hebOjv/sS2xfuw599ArnnY5SdByEkRGzVakWGPLA6PuSr/+CfMdx+m8sf+CT+zEMYu8e5Bx6jmW2BbepEPbJ96T5iPxB7daTLKZBXRyyuvs7N577L6q2XMBJIcUBSp6JqIiUvK73G4+ZnScUTV7exktRFLybcECAs2X3wg+xdvoi1otPYVAGTlMi5aIhf1CAvKKSYCUPAiNoEGwPNZKKC18bjrFE0EQWIoMoGNqtcNvSpVEqlHGqD6jx6+GdHnk4YhsJx1yugYyCWUB3OzKbxPsEq3tv+dZurU0XFMoo7T004VIwNbTuh2dnFeEcYVqShwxqrqdsp60TZCaZknHf4nAnJEAVCUitaUFMXJ1rUSQay2oJiFQGmntm2aDHoa7FtoDpOVRClgrGKVivvfDQ0JKN2tTkTc9pMamIt73K9N5RJUnUiAEVp4ZK0FgGtZ4o4TYY2CrglK+SodZjUmmw+m2CnnpwiMQW2z+5hmx1yH0jrNYvQM4TIYqUuUd4bbCNqyewN1lsa55ntb9ENvdoEl4oFGrXw7pYLFi6z6wRjM12/Ji8GrHNMtjzTvX2me3OaqacwMPRrhqR6iJwzZydWnZZKIiVL7BP9elD6FJYknpAhxIEQAn0IOnk2kRKFcmegxJ7pdBuxExIOmlZtZkshhkQIkVAgDJGhGwjVhCasO4blku7giGF1DCmQiQr2Wr0HxRZtMJwaiNimAaeOl8aO9H9tFcU34Kz+3JRq2KJqLIz6IEMRbEmoCLyyISoqIWZkU4yAhNT8HVH3rGzwMmoP62QOrcmSZKI1NctMqfIliU6TvMMmS06iU42o9Z9iFCfTjCIntciP+/i302goQPKuDzFl4/hpZeSYVu71qYRrW0naub6YTTcnsnkhRkod3dSmgXKyWkeWVNbGhjrqyeMUoiiHe7T6I4pS6gMQTd1sqjp//PYbYVb9+vFrq1jd1gWfjSr8s811cxfUsDsp999YitVmI9UDxVpTR+JCSmqDa0W9BZJJlXpzQl339Y3OplK+tIVFik5kNBDckIyOx8EgogixqeFE4gEP4grGF3AqfMu2bFCukvW1FCsE0fCf0cUq5kKfoB9gCIV+yAx9ZOgyYZ3p+0IfhZjrjW10YhWNI4nFjTi1iArVSyHGRBzUUapfq/1et+5V3NsNhGEg9kFD+WLUEQpZm9d6PzkjeCc0VfhtnOokxBbqC6CUTB5D2UjaAFJ9zUuBGii4ERJKQa1vx8p3XKz1vhMtVjcHtmxmapumSkbD9tpgZ2swVQJiHCroGi0eXEES2FQoiXcJOEtdXCPKr+2lbBrp9+JDQd+MFH3/Rt7pCAiXUsWTCFsXLvHBX/oNHvzQx1n3S66/8iL90RGxmXF8fMg7b7zK+Qce0oa7ZKzzTLb2SCkyrNeaxO6cirlDrA5yFViIQSkWbYsxFvEeY4TVakmKgWY2UdqdsSDQdytSqK5UJTPESOjXSN/pC2sackwMw8BqteTm1bcxMZELhBgxE4tJhibDzBXudlmdhCr0GkvGFMfUKrrZB+iTNramqHgxFdWYWLGUXLj/ocv8pf/k17n4vsf4xpe/zz/7f/89vv4P/kd+9W/+ZZ74G7/CT/z8Z3n2j7/Gd774JV79wbO8+fYRb75xxPx7lgvnrnPx3hkX73uRvXNbLNuHyUOPFYOzmUljOWOq6LhE/uTrb7I8+l12z/wJy0XknvvO8uSHPsxTn/koe5fugWFBuvUc13/0Ct/72jP84Ls/4s2Xr9GQSf1Ki3nZZnnjBt//J3+f2y8+w2Of+DQPf+pJ2ssfJG+f5/DZm6Sur+P6hC+B7e09bi8Nf/TPvsP9z1zjqV/6LfaefBKcWhWHbk1Y94Qa1kdWb7wce7qD29x+4TvceOYbrG6/w952w2R3h6FbVEBJECIl9iTnmG6fI7s93rp6i3h3zXab2AmGOHTYnLBDh51tcfdgzZ2jt+n7XguRmOiHQIqJEKNq/CqgFQdNnnciOGMRC7O9PXbOnGM632I6ndFOmrpXqI2pNTrts6Yo9xs9D0aQZkhKURFz8tk6y2TSMORCiEldAkVzF6ypk/G6VY2lRz5t1fiee5zsjqcHvYrWlk1RZhrPbG+X6XyKkMhDh+Sk6zplYh9oJvp9bFGhcjJejSCy7vfFFHIN3FM4s9YpGTWVyBWIqvVLjvpnxo71jpYEOSaquwU5KU2yxEIJqm0suZ5HRUixEELUs7+cCI21DJFapI77ZtlMysuYySGa06PT/7qPRSG5sRaxGCNMJ57Zzg7T+YSuX3N8eAC37nLm4j6z/S3M7jZltSKtl3RdT+kiuc/1nhvPXy1ao2mJqQKw1czGGT3zxBS6bkAOj7B9T0FoZw3TnSnzs1v4uUdsJsWV1hbDQIiRlDLOGmZ9wPeBVAxd33N46y7HixWpmZEbRyyeGAzrxUqZEEPUuk0EXMMyC+HWMdOmZ7pzFjvdATSIMcZErE3F0J187nulbnfHh3RHh6Rlp5NuIBM32mFrCq6a/jStxzWNNoZlnKwXrdRKpiQ1rO+HSAodsRhCNtpoRFPZDaqXsOgkfNTxVd59ZUNYdbpDzxA1YpJK/R81pfoEdY0oiyAbg9h04vpaa6XiitaHTgGMUMcdpvIsN6ut3oMK6CsI9uM8/u00GvUhtbEw9bOTUj/Mu6cQWQszUy9EqYi+Bs7p2pANclOdG0rBZE0+LKla/Y0cNTEnydOUigyoW5OKmLW4KKPFTyi6wFPWsUUum+ekHaIW4Kor10Jo/Pal1O9LfUG2NhyinCOhaNiXoRb7pnavyhe1WbRpMPr6klG6Uhb9M+XVqfUaEaLVa1KqwJh6Ayv1qzZkkgFBTMbYjHEF67TRQPOI1MbNQXb1xpJcrVgrnSPoDenR8DDj6k2INmohwjpA1xe6kFj3kW4V6daZYcgMEUKstq2VruWM08Cg8YatITVpRP76QOgDfder6LvSpfohEENUy7gYVRMhKqQbN28nSj3z3tQPUcdap++JmgJoQ0ZWUW8iofOM2hjoqmQTnoIeKpjKiBQojGPtjX/JOD9icxNUUTfAJuF9M5IUpUxYfX7WabGYU1G3MZspJmuwo85sNv36uMTHn1Y2f/befaQijI5aitTm6rpVN7OKUG6fu8hHf+Wv8IHP/CLT7V1eee67XH/zNfr1moRjMGveeet1Hjy4S7M9w/lWG/sCoe8JfachZzGR+jVlCJim0amfdfXd06s8hq7lUjg6PCT0A3MjWO8VvUmJMKwpMWF8A0NPf3xAHtYKFHhFsJI1DCFw+9YNbl6/zhAqo1v0YB9/4syqUcIyKgpW6tQsJm0+GlMtpRMsU9HiMcNWzgwJnM0UsTz6wYd46gMP4rbnPPmhh/m9c/v843/6fW7fXvOF/+ANHv7YR/m5v/IFnvzU07zy/R/w6g9f4LXvPc+dt9/mxu1jFkcdt64vmM9bIlcJq6GCFEKDmonPW4OfTdne3+Xc5fu5/MSjXH70Ie5//xNsnTuLZSDefZtrL/yId167ip3v07XnuXv3BY4OOmKBN64vuRTewbpziJsjzZx1H7jx6otceniCv/ciZfIQNA2zC1fo7hyRhwW7+1vc+8mf5zjPuPbdr3H31iGLo8AOhtXhgtCvCX2vac5kchwIi0OG4zssb73NnR/9kJsv/ZCwvIu3jr49g1lrynuOFklVFxgTdjbn/sceYXXnJs9+8yUWB0vk4j1Mz14idR3rxYKyXjIcHvHGy68TwsDQd8SkCC5Fm+PiVTxrrKVk0UajH1Sgq50ERQzWtaQshAh+yGpYYUylrLKhHLu6B8sGgNAjLFZe0BBVTB6j7iNt6xjts5MIWRJGRoR5VBUoWDIeY+/9xzjNGJsOPb9949na32e+s4u3lhJW5NBXgX6GVEj9QB4yxtfMpFzzCkYrwFoflCqkz6J7mJ4DosBDLkjOINUWOkRKVB6+jiMKOSbyUM8ahBQyOURKyBtnDKlg55ganaLmNSlYq3x6o0OYTTBgqrS4ysojJwW4pPLuqueOalWtsjiSA5fBGMt822Obhoxgm4Ygllt3VoScOXc+sL2zxWRvC5lPSX3H0Hf0w5oQBsKQCENmsKDOnUHBO9EsK2ML1kHTiObmjPb58ynNfEKzNcNNPHgIoSd2AylGrG8ZsqFf12tgLe1xYN70lDKh76HvCt0iMpglTBpCNAxpQhiUfh86daY0jcVPthDxDOs1eejBdniZEItqRGOotUhQ29p+vaZbrehXS1aLBf1iQR56JGacmGpAoyCkLcp+bqzQNJb5fIoxhcW6V9qWeMQ7yGkDmOYQGFZrUhmIxZCKJZfqNJWrrX6VFYhY7NhoGG1xlNI0TrhqlZArsJ4UNNbcSdnU0pvlIaPOS++JJEqv04Y0IyYzhmwnqdVObVYSJzqNTfXzY+4h/1YaDR2tnHwek+a17julMyiQqppdJwxyin4mowihulfVlyQ6Jk6VvkSsgV5FC2ZTKTEUy8ZJqs4bxzC+0VmhlLqoazja6KW52XDrG4GpSISM0xHUsaMq3/XL9E0ijVZhWSlLInibVRzkqld55c9Btaolb5xASk0ENrZoE5K0uRgqEhIrCKs9jVRxT+1Y6yjcVNSg0ovxHpwXpAHNfinaEFkVKdfTBpJSWEwqdcPMmJR0KjDS3orR5xS00Vj2hWVIrPrIugt0XaYbMiGquDehUwsqRU4bDamjZRWLh5yJIRGHSOgHQq8OU0PfK0oYIzkkTErYnLEUtcaVuukild5haJw2GqYGABanVKa8CReUemtVkbrIBnkqebx7tQFW0yh9D23VbozhhyrmQ28GUxuOOsTIVqrVSR3hW9QqMWtjWWouYXKQvfY2OWnjx6lJlfbAmvw6Jn3qmFyneZmCq2qN9+oj5WoriKJNBqVKFtSdzIsw2d7n/T/7y3zw536N/fP3cv3qq7z50o9YLY7JdZo39CtuXn2V1cFdpns7NNMJzXRS77FaFIRA7DvSaonkohunKAUz50KRVG0O9YYvAsfHxxzfucuZi+dpJi0ZbYpLjPTHx9h2Ql535ONjbUh9C2gwYC6FrnQc3L7FwdGxOt6I0FRbRSOGTMJKZrsRDoZMSqb2qvquBuoaoZCNEHOiLyoQXufCLGVaJ4hkDu7epTu4SpsHrr30Mndu3ubGIvAP/+AFfvD8VX7up77Mx77wWR74iY9y5Vc/wSe/8EluXzvmtede5Y1nnmd96xbS38Ea9Ypfr6KO6tuWyfac+f4F9u+7wLkrD3Dm8kV2L93DdHuKbxK29JThNgdXb/DDP/k23/mjb/PYR3+Cn/qlX+DKp2AIO7z1xt/lzuEx/+br1/jwX7rNfPIOs33hQ7/+KzzyqU/j8jFtuUaxnmG9wrVzLn38c6TouPvsghwTh2+8Qc8UtzqmLG9x9Vt/SHvuCslsIQZit2Z9eJejd65y9M4bHF17jfXdq8TlXYZuTQlZi2orhOxoY8A0U0rKpDJokCLC2XsucGZvh0kjPPqBD3Dz6g3uf+xxrjz1fq7/4Bsc37pGf3yJuDwiTPYYapZPiD1htcCUSNNO8f7MBvFWq21HjNrwYsB7R9u2+KapGRuGVKfqUs+aEnVmqWJNU4u3Sh2uhY6AUnariDynRCmKVLaN0SYmW6wknE1I0uSBUgvkSsL9//8G8G/hUQrvoobXoeDm11YEsZbZ9g7znT0NTYwasEZtGEqBmDJ9P9CGiLUeUKrkiRWmaPp3zJikPyEXpZ+MtsXKkxrBKd2n46AW7a3xG5RZDaZKtVDWELg8BK136hMqKVeufrXQrmG0VmQTCJqK0nxJKjlISWnPFe/a1ANSGy5rihbFjKCVRr8mCjbr1CSEHsTT9T19F8g5c/eoI4bIsFqzt7/DfGtOszunYc40R6UodityjFA002bMfzLWYLylmTQ00wmT+RQ3n2KnU8ysJmP7yp4gkvpE163pliumW3MVbVtLFx3L5V1SiXBrzYWmA6NGNOK3sPMJhEC/6jRLJA4MXaaYCblEzUWKiZiOEeOQEIg5kmOijZlULLGUWof09EttLrrlMf16ydCtGYIG9Jmc9K22lkaqvpKTWqR1wmzWsDVxYA3GeYIUmvmcZjZjCEHdrrJmkIyuUdoPFsix0oYFEbdhALmxFq31Xql0F2NloyEc62k1oVH6v2LSWj+M1H+FV+tnUcZRMZo3rHW4Sgi0tkUlDDKya0pdZ2Mtolb1J7yj//nHX6jRqLiwfpxecwV8YSNmVstYNjx9qVzp0TpOUYIqfkqyWXzjNliKCqo4qderm4S+gjH0T7XHI39e+Yvk2mTUjeNdinWqYFxk06vlOp5SH+1CLhqUUhJQXbE2nYmcjC2TCMFAMIWhKOpo0Oc5qhRMAWurk4U5cSEyxpAMGzpWSplYeXiu3mzeFKWjWaVGbcQ4hupwINgGrC84X2oQzckkpIgWrHHj8FU3yqyTEBLIUKcYknREV0VAORpCLPQDrIbMasgshkjXJ7ohEUImpKrjKPoaFJ0bgwNNHTeKHoCpMISKJAwDcaii734gxECMSTf4rIVga2BiNYPAG1Geuwit1fAq79VdqnhLaSzZW5KzJG9JjSU6R3CWwVqSWDKOLCcowuj0YIpK8B2m6oLU4z7Xg1390Ku4slTUqDZ9ow2zhi6q/sKkkyA/XdBVN2LH5gXGDJdMdeIqJ5ob1S6NLcYpG+b38EM3xVJtm4WCrVMMvaMnW1s8/OnP8YGf/1V2L9xD1y9446UXuPHWG+SYVFCX1Xa5Wx+zXh5ixeCdZzKZUhgPaW0OSowQszacMWKKps6nYY1pGnIa1MUkGVzjSSlw4+03ePCpx5hOtCA0YkkxMCwOSas1pVtTQq/5HDEpT94onWEVM4fHC5ZdT2N1IiLOU3JQ7YkVYsjMnMMRGbLaV1gMjVUUYFX3xfGwUVC00BWlLtpUsMDvfvUlLlz8fZrpjG9+9XluvnGdxgqrGHnm9bu89PYRv/fF1/nJj3+JT/zcx3jskz/BlYcucuXxnyT9ymfIZUIpa1KCsFpSYqFpG+y0xdgGZ6eIr0FiZaECznCHdLji6PCIN1+5xre/+E1e/u6z3LnV8enf+utsnbuHWV5z//sewM22WN865Ktfe5Nfv1p45PwckSPme/cw23uccvurpDdusbjW8/rrL5G230+zfxGZ75HaLdLqmOUrLysNNkXa6T4lzzi+fo3pdJdwcJXDl5/lzeee4507Nym2EAnEboXJmdY5zc9JBWmnJOdZDcpXjsYogu0zrm05e+E81gnTnbM89Yl7+cjEs7O/j8uJFw8O6dZrTXJ2TXUizHivzUIjhpI6mumcrf19XDMFMTTNRL38+44cE77xtNOW+e4ek/k2rmkx1pNATS2MJcdCKOikpX6OJakmsJQNDUILag0JdIL+edEzC2eJqElHLBCL0QlLCZSiWhKFVN7LJEx9jCX0OOm16ORoOttmvr1HYx0mZ2LoSTHUsbACeiC10E4KyulIVYv3ceqc2LAsEK0lMoU4TrqLVGdMBY6MimlI/QDttPr31ODXrFSpVMqYjFabC/TvADDV8TIrwCk6ATN1Am+KqbTwjM2iICGjg6Y+x7EWMVKURVEKhsRQbD1ZKu3LFg4PlzRWDQXW656UIsYZUsgsiYS0ZLEc2N1ZsrM3Z74zp506pvMGa7b0e1UCTSkjpeokLNf5BmkU1c9OqhYqkipLoo+J5WpN33XEVHB7ZzTNPELEsuwyfYis+oKbDvimUcpkcAzBM3Qd6+WaboDj5TGxtITiCKEw9BoOS3eMQUPsvLFAT+KIgiOGgW65Yr1Y6BqPA0NQjWhKSt0S6vU2QmPQyAKnDaA3hsYYJt6yPfdMJhZxnvmWh9Zj2inZeo7iwMSB9xZpNecrFqMaGjSdnmwweKxplDKFxYvFYhgDIYvVmqLYUf9a6r1ZEXMpxApGFKm1SK4lXV0x2m7qPVNE7eZPAH2tRU4bUMRax+vuM96lfzZrmr9Qo1HXh25w5dTv68GbROqClA0KT20QTiP9GQhUbrap4q5y6odAFaVILcKkOteo8GVDlitjnJlsLs2Yt2GKUEo64aCo2qEOQE6K8dEK7LRuXEo1LMhCTid2tyNqUKSQTSEVoyJOhB5dgrYUDZHPOlHYJIBXMQ5JhUA2Z2JxVcZaVYECxViMrRzNUcAzWvbWG8QYRYm12dVDMNZU3JKqW0WBmB2hTniSLRXlH9/NhArM66RkhEiyIUWjm0IolTqVWYdEHxIhKeUjpeqUUTdHW59rMvr9jKj1Wspq7xhiJtRGIw0q+I7VLk5ywmSl3TUGJkaYO6H1ygdtnBZlE2vxzuGcR7yn+IbiPcl7gvNE70lNQ3QN0TcE50imoeDJ4sjFUor6VjM6PiXd1G21vC0YdWcAMlkPIL196qLT+9GgTUwSdWlQJq/ST/QM0CnJxkGqHiDU30dOrhPV7WFcAMLG3Hi8Ld6zjxFNNKgrju4AKjorbcOVD/0UH/21v869j7yPdRy4+uabvPXqy9w9vMuQoGSjbju+wSZY3L6BkJnMpvjZFGk8uWRizmRJyoM1QkmZ3K+qIYVQSsYYhxWHZBUAWqchajeuv0VYB5rW08xmuOmMYq0mf5OI1OJg6MmhB+spkxnGOiT0hGGgiypsNkZofIP3Ru/vVDN4RGicZQhR39tKmQypkFBRqVTet1JKR6vtMXch88Y7x/w//84fc9YJTaXFTGzBWcOQM0NKPHv1gGf/0Xf4+7/zAx576Hf43Oee5KO/+JPce+leZvsXcfMtxExg5yxS+nqvBST1kO9SVkviuiOu1qxXa27fOuTlZ17g1Wee4/bVuxzfPWa1DMiZi5y977IWRqUoRzoGpCTu3LjDP/i//p/5zd/6Sc498WHkzNOs1i2vf/2LvPRHf8B6lXG7D7N1ObG4/SUOX3+OuDzAGEMpCWMd03se4N7/L3V//mRblt33YZ+1h3PukJlvqFdzVc8jyMYMkCBFUiQFhWWL8hAOhf2L/JPD/5giHLbDEQ7LcoiCSQokCJAUiIkAuhtAV1d3Da+GN+Zwh3P23ss/rLXPzSpQZEEEGKzbkV0v38vh3nvO3nut7/oOP/9LbF97k+sfv83Tf/7fcbGt1P2BDz94i/cePkFWmdW9C1IIrAdhc75Fa2Mujbg+R0JkKkeYj0xTs/dsdcZme856eweVFSGvuBgHtmdbxnFEabzwhW9x8cYfsf7Clxnv3mc425KGB4aUY6LwKI2Uot2Hq3MaSh7WTHNlOhxAIA8Dw7hitR4ZV6NbvduE8wTTC6Vk5qJLQzFNlalUSmnM82w5QmqTmIAV1iEYfVhQghaS07BmFY4kqsAYArEcASu4F4Du8/jwt0s/+Vc0EdarM9Z3XyCNKwMBy8w0TdaoheDIv4N8CocyIVhgbgl2ZjWUFpoHyjpq29ef781Gs/YisAUDIx1YmqdiUyqJhJCRUBCJKNVZGAYjizZnW2BOh9InD9VmDz6RNy615RbEZntCrR5oqrdqkWAIdlUL7S3SrHBvajQfgrlGRjOVOJbGh9PM4Fb3MQuhBdCEijKLcqVwKJWnVwfOt1fcvztycW/Lap0JOZmjkghINNq3c/+DFFA1UwYCWoSKMDXYHQs309FqAbXMHk2ZsxppO5PfX14eeHp5YJoL6JHp8CMuLs4hr5l1xeEoXD1/wuXT5xymSpUBjRPzVCiHvTVN4lOqaNQwWa+RYWS62VP216jaVGd3dc1hd7CgPm3UYq5SUUCaaeRyCAZ6BhiiEiMMEVY5sh0zZ1uzRpc80NJgVN0hU+Jgjqghks+NhlbyiHpYX5NokQ5Es7klEslIE3M2a73RCK7rszGD4rqeVi0kONg9nGKktkRJdm81R/9NjG73vasLTve3lxdBT/BD7DW2Wk1ttWJfdLqswc/y+HcP7MNq/bqM7lyULSaibRqsQG8Bj8fglBTQGwGfaoRbCIVAaMbxaZjzS7faaj60qa7zEC/qegS5SDAbORd+GlGNpWDrxY5qQ9xWrr/T3oN8ahKizsPUpXHsz1FcZd5TrivqrkYWKj+pUb2CVOPceUeg3oxJEmoJ1Gz0o3mOpLmRx0oukTwm5hZYN6NUZGWhNgXRJVeoNbWwxGKc41pntDQ0VjRESqzMoTDHRIuREoQSnFfcrfROzDJ65KlWMQeOIkwzlNl4wVNtFG8uan+ffNITxKcsye4Fc10Iiw1wqEoolTBXwmyCb5k8mKMVRFvPOCdJYAjCmGA9COMQyENgzJFV8EYjWvhgy5E22PRCsln6ypAIKZFTYkiWxqk+ZVE1Gze7ge2eMQqD64jUF7P2dRWp0rzRaAsNqwXLTbGpRlicwzrS1qmD4dah0XwC0gJIDJ71EZAaCbPleQQMzeh3uIlXhU8er5+zh9phI810QkUtmCivBl779k/z0//Zf8n9N7/IXCeeP3nC+299j+cfv0ed9tTZEck40FplV2Y+evguZZ4Z1yuGcWR7fsG02xNCos6J480NMoyEeaIdJqrOlg5PMDpLbYQyoTlTWkPnmUcffczl82dsH9xnXK2JOTFsLmBcU/cHo4cOwyJsNwoYy5R2MSlUy8Q4zI07Y7a13yyXQwQ2ObKfTTPUzSpMRGwHg/o9o3R0MxiwAKDW+N4cKikL2+BOcwK5j92TkhvMCtdT4Xe+9y7ff+shr/y/f4uf+Np9fvInXuaL33iNi7t3GM/umE9+SDSSmXVI5OZ6z6OPn/P+2+/y8O13ufzoCfPVNe1wpFahqDDVwBtf+gKbO/dQrVw+3vHuH3wf5j2bIVFK5Td+7fu8//0f8cYb/z1hfY/dFHj68D2G44FhvebsrpLffpd6uKaWI2m1Jd95hTieEXLi/PUvEocVH//Bb3F4+1/x2ssD5w9e4Azl69p4/x/8S66vbqhccXZng6Zo2U1xgNAYckTrEalHJKyQMqM606bEevsGeb2BkBAiKQ/EYQUxE2Pg63/1P+JH7z6H9Za8XnH24kusz84tTyAls8eNMOZGiAMhbZmKIcelNeq8MgezGMnDQB4CORkNVPz8sx3C/lSyMLf+mTBkqDXaVPmYjCrVzBFrLtUa9mZORXam+b7kB10jMIdoaDOZoEqgEDqg9Tl86K0/Lf7+IZA2a8a79wjDQAFaM2pQKdXOa58YE9yEQhXmyQ6/FJiKUGMwm0/sLFO1Ih1tS65W18E0dWdGxabcalbppRgoZSYTzcW7A4SKtrrUKyrJJ9bNayFhsd2Hhf5dW38OVot0CndWCxqlO281A2vFJy+mb61GxxQDPkVM6yriYsRi4GdMQiqBmgOpQimBODRibpQamJoy1cJuf2D97JrzTWKzzYzrTE4emBtY7j9x5H2OgVmVqVbmuTL5njSL2c+WIExA2g7cHBv7MlGmwpOPn/Ps6Y5S7LU+e3IkhEtiyMwtMs9wONi1bSpImFG9oVUTXiMBSZngdr4JIdRCuTrQDntysN+vAdZDYro2cwCtZbkmEgzxj5ideJLGEGHMgeQsi9UobNaZ9WYgp16LJGSVqf75drNhHkbakC0wcrUy96mQaCGhbrwjBGNYaDR2T69PmpibZaf0+32prS38JonmXlbUaufQTPjfmtHJQxQsV60SYqTFav9erHFu/Ya/9SH1BJSephqeHebTsc/y+HPRaKg3CfZEDWnvk4GGc6KrB11FLHmzi6pbHw96Uee8VGA5UFFHe08YsSHQ/sbYG+Fbz0JlsbelSTNxsjplaQnsc9qL9ImGS2594uIJSibSUhOe2wbd2xL1Q8LHlthzWMTHONdaGse+8WO6gdIRf7ecCyUQ50acqtnHTYF8DKQxMoyRcQhMOTBmSx+PybyvTTB4a7qyUHcqNVfTK8TojUVkjkYjailSooUEVkwvUKtlW8zNjTHUm8MqlgZehVqEVpwX2sWE7naAvzdR7IYPyWhjKclJ9O8jPK1qnOJWPfmv0Goh1EJQMwKMKClYanqOhv6OOTEMkWFMjDkzxEyOmRiTFY8p0lKAHOy1J1ss4ROibLuxXA5k17K6CLy5a0f1RaxePDZZnB/McljRFiyk0TmOIrbeuwAc5z1K6JsAtmi7UK/Tq5KYtWIPs6yB1IyuJr6orbHuTfbnGIXEwYhmIIHgvWkMvPGt7/BX/vf/Z177zs+y21/x9NGHfPjBh3z8wfu02dJOE0rLGU2RMh85Xl/y8Xs/Yrq55vzllxmGFeN6Q0zZkKrjEcBE4p58WmZD2USCFWjzZGtWQXIl5sRut+PZo4+5eOkBm/Mtq/WK7cU9bs7vcpge25Y7rl0tY3eRApTi4kCzNzYEQHlyecXdbLQuibaH5SpsU+SZGOUqiRCaEiVQOO2NMRjNbLoFcCAdSbIJ6tWsTGIHYRYLAYzR9oiVwCC41aGh7x88fMrjD5/xe7/zY+7fX3H/zoaLu1vSuEJColTb64bNmsOzZ1x+/Jz5eEBKWwK/AIqXq2Fc8VN//Wc5v5c53Dzl93/11/j+P/lVhjZzPgT2YrSfH3904INHD1nlDxlzZIj4fj5xXR86QFQQUdZ5Rby4y/7mwO7hOzz50R/x4MX7pCjce2HLg9cfEIdAKY0vfeV1njy94vd/94+5udoRL/eMsqG2yLha0aQwDhEplZYGSAN1ajDvidK4uP8CeX1mIFgIJvgnmBOf5/SEFBjXa1558w3uvfEmKWdiCJjG32ftHfETYeMTZRCajj576AWYn22OO/SGoj/6FtJhseRNw6gwDNkACjcIKHOjFvsoszUdtVZaqz5hbjSdFycaozfbtFjD5xiwuA24KCBCXq3Z3HtA3GyYaNT5SCmF1iY6N0mwc02b6z5bpU5HYq2Wk+K0uopNHu2c97O62SQUOivDrpldZrPp7qiU+nXIeSCmZM52KSE5m7gcuiDnBGQ5PU6lw6HNQa9KndV1IbdSlTqrQa2G6QyHheLitYhi909BmFxfogQ0VGOdiNMjSyCmRpztvykLeTZHxzgE0lypWSgpcDwIN9fWBA85MiR3fuy0HawZI0cKTtl2KnULPm2JiZbs/Z4InG0iN7uJWo9cPbvi8UePOB5n0366frU1Y0ZoFVufTZf1I0yfqEVSyoSQYS7oNFOPN8SDuQumEEgx2ZRaK5ss1FXk+qAca7EpQbBzIgYLmU3xZPs95kyMQs4wDJFxMzKsBmJIaHK9aAzLh9lvmdZmXA2k9YhEs6HUYLCq7TneWKi/vioOQLm4ttcigrvgerHttIvmzJZei0g0w06NuJ2t1XaCNSBRo4nRWyS0Sq0Bzc7uaEKsEE88qlsjAlkGG5/l8efmOqXefPXBgom3DRVewmZEHH23zbgjAj0C3UZH9sYZ5UT9z4A3GUmFWD3MLjj/UPUTL3ghnYhTjVAT5/oT7Xw3+oFObzKsqZBbUww1Dzu60EnokxvfULxgtR5LTaMi2HQhQJXGvNC+bLQ1d/pGMPcriUqMzW7co9mL5SGQhkgerNFYuY1cTmL8wJ5A6cj4cg1E0GS+4JoCRLFGI7luISZqNhRhRphdGFuqMjdd0AajOYkvcLPi7fqZPrwQP7hSF1IHK6QSFkiYmzA0a4isAXTNtLpzVivLh7ZKU9dm0Cx7BGEUG/mPITLExBgTQ7QmI8VMiAm3yKIRjCJWwZyuzWVqSf32CRixIaG6N7QsEzVbr4EWemqq3QfizSx6cvfozQNup2sf9gL7OlD/d6J14uJ+z8E9nzXZopZq/6410Py/NlkJCIlKwhQckVPKy+f0EVyoxjIC5cEbX+Xn/rf/J77083+Tw+GKjz98n4c//AEf/fhH7I976nREpyO1FdsnaoHWmKYjHz18n6cfPuTBF99kc35GHkdaKUy7HYerS+o8W6ORRz+cbbG0apqpOh8IJViAaCkII4d55qMPP+LNn/gW43bNuNlwfvcuV8/ucry+QqejCcj9oGrqCNo8I02NhxsCVStRYD8XYh4oxwNBgoXBqemNer20zsI6wHXxAlLNWWpuyoBptFpHLrE9pilMLnKfxfbCJNaQpaoM0t3/zAHQ1mFwMSHUUnn64Q1PP7wix+QTYSWKsh0C4wsP2IbG4dml738GntRg72FRpUb4xs98g5/6pW/T5j2/9Sv/hF/7r/+fXD98SKayieJW5v15uLYKMUqAKGWq1FYIq63tMcdrju0RT29+m6tnz6h745FH+QpvfP1bvPTGHWJKqCohZdZnke/81NfYrAf+4A/e5uP3H5PbNfdXQh4DUzO6Sh5HVBtz8Rpsmlmvt5y/+DIxDybCdlvypQtwdVmtE6vthnsvPuBsu3LeTkdacMimH74F4QD1PUO485dRWYN/hd31/ZS61WL4vSDgFFq/V0OfxfsUPdh3zQ10ZUVCLZa/0poaP30ullNUCtM8Qa0LqGSp1s3zFj6HD59M3EZT0zCyvfsC4/acJpW5zsx6pOjRQJ5FV+kFmXKij0yFw7EwDGuKJDs1tBndsjTfh+2sD8HAyuAtcqweIlzd8bGpTyeVOs8Mq7XnZ0VSTpYB0QSZsTOg1yLVAUunFhhoaZ/3/5rOppuBNCIGlMZgdUzoYKOcapHeiCDmTlnVznz13LDiGWVWTIEUIUYlhkaO3VjGmoicI0MOjFGYkqH5Sw5Yp/T0sZG4XmUcrNjFdXkxut2/AaA1WS0SN1tqFa4u91w+veLZo6fsD0fb36olfNdmBbWlX5/ME+xldzvY6HbgZmkf2gxS7RoliDKS12uGDFCZF61ug1UibjKXdWZXJqiNjDAMiYQwCIwxMsZEDtGaFYEhDQzj2moRsQ/1WqQ2LIuHSi2FNDSjcy11a/MolRNXobnzovUV1ZqMsLYGodciuBW+HwYS7b2pjcW6th8Uzn7yesT23R4xIWo1kdHIjUFRJRG0gib7JrfgpQOeC7W7TzX+7Y8/txyN5R7z12jkBN9OnRsWvCPqAoie02AWorZwtessvF3ydgXBCthI6GY9JnSix3OdXHroC05PWgtL9vZmAqPv4KKsJi629YsvfdpiiX4+Ym3L5ODTtK/+uhN22Ed/XsGLgoZSvMFpYhQHcXeAFq1gtfR0NWHWBGkSazRy4JgChygMCXLEKQHiDZrTK5a31eEwO9W96XCBdLTkx+IogjUathimCpNak2ECQm8yFHftkmU0rCquB7FmoB/KUW06ZcIrCyoco00l+hTB8pl9gdWCSkVDJUolU/FoPwawJkOElTcaK0msQmYgk0lEcRQAb4pUKaUxhcIcoLrTFrkhqRGyoVYSM8RkInhp1oRoWjr126PrXgsuf7E8umfLrfutvxVya7EHwK9XqCyOVM03Ta3WyFECOjtP1vVNQU/roxHct1o46Tc+f4+kZu8sQNPAi29+hV/6L/8vfPWv/TIF5aOHP+adP/4+H7/7DmV/oLXiAWyzH8IT0szCUyRyefmcD97+E77+8z/P2Z07bM/POLt7zu76GeU4elGi6Awxn0HO1OORJtaAtOOekC30bZ4L9fqalDMfPHyXOs+Mq5HVZsO42TJuzgirNfM80VqDGA2lq81CJZ1WF50eWUtjHU1wOh0NbQspE0SYdzae95glEo1tEnIQysFfqqppn7RxnhMqdmiJ2p4XxA6lWdUFe7YvZglEbRwRYhOyNEaxQzMGd6IBsghnYiuuOF2xo+nUwvz0GVc06tE843vGSz8QZ4WwWvHS6/d4+L3f5x//3/6/fP/X/yXXH77v1pxmQd1iRGuzRPRhxebsnNW45nhzTbl+SmsTNQI1omVm2GwpsuHxj99Hy9Eak7sXzLJhs4lszgfCYOtVYiKGibsP7vHNHFhtV/zmr/8Blw8fcbx5jl4M1FnY3Vyz3mwRoIbETCXkzPlLr7I6u8CsO6pdn2XXPmXitDqhCk+ePONyMu/9+XBkPTReef0lYhrBfwb6FLhG9ApaocwPePr0mqll1us1qzEvU+lFWyftRMnF6RG+x3SgTRVyXHYdcjxdj5Y5BX02mGqkNDgeK7vdwHSc0VppzNR5Zm5m7fl5fCxgH4Bak3F27wHj2bmxK8rEXA5UnQipuSbrFtPC6Ucau9lJpRxmhm0wBFwaUSyoT5bC2cBMo4UbTTloWDj8Mfj5pw1aMbrTPNmUv+sfkrkxhRZoWqxKToKYHwTU5g6apzJOOouiqYeH+osWaz6DeOMobclU6G9Q6D/HeJcemaVULxbUQQVrQow+LcFMTIwYoKRZSKmRcmDIlSkGjh46mp1tkOLJGKXXIr1YklROE/4oqLMOWoi0GCjedKzjSPn4KbubiaurnVncq2lQilpG1yKXUUsSjwTPSCs28ZZAkkBEjYaswjxNSIKQhSElcoR1ruRsoMmiXWjNGBCbhOpAq0fmYyU0o6cliaTWyCJkAoMkM+mRwDqtGWKmhzg0telLbY05FtP9RCj7A4TM8XrHPFWbaBAIKZLH1ULdFKyhNPzcXZ600ooiGpcmt9//S43q9LvFffVTtYh4LUKTBQjXZPrnPkFpKhS3edbenbSI1kRrhdZ1q+oB27ea/X/T49+50bhN6RJh2ThtEzWnJA22EIIjYepwb5PgLgpOmervjj+aq71c+2IFLEvtduure1eqdLvQ7tAjTnnqgkucunXShXvDsfAeT83FwuHs41AvLTs6Il5kGgLl4XvqaALd7o3F4s5wJBP+SpAuDTCb3mDZECqGErYEdaqUFJhTYAo2JYjJHHeCJ0wjwRf5rUI3CJKNmtMbjU6haikw+wKfCczaLWet0TAXPsPnap9edL2CT2b6hpKkC8ftd1ZOtLUYTJSaopCS6WUauHe9dfhJG7XZuD+5IC4IC9o7RGtUxhQYU2RMfaIRLfxKxJsX98Nu4sIym2YUmWkxo3mGVAh5hjQQciHkTEiJEAYkpKURMk/rT08E1SdheML4SbvTw/dqczG8w2TLPef3pbivuKR+n7GMRmsV2mxhSpKCbcjBLCoLneLWP/hce8WY7tUIiJt79/m5//V/xV/65b9H3Kx56w9/m7f+4Hf56J0fcf38GTEl5v2OeX9jVoU0QhpQiUa7Qzjud/zR7/0WP/O3f5ntgxc4v3uH83t3uXz6mDIdCWlgunzGsNrQxMKf5hCZJuPihlZNlyAwzxNaYWgzjz56n5vnl2zu3mV99y7xow9J42hOVSGQV4l7dyJlKjx9WphLYqoFlcCQBoTArJVzn5Qc9zvGZHzqafbmXVvPy0QcQBkjzKPydOo4iDC1xtyUHG0u6rUOYO5rfV+xqDqcm28/OKlNNibpETNCbspQlTrbXlnVUJscheh75wSI3KBqFBKbpJxsNroO73hzza/8P/4H/n//9/+BOE3EBHmzZio7ECFtz9muzqmHiRQTw2ZDbJX9/ob9jdnPFoXdYUb3OwtWu/cSjz96xvU8sR4GUoL1dsN2O/Digw0hdNQXtB4JAsNqzbnAV759Tg1bfvef/ibPb54SrmfC6gI9zgSZ2Fy8gKQ1Go9c3HuBV776Lcb12tYzQMhe4JkziwSh7Cfq7obdzZ7f+af/jKM7vmitvHCeOBu+yfnL3yTQmJ+9Q718SBr3pJdeh3RBm+Dq6TOuDpHN+V3G1ZaQGikFCz1zECklK1jTadhhwFi/R8TAtZ7M289Ga4uM9ikA0Si2qsqcE+sxstsPTFNhf7Oj1EKtOJDx+Xvo8n8QUmJz9wVWF3cJMVjy97wHnQix2L2qoL5rKs41DqbBqATjte/3phkcMi1a0EQrZm4CavtN8IlfB9ocDV4ceMTWtNFbGqVNNDcziNlyW2J0qm0ASQae6hwoPnFSPYGh6vVIVG5RhNwxqNckt75eXL/VbfDNxEYXavnJ1t3rGz9PLE8hUGszUMzP1SZKCdZQlFkoSexM77WI27anpQgMi/7sE7VIxGqRTiUKJ1pRiYE5CM+uZ4qaxqAqFAmUZnwEDcGuU7VzWESMttAKrTnbRKxEz1i9EEOEVkih2DTJ9RRDNk2FRAuN1WrCezPtMZH+hoGmW26uzO4fZXF3SwJDzgx5IAZYDZnNekMOBndXXLdaK0Vsj60Cs86Uqx21RqbpEaQMKSMxMYyZs4sNaTw3zbAe3XQm0tKIigFhrVa0NqIYJGsU7ga1IUURQ4jdtaxT252lcwsc70nmffIWsbNGqwG2Wq12jDlQqxCqV7Pu1FlbWGrEzzoT/XdqNAJLNhtxQebt74J0sawj/0sxHOhOUCqWRdHzIPC/0w6ZKVZ1ejUvYgeAaTmUFtV5dNzq5JrrNtSH3oYFI92RwcLRvIdZtOLNJxg9zEcXOtanhOt64kAaT9MWcXQ3iU6xWSAXLwhUg7uL2AoMnagbsJXlTUbXjNRoGxFJ3LHAHDE6OiLZoEftnP+Oqt/axMi2mGuyxV0lUWNgjpHZKVzFkfLiRW3Fmg2fDXn/5Y0GLI1GDLYB2CTGio8UxFFA15AYu4RkzCa7KSO04tdfT8V5Nz6g2s/KMZguY0jkIZo2YwgMObrwzDY3Q/AapZhd3lSwFHP1TAKJaMw2JsoDks0NIg8DKQ+kXElpMJvkGKyIIS73o/XvHrLYN3xvKrRaZ6YWQ2ANg3cp4hWf+CchNKPHGVRt3++5GlqEkO1DJk56Hk66jN5k/NlM5f7DexS/P4btBT/xd/43/NR/+l+wfXDBuz/6Me/98E94+PZb7J89p5SZue7oHhgxBFIaCNszSoyIHwA05f0f/5APfvw233ztFTZ377HanrE9O+e425NChvUEMTId9yDRplpHs6hVMc6wHeRmIzq3meePH/Po4UO+9uKLPHjlZZ4/ecK9549ZTeccxgN3gvLVVyuHeM5v/I5yUw7obMFMtIa0xlwrpQUX5lpTrsBhrrSKUbqYUeBYzdc9i3IehZbgZjaubQFuSiEVayqimIw30qm5dk8E0WVComKTxwocxZpjwdDNQQKTKjsaz1EyQmqeVQNeuIjrBIInLliDE8QzZsTu09qU46PnIDAiEAN6VJgLeTVwZ32XOG4px2cc9zv2V8+opZhFZbPiQZu5hEVVCiPP3v+A6bhjc3HOehjIbWK12vD6a/c4v78iJIGQ3NnOUGiVTBwvyA2+9e015wN8/w/f5sdvPySES+4/uM8kA1kSpYJo5OLui9x75WUrXJoS8ooQEtpmVAMhmFjzePOUw9UTVgqXH37Evs6UeaJMlYexIlfv8vN/t3L24ktMl+9xeLJj8+CCxBkihTxsuPPCHa7ev2GuDZ1mpM7EOUMIdlYFQ4azu+rFaPtmn2D3/wVZ1IjAiQKE3wcRB2yw65OyWXGaRikzl4F5mihzsQbzc/hQOlIbWZ3fZX1xh5QitUy0ckTLkRDcNlrNQqM7S0qwjluD5UmII/k6m4PcuBogJaQUSObapM2oRiygo1PYavV/C8ZM6Egyps+pdaKUo2kYhshcI7lCHGw/D1HJomgOXBULsw2YZku8FjGNDZ7Q3AFOlmbDjmZd6iXDUi3z4XZZRL9PcI6/n+sRZ5ZIc5agLN/Yy5jaKSrRGBklwBzsvA9u+iLebIRbtQiOpovrETUGy5wK0ZyWgjcaIhSpC1BZVazxUbUk62w1Yy11Afiav2YzzMCnC5itfouE6WhUqRyWeiHlwGqdGEafuqh4QK+j5ChqeQmcoQyxMR1mzwrBdFk5kXIkJYseGMeBcZUJ0c9nhapejzRh0kiRymGu7J5fEUuk7oo1s9GscFNO1N2O83vVALHWULXFH4imBRazDS4Np9iZa6M29XT5hsxWj7QKWqDV5gZGujQcYLVIULVaJzlwGr0WqaYBbkkIM06Hc3kDph9pYvfqpxQL/8bHv1uORp9geHMhzv0NwtJg9ILNXEys07dgM+Pn4hMPm0TgQm1d1nTno4n/nP6Xik9LMFdgWfAJv9oii+itedmsNIJ4AJr/4OZfL+rdYdOec8Lthd0pud72LLSwTmRZdAfevXS3ItNvSMcO6PLH0EXmzd0RFsTR6WDBOIUScTvcYAYE0ZAFZhc8d51A12oI9ncVqEJLgToHt16tFImG6IbA3JECbEzWrYN7w9LfgX4eqaNpnV8RQqPEQFK/+bDrHp0PnhbRlW82YB07wZo551tWtUJMxMYKQYQhRhOMjpFxjORVJI2BONgIWqI/X7URZWkwl8ZxVvazcigubNdAkwzRG41hIA4jwziTx8IwNNoAYQyIZ3GI9IR4PEOgLdx+s5V03qzrd06zC0da3X5SxKhZiGtCYvP7xfizvdGigM5G9YrRclWCa5bUv6MXGn1W93l9lCaM6xXf+Kt/l7/yv/uvePCV1/n44ye8/Qf/ikfvf8j++ooyT6ZpaI1hfYdWZg7XR6P+uUAzgNHRUuDq+oo//le/w5d+4qdZbc84u3ufi3uXPHn8iOtnj0GU+eoZ9Xi03qRW2mSJzpJXNInmShKE41TZzQceffQRb33/u3zx61/n/GLLSy8/YPNkxya8R3wt0+ZImp5wsQ28/srAux9eUmflcNwxHa4N3FBrENYhU4DdcaLMpuloBEso9wnZ1ISpNlbB7JwlWwDm1JxK1ydp2F4TBaM9qA3sve8G9aB73yOdXc4cHN3EtBXF76IgzjOmkfx3NQdD+vatCiFaLo41K37vqqvTrPJZ9lk5VEP7SmX/47cJEoitklcDklfMam5MCVsjQToNtDHfXNEE4jCiVKQVcgycX5xz/8Uzc+wJa2LKnp4bIY6Um0u0PKccd4T9gZfubwk/+VUOKrz9J28jz64IaUM8FgjCOAy89sUvsBoM2SZEJCYP3xWbfKYBlcDN1RWtVqYaePzoEc+ffsh82DGXxp7Kj3/7imff/Sf84t/5aV789k9z9xvfQvIDWj0Q2jXETB7W3L3nDVHKFmqKLOhjqY1ShcNkO4kgxBQZs7AZA8MQ3btfnbZKbykBv0695fxkrQcIY1baHFjlgToMzPPM3D6ns1EFQmDcnrO9+wJpHGilMB/3tDqDOsE02pkYYqBH1RlzImA1iVGPCKBamI87VmdbUhI0RxrmQtS0+JlaOWGgfk5Gr2uCF/w0UKG1hszCdLhhWGVShFUWSpkJejAK7ay0uUAM9m979Ql5hVoIrbkfjS7X10YsS4FCnzCePtdORjekeqlYdGk0AtZkdAquNF10A3jIaNTTfWYaFJapP70W8WkFyQpAZzKf3BWt3LGipkLzMF1zbmxUCRSxOqSE4FQcs3JVcftmaRC7/qlT2TxrxD9vweg/Ldikz/IvG5Kjgy9mTZtzYhyiZ1tZg2/aTZv+tVIIoRJkJsVKXGeGMTEfiwVeJiUNkZADMdt0Z3U2EobgV17cWKdRarNGozampuz2R/bXO6SNTHqgOigT0kAcErtnkenykjv37zJc3EXGEeJgoJWYFbsm380VqxvqiWHhyZ00NbezWitaKlKq6YfUqzs5AZ/igdJ9shFUrQgtn65FfM34ex+lNxunfI9/2+PfjToVfIrRi93wqaL81jnUb7zeRJhSyQr+7vO7/HuQRXAc/NDrBVezHs9//2nKgFrn1i3JFq5gHxtJnxrY2F+lZ3EYIuG38UKZgr50dTnAl6UtcnKdWFwo1BsMT+/Efp/7z3gxYBoT0eD/jY4o2JJP9IA/K9bFOf0EQaONblsSF0Sp5wWIBVLZjmBJ1XpyBmjNpkYtWHFRaMzSmEJk8pul25X1iyVOixDpr/fUuSr+fNTQiaZKjWrWxBqW9yUiJCBj9I7Qu3JxL/AaCNFv7GaXskWBZqPfIQU2ObIZA6sxMI7CMAp5MBu+7rag1e6ZhqGi01w5TpZWPhWYS6BSIBRIBcmFODSmsTGuoK6Fug4kt5QDs4GLi6VXsxvcR9GyNNU+IeuiK7+/lgY7VHD9icTqkzCfdkTb3LULyKP9uQZ1yfcppTz04oHb6+Dz22hoCLz01W/zC3/v/8ib3/46Uyl88ON3ePftt3j00QeUudj6ixGJkSKKDCNxtTEUbHeDRBPsxiikFJlK5a0//H0evfcu97/4JVbn5+TNmu3FBVePH1GOB2hKTIYgz2VC2oBEbxBrNZBBjSJRS+Xy6VN++L3v8pM///O89pWvcPfOlpSeIIfH1CrE81eQ4VXSIHztK2u++8NLrj/Y0xqMqy3b9RnHcm2HjiqlNTIGZgQBicrRU4IRgyEmp0dEYB2F86zsDj0DSBdQRMXDI9UpEuIhnk476LDLYl6BAzZyIqf2O0jtvGLCQR5sbTVvJPp6TirL13fNQF32u/57bQ9MAqOERUkU6kxWS33XVkFnhmRhc61zNH2Haf5zRCuURhTYbC+4e3HB2dlo9E0ZyMMGbY15f4WW58y7KyRZhorERB4DF1v4yhdf4+H7H3J1fcnZCy8zxjVSJ159/XXe+MqX0GrUrZSNgioiEAYkjrZQUXaXl+SzOzx5/JT33vo+dTqAwqTKfjrw+MlH/HdvPebt3/ktfuFv/QSv/dQvsn71p4nrB2zuvMjmxYH1diSvN9Sq5mAk3YTDCqMyN5vyFAuQ0walFuajcjhE8pBMiDuYINdrO5Jz7KG//8st5dfZ7oDkzIMhR6YhE6ZkE9nP4UNFyOOK7Z37DOvRKGLFUtpVZ7q7uGldvDATB2xUTOAd3QEJK54V5XjYsSpH4moF2UGvITK3grZm+gUAL4abcKpFxADDhQnRoM4zx90Nm/WKtBrJAc+WKIZEB7NepSqbVWTazUyTFdjJgUGluuDZKyBf5wGsnulYLsG1pSzAaXfFbGpr+3bWWRJ3gyQsxaaACYVxwHOpRey8YqkxmjUb0RqW5oVqFyKHYOCoiC61CB14dTC5p3bNEpglMknzWqRZHUFvEkGqP0cvzq0Yc/DvJEqhc08sRsEnhWqvxTIwku07PvlIIsTaCMX4Ak0KGoze3MQ0CzRFh4F6NH1UHoQ8BGKG1XpgdbYyGjxOSRNQsVDYuTrDojT2N0eOB2WedxznYi8sJUIqhJxIIVCu9+yvD1y8sGe4cyRs7hDSmjSsSIOD+DEtgcshWI1ncmN3U9NbOg2n3qlagK1odVfPZuHPXpgGf5O0+kWPBmhYbylL8HafZJs1v+1hf7GNhneq4nSpLpyQXnT1BmtZAFa0qXP/+mLsiL/2ReNI+iJs7qJxl7/ogryfevjOVTRyn/itVr1QPmHA9rxtNfWi97boV8ERw5M+w57mbZGNv/6l6rafrc3ideyimlymidNuuvASIAjRxhJYxJv6a2tEFbODxTYvUb3163ThTLYmFvjV3Rj8edskxYtvF52bna7RxerSaARmbzZmMevU27iIoYuOaghexDh6g080ULM9U6NHBTHqRVITTg0qZHW+JCYYj/4zqlha7RwbuRlXMORGFkMC8OcwBmEzCOtRWI+wHmEcIQ+2kTVHUQNe9NMorTJXCxI8HBuHSZlnobSASoVYkdyIg5JHmGah1EBpkag2powEG7diCK4uCI29L7aJ4h7hIElc2O3rIbEgDdr83ukTEPo6EXcdw90/FMsrN55opOeInMhTPc3zdPN9Ph/bF1/l5/6z/wNf/bmfJ68yP/7jH/DuW29xc3XFNB3QEJEs1DZTykTMCfJI3AZiU6br57S5EFaJlAZSmpnnHR+++2Pe+v3f5qUvf9UoNxcXbM7Oubhzj2las9/fLAVtOSgyT0gplp1RCzInWp8khcBhv+e9H73N937v99i+8IB5PjAMa9r913jnBx9zeHzkxXuNMj/n4fU5RdaMFytSa4Szu5Q4sHr0oaHhrXIs5uICuGNUY5qKF+5uZKCmj0q+8rcRzqMy1RPDvAM3difYPtr6dNb3DDPi8LWhZrsaVFzQbS5W4bRTnmw0nIpkZ1Rd7CO7RsB7lU9+ov56pC1UnOBQaB4yZ3fuUI8HOO5N1B+LrR2fzlL8fk82USguoqVWYgwk1AT+FxtSiuRhJMZIm2fqtKNMN+hcPUeoGXUiRyjKEAIv3Nvw4ksv8P0//AFPnz9hvP8yY0i89vVvMI6RVutyaAZJ1JCJMSNxcCRPuLm8ZHX3Ae9+/BHPP36XYRgJaSCExBgisj3j+vLIb/9ox7v/7Q947ff2fOFnGq988xd48MY5b6wnzi9GhvRJI4cOBCnQWqC0wGGKHA6JUgyprKU4eFIJAXsP3OZ7zAbCDNE56su94cU14npFsziuox2T+RjJMXIM5S9ghf/FP2LKbO/cZ9xukSBM05G5TCjVWRJ+D3aqc1NUDE3nVtPufhzLZHw/TeT9ju16TYuBli1nSXJEmxkaaC9+FkTZinEDVpvXCJ4U1irzYc9hd8MmWiUXAFJimmdasX1eS6FOVvKnGInJbEXDYA50tRU7X9RqCvWplqrla1jp7YVlbVTnSmnrBtxOnZTT/iC90WgGoll15VWWupukA6XSei3id5e/r82L2yo2eema9iAsFKzmJ6CxGNQMM0RMV0lw4FMpcppmgEUXJBFzRUph0RlIF7bb22xgbjuFEcZghiNJDbQdek0SI6sYWWEsC5yBkTD2SJSKBiXERhJr/p3CQdBAjUaLTbEyDMI4CNuLkWE41ZGhWt1m+SVQmgUTT5Oy2x2ZZuXmZs9xOiLJadxZSXkk5kitiblN3JQbxp2wuieM28CqJVahkHOnpp20ytogNkGzA0wSHITt76VXIM2eVcMdEl2LLJjJh9GzPlmLNBSPWlzqkCjNGin5s8Gdf7ZG4xYcdrvBuCVOR6zmckpLP6FOI90uHmmOsi+0R/wODfiNbE1C5y3aqK8j2Y5W9Oe1bCY+0eggzyegO3tSxmRRpKp1q9qdHrygUw8+aqdNCrUD+6S78G7XO8bm3xe0F4TeMToXLrkmxA53owgEjV5MhgW9tinAEj/ozZgsFm42MbExcP/7RZxcT89Lg98WijUawQVv0psNsxpuTiPr7+ZC0PGO1cZmFgpo76dzXTGBXYz4AjcUM0cL/EnFcgJyDbbImxCbdc4tQAl4PoCisSFazY7OHVWCYAF9GW80bKIxrgLZ0sgoCMW6LDRaM1WoHLVwrJXDbI3GYYJSLZiH0GBuxEnJRRjV8hwmCeQQiMGcspKXaUogxT5i7ViW2CYV1CCGqMRklm9BTwt8uTv9xhdvAoM7hfXOuutfTh99QViTIq7Q8FXFqSz8fD5+5m//Pf7S3/hltnfPud7t+ODdd/ngnR+y398w5IEWIuW4X5xAyuEAdabOZXnvtDbaYfJ8DNsXdvsd7/3oT2hl4s69e+xefMDVk8dMVzfsbq6ZS+FwfA6qNE+yj2q2k7VMlP0ejYkahTJPTPsbPnr4Dr/9m/+cOQS+sN3x2mbF/nDGXN8jcM3l1cwf/eAp70wjB845e3FLGkaaKus791mt11w+e8qjD97nMDW2ox/i3mjEoGS//FmMulW1gxSGVt8ZhOvSmDuQgLeatgzNUU/61vmpRsN5y2MMjLkXo4aGG0Mospsbu2Mx+2qfloQgJI1+O9q9Vpv6pPi0FxjNol9ZR7u6gQSObkZvqIODH2Ljj+wjeaONmrA7empzmO0nptYYUmA9jmy2a8puz/F4w5QwA4c8+B4MtLAIIA0kqqw3GVkPvP7Gi3z3ez/i8tkTXqqF9dk5L37piwybxs3T576XJdrgZ000agjOu3786BEpJhJQDwcKyhCEnDLD6pzN9g6H9RltuiHcucu8eZXLcs7mpiCPLgn5fb7wlS+w2W6s2HMqgqKLQQrBwKghR7ZrE2XOBY5TZjpW9oeJMs+UUtkfZ/P2z4nVamAzRjYrGFxFvuwvfptUv1wpQnLKx5AzYZr//Bf4v4fH+vwOq/MLQgo2ya42zRBs6iAp0EJbmBWtOamv4oG5GNWvqAmSxUS82hq745FBFXKyPUgLtIRUg3la7Vx3a2TiUol4YS+91BBUG0dtXF9dGg00NoZO82nWpbTWON4UDlMEFWJMgP3c0CAUpTSltHnRcgZtXg85Mar6C8UKxeIUXqSZplVseqAOfnbgQb3ADGoQW6I3HAYMLrWInAYH2uu9oJagHn3CulB4DAAlyKITa+oS9qaor/Ha3e4I7vopSy3SCecd1BQ5TV1CB7OX/4ibD+F7pn9Ur0WSmM2+RoYQSFWJcyWEYpkT/r7h9ahoJdKw6Ahdmr82wHxopNjIGcZVYnM2klJg7nWIqoOHzhzRxtQax6LsDselJtkdJiQ2QmnEAqlFBg8ObBXLnKuCTg3NMxImEOM55OROeOLTSrHJnFE/cWp3JEl10X2lTk5zmu12Nn2HOa/Vag2zeHTBp2sR0dNfmKGAvVf2Z5+cfIbH/7xGI5xuuOKajIU32hcadvNpb3NvI/RiBWfrwpbQi3k/NPz3WIOhdBZ8885KJdATOntxTO8DVJwmcMsJwiFAqdq9W12h39DSaNVyHPqH6Qd0sZjEJwbSxES+VToU+IliMJx8Xzhx99VRpW4/aeO8hJK1kfB0cw2nQr+/U2qHuXbuIULvdyS4xZ6HYQFOVRMI3iAlo6FpbK6t6LxGn2GIc3ydPhVVPfbBEQVMZ7EIy/pz8kfAUIOM0TRTUeKsLhADyf5eS+eQd1paz930HtspdAGbmMSI5YW4f3fMwYIMs6OVIdKaNTtEa1pnaUxUjq1yrIVDreznxmHu9CmnMZVGTDD41EddkGaCscCQAqO/H6iF1kgSosQut1iWwjKjdyRYW7CRu/bkzLCsBZrfP/iS7Q4bVajFQ3WqNcKhuU0yParPJLnRcl4/143GX/5b/0vO7t9nKpXD1Z4cEzEl85zPo+llUmJYrbiqlePNzvRPKUFMthbagYgy0pgkMOeBqTT+6Lt/wLt/9D2+8rM/y/bigvX5OWm9pt1cmsNPjEyHCZ1nqJUWM2GwLbDOsyHILdCmGZ1npjLz1h/8Pu/+8Ad8/Z7yS3/5JQaeMT15yAcfXPLDD4+8V18l3m1szlywPm5J45pG4Ppmx34u1CDsjjP3cmZhiQZYJ+HBOhkaHwLR9w63IwARhggXg3BzhD7N6rx8FJIEBgC1qVkUc2zLAtsMF0Ng8PFGRyjxwkoS3NkkdlPgydXEfm6ghSFHghh61ghOSTVaVZCw0FIDbQE7wJtwHPdUC/Ys09F41Cm68UMjiSO+tYJAEaEUJbTZ9idYAJphTKy3A/HwmJuHB1YX5xAicb1lICA5U3Z7YsjE0bIqWlPELSNTXHHn/lOGITEfDhyePSGfrxhCQJxv3aYDxwZxfYdQm9cdgsTIdDjy5MOHbIaV4a91Zj5CCgNk2yslD2zyC4zjK7z8+pvcefEV1nfuGXI9TTz64CNU4eVXX2XcrBhXo2UuyKlYEmx/DGJNJxFaFsoQmNeB3SGw2yX2x4lSCqU05rlwPM7sc+JmFdmuM2djIuc++XJxsaPHKupTV2uwYzxNVz5Pj/XZHWJyU3vXfBKF0tRNSsRDYwO1zFR3ENMO7nRKt59H3dGvNeVmv2d1ODCebawoDu4C2KyoMqaFLlRYlWh/18W2vdh2MCEo3Nxcs9/vGBNsNwnRynw8UA6V46Exz8nATxXMsdCAPgmdzocHyzno1xRxoDM0c7vsR0JnYIjURfxrlKu2aLeWMs6pzhElq5IcEAuEhS6TxNwwxWsFm5LZmvVSkMHpUtAoVZci0IKYxcJt+3kb9ZamxaehzRseB/Hw59TlHZHqAcV+5mNZFHYW+4RDueX4aXtHLEqYIY42vZG50FDyEJGkdv/3erU1kjabsjqQarVIIKdMi2IuhQEkNHIyDVXMiUolzNaIVhFrMqhMqsytcaiFm/2OuQjHWdhPEwSzzk0tMBD9PouIepBgTMwosRbiPFtd20BXa4s3INBjcIxGZ01H8ntfNeDqeKsgJFpIogRbM+4kWhu0YgCsTizWo9pBeT3VIqHXItII0lyL+xfRaCjLuAo5pYEH12d05LuHn1W/8a1Qtw5dgvMHO5exV2Lai3oWlpIdym4fp7aArAQ0qpEVg/3JNbM/EysGxQt8X7v2HLp32qQwszQaWpp5jLeKeviWjQbteYXmslwfKS7NzLK0rQ1IfjF6oxGqjfOTqPsvCwPK0JShRTJ2AU9LVhYce2FZe2Bec5FmF4Sqd9yidsFtFNxPrmYUn6qoqUaNgyeBEKJPiaphFz6lELGNJiEkNW507uhA9wt3mNIobArNXE4GIBdb3CkoITWkCDLTs/S80MbGtHrKuo6oW8uZww5iI9MuJI8hEmMkpoQk4zV2LygNaoGIYoFlRxrHVjm0yqEWDqVyKMpUhEJAJRFqIzXbRCQLMkVz55oskCgko09lujieJdlc1DagZYOjj7I5BeKogI8xm6MNpfM9XVC3DC6aeNMqhFmIRYjFksFz605TnZ0qt+62z7a4/0N83Hn1ZVDleKwc58LueGB9dpeLFw4cnl9Ca6RhTRpG4jASaiXWYvZ9OUEK6FyJ6xVJ1ITWsmOaL/nwnR/wu7/2j/jyd/4SF3fvcn7vHo8fPjTP9ZgN9QmBMIy2lcWBOu3RYtZhIkYj1Gb2EtTK9ZNn7D78iB99/8Bv/e4fsC5XPHv0jI9vGk/nyNkLI69wbvbRouz3R0JITMcd83Fmf3PF4XDkkH1dq9JsLk8SYZN04WC3k1TB6B8YJfHOIFwWC/Mztxn/EkfDa7P7MAVhFYRNFsYAq+RBfQFvZrB92+/fNplW4u46MYaBj68rV4dKKcqQ3csdlskDYuuh0LGhE6pqrwAMVV0Ig8ZDF9A6E0VYDYmLzZqLOyvONiPjes2z6x0fffSMp0+uyTGRckJqISfYnm25uLhge2cgi5kBSBoM+cMK/WG9RsYRGSytW2NCZ0Nyrx89pux2tFLRqdKePSa8sOF4+ZhdXBOHxGqzZpqU49EoDUOwIi+mzOXTD/nohz/glTe/wtNHT5mnidiUQ9wjQ0ZTIsZAHNfk83PGuw9Y33uR9XptKcEK03Hm4/c/ZNpNhCGx2mzJqzXb7Yrt2YZhTOYs5SBOnxIFsCTiaNdjvYrc7BOH/cw8N6Z5otRKqZXjJOwOhf1qZLvJrEdITqkSLMAUjP5pZhqJFPNf3EL/C3zEnK1eoFPE1NKYNVGlOnUqoO7UWF0nsDAD+nTaqZJRZLHSL8cju6srhs3Kk99PpiMdseyMCTMsspA+t3+iq6KaNqOrNNBSmWnsUS6vlNAKbZ6ZZ3XKVCaL5TAYkKm00milUNvMXCfmVux+b5aRgxfW5hzFgizbBLIuFFx7UkaTKe5yk3xakaimnWonI5ogbssvnd2ATxbCEizXPG/hpGe1Ke3gT6PU5i6jsjQ52pwurDbhrM1o5d7zGdApoFSQ4DpFd8MLSlar+5IEN5qB4A2zRMuMabUR6qJNt49Oq2qnSa+xT2ziZEwTz0GJwVwhg6Wlo0IMAWn19N706UrokxzQkJBszcpcrLScsSZjorGfjtzsbmgycHOs7MsEkohqtC4N1hRISUS3+zdXy0abC01mKvZzpUINMynEWw2hNVhLLdLLyXhLqytCi24AJNGp3a5xVa8VZ6VNSjgqTGJJ8c30eRmroVqvUX2P/6xQxWdvNDop7NRmWvHqvtB0jYYfZp/UiPhFWbiA8OljqvPhevPR0Zjug9278C7wsc+boccY1arPFrrzAr0AxxdEa1gCTLPTslrj0VrfFCrda1Wliy/x5sJRhFtam9NLtE6vl8C+BVoToPb3GbXpBXhnCKdL1SOigr8fxrrs+ERVD6TriAKnjbN5bkgLRkswxMVunJ7poJ2iE0+Csib+W8Q3TXH6Ez6hEFvgSRo5GFIagqMa3mQitlnH4MFBQQ1J8SYIojePdogKHY1t9C25IyidLmZFdfTxoKM60aYYGjMtJJokq88VSqzMoTJJX+CN2bUaUyscmyctN/vpMUAg0tJMLUabqSUR50SbJ9oUbawrPSDPGiUbo/vzVLu2YXkdjnYF0NBMJJ50sQpGhdJDD6ucNE2YZkdaoLWA1GABfs07l2W1nBQb9TTv+lw+8mqFpMjheOTD99/j/R/8MR+/9x4ikd3ukno8stqcA8q4Ped4c8V82BMkotXG7uRk7msakfUaPR5ptVCmA9/97X/BX3/7LV755je59+JLPLn/AU8/+IBSKvV4NGF4SqRxbcFmN1dwPNhEYHNmVsiO0temHA9X3Nzs2E8TDz+e2R0OXN9UiipjCqTjkavdJZIj8/FgDmhzodbCtN9xuLmh1cpRArO2BUU1vYTvd77Wg+85HYPp62UMcDcLBw/VVOl7oUMTooxR2ARhnYWzDGOSpQgjRHI0V5EQo2dGNA8UVUItbBLcWwlzFXZTRcWmmcGfn7MYvFFpC9ghQWxfxNeIuMaMwDQ3bq53DKExirIeBl544S5ffPMBLz3YmiNdSuwPEw/vnvE7f/gOHz264XyT2awGclDWmws2Z2fkdSSEtU2/VEkxWpE4jEZ11YbMBdZrRBKtTQDoNDHtd0zzTGqVMF0S9s+QMpHjBZuLuxbESOBwKKh6VsCQkSHz8fvvc/3kKfsvn/HxR99lng9UdWpFjKhEkgikbAFdpVBrpao5v4RSzAzgeCAEYXd1TZmPxGFgc3GHuy+9xp0H97k437JeZXLyED8v8rwyZhDIgzLmwLQZ2R+V6ThwmArTPFsS+HFinis3x8RmldmuMuMYDO1XG+arWoE2rjKlrv69rfs/z0e3fW+izM3C+UqdIZq1aE/RFgKk6OGRjRP1V+n5T4DB6opBOAqHm2vK8YK8XpNipkU39qC6pRvgk72gmHtdr1+C6Tr6/uGIEk39ntDm1M1q037XNrbQiM3Oy1YaOldrlkth1sLsNrfJifnRewgzpLkFPIlRx7vez18VgqkxW+t1Sj9zdWFiBDGTmiBtMZjoCsHg9CajahtlzbYRA9AU67y6FrFWR2j7FEnVGBUqBn4GL4GdShi0F8j2nKL0OqSRtJJpJBGGYPTC1ZhIydZfi5bFVmtjmqoZQkhAQlt0lSECTq0L0teW1yAB+3qtZkpjVj12mdWnHgq9UffdzvKFYraLokYBVZ0pc6OKmC5WlcPhyHE+0nJmPx2Y5kq3VRYiMUVzBs2ZWrJN18tMmxM12CRClCV1vmhgbgayZAmkYGLy2Cw3SbwWocsJ4mJCiqiFNFutGa0hrhWd3BCoitGrZoVZzUOnGcTfXcEa5jxVg5kbfZbHZ280Bk6Nxu2GI7G0w9q5/OEW1Qb8ROzdY18ct4TaqsZXlH4JvcWQE52o/8TbtAHxKYilVbNAxXaM6jLVMIeW5va11VyaFjJxRx9OtJ7u1tBfQFPclQYvmhdJWP+lxE9MNHox3UW9erKt9dfTiWC6tA3Lm4VHRdHL8kqfZjRDZ7o+oz+lgC/+U2BXg4Vm1Wovh+19suvkgjJkEV5ln7YNAlmUFJppFoKlmYdgBUQVoTrSIUGJURmikqJa6FQyelKfdEnwgMFgDU3ERssBHCHoTZeNW83q0pqMPr4mmpWlxD53EQimhUE+6cRktrGN6ht68YwLUKM4BafJVZtkUU4fWsydqtViG1iT5VDqy6qPaCM2QuwaitZpYOGWMA4beUoyfi+3pn/dc7y5tqb1UaCe7ni7w27navR36vP5GM+2tCg8evgBH7z7Y66ePmF/9ZzV2sKKynHHsTXmwxUxjqadqKBRLRQpBlAlVIxuFxNpzIRoOqT3fvRD/tmv/Pf852++yQsvvsDTV1/l0fvvMR0O7J58jM6TN+8z8/6aeTois5NX90qNyehywH4+cvn8Obv9wQq52iit9BaaGKCUI9eXzyilMKxWlgkxz2ZZWg5M8xEIzGriwNGnEElcEO17iTq4omoNdGy6UA2rCmOEMXjD6nd7BEasyThLwjbCkGxdJ4MHbb8QZRgSrVbSEIki5klfDHnUEIhB2AyFu9XME6babFog3VSj71K6NEFLoKp6sYDl8aiYHmC7XjOsBoayYx0jL778Et/86ms8uLcyrZVUUjBh8zBm2tz4p9dv8exqzxg3yJiJw4aQB1orzmk/EmK2fKAGejjCPMM4WLjUdkRJ1DrTygFBOExGNRqBUY+sI4xn54ybNatxbdqVlNmmkVIgr0byylLln330IeOdc65JPL++ZCoV1dkOzmjuDwloIROHzP76kpvNFoA2VuZ5QrA8h3GVGTYr9h9fc/n0MY8+esiTx4+59/Ir3H/pVe7ce4H1dsUqR4Zs72HwwsjOJbF9OQurHCjryGGOHI4D+/206Dh2u5lpmtjvB1argXFtbmvH5vebwLCONBn/fS79P7dHWJmGppSZWSeai1xDCBYM60W51GqajFu07Q6GKrfZBE4xblaI1+OR3fNL7gwjKWY0WdFskzqfEODvZa1LVoE6hanXJDTTLbRSUDUnogJUrXYWtOr19kyrlaA+NShKK72pqdY8iZ5oigudW0w7Sj8rOn5d3Z62A2En8n23vY3UpRaxyUVY0P0gEcUaM7Q5uGn3Xz+i7Mztlc6t+stPPcX2sf5Q3xcsvV5uf+lCm1K/GtHpWkMwfZlRQdU+HyLbdWLI4uwZj0NA0BQpKXA8ztDpVlG9FtFTcxNcJ+U3RXUQWjCATxYhiNUWlmtVbb8LwWh5PvEMKSNEm9BEMQv7UE135ut2niZUxCYc80QtjlZroIWZVhK1VFopNsGYZ9o0UVOixUhxV9QqzQ0yzDFOW6UoINFCIcU80ILYPdpr2BZOd0ZzajZR0QzBA/rIEY3FmB/N9EutKKEoWp3GCpa1pq7hCVaPfJbHn73R6BXQranGJ21OoDN4+oU0RXtditvgiFfQRusTCawbbm471XXuwqmjPGkXbK13S2kHMdzy1e8PnI7gTUPlJO6W1pDavMFp/n26IGNBTw2QOBNqCTxxyPGTb68RWhYfeTxrYbm8t4lRffUFP7B7C+B203Kbx8/y1XrrKxtmaWYNhXjhhLlRqYvNMFcI2q3f0NEE7Q2A/UvEkQJvNsYAg/SUWqM1mTWvNQRVhSL2+8ytxZoRC5e69RHsI/efI6Biyd0qzaxLfSH3cbb4YuZWg0GKSEqEFM0VB3NWiK2PM/v4sFOb/Fq2apSJoraYANSTSWtCa6HVSm3VUzcLNBNMLNOtVn1K441x54PSeaS9ULQr1ac9tvl6MRmsKF7WzrKO/P1f7svlDFnWREFJdKrZpxr4z+EjbrZcX93w9PFz41SPa8btOSEmQh4JqxWlVMrlM0KzUKcQsNyLY0BitmvTG89WWa/W7NcbdrsbDtOB3/sXv8Ff+sW/wjd/8Rd58fVXef/t+1w9fcq4XjPfXDHPR0MVd9dGmewgxDQhoRHzgKhyfXPD1e6aw2G2NGVl4WKHYPvSYT5SL5+yO+zIeSQEMQ/z1mhtps4z682K7KJoieouUXIai+qtvRK7h5qyaN9qM5RvjMLeC5mA2UYPUVgFa0Jy9O9vXb+mJBddV3WxtULKkfUQmQ82ku9pv60JqyzcWQtP95WpNnLs+zGAOqe7Nx/QN1vbb2zJZJSzUXj5pfsgkfrswN0XXuArX3yFl+9vyGM0OGUutgfVQpz3vHp/5JUXLvju5Z7ryx3nd8+JaQS1sC6JgtTGcLYx2ss4mEg92Wo8HgpymIjMSCuElNCQaZINxVSb6py98gab841RU2pFYnSNlevCViMhJQ6HA88++IDzey/y8KMPOex3lGJFYvWzpmrwoEILAr25vCQNa3vdpRDFaSUpksf7fO2nfpLpWLl8+oynT55wOBw4HHc8efyIUmF7vGAYRwb3/B+HwGoQyyK6VRAKBuTEIIxZWI8r9ofMbj9xOMzUWtgfj0ylMh4LwzhYUKW6djIbx/xz+RiiTQhqde9S02O4b6mBjaI25arm1mVNfI+fvEVO9rFRdj1BwQq44/U10/ac1fkZMQ3MsRjSG5uHsiqx6SlArjOmVRf9aGvq94ufRV4h9FqE5vu8mmhbaqezqE0zaq9T2nLNVfsh0bwm4lZNAb2kbJy4D52+HtCF8tW/z840U/JELE/D/s3vDenlP94IuOg7GLq/4LtwokxqM+1jsxrEJiO9FoE+5aDrIQTLUsP2tSRWi6wCbIZEFghaGXJgOwbWSTzTxwHF2CsuTCzdEqo2pYli4XoxmONeCkIUJUejXjd//2tQCy7U6kL7W7WI9L27eV5IJK1WxJy8dhGn0dm+eKJYidlnT0eCBObDkTpPZuntAGMNgVqSNxvFzpnZAkFTSbTZGBbJgd2gjfV2ILRgGWxTQaoi6sApJq5HT25jjo93ye9SnPehQAjiBY0BwlWEqsFvM1tDZrRgDJdZleUIuz0Z/Dc8PnujkfoT5E9TqDp16nYV5H8On/jvaSR3q8cyiL2XVmpdr42ynCLkRe7yjnXI3nb6k46hyanRcD6iSrOtRWyRdnF3WGhFjjo0F2+rOhdSCYsiX5fph624Ty9tv5i4q8Py2rr13O2GgeVr+99asX8aM4rgNmn2Mk0vb1MN4/H2hsO1AI5019YsgE+bS9OdmtUFcP3JBIXoSb/NmoRBlZWo29FilrQoGSuoLd/DRoTFX1f1V2EuNSYMt4G1/8+RUvN7tzFof8aN1qUjp0YBfIrlqIITLSUGH4GGk0sLriHhRFmLGF9WvEFoxT7K3Gyi0elPYSbOkTgkUi3UOlNbRltBm/mcG3mxIjUiUk/P0bUa4hy1JR/DF7X5g3u6uvhko3NZfXJ2Suts/lztQ9UbG/WPxWDglskA+ol77/P2aBLYTUf280RTIeYVcVyRY2KjFqS3n24ohwNSKunOfVAPdcOoR0mVdjgQkqP0ObFZb9mvrjju9jx6+B6/9Y//EW9865vce/FFHrz+Gs8/fsR82LPb3cC1NxitoW2mS0WDWpEhZYJ5YnezY7efOM512R8WuMMLiWmamCnINBHkhhRP4lArzBvr1YrNeiQwIXI0GmmrBqJ8AhOSW641vp+qhVYF9Trq1mE8BhhDYIzKKuKHC0tmAsX3pGD+6takC/OxstpE4wXXRg4QU2ATBlRmNFRqE54flP1cGXMCd8IKTqdSxWnhHRlUK8AwfncWRXfPEI3cPb/Dm6+9xFYO7J8fmIdsLj6t0D3Ray2Eqtw7G0GEY7FCMsZEHjNpVIYx2+8fEu14ZBzOrDgrM5IzKzFBfT3sbFIZM2m9Ig8rQzsJzKtzzr/wVXKCVgvH/TXK1rM3RkJcEYcBCYGbqxuePHxI3t7h4fd/yHGaXb9jh/pUK6UBLSAhEfLAzc01eTUSYmA+jiRgnTNxs2ZYjdy/e4eYMq+8+oAyW2bG4TBxdXNgroFaG/vDkeNhZheFYRjYrAc2q8A4GKIp/S4U49sHYwgxDpHNesX1TeZmNzFNE6XMlHnmeJxZrUZSzgQJ1KnbZX8Omw2fDjenhYg700gUz7xyM5du4ZmS1SCqp5yH3mz4NBmxs0qbTevLPHFzdUVabQhpIKXCPDU0ZLvxq2Wd+JjB/lydGtTUMg2aWkBnsQBXlUZZIEhvGJamw5BTrRgw5hx9UQj1dP6GzsRwOsOfhjz7f+1/odcZordxjeWxtBBeeHbauXg9YvWHLk2ElX+WmRHcQcp/ggm/JbjVvn+/NmMFRKzO6+5G/RxvVosYg8UpU4pRLRHGVkzfGgObnBippFKJ7jNfscaMEE1jF2Dwya/RtV3cHoPnLhkgE43zZg6dYuL2KCb+boqB0cF1mSkhVN9TbHPNLso2gNGmQ0FNj9vBBVHQuVhQrArHw95ptfaPVudOhBhMG1oyqWTmksklU0uiRmuSrEEwfcggprNKBEJOhCpQG20q1mw0pTabhHUjBHBcfdHVmCVxNzDo9XIQWyNEA4+CKlVtiqs6o6GY85Tfv5+1GvnsjcZtJPbTFKpPNTUngQ9+NN/6XE43eg94km7Xpre+of9aceRYZKGsSNOeWLUgAK2K+76zFIA20ajezan3vJ1H2DG6U//S3zZBnRPH4gIU2v/0S+4/o/lnsqAJLIXnbYPSP31pTk2XBfmdphz9n1vrhYc1Dnhzof0XS2/Y7L8qzVyQpNGDDa1CaE70jNbgiJIlMHR6BoFRhRysi87NkIDohU/rxYV2v30b1eWopP4+KXSNjY3YfKLR6XxidDDTgYhNiINNulSMNhVDNN5hEqIZDhGT2gh0aXAaKSjRHRBsCmV6m+bam1rsY252MzWqj7sroRZSm4maSVooWsjqhgCtQDPPZqmBJbWRuGhe7L3oh0VHdZXFh0z7+3V668XHb+Iolp8s9jurheqgJ3epdstp6nQHf34frYGEyGqzYT8MDOMACLuba7brNfsQaPORut+Rk02ddJ4JTYl5hcZIUjgeTJFTypEhrtmu1+zWG+bjkcNhxw++94e8/9ZbfOsXfoHXv/wVnn/4MbvrK+Jqje53tGNxVw0hhkit1mQ2iUidKNOR43FmKs3EearLjmEFippjXR/HF0u6mKQDAeoAi9mgqhpSpGoWlq2Zp7554qvrNeNyGLQAqs4Jdm2HTQmFWpVVENbJCvqVyGLmEKMVMWWClKwpqq2RYqDUxnaT2e0L+6mRgllEm6OL1fybITmqaevgyd4O2FWKpGjTkVZKr6+suVZlYnHfpChcHip8fMn9i3Ne+dpL3N1MxJSYi1DqgaCVEIWcRk/FtsyIzSqZdsXpazFnhvWKtApICtaQF0sLD+OKiDBdXpFo5PWIREuJJsyEmBBt5CEyDglplXzvFbYvvWbZKX49Sq2EMpPHNSGPi23yzdUlu8trVi+/zuXz5zapUl+NapSCUnaWZxSElgfi6LSrIIzHgVVMxNWavMpUNR/9PCo5BVarkdVaOLvYcr9V5qIcjo3doXI4VqbDxFwKU5k5TCObMbFZK0O2oEbo56PTXwPkEXJM5BS5vonsDwemeWaeJ1qrZsk7DGau8RkdY/5DeygYlz8FWjGXHRoLfQq3aqY53UnV6X2nCQZ0coLSPRCRHr+n1NY47g7MhyPrzUhOI6RKKXVpUEJri3jb2CrqRZ43Gy7mtXyonkyOIc4ORHbqE6ruytaZFwaKhtZZFScjkqCdFdLBuVsYKLdqEcXAXd+5KqdjrF/5ZTrWP1+ak2ZnvLCwQvxpOsDgzzWcQM/FxAe1jC3fI4o6Dcc1E/Z81QDQaAhoN/uJBBMfO2gZVRmSaY7WUo084wWyNW+RLNF+h0DPDcJrNxPuB4LEk0A8eCCyQHMrb5t2QCNaX+YTLgkGmCZVUgqEJKQhk1aJ0DUoTRBpRgt3Joh4w1tKsWYTmKeZWiwg1NoTS++mFGSeiWUi1IFUZ6ZqE42aAlpkcaWiVWopFrLnqeYiIDEQxoSWSi0YkFO7DNljGyxVdalr461aZCkk1SrViGtNu6YJpWmhtkKlmBbVz7jP8vjsjca/pgnod3S/2XEEd/ny25OOYLexNDs8vcfozfZCG8FvfLPUsgMwykkKknshW9unEAXnWPawXbVpRlu2kV7Mqz9fXQ75RVDtny+ailuLUG4t7HjrbehN1akQ7ILwfjOdEO4+ALJtx7vxpS3pSEL1CccnGyFxpyv7jmgdN4IapMMy5+jcG+lbR/AXUI1nanGe3mzZxRFsZBZcmC0xmjNU82mEIx7QG0anITR7j6OK8dr9d+vSudn40MIm1VubLoi3wqgL2IP0KUBAQiSHyJAiYzR6SE4Qoy7hfEYhbUhohKhIOAn4l9ui9ULIk4vV0rdpjdAqWasX8oVGsYPAJxm0au9xc6soH/u27nbmu3XPW0GtWKzeUNC6S9VpCtWv5zL0E6WFhsZGjXZ9jNvZD4eTRXLrB9VnxhD+w3y0KqSYyJs1eW12pEGVw35nm+jxYFOePJo7lJz2j+JBRw2QLLTpQG6VJMIcAjmOpJTZ7w+89+47/Pav/kO+8LWv8fLLL3P1rW9w+fQpzz78EJEnoM2Qzlb8wHSPFhV0PjBPRpdqtae6327wLItGlia/+u3g4MAtqlEIgTwdWc0Dc7I7LafIYTI0rRcaS/vsa7kBc7ODy+4ZWfYkQ+38I8L5OjIXm7oMMVCqfW/yEX5rShoix3mmzIWzlTUdZW5UrVjKpDAXA3xCiAxZORsb8yzcFGUu1SmQFmzYanNxqwdw2hlmwmgU0cA4jrzy2n3unwG+DkWUPAxeWFTCag3HI8nNH1ZjpbnVbxpWpPWWmDIqlVIL43qDKhRthHkGohkMxIAW85vXotTSiBcDcZqo84TWmUFgfX7B9t5d8mpNq0fSMCKeXQB9wGKr7NlHHzLvr2iaub6+Ya4WCGeZAZFKRWqjtBuju4VoTjgpoihltYZxZfkwIjz68Am/8fTXyWPm3r37vPTaq5ydn3FxviGFSMzCmOHirHEscH2z4vpm4jgdKVWZjon9IbIaIptNZDX4biz9DLKdaUwQzoSUB8Z95Pr6uNzPh+ORuRTGYSDlz6fr1FIzBCsEqfZ5c6F2R/2L79VaWfYRRU8ez1iFLm6vb2BRoE9E5uPE/vkV67RhjJmYR6apeIBeJdXeBNw2Xum1SDOeezMaJXKqD26f7P1UMOfHfobZfm+3ot5i2p66ieDU8yinGYXVIqff0lWgt94221scMFwcijAgrbtz4Wi8qBfPWA0TMRCBpsQkdlaqU541QnM3yl4rNROtB2eaqARzoDRbUCuem5heIPb35XRmBjEGw5BhkOoNljdHEv2rdXm+Zg/dKzX/NwSRzrPwpHAx+pR2kxqFJAn1WADjVBj5LIREDJEZZaienzNEcg6WEdRB4aYuPvf7yWuRucw2XWjJHOJ8v2wOHrVq1KTYZnKdSPVIaZlSB0qdySXRQqKbFJXjxM18SZTIGAfGPJKiibOtd7PNQIK9ikhES6O2Yvb5rrkIxcF0vzeWwL6o1Gh1VYpKS0bdLQ26qL9SKa16/slne3z2RmPJw/jkR28SbnOMl1/uh2JvOHCP68UPlI7O+8eCNnTmu3eU/k/iBaw09d99C9+VExcN77j7Yut4sD0ld1rxu7Mvtv40QsAsvYJTeqJ6/kFfQLo8w1N5YG/OyffqVjF56+1q9MYjUOjip95onHj/t8oOfw3iExkXCauPGj198/R261LkWK17oqNJn5C7Qtyum1oBLW6f67edqnGPY3fyEhaBvIqPdftr1eqhfT3wz0r9vs0tyaBO/Vpehxh1Kvk1EJ9otBDAEbnTh409g3d4inpAZKNF9cGD6U9atJ+hwezcWjQ6QsU2UmumzEq3ilJFl4TY221Ab4a6bdztMfeJAesN5i1erh0yfkO1gGi0TVg7VcZs/iSBJmgZalI0KTUrmtXEgNXG00vj9Kn76PP6eP74Eflsw2q9Zr3dktcbhs2a4cY3U5zOM24I44rhfEudJ+rhaKm3ZYKYSKs1szQikTSsqNPEkDLJ+fbTdOQPfuu3+OZP/0t+6Zf/Lm98+Us8+uAjPnr/XQ43zx15vKK5YxUIYVyj80wtxddY49YOc2o2FBc/+yfq/7Z8oTfbYvbWc2nMpVKdORCDIYFzqxbYp7evq+0Yqja5aKH/Zr8vrQ5ynYTRaGo1E2REmJsdZHnphe17SzFXmf1hZtgkxhgo4hxqrZTZinMNgVKMMrnOwj4JN1U5NiVVmyCmmNBWzMkLlt1P/U1IUdisMi+/fI9XXtqyig0JBl7YOeHugCk6rGKTy6QQkxW/DdPjiAitVto0k1YDIZtmg1KsaHJKWKmVtj8goUBISMzOiS7M+wmqIZKb1UgK5scTYvJ3R6Ep83wg67mBlLXy7KOPabWx31d25chM82LUBL3VD47qghoJkZQzKVmQV0ao0fRlm4t7NBl49PAjajnycHyX9997jzv37vPSKy/z8ssP2Gw3FqQXApusrO5mtpvIs+vEfmfOUqVMHPbC/pA4OxvYbpLpaIBTUJ+SI5ythZwzEgKHfWa32zEXs8PVw4E0F2D957m8/7086lSQFLDsqcWb0gpUR22lQlDjSUnoBbAumgoTQLlOUhOi0fbubrSiVtjvrg6shz13LgaGvILcOE7FoGIB4/QbRx50oYZb+GWHiW7XIn1N9nJcOwaL13L0nONF0yp2NoaA0WTwc19szUU/u9R3kdtqzltbxydqs6VGcMCzuAFJn+kE8IyEW22RKl2BirpdLc1F7LfOQP9F1qzYC+rOn4J7KIRTS9QbvtBNUcSefRCjOoUo1vwhS51mtYgsE+D+eqMapSt422XNpTdeevvdwQrrXg8GIS50OyBE16BakG9TIUWrRXKyJqMvNxX7Pq0OWnvN2wLM1aZqRYQSoIbuICrLZGjGMtVmbeTmRXwtbl7UlmbTLG3FJiNaaFIoabYw0ZwtXNivE94xRrExjrYENDfBwaYbxah50dFzTVgAY1Ratq8Rn9ZR7AX14YcBuKaz/SyPP3uj0R+3G41e7+qp7u2d8SdpVqHfwbZ6bgmCFshh+WHcKqJPK6Vv9N0BidaWoKPgi/Q25mvX8rac6dRsqJ6QAnFuWlAIyZ+u+qhVvcSvpyajx7I3L6U78/LUIp0oVreMudzithcp/TkqXbbVOD3/hnrMgqVwdtbU8vN1uQzLi5VbP9P8kLyQ90XXdde3E78Xgb7tDKdGybUdTRYMf5Gq9IUdGmQ1b++kwdJF1bQHRhOyHbQnYBuPs0EIBHeysoBtv0LRCMe9wcj5FKYnMSz3jQItBWoKFgbmH5oiZPuQ1JBsz1Gq07083EmcT3r7juiu1EGiJShLtMRwsU01+OZgVspYQemTsOoF4O1rAXZw0YtCsTG/uVaI3xCCZqFlIQyKziDFn+8c/N7tGhZdltLn9fH7v/4P+Ilf+o85v3OPVmam/Z4cs9HbpiOSs9k4qkKIhGSOHLWpFearERDSuLLQuZCowdZozpnN5oxaLYTr6ZPH/Op/8//itS98gZe/8Q3e/NrXePTeOxyvroy3vtuTVmvqvpk71HRAy2yuGhjXttMFOxXh9hbYaXELmHD7FO9/VNsgLQcGaBOg5Cwc9s21Y6edydxpdBFbRy8q+vQ3qO19OQZyiiQqpTYTgvv7EB31KU1ZJfEDr7LK0RqcUonZ7qsohvUV9cM2GiXE9lNLnD6ocnWEQ1EyhVXO5BiXa9InPgHzW9+kwAv3Lnj1lbucb0bmeceQBy8eAuVoLizjamsHapmQlEjjgIYJ1Ar9sr9munpOa3f8UG/myDIXgipttfbmvlBv9nYwx0ocMnFtlLwyKfvjkdYqMSTazTX1+jly5wVCTH6QR/svfhFLZT4cePbhR4S8okTYvvgKjz94l1rmZaIyqzWESSBMhRD2hKsr0jAyDpFVSuj5GcN2w+tf/iKvfOGLPHn0mEcff8yzp495/vQpTz9+wntv/ZBXXnuVl157mVffeJ2LOxdG00DYDMJwd2C/ilzdzKYZmmaOpXKYK8d5xcUmMY4+jXZE1+tQQlLCWSQnAVbs9xO1Gp1nmqe/iCX+F/7YX16xPj8npgRB0WDnc+26KOTU/HswmX1uzYFRrYyKpyKgZp2NdLOPuKzJOheunz1jPYys1muGcUWbZ7NvbXbOSjQUT1v9BO1ZHKDj9BRuFUafbDb63+JnK8Frq3g676M3MZbirG6v2wvREx2rszf6edFrkf477GdZLRK7/rW33I70L7WI70WNDsgpLZyK7IXp4e+3DwQpemJviCiiQvECWLXXGyyMl/4+2bFoTIqYAkOOpHCiiC+1iIN7nVqK2uQlRaNRRf+gFijFED3fbFWjCe6DgawEp8F5vadeJMUUIScLftSZGIUcO21RLRgPq5E0BmpUBzehRQM7qzbLfyISVyNSj34zhhPwLva6jIWhqCOMNuy2WiHFxHo1sh43RrFzZ7JazcpfpiMpRcsdS580nRURcgqUZsCrlrDchlXd4EPsgkkCSYIkRZLVwpal0e+VSGiyTLeWKdu/5fHZG43bMGq/ozh1xnbxP1X4yq1/7FVtV7Z0dbfc+rn9LvWbuguNTqWgfWINgQu/lq711nSCU1cnzXIPPvGzejGtFhyzbAqhD156F28LTvobqreLyb6ptVsfuizqTrHqplxLPgWnpuP0M/rv6rOATyLZxW/EW7vX6Y++oTS8YdDT7xd/T2wiIcvbH/y/KcAQzDYuB3VdhnhIn5nIxu7k5LqQ0IV3/r5HIDcTqw0Kgypjg6EpqaoF4LRwQpHUnksIniCOL+7eQUUhDJAzDBmjTCUv9L3Z6q8dFTQFagzUGNGYIFVCLoQxEuZKUHMMDzOoWkBTiBbc1i+6zbcsIihIQiQRJBFCtI8UF8td+sbiGyZVl6vYrYdPfB8vHv16qdANtWgGltg9F4WYrAHSaAehcVk/6XCVsCCgz3Oj8dYf/h4iib/8N/8Oq+0Zm7t3OexuIECthbxaM9y5Q5kLbZqp05E2HVB3CGIuRAlMZUaqCS3n1qDORJQhJlIK1OOR6bjj7R/+gF/7+3+f//TByzx46SXe+PrX+eDHP+L62RMzK1itKdORetwh88GShJsSJbAZVzzfzb66TgBApxH2wuFPbbWnbh+CkIeBzXZDCg09HJySwGmjl1Nh1CeIpzwe26eWEsrRrRzFDpba3OWk7wf9zybEVH86TZW5mhuU1VnCVAJFDQUsIS5NSkyG4hEbd9TNJVpjPynH2oihknM2umQ7NWIJo25dbNfcvXeH7Wb0IsX3UeyGD+qIbymEmIzGJSb8Lk6xAt8upp3tNcE832stFqa32RCGNYfLa+phD3Umb0ZCGgjRaAQhRTRHdtNMa2p0g3GNqCWQa52XxaiYiUQrR4LA7vKKZx99wAtf/QJ/6T/5z/nCf/TX+G//r/81f/x7/5LWijcbzmFWOLYKZSIdDxx3O47brd1Hw8gwrtisV7zyygu8/sZLzPM3uLy85sP3P+Sdt9/m4Tvv8IPvfZcP3nmLq8u/zFe+8U3u3r9DznYthwh5E1kNgesx8uwqsN9PHI4TpTamaeDeuek9ok/il1tRhDFbYnYIIzEE5rkyl8I8lz/n1f3v53Hc7QFhfXGOSCSE5mG7oL52DaLVWxt1c6DLi7xbVGCCorEuANQJiDQq7WE6cnV1yTAM5JzQ1YrjNJkFrWcJmMMViDanxXgxHwKt1oWN8elapAN7+HP/U7VIsxUs0Z9XkFMRsuw9fW7Zm41TLdLrkU737p+bk6QxEZZ/68/Fn19vNvrPr2rnFuFUi2jvovxFmM7S9q9O5ctBFq1GWV65JXP3fSsGs9TPYrXImBJjTuRoNYh5DjmtCqHTsmnWYOPMg9Sspkxq7neDQq6V1ExnShMr5JPtRRLEmhGM9hTc/7gDkiELIRtoA2p7Y4yeEO6Aa9+/gzFDajAQ065CJZ+tOEtb2nZD/fAx8+XNUiNICAvgqX2v7OY9alcuhEyMiRQT42owlzyMvjofC8fjxHycqNMECGkYySmfaGa+boK7Rmip1GiUQlDLaGnWqPUoAhsGnGqREOxeGRBmhKYec/DZ+oz/mdSp/uj3/HJjfurQ7Z9UnyV5obac0L3a718sXfHQUVxZJhVd8BbURV3a+Xp22HXBN/h4Uo2J0cVTC6rfu3y7130fsj90cXQfvIh3e12EJW5t2VGLU2nQx5anV397gZ+ai1vuSrfepF629Mam+k89NRueXCq+0XDi5Yq/b8FvUNv0+vfZaLA6PBJ6EyGnBmMVTVi6CrCSYMnl4AnhQlCnaCFYEJEV6z3jJBHJiN+EsFIYVRlRBtwRSmykbDfu6b3vE5bg45IgEDLEQcmDNxrZGo2UzFVEg5PTxK9xtEZDo00xwhCJ/WOVFjqXRAgtEiURYyKkRAgJCZkgmRjsQ8Q+DyETgn0dKUJMZrfrnWzz+br4zdgb3NonGOD6fFmoYeLiKvMNvzWduH0CLAUjy716Owyy64c+r4+zl17gd//Zr/LCm1/kta99lfO7d9hfX3J2/wVzzFClzsXzTybGPFCnA6KFoI2y3xOGFTJP1P0N3Z4amm3GIfiBYsm6CvzOb/4Gb3z16/zk3/o7vPqlL/PiG6/x9J0fE1LguNv59UlWeLovfkoj9y8ueLY/Mu2ONj3htMdZfXlrvd8q7m4/QohGERtHK3DFaEymPxOqWx0qPi3kdDuACVlNwOn7g6+b4Ie8yi3NmELTihJcKxGYmrrOyW0PSeYoIqaPIkSmJrTWLIAw+Fg/OlWgKZshMZXCVBqHpuTaCFJtGtIBDLV9ZTsk7t69w/nZSEyG/Mc4IGJOW3OtRnELhio2qo+QA1NpXN0cmJplXoQUqWWPiOUhtOPBrr0kYh4RgqHIMdBT3Q099KlhsubkeDDv+rBNDOcXDOvRXIMCGJ2gmG2yVrQeaRK4evqUm6dPefWnfpKv/eTP8Hpt/Mmf/Igf/8mfcH311HQaOMUtGBU2ArMqk9oeHseBuy++yPnZmsfvvM33Q+DF117h/r17vPjgPvfu3eGNL77Gw/c+4Iff/WMevf8OD995l2Fzh1kT9+5sWa3MbU8EhiTcOUsMQ+DqJnF5NTHPM1c3R2prbOcV201mGExHAifr7xTgbA1RMocpM8/NRcqfv0cMkf3lFSkP5PV4AoRCorZuVHCiHgfphZvRoLXh5yhWSgcFjba3R49q8+m+JW03DjfXHFdrhosLxmGkjYPlIwSguLukmAa1VwQAGiOtNOYqC1gJXrfoiTbVy6FwqxYJveEQfPJoNtcS8bPndh3iUIT+a2oR3zP6PtF1CrfrkH7e2D7SUAn93eFENbJaRLBzWJxd0OmQdoibbqQ2cU0mC2Vs6M/KJ0d9ahyDNcJDVHObijYVXQcYwZ0vjcp98mf1E1QcBERJEon29EkY8DmiZCoZDx1WJThlJSQDdVA1FF9wbYiDNV6LSBTm2d5PE4MnY1j0i9dvn+hNRrAiS4MVj8NmRdqco+vG9bGwm4uJ4zGL9uBW7YhlhHWwUyQRYybnFSllWqsc5okcV6QciDkRhoG4HpiPE9Nuz3w8MteJFrBaR7pbJifNdBKi53bVam9Ya80nKX7fyomu3e/NiIPTdvtRVGj62aqRP9tEo9+7t+/OW5MNWIACRw+8MONTEK4jW/Sk5P7d7fQzhRNCL72wdAqO+si6V9Tq+4JdV3W+oDUK3YrRKCi3i7v+NfYRlaXRSP67+9OVKITq7iz+e6wI8CZgWdyfHFHe5tafHtZAFE4FhS7f58jBLWxiQcj9oyP/C7fQf4jixUfTBQXvjsRhUa168yPBpyy6TFoGlEwjI4YqYKPVZTvyJkOI9l9PRo3OYbRQPyFLIIcesuP5G0uPaV2ycTjFN5z+3ttCCBmSNxgp28KW3qklp48hLvQWWsTpUg3JEcmJMGTiSglNjIEqisyY97REUsjGaRwyMUf7SJEYIzkZctCbEaLRsTT6poajuMEdR0TNVpnbOJK90+qrVUPfmIOJ3b1RTP0ay62P4EWndGapHyD0xuPz3Whs793l3fd+zG//43/E+d17bO+dcX7vHhcvvsS83yNauXnsvHswak41tDgotFqobSa2ldFdYjTRWgsQEiFUxmHkOE8cyszN9RWlNX7jH/4KL33hy7z69a/xzZ/+OT78wQ847q9pcyXlAULieNUgFoIohcpmyNzZjuyniUPVT6xj7WOG/vmtEfLSdIhw584d7t17gXEciOUAYaA1S4mWEKhq7lMnymRf2V4kYdzlriHqEWOmMQuUxnLP2F/1AkqMCy2GxklT8hiNIB3E3LRqP+CDU1FNpZU8SRqJkCqijXUWtoPw7KAcarPAL3ehEszYYR3gYrPm7sUd7m5HVjkBldoaOY3E3KDYxCKI2UoGdDEHkRCZ5uZgi5oTWJ2sEQiD0wnMea7VaunJ05EwZurBXO9Qc3cZNrZ27USsCDAMZkIwnm0JOdtZZWmm5jSlmBVpO3D1+GOm/Q27/cRv/4//jGMVpssnvPnlL/Hxx2seffiRaXn8WkhMEEckDcQ8kFYrxvNzXn/zVV565XUevveQH/7mb3H/3h2+9NWv8errr3DnzgV379zh4vyCN958nfd+/C4P3/+Q3f7I02dXVBXOtivOt0KKTqULwnYVLWMjZx4/23GcjtzsGsepUuqG7VlysMocqpKjkVFgsxJCEqa5Z0V//h5BEtPhmt3lFecpErJRRmrM5vuPOyzh66ovjubFhfpfCo7qeJPRNY+3qcKoWWFLYXd5yXpYMa5XjKsNdXe0qYafYyJQuMVqUJv0F+nZGf25cMuhCeBUi9CBTWGpRXIMDCHa+eUUx+BgQy/2T26H//paJDj4ePuKi589xWlHvfEw/Zk3GbJE6VqDtoDFVqgakySYLeot+Dx6M7SIr9WmFYjTiXrNJsGn9fZaLT9DGP1jCGL1mBptxwBGS7FWWeYcXlp4YjXVBd9i9Ye/l1EiMbTlGhs46Bcknv6jwc7fmCFmQ/NjVKNtJUFyQHI0ZAXXp+C1yOLZ77aybod7KBOH0tAUGM/PCFOlFcv5iMnqkZjtXg4pElMi5UTKA6vVinGzNte649HCP9uGYcjEEAljZswWeno4HDgcJs9VM7dEo6J1QF4giDv4RaRa8rjCol8Sbzaq2BSrym2ds7lqBbWp0ane+Tc//myNhtz6WG7W0+e9I+yiNPW06qXhuEUnode+AdsVBKu+1dZ99Epdoy2G2hE8bwpCre4YoEsDIu5wgE8ylmnG8oQdKcBGIJ9ekJ3q1P2cg3c7snSBfMIerusVVE2Zj/ZRI8tm11+W423+Vt4aV3op3/mM9ixPpSXI8j8bVXqh7jBFt2E7NSGyaE1in4KIjzzFHBG6zVxY0BKbKiQx+8wYAlGccuSODVb+RHMxcGcoEU8Nl/5hTYeliQdzQ3A9gjgtCP+d6sKvGHRpKjWC9s4ng9gclR5ZrkkguL1sdZQqCZIhDBBGJa4hzBCqT2OkQlTCbG9cIpJDIqdEXkXGdWJcRcYxMIyRYQiMQyAPkei/W1OgxUhXeUm8hUw5PcXMvPy+1luD6258UAMtBEc8rFFrngvSglCTIyIR5ghTVEowm8VPNxyfz/LAHnkYORyv+f3/8R9z94V7/OTf/FtstlteeOkl6v7gIkrh2ZOP2e2vjS4lQDCx55Ai0/FI2e+QcSCOazQN6OFAPdwQRVit1hymIzfzNcfL5zSEt9/6I/7FP/j7/PKLL/Hql77Gd/7mf8xv/oMD0/Qu83yEZNejhGSNrDZiXnN3s+XmMFF2BxPnd+pkH8t96tGbjBQT9154gW9985uMeWQ67pE2QjmghyuKe8E2OdnCgh/+2oE7XfYMlq9p0EPbblG4FGtEe1ElPjmze0cYs63XWW36mb1hjyi1zEiMxHSyuAjO/djmRJ0E3cP5IOyLcKiQaQwO8hh4oYwJtmdnbLYrtttEczeukAKNXjRheyrNaIcSiEOkFOU4TWw3G1558S67R08ptSFhcJRSiWfnFtxXJ+J6Q0MYLy6IY6St10hKzIc9aCOECA0Tg5dCDEJOiSEPBshEs9S0iVGgaTXdh2tOrp8+RYaBb/+tv80Xf+YXeXS54+nv/Qu+8HM/gT74X/Ar/5//hnd/+MfWrMXIkDLDOLI623Lx0gNefP1LvHz/jK988WW++tO/wDcPM9/73g/44ff/hO/97nd570/e4sWXH/Dlb3+Lu/fvcXHnjM23v8Erb77Jk+d7yqwc90daabS65vwsWxqy3xE5wN3zSAhbHj0TDvsDh+mIXkKtK9abAUnWMJZiTlR4s7FKEHsz+Tl8CEZ/OVxfkVJkfXFOiJEcE9JMsJ+z6XwoM1aLxEVF6UwXO8A9WwZxsmJxdJtgDAbjV9tkjCPXz6+IaSDmNcOZTfi0HCzEzoHB5lRhUZtcDtKJRP3/oQMK4rVI/9sOklstIuQc2A4rogZa8VOlNUI11yKCgW4LbV2xBsBrkQ42/mnmuywmDoGTxkocyLpdQJ5A5ECnSy17T7Dvab1pc9BAvV4JURazGN+kXGuqi9OWBHFrWK9BUmSILroOQpBIULOZ7erWJkZ1VhFEbG+Loa+NBNlrfBFSt8oPmC4riP9ub+hytGlTOIndRUA6173rF2JwMNPqEaKDE/2cj4qkaPdPVkhCWI1stvfIcUR2M9fHiTgYKHHz/AqZC0NM5DEyrjLjKjGuEqvNwHqzYrNKbLcjZ3fOIQSO88xhLpTjkcNUyDkZiCX23MawQnJmmoqBJrVRm13f6HUYLdCqaUg0GZ2qxkiV3qi2hQVUAkzBBOuVUyZH10XHz7iH/NnsbT/dYPS/9w7ciqBOepIFvW10gc3t7sf/3BwdLHahRS1xU4KPCPExXrDus1OdLFRFzVmysbhfRQ1LIFrUjgx2pKI/YftZvk5pevpn8b/v8ybpdB/ncPXxUlMbD/aCufk04V8nwg+KcxPdMo0efnOiUp2mGr0dOk07TrSw04Sk9bdQ+tfJ8q6Knmhn3QEhuBsCoZkzU7SitwV3ehIPnYrJmosQiSS7gTuBp/VpVHQ3MBOPJhdJ5RDIMbg7Q7SU3SSn1NaeIC9+7U4vwZ5ntGaidYF0CrQolBTQHIjZmpzWbMMTFUJuhCESxkBcCWkS8iykGogkghRCrEi2kMaE+W4PKVqDsQq3PmC1ElYrS9tNgwkGW4xmxedqfOkCQ7u6/WoshwXIacKrdn8ShZqEOlvaNT7ulxh8sQdatq+Zs52PNbfFr/92o/F5fjx57230OPH8+XN+8x/9fc7uP+DrP/XTnN9/gWmeefTOjznsd+hUSGlkmvbLK1etpLgir6zJDMNIa5UUAmzWHHbPLW2aZnzUpszTzO7qmqaN3/utf86b3/gG3/lrf4OvfuenePb0MTdXey4//pAYIuu797m+vmS6uWY+HGlOQP3yK3f5WhKeXO549/EN+9mmELU1F6DaQ8Rcfs4vLvjyV77OT/z0T6G1cfXkKXFnUMJ0vKQ8c32CAwVzPdnYdsTTuMgm8Wxu69enB118Le6oYx7uIBqWQzJgk10RcSMFSyyXoOCao6jmqpdCoBabLMRkidbJkTmtkVUeSAISC1Ob+eimcFPE17KlxWaE7bDi4s4F52NiELP2La1ZyvZuz3ZMDDnbAV0bEmB2SmqdLfTqlfvn/I2f+QZPP/qIQRuvvHLOavSzoTXjUyIgwSeOUHZH0nqgtUaSQFgPIIqWmel4YJoLIkrKkWHITicySlJaJXdRAaVS20ytgcunTwnDyLEF3nn/I95/930GOSJcs7qz4m/+9Z/jh9uJZ0+e2GRg3DKc3+OlL3yJl7/4de4NM3/3P/k2b37j24xDZhxHfu7nv8PXvv4l3v7Bj3n4wx/xwXsfMlfl9S9/iZdfeZlxNXD/zpaL8zU3B+XZc8tyubw6UopydpZZjxYsBzYpvthGVFY8QdjtLTPj6tqS7jfbFbXa2ZT6dB4Dd2zq/fncTco0gTZqUW6uLolDYtxuiDGZm9w8oc1MQLpWo8/zrQ/3oDmx+6iDeYh4bo+d94JpKpDmJg0zu+sbhnHF9uyMYVyhq7UFOdZqGIBEA/a0LjSt0IRtyla4VWWuvWDzM70LyP28CCKkGFgPA9v12uqDqZp9asJagVZN++GT/Vq91mkdkLVapMcNLLCI9lKu0W1co58ufaphX+9U0caHpsQAAQAASURBVA5ecpoA9FrlFq62pIQLmOag11Rqk4bUxzRey8woTRrVtZetC7OjGYDEaLaywYP4okQXLVvj0c9iQrS9wOlOMQghByQPxNBYjYH1KpOzG10seQly0uS4AUSIp7oMd7Hs040afWqUAi1HNAevCRxI9Z8jDWSoyAzEQFqN6DhSW2RiIo4RjUrKmZwuYL8nAeMwsNpk1usVFxdbthdnnK8SLz7YsD1bk8eAxETcjOSmHI+F+TAzlUrlyJAzyd/LOATGGKkz1AlzE/TA2U5Vb1FoJdJChRRpOdFSpLqIVy2shBat2ajRtcPtZF0UYXFI+7c9/uwTDX/op/6gfoFMwHqaavRv6hqJExrfxwI+1nCxh7bm1qQ+YotAMFEvwmIJ1l0HgtOnLChOaNUWtn4iOVM8WEaXqPvbTtO9SbID2tEFX03SxwFetLdqaHqtrhXoC7ujJbTTeyKnBqIvYJf9OAVCl2nGLexyeS/9lS5b0vJn9e9UL259Phy8uzYNiSy2wwFHPHxea+y1W64LEo0TGKI5LoXkjkumvRBZBij2zAQk6iLi6s3GkIQxCTkLOZk1XXIruC4g671mF7d39NYaIns+vakjgCYx2zUPy6GPkMWF6i2YJ/RgU404KHGEOEOqEJu9v9WpTn3iFpIhFuayYM1k8FDAmCA6bYsonkzujUbzDdchItVl4LxcPF3+h/uEi/M3A9X/q92FylGiPlqqyb8mCW0Wn+jrQs/rdLzP6+OdP/w9sgTmpjx67x3+1a//Ki+//Cr3Xn+VzdkZcRjIqw2HqysLlAuBqRQkJiQlW7dzodIIYe02qzPVbZKZj4RhYDWObMcVZZ6oxwN1veLZs+f89q//Gi+88hpf+Oa3+Imf/6s8++hj/mh3zbTfUwXy2V2KBnbXl9RWePHemr/ynRf54ktrnu+P/Poffszb711ztsk8vpl45/HORLmlsl6v+M7P/Cy/+Nf/Bq+++UXCOPD4g4+p9S3nkCv74zVXHyaaGtLa3VY6Xd57Ut+THEIQpQdkLtNiv+dEEkbYsJ9jW6qjhBh9ox+AQWzSqJXF0jmq07CSIbq1VpbgqSQ0aZRiTvprhe0cWB8Dl1MzukMwiuUgwnZ9xmZ7Rsp2oOchEObKXGZSisylkQabKGpQQowMJMo82e9MkQfnK15brQhfukcKgWGdQWfq0fI1ctwQ1xv65mOIZEKAECOMA0EixEydZspc2R+OCIGUMpuzDcNq5d9jKCjeZFjcsXI87rl8/IjpeORXf+Uf8sF+QnTm1TsrjnXFs9//fV594YKf/NnvsH/8iDrNhIsHnL38BV780je5eOXLPMjP+NI3Xidt7xhGqkCr3Lt7ztlPfZvX3niVDx9+zGF/5Nnlnjhccu/+BetxIMXIxcYE/0+eB3a7ieubA6VU5u3AZh0Zsp1UISjnm4RIQJ4o1/sDcylc3xxQhdV2RFJgmhVJgRi9oBQbHH8eH/Nuh6idomWe2F1fGw12yC6uNchT8QAN+oZtZ07z86wFL+6lndypmgIVNC6Fv2J5M0GEeZ64ubwixcxqXLHabNHjxFQsdNV0knZvlToRmtGJt+tEToHa4PpYOZZizX8rHKpQqtl8SIDNZsX2fMsqZyvCp5kikxU5nuekdaYFgQqluijXBAdWl3gTYZpB2xv6JLzXOwW9Nc1oC7Wquyv2yc9p3/FWwqk05r7os5D+9U7zCMpy2BuoKwt7QrH3fgHjvEgREULMxJgtLTsEozETTePq7IzodZoSlskr6qHOyQDCYZWMobA2QDGaDMwnvR2gsR22M+oqp+eiMfg34HoF5SRwjQbWRJ+0VBerqxJqryfsPQ85cnXY82w3c3OcIdsZti9H1jmxzhvTkeTEerNmc7bl7Pyc7fmW81VmvR1JQ/Qayhq6lBIhDeShMk+W9TSrNQExdCqnLI6FTbCmwzXG1iQaw6QVq0WIAc2JNkW7r/z7Guao2QIWgozTCfnXyQL+px+fvdH4tz163+AvotGD7E+8de1X7dTMn/7sfHd6Xe+exlXFOvlejN0qu/sPEazJoAmhjxF98nHbfasF13fI6ff3UaX4CC7gMey9O+0bFZwKPbX+qDsELLQloHtAdfSg493d36OXpY0TDaY3Ef3Rx+PiCEz3p/ZugZ7hIM1nIf1JdR2KNxV2hsrSJHWUwYc1nLAcQ/gigYRZVA50nYa1T30gZWK05miqoZYxNVIKDAnGZA3HkHzKEYUQg4cr4eNJfCphaK306ZFTsqwos+BAicE/ZHGKCERSNN5nrEKInjjqjk095bGDHp1+q9iNEWkkbZY23ZTUGkOrlNbc9cbEawZ4iU+2nELmu2+f0DVpUKNdc6e2OXvPrqv7UhP+dM63iRNvWQGr6XNshCku2LW11D8qjc+nKaU9nj183xpAEdp84Ae/+z/y4kuv8lf/V/8F680ZL7z8KjEk6nHPtLtmXK1pU4GhEVqz3As9GEe/uR7reKDSqMejvachMQyJba3MZeJ6d2SaJnb7A2//8G3+5T/+R9x78UUevPQqX/vOT/Hog/eZ58rN7oY6TbSYWa0y2zHw1Ve2vLGdCc+fcFeEv/a1u3zzwYqLVeC9K/gX7zQ+enbN1dUV27Mzfu7/T92fPcuSZeed2G/tvd09Is4595x7c6isyqysQqEKBaBQAAgSI9kARzSaUsNEiU1Tm3U/qPtFD3rR/6L/QG2mVosPIiWBM0CQBEkABRBjgRhqHnK8w5kiwt333ksPa233uIkCkUUj25CeFhn3nBOj+x6+b61vfeuHf4y/9Nd/htQlnj57yniYOL+88gZeI+IgWOVIdm94xHSwjgeAtqUbybDN3jIPXQuSqBJSZx7o43EpEhdYZJHtdVrfmxRa0EGtiZRE+uRRVxeIa4WU3NUqBmZVi4CLLSK7vnLeB64nOFQ4ExgQayJ3tmVztqWLRxDIBXLJZi8dE1oLVaGUSuqSp/XNzjZGkwNt+8iw66FUs2lMaZEkalHqlKmDLqYggtASrSEmpHrJrKyGn3k2oJNSx3Y3ANVUMyLkbDU54nuL1sLxfs9UMh/+/h/glR/5KabYcf7gnN12y35/5JtvPeb67bd59uXfIzPRxZltPGMXdjBDmGeuLrdEMdFsRaj5yPU7bxK7HeeXL/DKKy9xefmAm9sj91PlkIGbiXoRrDt6EHabSAgDT5NwdzeyPxyZ58w4Jh48GNgOkSAmd73YRuILW+QJ3O0PzDlzf39AVdmdD4hEi+UFXZqvWWdw4YN25HleAaoq4+Ge/V3H2dUlIURi7IBA0cn5ha+nXt8oLQzUpNsVIxsI6noyMy1pk8ikU1nMMH7cH9nHG/qrQJcSw3ZDmY6UXGmOUKKBjogE6KOwEWCeiSJc9okpCSEpU4UwBqYApWZCFC7Pz7m4vDJ3uDIzA1K8YFfUGmYmWTFOtXFel1pO+9h10U7YIbqqJ1oNi9UGWvPdRkRa0MJDGY4OHOAtGq0G2yyjaqBNXbbuug2XJymeGWpjLRp2yvZmRh7AovEhmEUr7gOphkGaG+aKX1qxfF2CpxIgxeoSSaHvVnv8FCwYGlyJ0VwdEXxcRD+39rsgEQ3R1gVxuWqAEM1q3zytBSnBJOjRsYhnbpSKBujOduxkQxkyKcNYKsepMI0zOpmtuqh1Yc+uksmlmFGDmIS3Ov5ClFJmFEFiRxcSsevJc/bsejbJr593/Pq2OttcFRVrQiwlQz0JiRrAXPyaCgYpi1o/L7vWrRZ17Y/2fn3rvj3p1On9t3yMyaWcErKGsNti1hAvz2t/FjBvj9dogEt9UTAdrYEKPJUlJx+kOS5JDUuypEUiGuC3HhhOFUQ9SmEPVvXNGXES6zkKZyntmaecqHhhIm1tcT/eVvnRnlFZazVOvvFyO7XAlZPv48pRe38nYbauNmeIdbaLRxFE6+J6BI1oqLPXhn5Pz/nJ+6mRNFM4VZvYyurd7auUiDqg1xXcuwVc6ILZwSW7xWTpythSi4JnlkBD9WLt4K/rcqIYiNEabllaoYOQzBVo0WW2qFXrmK2LBWfWwlwqU6lMRZlzZZorY67UYvKpIvbMHAo1ZoiFEAshZWLKhFQgFjRahIBwknsKPn6lUsW7Y6o3J5Tg5MAmqFZPtTnkaXEAyzjZwLFeI9bsp0kCi5PJ1tgxqzkBZf95ft9xhD97Rx1HUg0MUZhq4Hh7w6//q3/Gh17/GN/7Ez/B1UsvkfNEf7YjDQM6z4Sus3OUJ3LNECJx2DiItM6r1ojIiqiqWrfVRGWXImWI3B/u2JfMu3XmNz8389rHPs6f/+mf4fVPfZpnz54goeOtb36T6fHbPLzo+OHPfg8vPIzIeE+8f5dnt3fM48xwJjxKI/PdgTO54pWXP0zaXfLk8WPmeeYPP/95Pvnpz/BdP/gDXF4p4+HAPB4JUXj2xteY9tdufxkotXj00QukPfhg+Ec47WnT1pRgLR+YtbLR4npjfMVgXX2ctLSmYZ70NEvDaCGMJIJqpaoQUjVbUK2epcPXFLWmmti8GVJg11W6AIeibNQ22l6U7W7Ldujp5B5xll8Vasl0oSOlHqtBUfN/H0e67Q6paiYNzZwhxaXreHIXqXIYSWdbwnaD1kqZRtBMTL1v9B2EgJZimUgJZjValClb4fpmtyMNnRVIqglZS8l0MRC96R21EpPwsR/+YbYf/z4evf6d3Geli8IwbHgwFeL2RZ59/R3e/uI3CPdP2AwDkiaGuXI8zNzd3LLvZrSco/lAPdxC6hl2lWl6wrMncHH5iN22Z7PpOc7K45uJ/ZjRm5FSKuc7a8C16QMvXA7EELm+vmeaR3I2e1252rDpDAAlgfNNRB9uKKrs70fmXNjfH6AWzi+3VjwquNP4ur984I6qSx2iRVoL+7sbuqFnc3a2jplQvHWC2xw08OU7sngRuGpTP2gLaxuecBCO2Jpfc6EozFXY6y2b1JEuL0jDwHB2xlTFGqnlTJLI2VlHiph9ap0N6NVKDNCHiuZCj7BNgSCdNejUSj6M6GaiO9uh4vtyB7nO5Gmm1lUQ1bBIqxelNmiw0AOagLwRjNPrHll7bbSdKvKtsIhrLlr9q7S/O2HzPSm0ZsotdCoWJGkkpiIuu1YXtaxBWsEcxZKYc6CpESwwGGkkIawKfKmmnkquUoggXViwiCSL7IfOyEEQM7owl6rGpMSyqy6/wuWFeLAzBDNN0DDZ81JvDnUEROMSXERtrDQ8UFWJ2w0xdYQSHdhnC/oEyyAc53vq/cg22JjSmAldIU6FOE4MKbA520DOltFJva1xWNf5EE0tkkJASmXKQplniutlJLoiwgPVWoUyO2AtlVCK9Q/xK2/1puoBVLckrpYJqQWXmNrfDItU8vvEIt9eRuOUbDSi3DRBbUv8Y+5SzkH15DENsbfcHB56bo8Xi7LVukaiVSxiXFr1oe2iS1T+ef6NaZHVpo86oSgOSIWKSiFRDCQKJqlBDPyK40O/QNmbaOFyrZYebK5XPKfZb/kIu3jN2q2dtvfQLgqWOTDS0Z7bWgKePL6lI72mpTYtm1brXO7R0aDi+kXr8qveXbg4yRAVl5Z5VN4Bijhxp7FbsVqORujaJ2t+wxLFmX1A+ogMkdAH10cKNDmSZyCjZzRqEIq0jc4LigL+YHdc6BOh64hdT+ySTdZoGieztHML3xbNKWqe0rkwzoXjnDlMmeOYGcfMNGamuZKLLYQlKFqEXDPmyTBZLkdmJGaIGZVCCYXOi9Qso+YGxeLqecHGZSyWbZDVqaEGG7dtkbfshRGd1kxIXRyutS7Rea2rBt8AYiMdp9nBDy7RiN2GWKq79GTG+Ya33/gav/xPf44Pf/w7uPrIhxl2W/phS785Yz4+9XoIa05Uq9Jtd9D15GmyyLVm8jSa7G/YWLHvPNOlnrPdBSV15HJHnkf21094LMrn/uUv8InPfB8vfux1Pv7d38OzJ894dnNLfPwu3/Ew8pnXezo9spfCbd5yCDPv3t+ymW652EbmKtzMlfvDRJ5s7B2PB/7wd3+L7dDz8MVHvPapT9lsTpEY4fbNL3F/84R5znSKyyCcxGu73ngfhAYAnHx4QMSCJLYJtMAL0jKO9pzW1yL4StNqQVRsrhCjNYESZZorcxA2mNwppWhExmsnWhBGi/rr2Ka96yvT0dZWESGhnJ1fkAS6ZJO+lGzBmhjxgru1f02wDIOoknMmDj2SrLGOlmoRxgDaCrs90BRSItRqxKBWtGRCvzHFi/+MCJIMNEzzTJ5GM6noN8RugBCptRBSIKRuibo2PWQ3dLzwkVe5JvKVr36TURNXF+eEvvDuN9/gt/75P+Lrv/mr5JsnDKknpoH7qaK3exJPePv6hsNXnvL6i28zvJ64/sPfY/PiRzj/+CfY1IG33qrcvfmYl156xG43cDYIctnx9FY4HGbKzUjOlasHg0tSAw8fdATZcXOzZ55n9vvRttiLDZs+LIGcs23i4eWOWoTj8cjkXcAlwDZF0ibQRMPrvvnBOhZXt2CEuWghjxP319d0XU/sewuIuYSp2dcv0KO2cdgUAR4WrM2mJRhRrmpNYtv2rjY2i87MKLc31wybgW7o6IYtdarofKBS6BPseu8Z40EjlUouFdXZa0NtvIlWumqR5qKVcthzkMA2dWw2PRph7mxO3o8jtcy2Z/j+d4pF9D2i+bDkMNZCXjiRvahLyU4gTEMFKxZp2Mr/6NJMeyc13b54Na664LNJ1TQ4xloxR23YQ/yjV3UpcSByEiy2Rc6Ab4gE54FBLSOh3oegBvs5dNGwSB99bhvZIOqCRUSwDtrBAH91LFK903doEhdvFitRqNWy5DFFUuqt+aqkBT8tZ7dhEb+OKpExV273M3f7wjhXjr5n3F1fk++PRK1oShSNEDLEESWRq6A50w9CpSeo0m/P6XbniERKDZS5Wj8jCUg0LDNTyLMYPvR+Li22bPXGnumtihSztI3NaUoV9ecYmfBgrropje8Hzyk23uecff9Eo43fVqshJ39w0O8iMrstE3klD38cZn+rN9Dlp6jWZdp2SHWAx9KxO2AaY5PDNQ3g6pFkA7mazRdKkNYOryBaLI3kgNE+mQPJE21VqwUx+zhvNd8Y4gojv8W3CM7FSjPT+mNEA9YCrFZEHwgLMWmTO2CF7VKV1oLTJBB2MU4L0NWdZiqRIpUsQpZmVcdyzvDJLGrgNyzRHrPiy8FlKcGpW5M2eWdrSQKdIF1E+4j2idpHah9R87W1YirXFtrPnNi/iRX8e7rUuvdFJCVCl4hDT9ok4tARu85AiASKRpozRFUryM1Fybkyz040psJxLIx+m4+FPBc0e58LsaiHVkE0uGRsJkkmxUwIGUKhxkr1fiOtnj0s4zhYrYV63ZGvgi0VuRT7LZZxnlJnBYB2vtuI9OdJpQbLlqg0oVXrrNIqgT64Rzo7R+bKZtiR97dwd0spE1/6/d/lcz//j/krf/u/5fLRC3zkE5+kzJnpMBK6xO3jd5iPI/Qdc8kWkS6Z+Xiw5o/i5gdxgJqpeaYIpM2Os9hzPM5Mhz31eOT++hl/+Pu/xy/8vb/L3/4//1945SOv8onv/QyP332bJ298FWrm/t03CeMd9/f33NQzvvDGnjfeDbz6UPnwyw+5K/D1L97yxW9+zcfbkTJPJITf/NV/y4sfeoX/8uoRm7MNF+dn3J+fUfPE3f3eySXY/FaCwSXHQtIUCCi62DEKzU7a0tVVzXyi2Zi3SJSR90ZKrIDcek2pFy1Wklo0rNZKKYVpqhRNpMEkY9Nx9lHXiFDEelkIIZgEa9sF9mOlC0ofhWGzYXf5ANGZ1EfXa2dqnojdzslRJedM6iISOpNGipC63ogQgsREnkak6wliDmCSOkiZeb9ne3nhMiCl9TjQnIm9dQKvvk4GicTYM+ZMzoVBK12wTLvWinQ9XUreg8XJvUf3QkhElOvH7/LVN97mK3/0Jba7LVdXD7l/+pQ/+qV/xnjz2LTSW2GuhZAren8gH97mzXff4be+9ts8ekv4if9hz8NPfYaweRGJHzIHnf6OJ+9ecxjf5SMfeciDizN2XSQ+CDwOwn4/c303URUePujpUqCLwsPLjig7Hj87WE3A7RGtlYeXWzaDRfGjwMVZpOqWJ0+U43hkLsrt/ZEQAleyZTuYYLdFrz9wR7QODSLeG6bY6jkejtzf3HJx9QIx9HRdROuMarbIdLXAIiHZXqytcLr63PF12SVT6uMihOiZIHMkU888TPfK3ZPHvPDSh4ixJwwFOWY0ZJJWpGSkFvCO4aUUplpJogzRpDLTNDN5zZlqMfeqCsd95e4mEeML5gTZzFu0kktx6W1dglLQHIPse3Gyn4vY7hHEm2EKz2GGtqMpTVrVdpnWs6qFTj0TimVZiCwGOIazZGmsa9LypjgI3snAgozWXdw+mHj2o8m5U4iEql4TyaI6iWL7fnPLCuI4JGA9f9wwRjvDIiUJ0R0jl8Lu6KM+sljOq9eqNlepuNRMRgtCxICUQpyT1Zd1VkMSQ8Cq1Fa1S9GyYJGcLfh0OGZubo48fXrPcbJg5/E4cby+pZZi5hU9QEQkE8KE1Mg0FqbbO7qyR15NbC6uKCESNBHVDC1yhqzF3LmiycOIwbIOWSjVyQarQsdaDVjgUu1DG9nQdbwUvJeclcd5kL+YNKtmlNrKV943Fvn2iMbzXGDNbCxEIrB03XQtvWn1bCgVWdOX6+u9hxMFQNqJwWslGiXzCeR+1/b01R42OthoX97qMdTlRo3hmd5SxVNI4jzfo4ilFcv4d6tVKdV+X+uJS/XyPWTRecqSAmxVFO0L1efIxWnk4PSENDJy6i3UHiO+AImyfoYF0raoi0FSIxeQQzDHAIESWozCogyiYoSteYf7+xdgdl4XW2TBP070zERIFtXUxeotue1btAxHWuslNFjxc6sE08hS4N26YFsNh3X2Du4p3fcdadORhs56Y4RIlWDkANwaE5dRuZxN1boMV5sUuVqhVM0F5mLOZlVQieRimZ2ZyCiFJIUUCyllJBVIFU1KTSydwNv1XmI577FsbhGilr1Y0syN2Pkjg0tiLNXq5158YZZKsYoDT+lnbFmwW2v090E9+t0D6t091EzIMylUuhTY76/5lX/xT3np1df4c3/lr/Lowx9hf3fHdDxw9+wZXX/NnCJstuTDAZ1nI2959vGRqHlC5gPj8YDmyR0yDEr1KRI9zZ33dzx742v8i3/w93np1Y/xo3/9Z3j1tde4/exnefbWN3n85Se8cz3zwvmGtIv0JXDcF/KYefHRIzZDJNeO/fEJz57eMBXTzhaPMo618Av/9B8Suo6//F/9LJvzHWfnZ4ABbVE1a1HjEF4TZKOqA48y6lKjs6wo4kTEQYaokWf8Oeorh4EFNecnMW3ujPWRgLqk08GsJK1xlXA8FDYh0Q09TFY7ob5Gi5OWGIQuCL2I201CCj27yw9ZAfZ8jdRK7KxgMknPnCfCMBBi5HC7Z3O2I6RIiOYglGKwSHSw5qChS2iAnI+EuKVmozybhw9ojkEC5jIEJ2Aw0p31HgFN1FIIqQMx44h83FPyaN8lhNabyuNY1TuWm1ZcS+Xm8Q1f+/0/4Lf/1T9nvH6HbZfoQkDnTIoB+p4xjXDYQzdQ+gPKxPTsCW++85j/+R/ccBv+P/yFn77l0evfQ3p5S9x8hKsH59zvlWfPbnjjjaekkNid9fSd8MKFyctubg88uT6Si/DCVUff2fh9cJGYdcezZ/eUmrm7H1HgxYc7+s7Gehfg6jxSy8Djp9YBPJfCzd0eRAkPd5YF+c871f+zHSF4oTdYEAebFzUX9je3dN3A9uIhKSUj5BIcEFtfJQ2J4vNl0aa7hMZZObX65PQQrnj2pGUPzIWqcves0KeBBw8e0KeesN0iY7G6qWrSYw2KOTAY5uhSWGoMai3MJXvU3y1qRNCSub55BggPHjxwiB+oVcnVXISMIK8k4TkswkocWoizmdUs1131udd4LxZp8WPBT4vbbS+un6Wdw2ZboZSybnZV1cgFpyQDs3g/+VwW7BOS9PaGxQKq1Z8D1lA0eGCi1koiksT7WrhbpXTB7GVjWLDIEtRsGZQu2prqNZykuARApQtLfajGhMRk2CQHurmj68wCPAWTd4PhkbVhr6sc/HzlUpmmieP+nrubp+zvRuapUuaKZgug15CYdSZoIEpiDBkh089KDcobQElPeVgT2wcdQ9jQS2/y8mT1bppN6q7Y90wxmCNqwezAayUVw9PB1zeJJj8XsTFfa1k1NGLYRKLdVFr2rBGNjEq1Mfw+5+z7JhohRGN/p8RgQdwnnLhRZd+kotdOaPDi8EYWGsmQ9zxPbEArzcIWmj5QfOM9TZC0jTVKJVbxZnpNs+hpH62LB7AV13jEuZ158CY56t7qXlReofr6UJYFBhaob5h9iR62aEJLSTf9dThhvaeHLCdRFs52Up5DgxVLkVZjIv44WtxcQNXqAwowo8xU5mpN2YsGmt0dHi2tbsurXn9Qm54aaTkfmquDumSiWQJKCIsTEzF6AVe7ydKMTFou0qMHS5G2W91KgtDZoK/JdIuhC6Rk3vqpjxb9TN4500kr4JEIFm2WLRbqhdcVDcbCqxZLM5faus9YpCQKmcgcC1OsdKky5kIqpu+XUlAtPqksu1AlEqWa8YBfj3bOWsGqNPLWKtFd5Wq6TCdexsPNXS2IXSMweqHFxmgtFoFrUVZaCda6HXwQj+H8nMmj0YNecKaFcLjn2c0N7771TT73L36Bj37qe3jp9de4evkl8jxSNHM8PGAu2Zzogq0IMXV0Z+eEfqAc9pSSqfNEnidiMP2qdAlR6Ictm3nmeNwzHo0USD/wc//L/8Sw2fIDP/WTvPqJT7E9/yV+72vvojeFv/lTn+SFi4HtzT0/+kM78pTZ9bDf3/PVJzd84+0bDuPoGumyzO/jNPPOO+/wi//k51Ct/MW//tMMmw1CRWfrLVHUrQbdPQdvYmVzzOaaQSlZ/rP8cF2AgahFzjrXkrfkbxSTBzT9cIyBPkYnI/aYELA+NimZJTxWT2SFth2LGxoLtjLAbvzBLBIF9kUZq3W8L9NMjErn0kbF3qgPwpB65nnibLuh6xIxVoQEyRbZ2PXrGu8NS1JM1FI5znuGTUd/dkaMJn0KElAtxNRZPZcIpc5uGW3a6MiG0CceXl0Q7u4Ydh1nZ4ODPPG1jaXuTcQ6qQeJZhF5tuWFV17hY5/6NO/8UaXcPSFPR5+bps+u4xGVCJLoiMRh4Pxiw6c++R3s93v+8a/c85W3f4nv+1G4+njH1YdueP17vodXP/yAlAJ39yNvPt7zIRHOtok+CY8uAjX33N4dubnbI7rh0dXA0Nsa+/BCQHfc3BzI2WRU1zHw6GprFp5Yn5SHFz25VJ4+u6dkk+3c3Y/0fUefBlKTIH/AjtgIhAcjrY7fa/TmzP3tHd1wRtdvicnktjlbFlTrGgY0yZCfBBHrwRHKIrVuwL0FsqxGwSZDVZPgigrPHr9Lh3BxccEwDMzpjvF2ZhQYLgaiJCgT222lq9bgL5fCMWeOU2HOHvgUz16qR5GnzM2za8iVs/MHgGUxa2mEB8dKjhtkhWRKyxZAKwlflB6s9aZLcEza79tjWZqEtmxpEFmk4KfkZCENWk1WUzHpJOaGNVOtzlBNUbBgHQUR+31tbloNk7jBTrtG4pb6FZAYrTZHxGz4vXBfYlpwyKndrYjhH6I5RalFTE0W1WpM3VFKggVCDYuYMQ1Z6LPZx6YukXojINUbCLagZ8MiNRgWMYwjxCHSb3qO+4lmS+wd9ahArkIgEuJMiIkYOuIm0HcdU+h492ZmDDdc0rHVjl2F3fkFoU/oHJhLJc9KPGlqkQJLYLZmw7HNMl1DIHZCzYE6G4gumKxc/N9mOFKbUt6MS0znZvWQtZoj5/ucs++baDRG6ASTNrZY/tlGni6Ay4qGWgzOogKiDZCzPr69QosguCygiizSFHPhMdheRHyRtMFUNPhJBAiL1MkKCh1f1jX+X1U9YvjcemITsUW2KvYZqkU3agtrN20keKGYMeMKHkmw92wFVaeMb/nKJ/cBS1W1GEJTVLa/hmVpsMIocTrS4hLNgaZQqRqcaJijwyS2KNVoMqjo9STaVhKHrSvJWUlI8GtWW+8IjzwENf/9qGY6lzRZdEEjSQPJ5V/Bv71qew/PbMWwdPluE5Fkk1oaqUjROlc6+TDnhxMZHmC9A4SmuooJQoKQ1KrIQrGQS5PLabUZlF1nWCtZCjFVpq6SqjlRRTVZnYg93yQjxUCYVCLmP95Im2lQrVt6rZFarFo3aKH1/l5Ep6LmW90KV0KghkgOwSM/4m4Pdb21Mctqbft+nR7+LB7T4WiF0POEVGV3dknNmS5G9uORL//+7/Drv/jz/Bc/+7d44eVXiDGRp4lpfyRPI+PxwFwyUJkRk990HWGOhBxNLrU7p1QlH++R22vSsCEJDF1iPphEJlcllMpbb77BP/25/ze7Rw/ZPrzija99hbffueHu6chnPnnHpz4eoc48erjhm2/d8pXHI28/OfDbX77mG0+Oprlm9XaxJUwZx4mnT57yb3/xnyFReO3jrzOPB0IKaG4iBzuSCLPIomUOsq4Pra7Kf1iBhAdQqm/UUZQmymsPb9HRFMLinlbVCi2t+6uXAVYDEWkhFhYcWaO3trYHcWe6WOiTfc6DwqQFqvUvoWbQSJDeiPU8k9XS7RKwQE6t5sCTLIgRu0RRNT9/zcv7FTFXHxEhdj11zk40gkWLY0dM/eIEF2JHiLZKzqM5k734whV/7ad/nPnmhtc+9lFeeu1F0pAWD331WpSAfZZSCyF0dEPP5eXAh18N1OPEeP2EZ/snhGqAdlZMUz1nRCZU9pTY0YfA9uKc3UuPeDF1tqqfbXgaPsJ8Leznt3jw4ku88vprvPzSAyQeGMfCk+sRgLNdR58CVw86Sqnc3x+5uTsSAjy66ulSpI/Cw4seFG5uKiXP3N4e6FPk4qK3olgNdEm4ejCQs3Jzs6fWzJQLd3cHzoZI3H0wDW4bQEUbYUyUkg3oqjIfDhxub4lXHV3qjFhqs6R3iaI2g3nfdVvAswFxN/2wWojZotwNjHtmolYzha3jyJNnT4hRGGLHNI5MeaYodKM1gS1aqSEwlcI8V6Zc2E+Zw1TIGEBvgg/fOQ3Sl4mbfE3JlZQ6Si5LHZ84FgHDIurxLU/K0OBUhEWOeVrobU9kITdBcCKhLpNasUgLd/ppX0RDCxZZTp274lX1vcqwyOx7mEY9+Xx2jltNmUFHXQKu9QQ7ojgWXLGIqNtzq2UzDZME4oJRHLPgZIO4BP8I1rCu4Q+aY2Vq2ZC4qDC6lHjQXRDEJKKp7w10NNMMWQG5LCpwIXZC7IVuSPSb3vqAOSFTD3rauavMUgjRjGhib53N+74nbbbU3Za533AIEbRQy4Tmmc0Q0RQsO1cqkln6nqlGC05KAi1GOEpwshkhKCFVNLXO4GKycr/gLeCsqEncpeFD33eK9bfL4bnR9Cce75totMHRUumGn8QzC2rMv3Fk35xMTbWq2FpTOzzNQ3su6yBd7gm0LsGKzYLg7DiKkNSYb1twqoalqEWdZDSy0WQ1Sj2pt2AlGrj7glZ3X2qbrDflwjfHtumqZx2UBfypR8eahVzD8qtl3Eo6HDKfUCyfaDyfijKpzJLPQU/+vnoZn+ggMSu0goHRrM39yDI1QWWNHCzLBC5BUidOjTA2muTEQdeblEiokVDcmaEEYhVi9b9buAHV4DfP8rikrkqra2jh19Zx03olmNl7XLJgrqdjje5qqyddupknL04Pyd0nvHhHg8nl1hXNolJm8anMtXpzxya/s+Jci3pWklRmsYhTYXXoWNKQKs9916rROrfWaFNVWrTKHSm8KsfkbiYHKxLITjTqclHsGqg7UJnbFMx8sInG+OyZEYOSkVrpd1u2Zxdsj0em45Hbp+/wy//sH3B+dcmP/c3/DReXVzx8+UM8fect7p49oeZ7b0RnW7GI7awaOkLKzPvRxg8BUk+ZD0gthFLpYrRo+kFMu//sKWnY8gef/21+7n/5f/DiR1/jS//+33NzOPC4jPy//vnv870fveDhZeLtm4nf/9oN1/eFwzRzc8xMZY0mLto6MWlBLoX94chbb77Fv/35f8onP/0pNsMZH/nUp3j69a9xfPrMghdeH2VriddkaV0i7q3QEm3OUY0gmEXtsDkj5sLSqiZYOtzqsUzbHaMnxcUyhrXkRXsdRCilkmslsto3t5rS4gPS69UtYBEiMdhm2JpyJInEaBaqWSuhzGhV9ocDqU/kYtmHUooVlmOBhpisB8Z0mNjuNos8IhfLEEkI9H1vfVQkWeQ5RAsGBHOgw4NO6ucrJIVc0DLy8OqcD/3o97MddgxnD+gvLt315hRcAsGsJUuFDiV1A2cXAw9y4v6lW7YPHvFMBCpkJ4o6z+40Z009ZT6S6o7UdWwuX2B3dklKibPdljCcU0pl3B95/PY7vPTqR9gNiZde2PH0euIwzjy7nZAgnG07dkNEHm6RINzeHLm+m0idcHVhxLFLwoOLjmkeuL0rjHPmybN7QlTOzzduDCBs+8DV5cA8Fw4Hk+ocDjNPrw+kFNhuPnhCzJKz7RttoRTL+5s8ulDyzN3NM0JMnF2+gEgkBMhiBuO1NotoFixir9ZqNvT5N2zkGAF7BVQrs1ZCrtabZn9PADZdz2G/t89YYbzZ03cWEBuLmZTMuVA0k73h53uxSMCMX4IrFgqVPF87wIXQdZRpsr29yRzUQH3184GudQ/NM6JhjucgF0qU4DjCSEELVLSRYYHYVkpuTkxZT52kWPBQc7lrdgMNi5QTLGJrnsugo38SvxY43rMGxYaialVCtL2wdQc3U5sANRDU8AgZq7NQIWn0YEmT85u/p58VV2i4S2qLNEdp+nA3prC/xZgYUkcXzaAmxEjhxI3Loaw93etUvBg9dcmc9IZk0q4Fi7TeLV64XQtzLUgtZukrQh8jqevQvqf2HTUI2R8b8owMG8vARDtHFDNLCiIE/86GZ8piYlTV3Les7sIzPCFSxBVHdR0fbcRbY2Y/Z7gDZlVKqe4y+6cf75toaLWG9afZjIXtCjZTQgOqPvSkUrQNb20pjmWIr1i2vdiCsE7uPTVXm6NPsGJIEVqnlYr7LVerZbBNu0mm1jShyYNkYdCKOwFhLDuqEIudbLyYScWJycK0lJO5bbcmn+IEp7dIA4vJ7hL1bJP+lIS0gMBpZLQtBO05Hss/WRQbgTlh/sjy/yZFaDUvwcF0UHHbOCVhACNKef5VFimQRVSlmgSu3Sgmn1rIR8sqaaB5gRlI9jiryBI5Ci4bap2Na3DP6tgRvTu5eEdQES/QZy2G7VxCVwKMEYYoXjBpXcmjF0eJF5ybkb/fmrFABa3WuVhqJWq1jps+DjqFHjmRRa2Zn8bD/Nc0zqwra6PVwbTPrh6FwUVQ6lfAzklgsew9uWkjIRqeIxqrWcAH8JhGZq1eT2Uymc32ggePlCnP3D57xjtvfJVf+od/n49/16f5+Ge/n4cf+hAvPH2NeZyZp4nj3a2N++TjZzow398b8Jxn8jybqUDqQCslZ4Ikun5H6iZCuEdUmUbruDyXzG/8yr8mfi7x5O03GfNInjO//8Y1X33nlr4L7OfKOK9rCWL1ClV0ceMAFpCiqsx5ptaOZ48f86U/Ej768Y9z+aGPcLx+xvHZ9RIosA3aZrfSnMYgEhzU6Mn4WmIgXphkuc0YT1cFO2z+Q1tdtBUlxOTARk8eY1G/GKM/JKFaSV3P8X5vn9TBVghiDf2ExRxBzUubmBKxT+TpyP31HXOF836H1oJIR0oDpWTiYLVY1Z1lQpfM9CEm1x83Qw8LSgRlkWq29aEBIiMguBuPrechRjp6+hQZNlu6fiD1ve1jJ5kbwNBYCF7ACV3OhG1Hv9nS9zOb7Y40bNkfJnTOTLMZSCadlkCPihBSRz9PlDlTZ6sPs/oAyNNsy5Ao+9tb5mmm6zp2fYAHA9NTNYeau8msdPvEdhCuHvQcRtN6P7sZ6fvI+dbW9b4LXD7YMOfKfr83snJj0qhhcHsRgd0mcHW1BYX98Uipyu3dRIyBV1/54GU1tNm7ygpHrO7GO4OXQj5O3D19Rt/vGLYXaLCMV1GsQNwDnu0VzF68OBYx2YhthNLeFBZQ5RJsSwe6RKVSc6VD0Lkg2faYQy7IBJVK9oyL2Z+ySrjwgnRtXbhsD9LSgouBkidiLWacEDpU8rrunGARgkmDpdVqOK5qAZGGRQw3NKzi2GMNaDeEBjSCcpLlFDvfdXmcLNtq8L2rYEFFQYlEstYFi7AgBLAaW112xID17bEAsjkdBYRmK2+1pUYwBCMZUo1MWFWwWeA3XUWQEyyiZrrDicFNcGmclQYY8VBPS8RgQDyG5E0E0/J6wWWpSby3RIA5Wv1aDJYdTjERk/UDik2q5SS1Up474aUIlGS27N7Ta1IlKXQ+VkxiZsGeUgulqjUcDYokz5oViIsrqnjPkAjiupniUEgNNVYJixwkMy1GX6HVn/ockBisYa5GSnUsUtUyM+/jeP/SqeaUcsIbjEywZJCsqOKEbLSIVxva6pIR8SF6QlrcT/ZkeDfoffKzgjktCFnWThNVA0Grp8p846Ol4Oxl2r+L3xqvCU2ArP75/UK0Xxne1uZ8aIDTEWcjFYtoSywivhjC6RqPb8cpqWg/twkrJ78HlmZ+ayzF34e1kK9Z4janiJV4WOTBWLtHO8X+FjytmNRsKTuKS58qSQOdrulW2mc6Ab8qnm3wDIW0m/tOt2Y4jfLoEnEKC45WzzMWkjfHSe4UkwihI8VEiK15n9ljtleMUU3fGIUhQZ+gT5W+r/R9oet6ui6T+kzsApIC4sXdzQXKvphV7mSxYtmxSUOwZkudBnqiaa9pHt6yXKjW7Ega+gssg0K8cG41CFiJYlzIhlCcTEhzaxMv+iNSCBQiM8KEMPLBz2jI0NGlwUwAKpZnFhiGHRdXLzBNM4f7Pd/48hf5x//P/4m//cL/lQevvMgrr3+M4+HA9bPHdIc9WqpJQQ575ptrdDwSthdI36NzRkKizBMlj4Ai2w3d9oKuTKSbp2xSpBZlLDN6sMmec+Y4ji6VFHKF21JhXH3rJZjphI1r34LFqpr+2LFkVyv3+z1vv/kmDy62jPPaCaXFZ/zlMemnRYxarFWrml+5mtzTirkNHJU8u678JFChNv5icD13NVKvoaLZCJotRBapFTFHKkS894s5UqVo2mhECDGh2dxzRI3YOCdx97eZWorLY604+/zqAbVUa7gaEyqY9KdPBC/KbBHKbugc8EcDWjGxZBxa3VdKxH5nWQ9fSWsVNM+23ojYpp76pVhWykyZLdLI5tx7rGTMIrI6AEhUhLnMTLMS5mpZSgwsJHew0hCtP89s17rUSq4QijKrUCWRhj39ZsPx/pYYBB0GOqlInakxol0izzNNoioibHrl/Kzn+nZkfyz0XbEi/SBs+8iD854nTzOHY+Hx0wND2tF3Zlx6thGm84FxHJnzzHEs3N2NpLQlueQhiXBxFsnzQKkm65ty5dnNkVdfefCfcHb/r3NYsFtOZAFrCE5CpCGy+XDk5t3HPHy5J3YDXUzmtCbzujd5pNcIqHcSb7BDMLzhs1XEg2OVRWJdVcgesES8BqFUgzi1Uf+TuktZMYCtGv53ZdlHgnpNaMHkQg686wxVJ4IEalH7m79PU1L4J/VAplpEGwPtsD5mQVsNCMkaLF3wiD+3ScG11YNoM6nAJet2wswJtMndg/drsb0ueHrF6ioci/g62mROgUrS4j9X66cRIoFo64440goWSCREwyLRSUNbM9z1NHggU5wYWcF/QCR5zYd6wqPhyGj7sGMRIxbRnLBapiJaFrXlM4IoxIBqx6RCCkoKHTHhjYyVLs0k7w8kKaAxm0FAOFH+aEZrRrQQqzkDpmLNhFNVumK3VJQQ7dq3IIw0a16/djXbtY5+Xa0XWLBa3ZoppdJ5kKmRMQlrZqMF421+NBro5ztEMpGpZmtuXBow/g8f778YvA3MukJ/fIxaF5gG3k7IRmgg3hZuYhvFDfX64xpQa2kle6H1NRvJgIb8zQ2K4G+hHln3XZiw2LVWf5+mQWu3NqlaVH9ZGKog3haxyaHqScjglPr4p3yuHiMJJHXyIeKyoTWK0NavdnsvnYJ1op+e4ufjCyu98RLpE/Iirq/0iHGbYDQuJVZw1cyzvfAKf0Xx5wW3jiOwFFmXCOLN+Kygyq6pLrojuzWN4nLzz9CAuiwg3ezkWpPHINE7u4YlAiDRySm2CIjaOpKAqIVYA7ELpE5IA8SNkrZKGitxrsSxEmb3jG5jLGPjbenYbdmyjDBreP5WLaPQuqabjtZWZfFxbil7666qFcRdM7Rl66QFTXUhKBKEGqwwK4i5XTRvd5VAFZvQM4EZy2hY0z7l/U3tP5uHpsSwO7N/VyUEA7tpDpxtz5ivHlFzYZoO/Lt/8y+4ePEl/uZ/9z/w8KWXuLt5yvW77zCPE3WaORz2VoM0TEzTSDnsCV1Ccjaqny2ynEumEijTjE4jm36gSwk9jkzHGc2ZOglzKe4X7ht9+8z+v+AT1ZawtiatmcP3Si6CGAi1vUiYppHbZyN5nigxQG52ERaZqrW9n13judYlayB4HIcWn2xz1rMdvl7VFtwIuINe8EhjJbinPWpa3pgSuRbQalkCl02JAqWYM1Sw9SY7sBEHCkoxIN3SCqUwzyNVZmoODENH6BLzODHvD2gX2JxvjbA3IBLEABtWsL6EJiQYaUmWuUhdT+g60mZLiK2zd7Y1JQbm/RFELGOB7Td1PiL5gPYJwsbWm5KpRYnDBgnmdIMqIfbkKkz5YLLObmNzrlRrBolwdnHO5uIB0zwyHyeLiCvWZbcKfZjReCTu7+31U4Jg8t+IQJnN+e/8DOnMgz+XShdtbFzsAocxMh4qN3czQx842yVSEC7PEuNh4PZ+z/1+4vq248WrZL0BCJxtI7ebnnxXOI4jz66h7yMX5wMtp9qLsN0lDmPHPM/MRTmO83/i2f2/zmGN1Sx8p6cbZTUcEEOgZEVzZX9zQww9ly++TIyJFCKFppUXr720p6tWT1zoCdCxnVNRDxxAyzyoE5FSDYwHgcnKNzxYuQaZ7LOuWKR6tv8Ui7TsQ4vTqoo1wKvVATKUbAJpigVcT9ccwyCNQhkWidUDndLm6ml12CmaWNeV5RFKM/hcDvuLdbJuWfi2GgUPJ7bXNVt/3/9PUI/6uWiSam2R0Nok+q3I3xQK4gEdEZDO5FYahepS6VbY3fCHuHJWg3oLn7B09A6ulAienWpB1CWGLo1A2H0MqyVscEIjDrotuKrOedXk0gliB7FGs8UdhDhkwqaj2/bEbYdkby6Lk0lnigGTsM5amasyFsUNMI1oZCUlXbMNJykpCUpINgdqBS0VdQm41WOINcLOhpdVbW9B7LuRAjkaFimYhNRMCcyKxoKehlla076ilffJM76NjMYyGFd5z/OEQ9b799rYLumB6qhcTl7QZ1UjGY2an47ub/E+dn69gZ66js/1eOK1Cu311COBVSEvz1liDIuNq1R8Yren6vJeii4/+1v739bi9oY9lkIqbTDAPtN7yQS8J0F08u/T/E6kGd6uQqrg770Kc+zvreVQilB9wpWT92o2uVrNccH5lVvg4o4JOJK3ySvNZ9qb8ElSSNV/Fr9V99nXpSAqRiGKDd4oQmpZKEMTBrSd0GhQQqwEt1Qjqn2O6Av64mbmWkIFrcFuRaCHsKmkyW7dXOjnQposCpCrZ4RCtbRADY0RWQRXbDJVsT6kK5NfF8QWWTVNvW1GrVAKWHWjyU9i8Q0iRCsolybnCtTQskCN1Hm0zHyBTTZFJPskb9fpeSj7wTvKOHGcr4kpUmtleHBhURGBLibOdzvyxRk3z2bmPPGr//wf88JLr/AjP/0zvPzq6+TZets+fecdxjwiB9Pqx+0l+faaoiOp682tKheqJFQzqWUfxqOtB0AXlSFaI6yazV6uFiv2hefnJLLOPvX1rK0OVdfVthEOEaxmIZiTWMllqY1QFTKJqRYiJgWMTXvgUfx1zVKSNHDlKkD19wlYM0uLjCyfQbEUu4gN73ZE8F4S1gBRWrTrVGKA6fitz0Yh52p6aooDJbyPUSA5YUYM2JVcoK8QE1O2XgJaIXQ9UQJlP5oV8bDxyKdScyElb9YVkxuAVGIKdMPGrRitMHo+3gOB2G8QhHyciF1H6tISjNFamfZHpM70m4HYDbYCOwnTgK09tVJrJaYODWbmMBc7/2mzoQ47xF1hQko8fOUVhotL5PaamSNzzWgtBIEOgdmabfXHA4f7O3fzg2ZdWHPPph/YhAu67RlBItNUIRkpGFLgwa7j8WFimjJ398J2iFZg3AkPHnQcx8g4F57dHjnbJXYbazbYd4HL8y3TcbLeQXPm9n5ms+no0lrEu+mF3RCZjxbZn+cPqAhTq2UtHOSaVbHPRhHruRCse7IW4f7mhpQGdpcP6WKH9gqTZaQsw11YIlhqZcvGuesSxadFnkU8+2EyXJHq+oImoVyzDE3qsUAZxyLW6wqTuiy9MKzm4Y9hkYarLG1or+mWpNRWO2rXN+oJFmHFIvjnt/ltipJ68hgDk7qQhOfWvfYYv3kHkkXSiUTHIB6gbFhEbd2wRIYSPUDR7GoXyuEuU5X2lXSRRRexPkKxBeGWpmNqFvoBs18N1aQ93pivNQYLjk1ishqDgFhvNipR4nPkSoIFT1u9KmR//c4ZGxDx/h9tzzfXyBpdUVIrNVbofH2slThDHGe640B/cUa6uyO0gv4l6OkSYE/1FFXmonQV5mJZ6bIYE7lSwjOeTreRUA17qSxBEIoFfCGaIqmL1BwhF0ptzr9NQhZIKZKjWIG3iGErwoJFilhgtLWb0GUE/enHt5XROB18zxMZ8Ue0ELj/3KLmHilbIHRrduHsdSEZ4YRkPKfb8ecqy2u14skWSbbohIHodiKkFThXRcWa3BR0AQosP7Mg7lYMU5f3cB0164JTG5jg5ONWjyaoLPNhZVNtajWasNZnnBK4bzWxnzsFJ399Lspwcr6skDl4J8wmb1qv4UpY3BVCTW/X4ZM7CsUzEuIe1c3ONnjNg43Ndr0qLplcfP9DsOhq86uPEpr4iGabWR2kaBB3ezBsXkNFo9nTmsazYvrClZdWXVk1IVjHzj7RlY5+VxhyYZMrm1LZFCVXS3EjgRKLEZgSgQ5Sh8YODX4vHYTOGoo5s5Llu+C3ZgbgKXMfm1LFyJnXsKg/Yfmebk2hTgKL31e3/V3sf4MTntAiRrZBtLjQB/kIrQANsMhzRkuhThOlzgwpcXH5iGmaybc33N1c86//0d8nxcAP/pW/wisfex2A1HUmGzocmPM9sRsoQw+qDA8eoftr6uGIzhMhBKbxYOAyF5PaoHQhskuVQ1amYpt+0cqp7HSZh3IijvK1Qz33qEtRJsu9iBUC4tG8GKwuSmtZDCoyVmzdPPqrtFdskkh7LcMSaySySTSTr0NLdx8Rz160ZVcWIKLBDRg8dNf+FgmkobMC++RG3Nneq5SKSDTZUW2Wkkqt2UZkw0BV0VIQNe/4Wm3TFVFS19MNAzEG5mmyz58KISZzG0s2HprcodVtxZRsnGjxzEXn0oLsMVfLdtaaXeLV5miiqhJTQNKGkidUMzkkYrK1q8yZEkyeJSFSFeZcrLeJZvrzHecfegW5r1SPZG4uz/nal/+Ix4+fUbhjrLafCNbUlFkIIXM4HpF0z1wLNc9QCpILbDb0KdJtBobdOYpliaYpc5VM5rEbhLshcj9n9vuZ41nP2c7W3d0mMmw6pilzHDPXtxObviNGI1Fnu8ThbEvOStbC3X7m7CxzcWbPB+iDsNskjmNvzlnzB1OE2Wr+APiWc68ZE1QrgM3K3bMbILF78IAu9QDM82TgUNxGPKrDFzHXw+X1DRRUaxwB0kD2CurBGrZRgwcyxSVNLWzsDAIDmH8SFkknkcZWU9CgkynTW6AU7++FZ8080+rPX7GInmCRtosasXDOvUDGpY8CfwJ8NF5AYZV1F62+p9sDNJzAdzHCJj5GaUHG9gaOWxSrkS26mtjU4L03Ap61iATzsbWsgmCZJ1GXBvmXD9XXOl1gqNLWhrg459kYsiyROX6FEyzS9mGsj5a4Q5mW9kaImlxVlwbCJhEP0YrAuxTZRmFLYOcW4DPC4Xhkzt5kWDI1gFRPw7gUrDqoL9UbH7oCpSm+Q7RaOquHsX0oBDUMmpRQjOxWD64GaTjLMjsqLZtm66HX1Bve8z4kGloJidetuAzfSJnX5ta6EPw/7fi2iMbzQxUWl4YTonHiy+MD6nTXbqHfdZCdWC2c/H55wslzT/7hBKW6NFrVcwieZpR6IiWSugxIpZjkgQYQW6qxvaZF+vWEaLR5XziRrOi66VfRE4WXvauxeAcLvko00HD6Vb/VV36PeOz503Xy37LWNh7nbMfqJSrRgT9iXR4Rc+1KqisRat9RTyIKsDTKib55i8iSFrVG3+bI1C6LXYZAlvbaXhy2AO1ICMnlQWYbJxHboCNUl2IZsG65Gl8Aa33u/KoqpQRyMbvCFj1OUej7yCYnznYdU6nMtTKXVqgbkDAzp0KOGLPXDuIA3YB0AyENxK4n9YMBpNTTpY7YRbpO6JLQWQNeFteS4oPEszIS1aR3nm5t8ikJJhMiqEvNFE2VmhTt1Cq+OszL+6TpIdGkfOv1f78xhD+jR5kh9UjXG9HwAmMVIGc0RoZhy9nZJeM4Mk2Ft9/4Ov/6n/z/2F1e8r0//hO8+MpHmMcDh7tb30QD4/HAdAjUbFaRcXtBqYFYC/NhskZDapKc6sXiIoEOIUslt4Xaz/GaUVx3RsMWwnPT/U+4Gl2XuLi4QEtexrHOI0Ur85RtnWrSI4uTLGuMlTHqsna2uWmHjYQgRgTKnM2kTWzTQNVdlTxbob76VOvGW6neuyMs60eQ4I4w1Qq9u0SXEvM8W31FcMLvi2qIgSBlseG1ra6aZ72fktAkDx5okhCJfY9gQF+BGCKllIVcmIOYfQZKIeeDbYx9JoTWZyNQp9FsaLvO6ruqy7ySd8fuOqKlalzmJv69vSZF81IDpkCdZ+bDBGVGpNINOy7OL9ieBR5dnnE4zkylkPrEO2+/ydtvvkFxeZ1KRXMxLXcqTPMROUAtM7FkehEGEWLN6NU5Zw8f0W0vLAMfAneHyjYr2x66KOy2HcdjYc5GFnbbSJBIF+HivGO/H8mz/e3iPHO+taxGF4WLi4Hb+4k8GYnY34/2/JCWPaTvhb6LHMNKQD5oR3C9/mqg0HZY75eASV9CNKmgAnmeuL9+RoiR7fk5KfXLuF1k01LaFu63CGpmIWZz6x9A28Zpc1feg0UayGtZh+Zq9TwWaaXg6zwPjbQ00KHBekb45G/R6oK5VbXgw7IN+UapsBg9tAyDyQRZzlTFg50NvILzgLbireuc/2m5b3vRsiNZvM/+vgQZ1SVT1kW6ZRDMCObkPMo6Bi1mt2IRyy5YV/G4rCNGEiwm3dBmMwcwwF8wyVCBxeynyZXfazBjQVTDPCGCpmCZjRjQGE/qYm0NDx749M2AWl0lU/C9TEkR+tixjYEH6jWqKRH7AUTIuZirnlgzx1oiQmfBlNih0aUjixrCg7ViMvF+SN480M5fdluxJucNSUwi5UZG0QNLGkCTBTelETyx1IZ6DWsYgBEL/HrOoEnoCYZFmiOisEL6P+34tqRT4T3/Xie4+8hL23QMmq+POoHVcvJjQ+SNWjf0u9x4Hu17lMAquiu4N7BxFZvUovU5cGAnv9mVtsLNulwUgbUBGyuZUpXnPolp1Kp/f13AyClBaB83qKUY9T1U7JRQnJ6dduhz9yeAZpn666u001GCLzDiUgtRA+ti59TmpwGFgJAIJNS99C0zIagNeLE0ZBU3zG09KGjlQEqsStTqPtZ2dto5qmKpUbusViyqbl9rOspgm3sMi2919GuvmNxINVIstXFSbF+Xhb1qoZRAKeLdLwXUUqxdhKEXtjkylUguiVz6pZAspMDYFeZOyVOkaIeG3sjFpqfb9HS7nrRNpG1H3CS7DZEwWJObEP18K2jxDcbJaxD1BbbpWzyt6wSDqEisJpz1hj50isyKdBB6kF7QTqATJx2CFL8hJ+Pjg3nEYWfAL2fSsCFud5RphigksQhMnmeGvudss6GWA9M88c2vfoF/84//vzx48UW+87OfRfWjHG/uKHMm58z85DF0PXl/zc3bb9h6UhRRa3xYc7aIWSlQC7EE6BMVpQtYAXFQ7qe5xTGWOQYsJ/1PiuC0Oig8mt6laK5DxQp7S86oWjZjzkpxR7KK0krDiwNpcGkgYmYVNLAi7ldhm+hYgVJJTvyjO/xptves1dy9Oi/CVLHsXheCyxGwDJta0agWi3NaoyqLmrXMbewiXQhMpdKFRBoVZKbN/1pnC/gI9nreWVec7aiaLa5ZEXsAw0EYiH+eplc32UUp5qwz3VVEDqTthtTPKPY6krCsQZ4J0eo3mpzJXGOCS9kyVYV5mqhhot+cmUMRAS3KeNwz7W+RokjXsx8r3WjNBftdz8Wupypc/Nif4/E7/w1f+8IXuf3C76O11fspQTJhDpRarOnhttKnyDyPjNORfojsrh7wwqsfI/Zn1Kp0ve0rx6mw7S1Cud0kuiFxyDP7w8Rx6tltjDiebxLXQ+I2z4xT5ub2yG5o3xM2faDvE/M8UWvl/jDyYBws+ontBSlAlwIpRFJ439v/n6nDwKbvtWIZYFUs6lpXCB890FM88jpPB+5vnhC7yHB2BrFHRZnzhHX6VqwvUvEiV1vDVy7gZONEXm2bsAcua7QgZYFaDItYEGVFSrT5tGCRVZItImtQrZF4z14gsmQ0vB3UgkKeD4y0IKjti/IcFllRRcM69v62b8dGdNojpNVrtNJn/xb+eZqL5LJOismdRNQj4I6QXAsm4gY1tKDIwn1cKlaXc1uLYRIthkuC28QHrLDc7Pp5Dxbxr+2fp3pA0GzpvXWBBzqbXKiZkTQlSA3Rv6P3x/LeG6U6TK0WDgqY653Jmazeqs52LRvWjAk2QyBr8rVRSXJFyZmcZ+7CPSEpeY5UzPkp9MmDJta0OPR2L31A+mA45Wxjv0tO7LLVS7Rr0AyaVJRai9cPGRaJLgHT2LLrhRhcR5WsziOYqIOaIM+O4aIFPqWuZEOWCPeffrz/Php+3/gBy6A2YG/uhtUj0q1/gguFNZyMYI9yebT2ufA+nDxO1t3+tGCh/Wyo2s2qHIS1v4vnWGSJc9i/PZqwwHUfkSKsden+dwtWyFJ3oaJm2aa2jC32zx6CUFmLugrqTjKNgj1fgHWqt29kRU5+fu/vloWDJZ+xUjhZhBOe6vJnaCM4AXE3hYi7TCl0VemkGaxaFF58Mtdlanqxll9tIxrNt9reUIu6awe05tvRO7FnguszdQXWrc7D9B+u82jNdKI3vfNsjMcdGpGs1bSKpVgR0lxhrsEXf2um1wdl0ytzEUqJ1JJMkxmElALHrjB1yjxH5mpEQ1JPv+0YzhPdeaQ7i8SzQNpF0iaQNpE4RFIKJB8XjfjYZZaTmh8jGRKMUEhda05wDamcFK2FKKgX2Fsmw4rWYrLoRZwDJQdiDQ5OP9hH2p6h09EkCyWYXpRKHY9WND301FLou47NpmeulXyfmaaJL3z+d/jFv/t3ubh8yIuvf5iXX/8o9/f3VIVxv2cfOjaXl+T9PeNxj9VcTJbFyN7N1KVEaEVysaZvWsgG40nBFtFsIc7lc7+XXzxXhCkncyQENsOWvoscDkdabrVGD3BYDNV7+aw9foJYQal4OnvtCu7uMeCAwkbZTFjiM4XAVMXms3/kUiwzkGLwqJaDsWrklVApSzYuLbaUtVZyzuARyRgTpWYqlRQjm25DOU40SdhpfLPkDJh8YAmyeIZFXPqgs3XvbpIUESvepWYjB2LfVEOg23aUPCH+uNQn6yUgA7XMhNiZNaN3BxdMsqUtrqnJmltJQHNGymw9XCSBJHINaJ2YDndM+6fkuTKHDXdf/wZPxsCrH/84u81AH02FP+x2fO8P/TCf/v4/x1vf/DL7w+RFu8pcKnNpUrpMSjM7DMDNEtlePuC7fvBHuHzpNSeTmLNUrBwn6/cUBYYusO07jvuRccrc3U9sBivU75KwGXru9iNVlcNxZs6V0BuhijFwftZzPBzJZWaclJu7idr1nHe2hoZgtrh9n5jzB5NoaAgm9fO5ZXu0evbCJK61NeSLhlyMbBTGwz13TyOxS6RtT+p7k+s6uKUUW5NrNamM+lxvModTLAJL6N1s4G1+hfZ57NP6fu3BKE5kxw38hyVWBeJBugaeq/1SsaeoqxSsO/caxMSBNbhMeD1btq6+B4s0rAEr5jjFHbB+h2Y20yDW8ihxwA+omqzaUSDLJ/PIt7g+PWAmCZZ7iEtWOFW1+rNSLShZLfBRpXifj4L1vig09X2saiTD62EaFkFdNqSNcFgWKEggBQygp2CBvLhKtwkm8TbcF8g1GBbxsxDat2oBXSqlmIRtzpk51+V9S1EUC+gMCeomUKs18H0pX3G8vwPNjKmS50hWQ/ixS3SD4Y64FdI2IFshbCPdLnH28IL+bENMgZQsS5NRqvWwXbBhDXb9qnr2zCXvrdbW5ONOZA2CLVgkdVYYTqufFcBlV6FYvzSzp7e97/0c73ulWQ0eT1kvrDy6DV59jnAsjDbgX1TQpIssxALZslo3NYrbKHcr/q4r8EewegG1VFqb6Fa4whJNxuUE4idSvIhn+flk9jROFEQssiUuZVCAukwUIxl2b4NYnquDoJp2OeoawWiLUpvYp+evpTDfe7nCck6Xk+K/Xx8rbQGUlmmxmzlN2OasIfiUt6KtJGbfah003bta7fH2rsUBtMk6tBWpUiE4S1A7L7LoBy3SG3Bpk6+j1f+dpRG9Sg3FLeWeZ5bq2lPzJxfvf+KL6LJ4qBGMArnabUKYtC0Gxs67VNj0rYBK3M3KMEnfR+Ye5ikw144qPXQdadMxnCU2Z4nNWWTYBfqt0G2CkY1kTljWrsB0kHMTw7MMMLfAO7lk6pNn8RdujxFbcJulbXObCv4+MVpPELfYW/3FTsU7H7xjKiOSTatfppEwjdTeuhwHESsO3u6o4ch5eUDcnCMxcv3sKfeHe3733/0yw/98xs/+n/5HXvjwq1bjECP722fcPdtScrIIXRDm40jOo6XMAXys2yWpSFEjzZsNAMO8Z5cCcx+pkzI3/fd7TvfpXG0LrQU2DAgOfU/qomUIVAldh0ahaLY1J0Qn1yYhUvUIpUozX6G9aZu9HhPxLc/mngTbUau0fi8OvHzKlmINTgMKgtcyqGUxAsxTQRJAtLlX1JpLpYgZrJjNrdWYWF2UYBHWmqs7Ztr7rSYgFWK0PcCB3zxP9BIYthtrbKdq8rXePOq7obfHjiO1Qv/wihgitcwWQNhsSMNATD3TOFsHXcC6j1vvhForZT4Cana15WgZETFJbQwYce96JHZUD6SUXKjzkSRKKRPHKfPNL36Vwxfe5htff5uLq0seXmy4uuq4uHzEi7vA937yVe5/8Lt5450nvPGNd7g9HGkNFDu35JaUSDHSDxte/PBL/Njf+Bt8+vv/Ajd7CziE2HoCwZw9Um6JXja91WzkUjmO1mAuui59u0nEEMg5M02Vw2Fm6Ey7HkXYbRNdl5jrTFHh9lDQvpAuIttk+1rfC5ttz/QBrdFozXcjNL2NF983LGJrrYqDYLGAWCnmVnY43hCeBS43L5O2CcqAZNApux5dXaYEWstq688pFgGbVq1XQXBQ7Z2y8VoNDIco6v3fbC4+h0UW4tKouzse1QDF1qxmJ6stu9+y5408vAeLiJMicSzSgo/+IivRUMgn8GWtL23fDw++GqgPS8rF16YGVB2LKO372QtEFULrQSIB77DRdnZ/m8jaR4NlvbLvWlEytWL9umh1orp+0mb0oU5OSvE902vgnKBpCNbvQhUkLzJu9ayGfRhf3zCyWou1TVasiSqtJoVKBeZSyMWCM9kDDgXb544FSojkKlArXSycDUK9SLz4wpbIBYf7wmFfGHNAJSFdpNskhq3fdpFhm9ied1y9eMXZ1TkpmElESJbp7IswO/BfTn4IFJeo48FOcZwbYnBZ/Sp/MkdQu0ZdjORgNaI1BurczntzAAtLgCicGKH8h45vSzrlY++P3Z9ygwUeig/lliPzL9RAcZNK6UI4TkY7YuSBsOoWwS1Z23l0lwPPbFBXbZ9p+UwPuBZG4vo8S2FJo38tQxow4IE/p9pUyGopUFErOrfsCB55aBSLBeWHava2y4Stls7Vk3kOqwKsnUNbmlrxVstaLA7GJ+3dGpN08E6b1CsIUZrEw4vX1HpnBIROLfIftZLU6i6M3CvJI6LiixhS1/MkmF9/sEWiespyIQjVdIqlWhpZimVJgmc68rKaOozSFivxcxScSIhaR3NPU9swsshOLWoN1qq5SM1V3ULPPl/USkdli0mUQm/a1E6i6SY7YeyUOYkRjdJRZUDTQBh6ul3HsElsNpHNEBiGQD8EUm9EI7hzRai2yEixdKs6gWgNS0I8mR9L/ZgtdC2lEVyDaYDTiF/VtclQDGGZ/K1ATJfY9gcTIIDpWEOwCG2ZZgKVhDBiBcWRQNf1lGkChD51nJ9fMI1Hbu/23O1v+fVf+nl22x0/+bf+Fi9/+DVSl5jzyP3dLfuba0qeqWOArkePbu8ao0moAoBFZMxdKZLLbKnxEEkxsemsyVqds4Oa9VgEBGKoP0rgYhtN9lWh325NZwvWNsjSCAgduYp1KY/LToxgmdKWrVo2YSe0TZrg7ZaWGdQqxsQJgsTnl1ARK0gtrS9UdlIUKrlAyTPJgwalFJJ4FkJxWhP8ddr0t/9KMbnUMHSEcDRQoP55gjBXA0Jm59waAFptzOH+nr7rmY5HIkq3OUMEpvFgDQeLNb7jfs9ms6G5AZV5Rkuh3B/otjtqcsKQO4SO1jOo1Op1Fwqx1QAVA13RGuoROrIKmguqGZ2PCJl+s2MuhekQ+cIXv8ShRKZp4upi4PIjwgsf/gh9n9m+eM6P/vgnOe/ehu6M3/vc7/Av/+Uvc3+06x07MaCwGTg/3/Gd3/0J/vxP/TTf++d/nEpCdWLTJ4Y++T5iwZVSzSkQoLOgL1qUOVdKrsTepAqb3oDAnM0P/zDOXGhv9YBiDlT9MHAYJyrVmkZmZVbY2HAiJegHB8cfyMN2TMMdtaHhdc2tuCmHMQIRc0BUxMhGrdzf3yJPI+cvPKLbJKSDGitlbE5Q5m7nLcVXkK1qe2BtdRd4LxixwJsGl5Gb3Kayvkzbq5/DIlgwNAaPIqibudRl23CnIVNNWL1G9f4VrNFFWCS9rr70gOeJCsVrPFpwo51JhcWet/3OcIZjEW2ffc3OBAJo8ci24QVRgdBEnuseWIGkKxaxYHHwLK7Z9NrntN4/AZN7Ra/1sMCwghbHNSZ5rf4a1hunUIOdc2pAcqV0FWqgFEWyEkIlh2IZ3RoXRQvPYRHMha6qFWQrnt22MLN9bwsg5VqXDtlzmY1g1oKqkA/WuV26zpruSWW7C4xzoosR8hlbl3DfPRt5djOStUdTTxw6ul3HZtOx23Q8eLDh0YtXXFxdWLBExO5jJKpSoxGsgAd63BmTNqbadhMxTBYaMbYraVnnleJaPciCNn0PaI93DLJIM/6TEw0bOguxeO5vz98jp49Q1yU5vfaToc66npNPnRCNIIGgqzOCjQErGrUv7v+JRRIJutg++mywwOHph3OZDmKFkUtdRzViYZ2zW3rMFhX7vRLUmpygrS3eCnBV1khiCO3ruLZSfb3z3OTi4nvydf3ZSLvQJ5Ay+EWymLbJkGJYeNoCBJybLWy8oY4WzW0SsohaQbi2n915BgPl4VTo5y+u4I44zfHCCuTQSnASJroSDIrdR7dmq9XrKVS88M4KT63bOL5wG/HKKNllaupsTAtQlOpuDXMxn2kjJCZPaJ7RnY81Se38uK1dELqoTFGYo5DnyJQ7CgMlbZB+IA4DQ98xdB3bzu67lOiSRXlDaHZ9JtlrblyavORuAYtec1Ld/s5veN+MdrOie2to1GxstUkLfeP002lg1K9WfZ+T+8/iITER3Y0pYhKFMo/UaSb7ghzG0YCjGIxk2HL54JKcC/eHkbv9Hf/mF/8hcxn5ib/5X/PCa6/xse/+XsbDgTe+/GVua2Ha74GCaiUrxJCQUJBWfIzFHhVcLqSUKsSQ6FOhVlM2T7m6JfZz3wIQYhQ+9aELfuqHPsLFNvG1b17zzSdHjlV45/rI9T7TdT15nJmr0QUpmbjpzaxBLShjCiZZMq1BWCSbRddi0la8qYh9JuS5BbwBLHXRI7SMr5GO6oGFcZpBlTgEd4xSpBf3VXfZg8JcZsxz3m0VPcPTlnI5YTaNzGmZKeOIpEgarElaQNEUocyoFutnIVBzIXTuANMW66qM9/dI9TqTkiEl4m67rH/F5atotY6+aq4owdc6A4l21sxzHnOX8tevc0VjhlqQWui6DUig62buHu95/PgZISV2/cgnP/ERvvP1iX6bketfI8YLfuAHX+PTr/0Q8eIVvvbDf54X5Y6vfuFr3BdBzs8YHj7i6uwBH33lQ/zgX/lJXv/sjzFPkevrdxnOzulTJEUjwLUqUy5Mc2HoohGBGAx4ArkquVR6Nx/tO+j7xH40Y4HjbGtibEW4QUmdF7xqy/RM5JyYotBjvQH6BMPQ/+eb6P8ZDyGYpMN/WqL1DqIRbNP1rcz2R5OWqRiRqJq5v71GY+X8hYfE3UCfNtSgVstTFKlGNiQIVFv7vZuegcqV1dOUF8GvQSM4Tb7TwP/ykU9kFf0gXGw7osA8ZvJcrN6YQs223xePtIvvvR0tg2lnwWBFA+bPYxHU3ew8ot1uDcy9F4u03xjMdNtdxPGREwu1vE2M4sY3LKYzp4HPqvZ5gv++ZT6EFkVUV0NgTZdxhYe6lCo1sBsWYlwdm1W14IJY51dOGyWXXJhnsUB2hpCEWqMX6tv6FlpkWnUlHRhOqdWCnVlkMQaSijvT2ZpZqpCrZTSak6D6e5fjRAzQ9ULaDsQII0LUozVLfmHH5SZRcsfhCt598ymHEXIYkM2OtD1jc7bl/HzHw4dXnF9cEoPVeoRkRhYxGkmIYlltM+OwgVarpUdNkeLyePGsVxDLOocCIawyQ8cixf/NKRZRXaTxBav4db3V+5qz34ZIs6kBl7jBKS9YgfLpqHUAqOJXdaHzbSzX53fWE1bgGX6iBxZqg8u6svA2z6wwyAD6Mud9Ylt5iL1vkBN67+kv31ttQokxafEmYqrV65iUUBu45rn3sMBm+/ynpMjOkQc0ac2Dm6rr9DhNI7ZTc8q93vsznJxGWW9trrT6BlrkVIyAPX9pvH5F2iRnadhuKCDQbAcs/2PgRp1UBE6iPmq9LLRg3uUZQrFCfV38n+37B29tvHxnn8SlWnuLWa1xXvFNWDPUGcjVFo+8Eg1verwUoZeoVtAULU2dotDTFhbL9SSsE/c8JfrSkRkoYUC7gdj39F3PkDr6ZCQjuf1mc8Va+rNE9QIp+wBSfRwTLLLj1s4NkEkMEAM1ma9tjYHi6c0chCx+C5avmDHpTnag3DoltELHD+qRup48usY/JqpMlGzyJ4r7wodASD1pMzCNEylEdrszpnlEtXI8TtzePOPf/aufJ+eZv/y3/g4vv/phcv4+I8O1MN/fc3x6t8zZXIotN4Y6kWGD5Mw4HowEhA7pEkOXKOPIXJWNCF2yCNE4Z45TXgBFDIGPPNryt/7Sq/zkj34nuVSevvOMN994wpwLn/964p/+5jsc72fa8hA6RXKGnF366fJCjBCbDMsVwT5fq5rAqs3Ttv6WakYQnVi9R9awgAJYDSHUgURby0r22gtvJpe1kvCAj9pGWXMGsUhtKTMaxXpmiOda62xF2KyEo0XCcikcx8oubMjzTNclc5arM1EsotxtNwQJZjt9c8vZxTkhREq2a6fVeo6EfrBotJhluCSTMMQ0OGEdiGlg9oaxtRZaip9qtD2l3jbSkEzXXtW0l8UKTIcgdGlLng5A4vpQCV3kIy9f8UM/+B184jN/jj49pcYA+yMyvkXHDenwBYhPef0Hf5af/N/+l3z9N38VCZXu6pLthz/B+fYB59szLl/7CILwjS98kfv9Mz72fT/IZkhEUasxy9WkF9VMQz3Y66DKorW5LCJSgsBmiMidbf7Zs7xD5+NShO0Q6FLHccpIVaZxps6V2kfvmyt00WSkH8RDJHhjyrYZNyBg56DNccOl9aR4GXeqMrepUjP7+xs0KRfdI9J2YPDo3jwZ0Nec133W4zstGGQEt0USTSYkmAxlgewtItgsV30+tphn1wWuLjouznqoldIF6jgTipKPym2ZXSVQFxmz+Dhvss6KrlikabFOeNAixbTAvQX3LKr33GEdvd9zrlmxh/3csp6wJsT0BGe0x558f1gMIFYsoguUXLFIk4UamVMBbamWtj7hNq8eiCqqSMn00UG2Og4JihaQ4g2Giy6EqzpetAakLVLvn9MvZw6YsyW259aTInU8gJoL5FoXElgpZFWmyQrDu03kfOgJ2y1VsjfSU1QzaCV1hRICffcCQSOHw0wNAww70u4Bw3bHZrthu92RYqKWbGN5s4EUTS5YlBLC4uQlANXqlCQGUwEVR36u9BG34M0xQDElRWuaWNw4pPUHMeMBZarWTLBhEfW5JO8ZL3/S8W3WaDS+2wYRK+nxQxzQV1qkH1q/hefQsUd4aY48DRwvlGX9ddMoF7c+ax+lObK04qulPFFa8dI6cVoRTxvs7fGtUDwpS6RfPP1gVnW6Fjw7KG4EpgHkapXfbS4s0RbV9Rwoz5+C08mrJ7dWKbFWXehSqLUsX42srGvK8ujqdmrm+rBqx9TPu50XO+cS9USC1aJCuNbCwbJaYb99TyuqC0GI1dlyLWiBGCo1R0JMaFZChlgCsRSkRgN8tRXNyR9LeqnLr4rqGsUvUDKUqVLnSp4rk/c8yEUXWUvjRdUda2unlGQWvZYitmhnjGJAn2h9M0qHMoD0kAZCbxa30g1I54WmfqsxUjzKaFZ3FhHQaFp8xBrHiTY3EUvViEuhLBxkdnXaNPqtUaDYBC/RCZNYBKv5pXt+ZJHQfXDzGdgqHmwzaZaRpZojUagmyynz7J1cEzKOWKFrZNv11N3GO4fPXD97wu/8yr9m2Gz5a/+H/4bXvuMTxJToY2K8u6XkkSF11KfvUslULQQipA6C6WHzcWQuM9QMSaizkOdiaekuUaaZvktsh46ntwcAdqnjtZcu+a//0sf4qZ94lf39kV/7t39EF5SHW+XhSxv68w3/+ncfsz9Oi3ZXa2QrEMq8WrBWF1DqeudDdv03eN8Y9aJtmx9Vheyxk9b1viggkeJRbnOYDov14ml0QtRyOlPNnMXBXLJUPDisiBaXeARcsbFIQVA3KnHv+armqqVY5CtrJdVM1oqkRBhn0rBlGiezvu06dJpRsahkFyIa1XTHg/XFqSKk1EO1PithGCjZXKMsIifW06P1TFDQaB1IUhCPakdEElWie9FXChMiMCSIqUOwKPcxDVy9+lE+e/GIq6FwdR5I3YTqDaofgvQSHO+RMqG3z+D2jygP/wLfvCk8Pfson/z0p3j48gtsz15EQke3fQCbRzx++zFf/u1fY3O5JaQfoB+8y3Op5Fz8vK8L4ho4smtRfNFvAbOus87GVczmdMqVnTbpi9D3ga4LHEYPxpSZFCpJ4lLnI6ESowIfPLJxikWe0yNHWyuNV6hls5ORW48zmUsVDXRmSi0cDjeEW+FieES/6ZC4QQ4wqve2FkHybA4/bp1fde1xVJdsismR1SeviDtfARJtDy7VaqZSsMzU1UXH+bk1UDzej4RaGVQZEpRN5LifqFps3FpPUVq3PXWy0X5VHYsI3ufCycwikxJdFAStfqMtCf4IDyo2LIFjuYbL6hLoauOoMSdVk1nhuMRO8YpFaBLjRjZ8bEur342KSF3k4Kpe2O04Q5rXKtFqL0Nbo0zSPteKOF6LIRIVqCapCtXWmJwL0kWkVHe8Y1H4k1gWXMVUGBa0cmuJakt1yZZlytlJvhPA6s0XZ4RMIIYBQZ2YVIqYOYVK56ZXfr6YKD3U1KGbnn77gDickzZnpH5D2m2RfmOZzWmk23RoimiMFFv4KdLIgcu/pHqG2Cx0ZcEiXl8S1GTgwTFMkSU4XcXqGzUZ2SiijkVs/2gBL1s5VvORP+34Nlynnu9s3TJ/DTGfuh8srFgcaC+59hOisTBv8Stt8LsVQq10w6dAe+5Jyq+ltBqoXx67kuXlXly3dhJLN7xdlVStgDp5TUFLaZvEZwV8DdQu5MW/hmUM1ftMeORR/KPq6WMcLAruSrV8Yv9Kdl9Ofg/GKhew6d+9nbrlOvjnssfJiXhivRZ4L4cYlBiVFPwmlSjBajScmzTZlg9dIzDLSW0z0hwgWjGmVrO/DWqNALOaQxVkVMXTvSvZCH6CarXRVal+gj2qkLEMxuQkYzKpwOiko9ZToqGWJu2ATqhdoEQhi7ny1GrVLxoiGhNKh8SeiLnYtN4OsRuQ1EOyInG8cRjRiqN8GTLilMzDX4u56lCbj1DEit5aKjMQW/bOZYNBvAYjtLTyOub15JK19a/9/Nw1/QAe880t2nVYw7hi4HSaCNsdhdmUCdWb+M0jjAd08LlKZOg3bDYzcy0cc+XJk3f4lZ//B0zjgZ/57/9HXvvYJzk7f8D5w0f80W/+Os/eeYc3j3vm/d7GqwTisGGeM5NHigtmtyvFIlKEyO7iAUXh9viUm9t7m19V6Yctr3zoJX7se17kr/2lT/PCh1/kF/7xv+B3fvstLi42fOq1wKsffZHpfsS0rBigz5mbkild4DIIJSU0dZDLQv5bQyRosipMb1uVrEpWc5ZC1degFqnCrB+dWM+1raQu9AaLkAdrgFequz1pIEWzuS3u9NV0jEGAKNSs5k6F2EoUxEhaUmrdY8Wa0d6nTKQ+gSiHcVrqMZIXRteSvVO1A/6a2Wy3pM1gX6OY1I0E836yIEYXSf0AnREPKZCnI6nvgOAbKEjcmHerZiKVINE07eqSIkmUWhlzRiSRgumcu2EHNTPnM57sK3Ws5Lfe4Btv/gHf+eAtXvz4xwghcPOb/4LrL36Jhx+64sHrLxFe/jR1OiMfb7m+Gbn42A+RXv00L33i4+z3mfubZwxyxt3b9/zBr/wa7379D/noo8+w64U+mWxqnq0TvbnhRD/HwLKXnu6A66bap0RM0Sybi5JzafAagC6Zs1RUq+2ZcmaeMmXTEUNr1iZshv9Mk/w/81HLfDJX1jBdkwku0uel34GuC6fqQswtIKiUMnN/95QaC5cvvkTXJ0LYEmNkOuzRuXjzv2rz1KPzNTsgdtdB8YBZUQ9iBhuDRYsFoxz0hxjou8TFJnJ1PhC7yN31DdP9TO/7ed93jLUsigqqReizG6NYnyzDRZX1+7UAZpM4BQzIm2GLk5+68oEksjzHftfqwGwMloYzLFRKlVa32mRZssrbXf+Pv5btlrKQioWHOHgJmFulBjdrCEqkGFEQl4ljxeSxVkK03dCvsHmsaLVeI6LkWoxILo0aK8RCLJWokNWK0dX9X6PXmC4QNXhuxWWuTYteK5Qi5CrMjj3mWZmKrY3WDb6SKxyrZaBzHqk6UvOGjkQNlel4wzTN3itjgH6HlmLXMES6swvi5pJhd2F/D/a4WQPleEQ008eBEAOkaIY5Uo0YuAFHzXhG12b52sqxOBaxTG4K0bIsssqt8HHd+qaFJpPB502TmHEynf5TEw19788BA3Ynmh5xtLuQAvFnNnIR4bnq7hMIJWpWPa3RTNMVt86aC8iSVYfp6qeFXbfft8Fo/zph0T54W6IsaCVosEGsmKuBkxdzQDJf6CyVEnRh8tXfe1EmNQKB9adIzqGgpS1PQOIJiG9kWk/+3dJSp9/a57BJKNpjFXejcPLRzoETCgmuQQQrFMXfVxQJ1iMjBu9Y3AhH1Nby4rlC+pYRWaKZTomWgvOF+dh5qcFkRlkqIZhuTKQQGtGoZl8ntUKGGk3vWLC0qDW/EXKGKVeOc2GcKsexsh/NiWWcCiV7pslrbjSCdIL0AbqAdoHqrhI5mD1srpGZRA0Ja1wxEMKAtIxGP7gkozf3nS4Su245KVXNmXtZ/GOy940VKa2jeSsbOyXMK4hs/2pELjQ64qlIK7Cznid1ef56vPfnD9KRJNJtNozjntR3FBJlzi57sfNbD3u0zNY1erszoKmBOM+kDA/OL8hzJueRKReub6753L/8ea6fPeGv/53/nlc/9Z18/DPfQxo6fu9X/i1PvtEzHg4QB9PU3t0z18xYTY5XSzX7S4Szq0vGKbPf78lzNgIcAjkXNtsdH3v9owxJmIpSQ884Hnl0seP116yw+epqy4zwO3/0Lvu5kGKLGFfmCndTRULhvDciLrEjuGlDc0dpJEORxTHG1AQ+r12aUagelAhL0MWCKS6zcNhgS5FQqto5RTzSWqlqUr9chaSyKFEkRVLfMecjFNvMCRCCkqfqphu2AC9EpM6IdGy2g9UKigUj1NepISWIPXkaIVdCKZZlRJmOR3SawLPKDTDmXAhhpg6duWb5AqFlps6z9+nZWM+OWghazKBBcWIlZqZQrTYll0LsgBhIsSeFSAEOdeIrv/cFvvLvP8/+8TepeeKlDyc++uO3nD/6Lu6f/Tu++Llf56Pf/91sX3+Z7vJDsPsscf5OXv/UzPZDr/P6d3wcVHjy+Cn5OPPON77JV37j13jn63/I5tEZD154yNX51nooKEyzRTxTELp0IozTJVDMqebdWevzQQm1SK3ZaxtcDGIOWxKCEfYKh7HQF4uUg5Ov9xuO/DN3yJKlk5a9p5qMyc/B4sjoblB4kEi8QWgUsSCHgPoY3t89o9SZy0cv0Q0bNsNgNU3lnryAHA82FZMRL311Wt0AeP8ZDxZ4NqUFQ0OM9ENPDK12waLv2xChi8Sq9MFw1PFYqLVVVlowLSs0CCkxePhXnheLYFn3oL6XeIFZAZx3LPLvoOrVP88fLfQrNNJhu1kjK2t3cKuVCGqZ+Bb/UDWMKO7AKG7TK27wtMSYgylIwhJ8q8QQ6ZLJO1PwnhSt4NxVGmVJ09iLmXw0L5IoBQPTQSgUMsW6Z4tlTgoFs9NXbwosUJXq3dJqwyJe05GLMhUYp8w4V6bZsEnOLmPNlSlX7vdHjtORqjNEZV8KD+IZYbPleD9zvL0lnp0TzzbU0JPjhlLP6XYZunO67QUSB7JGiIlShHkaEZnpt4luszGL7xhtrwxQxAKdll0T+9AlkiUsRKJ6d/PwHBY5CWw4eF6xiAecQyALZlZTVwzT5qHK+1tD/uOMtMN7byuLpQF7fDQhJ6hK1781ZL1UWZaFIYt3+m56QJsc4tmRFfAuTDq4Dv+EDrV1RpAlvdO4W1JMT1nF78O6MPkCUTSYPk+qD9YTgiNGMuLpV/Ovm3CnB2mTdP26ygreW5DllGScHl6GhscRl9Nelu1kPaWn0YJGhNoLNm2pZSkad20Rn9ZJHCQ0pxiXW7icyhy3xPzBxYLCKixMxxZUA2lxmcjNbs/AkKg1CrNicayiamFi1k/BuhZbBCVXmIsyFxhz4ZgL+7lwPxXujoX9MXM4FqapuF91qwPC+lH0JnuRPkKyxjbaJWrE04ymyxSJpvVOHSH1xKEnDR1d39P3HX0X6Tqr07ACbll0stWZWG2M03Wk6qut2ZSu0aKGHpoFsCq0AhNbGMMyRkXFC/TDkhY1k4A/Tvg/aIeS6YcNaTOQs/XPGLbnlDJbenk6IHkixkTanDHXgrpDV4iJrhZSH7i6uKDWyt1xYsoVbm/5vc/9KtNU+Bt/+7/lte/6JB//ru82Ip3gj37j17l79wllnM32VN2WsFjXmCoWgazZLRJzsUaAtdhiHQIvv/wiQ+q5u33K7x3u+Nef+zJ/4fte5PIs8pd+/Du5vb5hM0RuD8pbb90QPaIpEgjFSuiKVu6nSpcLw2AWDFWdNIMXmcqyGRcPmli2QpsBGwrLZqs+1jL4hu1rhMse2kaumJwyWscrpmzBkU4M8JZSF8CipTKPs9d6mCyhFDNoCA6EQjCHnVxMYtAW3aqVISYEi0IGCeRxZkiDEa+uI08zFWUcJ3obGKj3wqHYElGL0qcI573VcB0OpL4npQQKpU5IjGaOWdyCXNyCGyw4oIFSK/M4MeWMipgDzpyJ8QIkUqg8efear3z+N/nmV79A8ULPf/e5L/BdP/JLfPovvcqHfvhn6K+2bK860tmOOh8p5QF3NxPnVx8mkHjr62/x9BtvUPKBm3ee8NXf/S3G/VOuPv4qVx/5KK9+/DvphwHB17fJZKj9xoBVO8yqGCdbYcnEtx1hSWs7K8lVF72+Ymt+581RrcEYjNNE1Z3VFbCuUR/MwwBndDmSSnUXHd+j1bvNSCAkazppy6uTDUfkiUhWa+ZnEfBi/Q2qcnn1Iv2wY+gG4s4s1Kf9wTrZA81e1s55e0173dYtp/VWqhUjxCL0nTnuaalMY+V4N3GxiQwS2Ow21Kl4B3thnlr03rtwWFc7LNSFG8O0MNZJ7YR9vCWu2/agRXrNGpSAFTqeYhE5ufdKTKz1gteOiRGQfBLgSNXJjGMREyisb2SGMY7JHJRV37sVdwMVlvvnAp4A1QLDqGEWq8WwtUrEMEoVd8RqBac+FjSIYZFaCN4M2OpUXG3jtTaL7Ny/tzV5tTWuYZFjNmXFcSzMRZgzTHNmf5i5ub5hmo+mLonC9Zg5Ssf2KkA4ow4Bjb01HUaoMdlH6AYkJcuITZnQCVoy8zSSEmzONwxnW7bbHTF2hnm1EWwL+NQavFecmJ26mAwuCO5quCLkZr28iFO8jlib9E+wgIZjET15dsPRCt+SpH6r4z+OaLRJ5Qj7lDusj9F1BD9Hok5+31bGaouCUmyzwJr9tRSXOGNeobdtojbhV82gvaKu92oDTbRFl2kNms3fuTR73JWYVLUixZm1AHf9+HUpL4ks9cDL6y5f74RPycmFbCUQ7ZTgr19P/n1KPtrN3rllNeyCt9LBlqlop7WCFfaAnzdroBXdCk6kgVsHLU13qcKyrLmbFNX0jaH60BIHNcUir8acHWhXXZMblcV9qrpbVIkWjW3fSvG0aRSTPYlYF1c1kDEVZSzK6JN6P1buxsLNmLk9ztwfZo7HbGC1eamLpaVDF4m9uRuFPhF6IQwFerUeLskWgRRMOhK6RBqsI283JLq+3UfTQ8do/uqiS783WHipnes2F04yfHidzKpN1ZPnrkYB6im5tX7Fb046TlUCbVP5oB4SoeTJbE9LhpLphzPmKlYErBVJkTjsrJZlOlIlofkIZUZqIabE9uyci+lALZnDbFmvYz3y+d/+DY7HIz/yV/8G3/8X/yKf+uwP8vDlVzi7esTnf/nf8MaXvsSsLWvWnEKgndlxv7eUvBfjmsQisNvt2PSJ25vHHO+PXOeZn/v53+JB+CSvPhSuHj1k+/AhX//qW/z6v3+Hd55ZZ+hAgmg9FnKuzNXIy3GcGYbE0EfbLUumZWF9OSQ6WKmwjIGquOOUjaEgbiFbWoZDXELiXbppkW5Zuh1Ll1CpzFOmxkDqkkfvqhH2qoTQm8tbVaKYxGCeZ8DWk1pyO3GuUS8sdXAoeTJ71SpmRplSopRC3u+tTqmGRXJQZuuNLrUSU2SeCjobGZTLizUYkhIMPbkWonc9l5BcJiCGSqLVQLVi2ZwLh8OecZ4QiUZUYmToktndxo77/cgf/Pbn+coX/5D7/T2VSK7K9e8/4+/93/8eP1t7vuMHfpKH3/NXme6+wjd/858zPbknvjjydPg0GjaMh5n52R03b7/F21/897z9lT9imve8+n2f4dXP/Dle+NCrvPzhj1omSeE4FaZcCCkwDIkornFTPcmwWWVeeC5q2OpuGvoSD4qJiyRsnem6QEqJOWcUZXLJh3aG3AKcFPN+wA4Ba/bYdkus8FWcbPr+JKH5Q3qF42K15GtqMFtVe4QblmjhuN+j5R3OLy7ZnV3Qb3q6+IAkkYPeo8fphNjpWovqZL7VQ1l20l4bXU0NNGcfm5W76wObOjCIkkJCu8R0nLjfz0xZqGrBpiYVCy510tY4WMxJTmoTFMlzSrHWEwzwPYZVRsWKN0TE9zN/DcHrDd+LRVxOhWGR1qk8tcedyGsIFngz+bi1KqBaJs0wnF9MX9dMLdDkx+2DmksgJRMkWfdwbK8051B/zVo9pWLpI10KPavXYdj1rcXqlsjQWh1oACZFg5o7pIO8RjSmrBxzYcyWzThOapgkK8dcGafK/jDz7OkNNzc3JgkWMVn07cjNWHj0cmXz4JI47JAR8v2BSiQMkRJ7QhhcA4GRyXwEhZA6NufnbB9csNluGDYbM5YRw1UtwyR+HhU/Bc8NAh+b1SVAYtmxenLNmmSl9U4TNU1GICxYxDtCnk5DwjIq/sPHt0805PlbaCgbQFui/oR5LKPcJ/tCPk4+oICIa9qltZR3cOsRdXnPG/twwzNedvL8Te1Htee53/XqutQ0eR5dd5bSJl+pWEdIXcvFAyb9NyLhyrcTsrF0FW+n4fQ8ORht9ratJrMdp0SjscT33pw2LFFLY5Lq9/aO8eScS7FBZY3hvDmf28OJ252t8rA2tVtUzLrqhjbYtBA8I0Jdz30ViwLbd3VAHTw1uph3K4RKEa/AUF2LgItQkw34EiyioJ7VyApT1YVstLqMw1TZT5m7ceb2OLE/ZqapWPMwT/BKEEIykhH7jtQrcROJc0fYVMJgdSRdZ4M3SjBg20fikOg2ka4PdH0wm8gYvVGNyRRw5t/qd8Q3nLCM45bVsfMinoNcXcoao8VqWvxHqe4B7na+au6bxGpjsvVUsW/53vzXB+cYHlyRx4nj9d5qFFBKnhh2Z5Q5I7tzi8jHgVpnW3pVqeOROu5BIrHr0XlkkxK5T4gW9rkw1sLhcOALv/+7XD97wuM3v8GP//Wf5sOvf4zup/4a2weX/Nov/jxv/MEfMO731ElRtboQHJRkVYjRxlEQi6AJnO225OPIYX/PNGXmUvn6k8wvfO4rfPaj55w/LDy9nfjaV97lS+8cGetA3wu964pLrsw5k/JMzCbhmcbC2RAZumgWu566rNrco2z5rJ71FZfclDZ/sb9FlzZm38hTMAcq28iNZlStThgs+rbpAkOXIEZCSkb0vVCwuZuEEBDNzHMxLbdYBqNUK0LWRYtua1IatiZ1qMWkcElc2gix76025nikZmU6TESKN+JLhC6Z5XUQk1vGmT5ADJF83NOf7UjDALE3ICdGVJY4XRDrPp4SImZjmeeJcTxyOOyZ8kxMPV0/sD2/5Gy3I3UdlcQ7bz7m87/xG7z7+LHNLA3MtTLPM7/4i5/n61/+v/F9P/iLvPiRj3G8fsrTz/8mF7sHfOKvvU7/8UqUapHuaDKHN770+8SN8LHv/yE+/N2f5cVXP8GHXn6F3W6LUJkLHEclJOFikzjbdpxyiVJPMkRiEpJTUJ2Exf62rb1mf71GGftk3b/HydcVxLtpswSZYktffcAOq4czl7HFHh/1ppJWh9VAMm51vET62t/FaolELYuPG9hUAdXMNN5zWydqHjk/v2ToNsTzHUGEPbdMx9HWJV0RBw2sy0r4avXIG94y1wv/220ucHszUqPZ75aiHI+Z46SOQyx8KE4oCGvQlVqJonRh1dO3QOdz+O/kGhuwtH94yQnenmwJujT5VYtif0ssoqYOWGScskq8o+svxYu4F3VZtCxoaCY1/lrqAZFKq1PDMALFyxoNy1jNRiMghu2CB/jMNSlADWi2DLgUIVaBGTSYDa5GyDPuPOVnRJWavMC8yb0cT+aqTMXsp4/Fgp5zhqkGJlUOubCfMtf3B95+es1hf7BvooHG5p/uJx5fj5xf3tKfnSMpUWshDVt2j87oduZP0okgyfp7zPPMsOnZnp+xvThn2G3phw0hJVNSOJZccYdh2oZFFFeliC5qltiwCB4bdslZdRAdGqv01+7U9pRSDIuExv9oxvDvH4v8xxMNj9xq+9m/3DKK/cGyPOmUhLSRt7KuKp4dUCcb7ZdLxXkwgEzw7IOnl+s6sbQN8BbloBWwaKPP/lwrrGoahCZj0SrUYrplgKCBRF1AvIgVJomsPSlOy1Tq+pLLguNkmqUYg+VarufsPadW/My1+1aQDWtKrwGI9hrtzAZ/jBVbh6XoGLcwq0EWKVQjVm4uhYj1y42UpU6g3WS56E7Uir17649RPNqSQyC1wntZTrsNfE8bmZNXRXOghkoJWGo5QBUjU7mqkY1cmbPdT3PhOFUOU+F+LNwdM+OYKdmL9USBYJ2Du0QaKl0vxJJItZC00qEm1RCIybpxm69xQPp2E7PSTIEaIlXiEkGuKrZvZDsH4qvzKklb5XF2gZr9QKtP4bkNofUfCVUJHkJRt3mNRYlONmL1NDP63Jj5oB3DcMakwv7JOxB70ubMbH/zTJd6Smcyn1yyuU+lDimzkTythNRZSjhnYurYDANBZvNFnqzB2agTb33jG/yrf/RzvPONr/Mz/8f/jo99z3fTb7ecX13xqz//T/jC7/wW49Obhfji60KbY9R2LRugg8PxyPE4URws7Cf45T94wh9+5ZoY36Bka0ZI6EldB31H6DqCWAfqMI6ESZy0TsxzpkQhxUiXlFoz1QuxU5vrbX1zIGHrywoQtZrkqf2tOJEN1deA6HO76hq1VJMLpE6aC7OBolKWpqACUAqhVKtVcRcuBOZiz+9TYuiV4PIDCR0xVTQfSZ1rg+difWZy8WsW0Wq669V5TUhiPWkIQuojtQxQZnOVKr5mIUiIhNgbMdRKKVbcHaN57Ve1czIfjxwON8xz5ng8MI0zw1ZJl5eE1FNqZDOcsR8LX/7GY77+5pvc7Y8mMRMD5zkXqhZ++/fe5AtfeszmbMum33J5ecUnX/skLw2PuJhmUqzUkqklc/nyS7z6me/l6tVXeOljn6LbXnB2dsHloyv6zqQR42TSrLNdx24b6WJolxewqCsEJCRiFwknsipowYwWNnPM1gJjvuZIDFbT0q6l6qK71tNo8AfwCBKpUtHqdtPNyhnLPtpaIbTGaitHW3GB+jyxZLMY2XBJmqEPywDd3T6hTEeurl5gM+ysSDwF7q5v2d8f16CR419Y935nrSwF06poze5g2YIGyv0kzB7WtL+Jm68Ej9VG7+9VidrMI2xzFTXHTFNWiCtCTt765PMs/34vFvFz08af7dXth7X+gxMs0lBW9ZMbfU1q7+F+i/Za1TFNwyINw/n3WGJvLaIuFs6MEszYwfFIxH5uMhrL9hojqMXXRQ3eKyKYU2Q2m+Miinjy2GpT2uc1VK1F0KjmIBptPSuqzC6xHXM1U4ViBDAXm8dThv1UeXo38vTuwHScTI3j87DJ9+7GwrP7Qtoe6bY7+t2Os24glAizZSm1s8+Whp6wSWzOz9icnZO6DdJ1SNdRQ/R9oVKq11Q4oRMn0wInPegsYJY8KNTQpUlq7afo90F16aReqwXfU/UMeguS+wDxnN37Dnn+xxONdRyu3OH034Z2F7ZlpKRBbFkf02bDyWIgeCS4ae2WiREWyt0yEEDLBq332HtL0KUIiSWNaZ7IweUHoYUxljySNQq0oLyVXYEzRm0aZnVQ7kRDPDKgzXaSNToi60mSun7HU8AoJ/dNCmXAdT3Rq2js5Nx/i0sTT/+mnHK59Xn+3Wl6XWxAimCF4kGsKEsKreHdKv1Rm8yK1VaoUqXVXoDMWA8Xjw4E4zj2PHfuqJ2g2aILGsQ6W/qJLJ6ynBXmWhaCMXmx1TQVjlPhMBYOTjTyPBtxQc3OLURCp6RZSBsjGb0WOqn2WQW3v/SzKpaJaYU3EoIJRMWIiBWGOUirFrENGtYIwAISll6a61SQRorDOiB0vVbturSsWNNmqwPg2ia5E5Zl2nxAj5xnQtcR+8Q8zeSS0f0dXYx0w5YCjOPRx6PJYOo42hyLpreu42wgo+vZDWd04x65v0V04q547YUq18+u+e3P/TK31zf8lf/93+GTP/D9fPozf47t7pwHL77MH/7W7/D07bc53N4yHY8mIhS/9gpd6FGZrelZNuIzzbNn/ky2VKvwuGZzSkmJPiTrv9L3hL6n324JEih5NhAkRiJDNECbBTYxsO0ClMBcrIdFbzgJM/xtY6aRHl3WuuhWU1WVTlxuVdc1qAVmzFHFwL2ouKVwMImYj+GKR75SorhXf8XliDESUuRst+NwnJiOt5xv4EUN3N1V5rFw+/gtHrz6gjlCxVZfZ4BwPtwjFOJmAwj9kAh9Z5aMVZkPR4uqbXqSWHS3qpA2OwJidpOlEvKMRKUWIUSrB4m+oYPJVg6319TjHZXCPAem40yZRmqEEDpub65JEugePOLN+4k//NpbPLm5Y5ozLetuhZWAWKF27Dr6s0vOXnyFR69+B+evfjdz6JjyZJIEJ2Rp2PCJH/4x+rMLYhjYDluuHj5it9sgooxZOM5K6iPdYIQmiZr1NRZMKNkuoBAIvh61SDPgEhBrfCiho5ntNWVqAwBVbN2qba9xEOLxuPftGPNn7TDyIB6dbcDI9+bQApHrxuc5vTVr5PohdY1z8Po7JDuIqouMqJbK8XjL08eFy6tHbDZnbHYbl+l1HO5HpjFTi6JSLWEi+N6yAhvBrmnVhhUasTDiPykWfV+ydFbbZe5RDTHUFVPUVr1lNVlJLILtJ8jNIWTFInACfhv59P+dkNxGX09Di+tu1paK9hlZHreGPf11ZJXVVBopMpwRY/AajyZdslepCiV7/5wgVjcazCUpULxgG5NQ4tdOIhkPzmm1LE0Q61lWIGRMVlcCdQaJWK1LLYZjqlg0JwXUMx4a8brTaj2tKkYy5sJclVmF41QYjzPHGrg7Fm7ujtzvJ+ZpMrWDYxEjGkoqQqbSR9A+EmRD0YF5FrpkJGPBvynQbXd02y0hdoQUrY40RsxqtzV5dUcpDdbn7TkswlL4HYDWl2mpB11wryGKpVEiDcfaGEooqbqrqJNjEflj1/tPO749oiHvuX2rv+nzf9MGTm32rQ9WVh/XJh0TGySNQUuoCHFxlwrLSVTPEiy7qbNoy16YrVv1vhWtlOqkLNcXIi2g3p3aejwY001+Dy1CFJYF2sZOXWpTgv++TaQG7tfzYh96aW7SFr5Sl+/y/CS3fz1PK1pe4/R3uvxfl1dpl9//tvQoYflQTX+5guFWbLZeWEWaSgoRY/niFsVVvHO3erFUte7CFJMkUYxs1GCEo2mJa23pPksna8QiB0GoSRYHs9awrjWKGXOLJhSmuTLNlXmqzFNhPBbLaEwVLWVdOM3gnzmbLV6kkmNlkyoxVrQzYtTqdZJYQ7IU2i1YhFUihWiysHZWG5EJxUCaM6m6SKRWPW27ro1eLwEB19kiRrTEC8nxsa8LsbOlXk4KP9RFVB/UI2wHxqfPGM4v4TAStwOHuwPzNCM527nO1SLZIVLLDNMIeTTyv91RQiKPtzZ2O6PWfd9xljO1K9znyqxKKIXDofAHv/vbvPnNr/Ejf/lv8F/87P+Oj37nd/Hg0SNeevWjfP5Xf5k3vvJV9nd3zNPMNB4JXcc8z8zTZNmOar01yjxTaqG4JSlirh8B61QcQkBSIg4DaRhIw4ZhuzX3k5JBAnPN5Gmii4nNgwvOL88J8z2bciSEwOHe9fnV6iOyD7y29rU1x/YIt9J0GUYSJUmkGWeo+IaRK100AB1aj5cKqtH+KZgxRt8tEb8oYr0+xkyuJhORqnSp4+ylSwKJUkZe1MrhfkSPmW135HyYkdiTSyFIpe96Uj8Y0EeQYtKsEALqPS6UStj21FLJ00hASefnpBSJMRk5DVYM3tVKGDZULEPbhQ6CddTOOXO4fsL+nW/QbwfK5oI8TeTDnpInussLYrclS4DNlncPlW8+2XO933PMlfvZfPytWN5OdgqRruvoN+fsLq44v3yB3YMriIn5eKR0G+ii2zHPiCS26ZyahW7bc/XCC7zw6JIUI+Os3I+VNAS6AWpWDsfCcGYuRYgFMsa5MJdCQW0hdQrYVvmcmxtXIyG20jSzCItW6pqVc5I6zdZczJYa+QB20PAjCFqK185V61GhRrBFvHS5RW0W3OGCD8HsPwVWVmCSprAwNQ/ptHW8wjjuefp45uz8ivMHDxm2G0LsSd2B+9s9x3Gizo4rWsautqvRQKARjuaKBBgRVCW0btUL7hACcZXg+iJQxSPLomiIxCSEDkSzBUYraJEFKKIr3QmykmepJ+SiruepYYJTLIKfFpyonHoXnaKWugQ0VlTT1qsi6q5gHujroqkDAkt38RTCsu21XmhVsesbg/XFCtA6fah4wbNavwc7uwJZqbEiNSHesG4uELPAaGtf7Y1MqEZIdg7Ea+nqVKh1pkZTaOQKc86MuVA0kFHmDHMNprA4Zg96FubRQv/tehOAZLUUVUD7gJRAV8QalObqzheubHD40oXocqdIn3r61LmyIti6IIEQFalWom8yVyM2RuLWfiin16OFuEsjE2JXs2JQxggeKxZRJ6Y+T1a9EKzdvf704/0TjfeSjPeSjfbv8C1+5x/Lwy2rh2tDXw7gjfjaoGqevvYa1XTy2MWoEpaai6b/A4xktFsjG8E6dkaXQFnpgPVwCMXlPMWeazUdSllOoSxGWfZ+K+Fo309CK5g6IRpNHoMBhObE0L5O0y2jz52C90D99pOnGlklOGvZNpRFLbdSDuNGXuTkgyfIidmqp9qMulvUWIt1qs4aEQ1WLL98FicayKIFzhizrqEuUYE6m8ZbxQiDFbTawl2rPS474dBk11iTRSs5IRolQBaYq2UxjrlyKJVDrRxLMeIxV3KulEnRSVnsLwxN+eRWcw1LBfpCyIWuVPe+ttNlbk5mJduL0Eukk0gU+61I9MHpEaE26U6IxZqxM91jG+2wTuxWwN/GeKvdEDEsYY1yIAfveIrfi1AIfotkAvPzE+sDdXSbLcd0Rx4z3dnONr4AEjvmycB2DIrERJlHmP7/1P35r2xZlt+HffZwzonhDm/MfDln1pBZVVnV1dWlHqvJbpISSZEyDEOyf7EBQzBgGDbgH/1H+HfDgCVDo0UbEjRZICSSUIt2N4furqoeqqpryMo5871887tDRJyzh+Uf1ton4mW3xGqaIphRiLo377s3hhPn7L2+a32HREk7Ewp3xBA1jTUMkLaU8yfkaYcDuq5n5RyMmV3WoqrWQqnCw/v3+Z2/819x795d/sLf+Ne49eorfOnr3+D0yhV+9Ed/xJ0P3ufex7c5e/iQUgopZdUC2Ly4SlXefrEQz4NsoAjgNETNmztWCJ1mVNj7dl67UiFEnRL6wDPPvcitV15ie/6Q8ewecXgCzrG53FKLjd+NHlDFzXxbfT49w7ZF6SOdMyMFV+l9mIHJHrSia4A3cXG0EbxoERvNqamIOsP42Ew2dA3yna6/43bDsFhw4+ZVdpsLkMrVVU/vhKP1QsGXUx1JKUKZNizwdF0/A+Y5myhXvGuJ4SaeNf3HtNvRLwZdN0pWkO69gaiAD5oKLj5QUqYUjTkOAdwQmSpMZxfsxmxAxdMPS2rJ9KtjcnfE5Vh55oXn+dyXvsrv/nd/j+nsTEv6GohBQYaguTtqJ6nd8loKaRrZbC6JIdIPg/rh54SrkbpcMixWrI/WXL9xlb4PpKnyZFMIvVN73QrTLiu111mHVjQ3aJxUieed0PfBQC20TaOIjrO8DzgfzXFJ1+dGc22CcdeaL06nWLWAC9rX+FmtKf9FuzV6lDgxYSy2v5qOrmnkvNJraNcrzJP7mfRRilGwZN88dAbeEaXoKQ+RnIWLsweUNHF0cpUuLFivF9qYutgybScySbVmohNpZ7Noj1IidXLdqLbMxh+zO1Q1NysrpFpzKlgzQB/JutIIfd/TDZEqE0iiFG2EYHRKlHEKtP2LeYvUH+rP9f3a+7eJ0VO1SANkrRZxWmg6O5LawDQN0Lzy2N/a0FTF1nr+Rgl0US+E4NVBrPfBqJVqcNBC+mpR1oQP+tjOtfmOHt2C1RQ28aGAZA9TVf2S1aTBuv+NhFzY788U5ShXPdCUqjSi7IQkQrJJeXWeqVYmhFFglyriIrEbqMVRk+wF6LbPa80KOQguVUKupFxIuWgDaygzfdeZdiQ66L2Gzw5dR/BRQY6YLsZblpewn+5ZY13aOzQ6S3WOoh+yfg6ik/LsUIqZN0p91c9IHOq0aj+vB7WIBhl6igtmGvyzrSH/9EDj8HbYkv/078t/z+82zzT7ahplS98sioy9R3yTZCt6Eyqmhcc5N4fWaGGvJ7e6MGm136xd2yXi7aJ21dbmCq6wb4DIvIfvaUzeZhqBGWwoBhAkSBPsayF5ACOVnmVLgnl8OwEJuqmI8eEOD9PBzGeeYcjBV3sU+53WZmjTkWoQpC2odlHO0wzseJh+wzQcrhgSzqqPAGZ5jJv7BDbad6ahsONV7SKSCr4IpKqONpad0QarGmSk48gqgVpVGyFVtRBSnFrQBajBLnCEscJOhE0VdlXYiTBKJVHN+lOe5qzBzLUlFk3lLFowxqqUGk3abW8w4F0k+kjvIr3riD4SXQcu2ibv9LO0gk3rSz1RxNVZP9A4knt5fftv7XLpQtKE+Owt5RrVxb4WMECn94ymjerdfaaBxvGVq5RpZPO4kHZb+uUROY6UoueRE8F3kZITUovaNy5WWpiWrGtD1caDhAhpxElFuoFheUTME+Fyg99tGXOmVJikMhXh8ZMn/ME/+m0e3L3DN771F3n9F77BrZdfJQ4Ljq9eY7Facfv9jgef3CEGx1StK+T25/DsnS/KB/dWqGsw3L7YqWLaiVRIriBVmKZRrXWNEjfuRlzsef6Lb1LGDRcP73D//fd4fPcTtmcXyJRt+moHT/bFgjMkUaxb4T1MOHNVKQxBswKqdbVdUHYztVp+gnW+qlJ1SlSbWA8KzvJ+K2586EZL2Z49oesiyy7i/YDUQB8cfb8EHwj9Aj940m7H7uwJIhe44yN1eRIIXW+0F4f3UZsxSSlq3gU9RttpdhjzMSIh4rueGnpEguYYjAlfVQzbxQ7peuowEPol24sLxu1IFc/RyRGr41OGoysQAlNY8OHDSx589FNOr17l7NE5qRQmoyniEp0ElsETg22seFIujOPIOG6ZthvGrmfjAikndcPJGRcj65Njrlw74cYzN1kse7YTbCfB955+oYXuuNPJ7OlRnDVdVWA3ZqYpa2hbFzlZ95rLBGBlXcoVqRr2GbuO0IW5idR+U+wcUQMBMT2LWuH6YCDykI/1GbqFGBTQ2lrrXJgL5dbga7SqPYDwe1pq6zYDYAgdAdFGgdKxbA2XAlUF91XTRNmVJ9QxsVwdMyzWLPuAP1qwc47RQ0IoKaG20MBci9gnZKJ8N2s37Omt2dmm3djnrgV84x3IrG8QHF2F3gXCYoW4Si46iXU54VIlN/q67UMKT0TPDTFQYF9b8021wU0HZDURbg60czQY0aZn7eXuwUY2nYITMRq8m/dMQINuM8ToiejaE53HSwQxVzrvLdleKK7q9MbAjXOWXA1m8+os+FfrNCkVSRmc5RXhUJepiviiYM1hdGhbE2tQXYz9TS5FMzicpmWX0JHEM4owiuM8Fc42G8ZJGRfVkskput87Z3azCHS6uZdSmUqhK4VUDbwUc7Osdk6IoyOw6AaGYUHvdc2rzmNxOzOYAA1gVjBj+1M1apgWHHivmtj2Ac+p60bjnhPujdlTD8yRtK51c0P8sC4pONLPeM3++alT7SYH90///M9auwxd/w/9XhMle3Mucr45ROz5gkr4F51PSMtFaIV6K8FbOX7IRYTDpVgv9NZRMODRwIb9e+OtzbkYDnNVchB18tIERJpSqSJMXzlIFN+jyPmi1jWNevB8h0CjXchwSJlqoyJzgnCtrpb5LypKO2qTiOiaMIi54BBtu88Aq3U7VT/nKEUfoGLjX+sgOGcLhmuUKRvPNZF5wU5o4xj7rODKVcQFxBWqC4hTeb3SNjxSjTYQlCfbxPTFO0ZglMoI7JzeR++YgiMHpVypBYtTa7u5KmtvroDL4DLVFaV8GVqv3mmaZowQIsFHgtfOQXQdwfz4BWfcRXkqlV3QLncDGM5Gn87Qggre9SXUDFIcPjtIDpc8NWmyrEsgGSTbsSsKyIpUsiigS6Lgot1/1i7Cv4i3V7/yFe4eHfHo7l0e3flIBdQIYYhkv0CmURdF9PwO/YoQPN4LZdwi3nzgStJzLwR83yNxoNSKlEyMjn7owDnGXAhZi+9cHGV7yVt/8j3u3f6Yd3/yI775m3+ZZ198gcVqzWq9out7Qt9x96OPyecXeLOEbeCgVJnPUaS5hjX3Nr02fK2QJt2sG90qZaZpZBq3pJyZ0sQ7b/+Ex5fnfP5LX+G1N77E6Y1nGdanrK9+yKOPPuT+7U8QmYA2RdFjKDDT8xp4rRUmL7T9RFDefod2tnMV63Zrs6WI0WeCNhtK0eC3EJSKkwU6G8e2SR5mM1tLYTPuiMdHmgTuVcNRRE0N0mQ5KH3P8uQUV7QAb7kyoe91E8uVGPVzGlYdaUqk7YY6TiqRWgbwEfERiT2uX1J9VHvQaSJ2GT8FXBcIq2PKbiKlLXkaNT3cCSfXn8HHXlOFYySHyO37T/je999m8+ATjq9c5c7tO5Rc1C/f1smKhpr6qh3IMBXimNTFanPJ5fmZTbyFPPZqEpITfrkg+Js8/8ItlkdHbCe43GX6pbrZqeEJ5CkTg7pDtZZRrZVxVJ2A94FhiCyHxpzWtbdWR8qm2PKeELxmZviDDqA1saoVO1D3lqsVxCxP/WcQZAD0yyU5BXJNlJJm6pgK+T2zw1S72URI2UE22ahODURaDdMExhVrDtk1Vu2fZm637r9puqTuJvKwZXl0hSH0hFUg+sBOdOqcZULqYSKWbrTSGl0HN2VU+Bn/uBlE7cnNXqyH75u+RJA8kaeCjwP9aqAPHWOKxGlkGhPTlChFLeDnWgQUXPl9LSJlz64Qq3eKAVEjsBt6tWMl6LFG1E5V9JppQK+if++9vn71ejFLayt0q1T9bNpAznv96KpYGjdI9Lig7AyxBp93gg8Ku1SroM0A8Wr4X6zpKWgj2AUFNcrh0veqjcCMSESqWtjT2fFwSknNiIKWLlKcI0klORid4yJnznY7LtNOgUad9Hf3XHqaKYF3BZFCJeMkUySryLwWsu31BatNxFgWPrDoB/rYAwqAvFG723nbAGuwRpAdPCjVtMcKLCN2fJt7lNUiITukeCR7bba3Y9MMaawWqQe1iFLmrQFq58bPcvvZgYZ86s6nvudT3/8P/e2nAYoc/JpToEHQot77fR6asypdtRQyU5qyFY/SqvQDZG178b4IEMzZwJB+ZkZ27SJpoCagutAQ9O6jw3WCi2iB2zksP0ZDv4RZna8+/Xbn4CuGFIP9zBoq7XDsQcZ+eWppjTh7Ptsg9OJuJ5m9D/bgonVwWkHUVhGHnlTeQZgXH7MscyC+4oOicaehI8oH1HVFi19nF7nbT1q06KmzOK9a8Fn1wehw0cbQASTiarT3aatIa91VT3FKYcu0MZ8nBb2XECgxILGgUebVBLz2pht10NfZsklCVVAYoERH6Tyl89Q+UrtIjR1KdtVJhnPK5WoPQ3UGHJxekNnZz9z8M1/UOcrZ72kgkEOSU1rZpHeZHCU56uSo2SEGNmptdnP63lsw02EnYe9z9tm83Xr1cyyOjhhOTgmLgbvvvEOtQtcPYB382AVwkVKUGpGnEaTiu55ufYSfJuo0sUsJ+gWdC0zTSB531DSCD3QhEhYBnwt+yrgkTBXddEvl4YN7fOd3/j63P3yfN7/5y3ztV36F1978KsPxim61oJaK8/fYXlySciLnad5AK02EKjad0s8s54LzuqPlXMCNOskrmTwlUlbHqpw1Q2EqEx+/9y5PHjzg9rvv8sLLL7NcL/FhTb88pu/PGKeKM4tO3biYp796uc4zQy1EESaBlKGvsIyaLi6lmv4IpFS8r3RELTiDriE5Z7Nyxiainlyy8oh9sPdZlBo2dLpVl0wXAz4O1KoUJhkh+EwcevrFQgO1fFQesYNclJzarxbE5VJdrUoxmqrH9QtiF5GgLis1V5zLTGWrE6OqBUzOha5fAD0yJSqJmicAhtUR3XCEd55xe0FcHVOd4+HO8+0/+B6333mL5dCzODlR+mYIJNTpTptMtodU0VCvaSTutmw3W/qLczUCSCN12jL0C7UZdRoOqTaakbNLtcMcFo71oNPggDBNBcmV1VGHn9O5lZozTcXoP57lEIhzhaxLfKoaHuZsil9ztuomHNSutg4aL9Hh8dGzWHVKP2l7Q1OPfsZuXdfr/pQDruj6IBUTMslBmxFmPdvsHKP0QarMOhZpAXBmwNG6f4IGy7kquhfS6hCASimJ3XRO2WX61RHD8pjFcqnXkOl8asogLbldrGOu+7Wn1SLog5pz0h78WPHYPk+0i+mcuRSZzlFqIaWE7Ea6oSMGhx9U2+edJycxbeS+FhGssdtOlbqvTea93I5YO0WVHt6owk6LDL8/N3VdrFanHWhBrds+d3JbvWJAQWuRvdGJiGjTyGsiuI9BQ/RMPzD7qgDVearz6n5J41/YfunAU+f8DMlKpVbRf/MMLTjpTM9rUx6z6hev1vaCTiKy8yQ8o8DZOLFJo+atBWNlhP3rbGYA7bXiKt4Vqss4p5OSJIVEZnKFHp0+Fe8oXmslfEcRJfx7szDO5vJZzfUyisMZHd1V/TlZ8KXiKkRxxGZ2VBySHcVqEpc9krT+cMmpk6gJZOfoA5lTTYy+uqer/Y+j0TgECIbynwIcnwINCK21/vTf14Pv4el2vp2LrhjYiNiJ1WwYDzsDzKJI79uwxNkJLqZLUE5zAxut7kb0Q2m6sadeuKHA4A6SKSOE3hGj4K0e9RFcdIpiHTa9sGKxqPgpF9GxmzQ6jOV0WKMEd3BhHxyOZg0HBxOY+SLTC3w/hdTfkDYOqvpe9LyyLID5+Mt+nCnVOpsNnepGFbxTnmJwVnM7XFQPZuf1JM/VOutGLdljGF0YpWqKcHGV4jzVZw1fa6Qg6XBVFMBhtDivndbGB21c2baWeetkOLv4vTk6QBuBwTyaauf/HHaChgRFxRF0QO+RwSOdR3oNSqoxIMHQbTvXqlHgsigoTeCynTvZUQ1oNFDhqgVBHgCQmtsC4HSCkaAmR8me3B7DmhEihxeHzLqe5mYVZhj82byNY+HqjWeU845w8egJdcqM446SJqTCsD4hiRbCaRpJZYKUGKJHahPdasaL6xYgQsmXWij4qCnvUvFFnYbU6qPgSmZEU5kphe1mwzs//iGffPgBH7/zU37zf/Y/57XXf47rN26wWC354Kfv8OjeAzbnFzy6d5ea6yycEyv4K7YYVy26ZdI1wBs/vJRKShM5J3JVamOt6mZSq7oKRUae3H6H7f27HJ2c8MoNzxtXPf1lx9uboBPSAEWy5lew36hpDQIxmqhXcWmqQirK5x3A4gT0fHZRr/s8O+OoI0+tquPwQdPDs01enEDNmllQ+w5nHfTiMCqbx2edmBQDYOCoUyIVPRZjyfjlgn5Y6pozFeoSaxwVUpoUUMSIt9C9lDU/pagaF+cCaZzwPrA8PsYVwYeOPgQNyRKhpozDsTw5peTC7vwhcXWM6wfOa88f/OhdPvrgfRyFa88/w5e/+XVeF8f7H77Hhw8eUIwMIFWPoc8V57O+h3Gk22zY9j1eII87pt2O9XJF33Ush4FFzsRhyeUOxpJYLiNHy27eCqXAlGBYdiwGJQHrPlBVTJoy1XlCdKwX3TzNB10b0iSoQFxJsq4Fsf6pDrlRNNEGUYw9OKVYed+KwM/mTSqEEG3CINRsJFor5nE6EWprqVRto+l66ueJs576BtqqPXDbmMUZQ6EV9UZzOqgltPEgjGVHmhLjbmJ95RrDcjm7BJVpp0YQtVg+TZ0foNXbrlX9Du0mm8PPnpKk+5pSniouQggCUbQZGx06GJwg67m6CBAXwhbYCpQM2alIfG5eWWO2LSVPhdHOB1v3m0ZPnxu5XmsSH2zb5UBX6vYIZra8cU6zG5A58A+ne2sLBi7VE4KQ26bn3DzFcBGtEQLEqM+hcRpNQ6B6MwGl3Nt1I0Z/KqLsi8bAIAb80OMkqgFQ5wnZaFlewHR0qn3I6rqHQ2pgN+7IKYP3xH6gGyIh9IznI2ljZKKmh2j1p8McL62l6wriiukcCtkXihdKUFteiZGiFll0QbN0Wm5GyQLZJhPi5sZmPfjqitJ6Z6BRtDSqxc0CDZ9F2RStXsmOZGwXWi0y16e6jpeyd9bcw/l/8u3Pp9F46gxk34L/s57L/Rm/dwg2Dm+HIAYruAzh28CXWdA44yixh7avVn8pF28PMuYOhDt4udXNtagT0c5AQyHu4GLzbi+oDgoyul4v6hgxVyU56AzYyA/lwqaqNq3ZvjZNiFh3XMrTPsT6VO6pbI75EB4ca4dvPDJaiJdyDO3ANT5WcAbS3Py+9K26WUgl7A9Q9c4mGQ4X1Nc+dLoxNaGcVGUpFSc2ddA04tJ+XrTYmAXjzqvLC228Izpk6KDD0/lIFAtADI4QPa7zEBVchKKDjlgCMRTlaYb2Opst4X5hoh0bA0uYbW2ImhsQekccHH4A3ztc76Hz1KgXeA1OLe6cnQ86A1beZa6aeJ6FFh0v5QBs2NiscW69dRFaTobUT9GvRAuCw0u2nQNtiuVRgKV4ad+1+azefus/+n/wi3/lX+b0+Vs89zKUKfFJF3nw0fu6CeXE5vycru/IuwuyZTtUB+nygjyOKpQet4Qu4kIkpRGHEKNH+pVOQLyDLIRaKS4wLAaYbFGRonQmUfrOxfkZf/i7/4CP3n+PX//rf5Nf/at/jV/8zVNe+cL7vPPjH/LBW2/jguPJ/ftU4HK7s86jdt7ap1HE42thKsWya9DxeErkWlRo7RxDDATvOVoIf/VXv8Bf/JXXkFr445884tHHD/lXf+kmL754yp0HW/7W3/4T/uStJ5TqWHhHrpVdqXMRlQ34tM3ei2iXFFHXtqL0iw7ULtmpUNtHzQFS2p+n6xRg6CUquE6LWJwnS8YBg/fkWumqzIDLdZaFYboU5zSITsHcROwqse+oueCdo1ss5ubyeH5JHRMuBKXJ+6A5JLN6tCjA8QCVkmC3m+j6gbqZ6BcDoZgZRRUkZ+qUGC8uKRnVOtBRc4cUz+NNIXbwlW98hdOjI37lN36T559/kWlK/Pitd/j9b3+XcXo0F5BTLbji8Fm5+2EccReXqisBsIRnakWGQbOHusDRjefww8DCCash7BtdpbLZVIbesRyUEtz0cznD5eWkBgbes151DH0wYbCdYQK1aKI7IvgQ6Bcdw9BMB/R3m2ZQu9dFLZVFKFnwCy1S1WHpswk1zh89ZHVyTOg7un7QAjxDLpMBCDWBcKheSg6KFrFsDRXDaRgw7FkBuhV6fRycgRS7hRbkOx9pW7srtUDeXDBOE8vjK6yPTwmnJ9S0IE9b0rijJNTYwPZBrUVs7ffQKvBqj962tfa6nGsgCnynxXGMwtXTnpPjHucrm1Gnp8crT4yBcazce7DlYiPkrE+R0HpE9zcr2Ot+V9mXGvv8D9iXFk8noXttfCpqYD6nGnVtpjIr66Q6fa8ZiKK04Go6SH2rpkHxjuxtT3RO9XABgpPGhNO1rBbVEEigoIEEyhSpKoKmGrjS58mopa0zfWzotQ7pfSR63S+U7qXddAGjV9v7Ko4YPOvjJW4x4MKCkmC7mdiebNk8uaC6MutbqtWgzeq/Op3SOCe4UPFRkFjBLP4loHSxYaBG1YjN1uSi50jNuuYEMOG7HmIpjpTM8EGYwQBWZzRulqtKjfIHSMgZYNvrfvc16Fwrs9dAz1bJ/6MADf+pu/vU/fB3D1+H/Bk/+/Rj2+/ZuU9mnwnx1MTDXrTMjF8TOFUtoD3mKU0zMtovMvozN1OxAhhq1gAjYLaIUh3E3FLAOUfwylvuvdD5SvSYTWOlYps0QvaQvD2KMFPn9jkKpguxYqE9tR7i1rluh1gL6Wr80Bkx0S7AvTwL52ZBMk4pEQoSvI5sTU7mnAEA9iOw6hydb645yrkOQcFHsIJeBXWB7Lx2R5wtXFLV8q1YDV4hGc87i6PUQCkFYsQViNXRiWegsgiVXio91jmKXjnXEfAyA5tYRMHGFCzEKqgfd/sgZ7C4BxeKULx2fIKji4Gu88TO08VAHwN954nRE2LARX3vrs2Ka9PXWP5HrbhScKVALkguamtZ6sxrbJ3l/eRO5mmxng/6+UhDG25/ch8CjsP7PhxSO0Tu4Jz+rN2+8/f/Nvff+ym//Nf+Ji+9+RU+99Wvsj49YlgvePDuu2yfPEFwlGmENELOpDQBDt+bc1FNmsfQL0nThrzbEGKH1EzZbcwmP88UFF8qMfZ0y54NlzgqOaur2WjjiWmqfPT+2/wX//6/zfd+73f5+d/4S3z5m7/A1VvPcfO557n30cfc+eB93n/nbW5/fJvzJ5cUMZqLXffUZs+oz4uDWgqlZJJoBzog9N2CKoXPvXST/93/6jd46SY8vHOHr75yyu13Is8/dwUXAs+fnPGXf+01PrrzA7ZjoXMdqWTEqaCwaErVDFbblIV5bYOpioJgtCAqRnkMU5mNLmIMliq+R8BVEn0MxNiTclFqgu/UjQWnov3gqblSXNH1NKjgttiL8CESh0HpE8EhLjDuEjFE7URWA2RFjxM+6GM67SLWnJACXpT7nqTiuw6JEdf1hH6J85FSEi46xmnkwe37fPzBHaZUif2S4eSU5ZXKcKUnnma+8Mrn2Ww2ZBFuf/iQ2+895O7tj7j91rt0Wn3PTSNcZaoFXzKdZZyM04i/PMORoRyBXZfeCcNi4NqtW5w88wyLRZj7HKAi/YvzgovCcujmBlj73C4uMrtxQoAuBtaLqAnLDUKI6oOmqVrqeqQbOvpeHbJc2z9hLkrUFEWUO+9sQm/Pt2+lf/aaFpuLJ+Q8sr5ySrdaMKyX+BRwyZPTpInhtI5sa1XKvknXahKLlVbwUZm59Xa8RExgSyNwOAUhosGtoB35w9ZPKSNn4z12FxvWx8ccrVfQR0oXKVlzFqZppKSML9WYR3IQIEcbIpj7rsJeFUAz34N3dN6xXgReuHHCshdqmbiyCEyTUr5EoIuFejyQd1t2TszJyUCVNFCA7ls0B6lPAY124G19KTZB8/O6Y3VGK6DBgJQ2OXBhr/EMOlXAa/3hvblGSdsydRpRm0NecMQY9f1YLeNoID0oY8T+voiQRZ2jcrX/dkLy+nkVqeTqKcYg8Hg6V+l8JfvCIlRCLbhUkQyuFPwQCS4glmcTcaxWS8ouMNXEVIXtbuLy/FIt2q0eEfsgG9ULY6NoKLqxM+zeeqLRa7O1XwzEoScGnWw2sCkCJWst4hHV/1Q1vJFSKalQcrGcOCs1q06uwkEtUu2zETunDE0yi0/n8/npz9+hLqKNZt/+97Pcfnag0TRpnwYYh7f273zqd2E/xTgEH5++2QLYwFfLG2gHGhQ0q5OTFtX6NN4WAqU2hKoHZEaO9pwNfETxxOoItiHOHX+nJ4OI5kW0C0/TI3UxCIKlSzsidQ7JqaiYJxt1pyHZgI4K1VLXnlNaiAoEaR/5frbRissDaDAfuLkctSZAcK3TIeCddWj0sbyd2E3QpYnnulI1ela1Z6lOU7Bj0Dsh2FTDaaiWWUtWe0V6jBxZnIbriTABU4HRCamo13SOjhygRJCuatFXKwuqeaBXfKcoOTp9zcErp9h7Ld6KOKYCfRG6rhJjIUS1wivRz1Sv+RA2YY9x34IP9CEwhMAiRBYhsgyRVYgsfWTpAsNsa9vOpgPXErugpWakZELJOosuGW+Ao+rKBjaKFEuab2TS+Rw+0AO1b1onesYdwrwx4qp1NRW9VCplDqD57N1S2vLhuz9k959f8Oadb/H6L/8qz7z4MovFkuVqzb0P3mfz5Izx7Ak+RLoQyZjI3kUT2Vu3shby5gKXCvHoVOlKl2fWxd+nzwpCTQm8UgAXfUcOHj+NiKgAWKwbv91d8id/+Hvcfv9t7rzzLr/wG3+RVz7/Ja7fvMW1W89w65WXeP/td/jjb/8Bjx48REwop74V1YoZXYkAsA6qVLE1xvFkt7OOmsO5gX7o6fiIdS/cuHmCjwNhGNhtHjOlkcEHameput6zIOF9YJc1ObvpNXQAd9CVctqMqIjaItrG4gVKUpJQFx05VJzxoGtpuciQrexQUaAWuX0fyKUi3kMuM6XAGS3MC2SndgXVwW7KDP2gwmOnCengka6znBTrHDpztUuTurewb9SklJlSYipqDhIDpCkRYmJYdOzGifsf3ee9t9/n3p17pCws1ifcvHWVqzeeZzi+wtGVaxxfPyJT2D644OzREx7cvsvj83Pu3f6Q27c/5OR4zcX2krTbWc1pLi4miDQlNbVMpCkwhUDsA2GKxK5jWC945UtvcHR8Yk6HSuOtqbIbdYVfDUr5aSW+JoVXLi9GchWIgcWyZ9XHp7ZXQdiNle1WdUx4bbjEaIFu856qQtE8O9/oz6PXokX8flL62YMYehNfmdKOelZY1iOGozXd0OueEfdgo1bNyXC42d4W2x7Fi+2VgmRdT53ZUddazBL2wHjFOQMVbRl3ZmPf1m19fJ2+CnlzwWbc4ccTjo7XDN2gSdUhkLtIniamzUbtTmtrPO7zq7RpYD1kp41HsWtYtSRAgU48HZHeC7UmBAgxgjMjRq/qvuAdGjBvOgZhfiKH1RI2CeWpWuTQ5v6g7LP1RqrTsFunNM1WQOPa78v8SAqkHBJa93yvQa00216rVZy6UAUfVC/pAyFA9YHiPMF5amsMVD9buGZUh5cQEjA5IXshFyjZkXylhgCd4Gulk8rCC+IKuYwK5IKj6zv64DVHZ9CsnNo+B1fYTfqZT7uRzWbHdntBqROhC5TkzdoYbfIGbbTgNRyy814b1s7ROU/vPIN9XYTI0XJFHzs9nu3oGz1XzBBAqjY5Q1G3GckZSRlXlHXh0ZpTtJA2ar2u5U32g7S59NNgwu83TttDDaTrmMSAitas5U/Rk/7s288ONA7nKH8W4Pjvm3I0w2ZBYVUjCLY3e3g7eHO45q6z7/HqwWtOUIIO2W0sJ3oSO/EGKBqnX9pUzkKKVBwZD2zkNAtBL+g2rxSYBUxapKuLkKrzBe+rjjBFrBNSdLN0IE5UfBwxy7KGBtuxMHcqgXDgBqGHQL9rl5xuVh61UlUqVxNrGsCf30cDETPac/vio9LE24fdir1NmZqrB+VId1EtEzvr8kdvnuyqQdD8COUKqjBcGKuKUNV+FqYsJA8lQAmVHB2SCr4LREPlSCX4SoyVzi4AUbSHk6DHx+koMwT1hg9e8K7gnAagKVqzuxjlwoTn+IALCki6GOljZAgdC9+x9B0rF1kRWRDpDXx21c2dQKmCq0V56CXjZoCR5u9dKfhSTHwDLjujS9lGRHtPhyI/Y8a3l+xkT3Vo4NZB9bL/d9fcKXR69Jm9ee083/3oXXZ/74x7H37El37lV3nh9S+y+NqKoyvX+PAnP+J+zkTvSNsNIXTa7hGY0qXSBWuGxGyFXYsGN7p+SZhG6jTifNRrTTQIMMRIGCvedeDsM6yFyZoBKvB21FJ4dP8uv/Pf/L/56Z/8Ea+88SVeeeNLvPr6V/j8G1/hxvPPMyx6vvedP+DuJ/dJU9JhQOtQOo+qMKyQEV2fvFUppVSeu7LiF958lkAiDs9y44u/xIfvfcB7737AIJ/w/OduwXCNy4sz+m7QSZ/zxJyJzjFUIXrHWVW3KNg3Zto0ozUkWtfUNdABFDyTuXthwuoSAp0VrsHr9FJpKBXvPaVWcnIEPK5TDZoKPzOuC0gVgqpyVdTtNUSv7xYUMe55UAcXSZXgNZRs7xoE1Oap5ua8m1wqU848udgypcTVK6cMw0AIcFYqP/7ph/z4rXe5vLjEO8dytaY/hq988/O8+Zt/nVocXX3MyZVA7p7lrR+cUH74Lvfv3mbcnjNJ4uTqMX/5y/8Kd+494Hd/+x/w6P59YO80VmolVwX6zZhEaXGVHBOxj7z85S9x86VXiQa+vEfpXqNy6ZfrwNDt20agj31+mRlL1kZR9KyGMAcs6m9pr2McKzlnqlRCiHSdZ4ja3W7Lf3P1SVO1pHMtPBfLaFlKzE2qP90p/IzcvDb/cp64vHhCKonF0Zp+OeC7FT5FUtohCVt3tayd6TnOJhZNp3Ew4RHQ/UMdTTgslzWvQJ2RHM4G6aYjpMmQG71KcEnYPnqEXF4wLAeG5YLFcsD1AymO6kx1uUXSPtW5jSQVYEArrtQgsgnKtRbpOs9qGNTzhI44RDPFuEQouC5C6LQxFX3rReKLudHZx+8sYK7uN6i2cun3znJAcDinBN5WMymgaOeRga72uAfnmB0RXWdNC6JljVGYBNNR2AfsvAI/00262KluNBplGtVatIDcYnrYLKLuUAKTwChqk58dZK/fJ18IA4TOkaun1sDmMuOcMPRBP6MQ6XAsVkvWV64YHTGTqPjeMZZAvwMvSddIHKGLHF89IQ0Dl0/OKVmvaZyG/mJskRDUrKQLkd4FehcY8Cxc5GSxZtUt6MXTiTbNqeoA5WshUilWk2gDNEMp1Jy1AVcrXjQ7zs8Oo26vw7dgyNqan7YmNFevVosIzE6LVpJpJzgJ4rQOUbOaf9YTDfv8/0xAsecpHYAQx1PzYezVZzkgkPL0hd6EWPOioD7JHjc/lE7oWiCfuYPQeJMNobv59MZsIb1z+wVB9ou9YZq5Rq3tceznwV5KbGCmNbaqV+qhTTB0i9eFqZh7QPVQI3tep60m2rVWoFTt4mz0mtaBhTqPSJ0vZizi5uPcxHzzJkP7+/3BbuCr1D2+a4clAM5rMI6IVx9rHyF2hK4j9lHH8r0ndGafKCiFIgs+6fspVJJZ0G5F2BbHWEW1KWjnqIENosN1mZo9rmSlRLhA5yNdrMRQif5gMY2myNHWDIif8z9cs52YLXj8wfk424ThfUcIeu9CTx96htDTh47BdQwuMoinqwo0YrHzxAqjWgpzqJNNNVzJmIoKJ2Y4K3qEdeG0cbp7+tza3+XAm7qJ88RyQfYMO11v2ypcZ0D62e1Fwip4kgVKXT6+z4+/8w+4++G7vPmtv8Qbv/iLPPvq5whDR7de8eT2HTYP7qvNotdCduGOcFRdxF1AVkeUMcGg1riI9sZUHAwIs5d7CD2wo5ZCrZXgPDFU7fIW2dvpAyKV3e6C9378A+5+/D5v/eCP+da//Dd485d+hc9/6Rs8c+tFXv7iF/n+d77LD//wj7k4uyClRJ0/ZZivwcZxFv2c18ue/+2/8cv8G//6X+C0S9TdI2o85ff/4ff5/h/d58YJrJeRo9OBX/j68/zg7ZH757ru1Jzou6iah2ki1axOViII6jvfmg9tOoZXB7lgS684R7aN34HyfRunWLSA6ILQOxOWF20IiHjtupdC6JTb7WrFdaLCwloIInQCvuvoXKTgGXMlBk/selzXa+p1mkAcLkSWfU+RjEg5OHpalKRcGKfE5Zg53yVKGlntRryHi3P4yXvv8L0/eYdxSvRdxzAMRBdZHA/8/G/+Is+9+RWcjNRxg3vyA1htufXKLe7e35B2G66/8Cxf+Ma/zvroiNMrVzg7u+Bv/Qf/Af/pf/jv8uDxk/kzq6axUoqHdlOrAbdFH3n5tZf43BtfZbk8JtpmVXJlN+n0J0bHonfqomPvUIDtNnN5udVMjBgZFh2rIVgRuEcaU4ZxTGaXKipeNfpMIxHMNysk2r4zLAb6oaMJdveU3H+ml/Y/t5uGNloTUDLj7oJcRpb1mOF4TbcccL3DTZ5Skl7vqiqemwkgKp6sTq3Vi6DajDqvGXJQ+DswsrYHd0BlErTpKK38KXOuQ+NNT7tMSSPTboOUU1ZHRyz7FcvQUboFebNj3OwoxUwZ2p5Rmdd752T+3IIDnOP66RE3r63pY5vyejYXOzbbggtCR6Z4WKx7wtZ2ngPKTmMdN1pvsVoEmJcwoVGgPMFXdYfyHgJ48/2f9bCtkwIG2ozSh+ydrqTtbzJ3zgO6vVfRQDgnOh3pgmbo+C4SYlRNSh+Urm4c+5oFV3XBq7mSpc4AY6wwFmbGRUGBRvEQSyH0iVo820u1SB4WHawGQhBiJ1BgOSzpwgICZCnU6ZLg1Pks+kR0HcteWNxYqxFFgbJLPIz3efzwAVlsQXYB56Lqu0Ik+o7Od3Sho/ORwXccLZYcDSsGotYi1qSmqn2+SCWIuhDWA7BRS6YWtc71lhbtPbi8r0X2t2bWoeeQWAO7fdaNaPjpWqS545UDpPjnqUX+fBONTwOKdg8H9/Y7B9OBRl0SsX8r7D1dDyccjjaasOfUvxezlmuc4iAzgWfuzjsr/ivVxJAGOgxktIdUVF9tpOznomJOP/TeLL304g72XoPAJEJfoSsqhPb66ZjzlNmxSjux1V2qOChebVUrKtRUoCAzgGlJ4u016qHQoBXv68xtlE6Mp2gXsGsArHXLD5CrwagGMoroa2Yee6Gi+OrwoqnTxamlWuwGFoOKDLvBE3pnXSRI1SFJmJKAL2RgFLiswkYq2yJMRUf3ezTsKF7UJaMTStbP32FJts6braZ2UUt1xCzUqKmeo1SmSbt0KRsP0bQRtbTqCeaTzQcDGxEXOnzs8J0CqK6LdF00/nkg2mbdg4rSpe6dpqpSvfagIiOS1TGCgrisVsC+4IIiUB8KvhZ8qLhQwO4SigYFeaWMVV8oTr8X+6qZI2LTK2kjL31sb9XDZxpmwPF6zZYtuTpynkjbS+58+FMe/e0nvP+jP+Gr3/p1nvviF1idnHLn9G3uvDNQ7zim7U7hWb8gT5do+NFOi+jYEfsFlUq+OCP0AyknxBKhcxYomWlzjqSk51sVQhwYfNCgtbmTrgup6uaUpLnbbLn7wXv8nf/kb/Gd3/ltXnj9S3zh577Gl7/567z6pS/z2pd+n7d/8EM+fPsdnjx5zDhOeKed+nG7s+6dI3pPrcLVowV/9S/8Ai/fusr5nT/h/MFdyvoFPrz9gLv3z3jp1vMMxyccnfb065dYrB8ylGqdWaHmNdNuxxA2HEul83C5mxhtwijiGBz0UTUhLU8nOk/12pxAywd2tVKzp4/6M5UmaGe2691+woYjxMCYK9OY6fuO2AVKzkhypFRwouFRRF2TatXQwGlKRAfFO45DTxQ1zNjuNlArwzWbmAZ1k8ulqLWx77nYnTFOiWSAret1y0pT5u0P7/GdH77P+cVIb/oqLxVSYcTRX7mGc2tq2VCzIxy9ihsi129kXn71Cky3KGnHqjtmWFxjc5n45JPHvPHGF/nrf/03+fbvfYc7t++xm7I2hGxDLtZNG7rIczeP+NrXvsTLX/kqi9WxbXnCuBN2O20Qrdb6Wcwlq1Vzu23m8ZMt05jww4CPnvUiMJjNt9ZoRltLhSlPVCl0iyXLda/GJEH2G2yDaVbcifm9lypcXiaWpwP71OnP7jrio+7zzNPgSi0j5bwwlR2LkyO61YAfAimPav2aVbNlcbszrUqKFqwqqdIqX7LZpudCEzWLcdAq2UqhNvnbBwS3esDTahGsFvHqfrTLlJzZnl+wGBasl0tWizVuWDD2O7a7HeMuqYtWVVMA1azrnhBMk5lFX89qtSSGQM1bUkr4LrIbC9NU6JdBc6s84DtqyMqywLQoXs8TL5VYQAJmgz2/ZX0fTulaWosI3lW1qo8Ccy2i18Z8DO19O2lTVMyZUwFUNjpiwCvtrwquqOaz80rHLi5QzUGw6zq6Luj5Pqg2U9A6o6ZKKs6Mg4Qknh3CtlbGIkzVMU2F0owwsBqqFkpRoJ9qJfbRzCw8LkScD8S+kLLD74QaCgVhkk6NLqTgowIiZ7WHSEByJqfCYrHg5PSEzagWuBKiWnw38BQjMWotslp0nJysOFqt6GOkAyKCs4mzE/38XdU8qChqwSNk1Qla41P1ukrnDyL4UPGid+cL1RfEZ2pQIKpaPMH/D9Qi8/+8UMv+71pX7mddQ/58QMMsZ2e9huNp8PHU93ugIW1xFfvaiqhqv9u8Xw9b7oD63DKDFk1NBFNW71/bPAmpUL12L9pDAM0Wty0QiuQUuWUbS+7Tl+WplxLnxxFirexEsxLETtqguA9xipYnhEk0tj6j9+LmCRaNR2VGTk9htsN3791es+CCo3YOOqhBx4p6fI2jaPw99eFurYg9JatUS/JGmk6cmfEVtCAQoysFHxlix7LrWQ6BYenxC4dEPbdCBUlCN+qibfs6u1K5EM+2VlILqWu0MIfqKFLFZe1+1iIm4EKD1IojZ1hO0I2F0AeInhx0BLrJhc2U2G0TacykqVBS3afINHKrjbcJQa3BYoeLPb7r8H3E9doh8TEqLcx768boZxlpaa6qC6hSdQGWSqSaOFAMLFSClKa00rNGqtquSsb7DL4gIUPIEDSVFK9+2uJsCuKKUfyM6md3Wo5J+5mTmYb3Wb0NocMNhXHSDlxNiZQruwf3+OGTxzy48yFf/4t/hS/+4i/xuZ/7BteeeYYPfvJDLh484vzRE9LlBWXaEhdLXNqp/SpCzRNpHA0niHaQvFL0nNO2ROOlO6lEgTwlXVztWog2HW3XZDYaELVSknD26AFPHj3gnZ/8gB/+we/z5a//S3z5F/8lXvvSz/PSK1/gzgfv8NHb7/DB22+zGyd2u5GH+YFmS2DrkBN228xPfvQxb3z5NeLRLcI24aLn1771OtfkO7x6q7A+XTGtb/E73/6EyymwOFoTzaRhGkd48oRSKzFPnPSauXB+ueNiUlMGOrNFBAYfjKYEmAYqRKWU5OootTImLaD7PhDFU3DsLP0vV+3i9/2C4hKb3cijzY7VoKBM6cca+td3Hl8rsZjbjyuWWg4+V1aSefbFa7z8818ms+Ttf/x7bB5fUqsjxo5uiGTxpFooVRizkKqzIgC62EEpXGwmfvjOJ9x+ssGLTmicBXNu60hxmdCtqAVuf/f7PPnRd3npl3+N49deZn3ykDe++jx1hLd/8BP+4d/+r/nx7dvce3CPhw/ucXrliBeeu8Ff/cu/xOaTd/jw3gUXFzvK4wscwslpx7PPnfLaay/whTe/wvVXfp4croAESkG1FJsMrjIMvdLR/H69RyCVysX5xDgmnNGkln1gPQQL0pthL7UI465Si8PHjm7oETxDQIvPp64wo+qVQq0ZH7wKSHPGuWEGS5/lVcRbgSvGpW6S1OIyu3RJPp9YuhMWx2uG5YpYCtM4auJ8UX47xcTJzv672v6YGlKwQlpaQSVzGJsz1oSv0MiuTdOjGE9rESetFlGmg0Npk9OYqJeX1G6grtes18d0/aAGB8MIY6LuJg3FrUKyHJ0KpusSxlI42+1YriKdDzgp+Cr0y55SJ5xXVsXkIo8vJpIocHHO2/vQYpmCBj96pfcdBvtpE1Brps6ZLbL3SOcssDjMtVSj4LTzT2nDosYOtn/qUQxP0RGD8zMVMXgt+Yp4pHq8C8QQGWJk0VvTc2EMiy5wtFiwy46zRxecX2ZKEVKujM6xEW2iNK1oe18VgeB0TU6VTc5UB32uai5ZPbV6Una40HF5mZjqSBovmaYNbn1ECpEpJ1rWUJoym4sLNhdb8m5HHpPSo/rIyUlH9UKKEfqeoe8ZushiEVmue05PV5xePWF1ckLoBqtXFVR4b9MJZxO2AwqQswmNehQXnNe6I3gL6GvGNEFdFp0FGDuvTVCiWL5RmesQEJyrBlgM3PiKDzrJcE4Bh/PMrl3/7IFGZ7/9aaBxKBJvQGP+99aWcXbxtZ8Xm5XVfUXvULAxv3KZn6Mp81VQ3ehPc+Nmnsm5Yh9Q9fOfqwuVaTNQqlVLRFXLM9FJBs5cCxRRNwzkvGoQghMmV4lFhegCZJS76KQivlIMbBSRObBPLzJ7OwfgZz5chrna+HvGbt5ZYeGVpxg9xKgey96CYVShYheu2sxKqQ36cDDeQMwtpmlGpGGVuveXVm61pmT3XcdiiCyWnrB0SKebuS+CpEoOhSA6nitJSElB1k7UdapW1BK2ane+FmiBJ76YWLxUplxJSchJJxa7sTAMSt2SzlOCY3KOXRE2KbMdM7tdIU9VsykqBjLs6DWQYffWPfDmz++Dak5cNHcpw23OzjMdkLfzysaMFu7k7b+bN/j8ebYphMXCO1dMR1LAZ1y7u0x1CVwCZ9DW6bgzumrnohgdr4DXDkMT9DgbN/8pqsRn6OZrpR8Gqow4F9XQIesimvKWOx/8lLP/8gF3P/6Qr//6b/DsSy9yfPUqt999h4/ffpsnd1E+qkApE84rXahMo6ZiO+1WCR4XBkrZ4ErCxV71R0lD9JzXNUFKVT6rUe90yiZ4KaphMr51sUTfUoU8jWx+8kM++eh9fvy973Lj2Vv8/C//Ci99/is88+wLvPTqa3z80fvc/ugjvHPsthvG3ciUdCIx5cK/85//Dv3JES+/eJW+VK5crbz60jWO/qUXmMYtf/SDj/n+e+/z0QMhnjzL8ckp3bDAh8Dm/IluaNNE8AOpAn3PGk8XR7aTZnrskhCCtkJ69D27qjznZQdXjpfcfPaUB49HPrlzDgI1O7JTS1RJAMqbzlIZs+Z4xNhRa2Wzm+i8o7qqzyOQq2M7FZZOOFr2rIaOUivL9cD1G9eJjLzx8y/z2q9+HVavcfX5z/H3/4P/iPPHZ6S8NZtbXYtSTtRaKKVq5w4N/ivDwAcPHvPeg3MuUyE4odSAx1PIpFQ4uzxjd3HG6XXl8j/+5AOu3XuX9UvXtDMbT1guH7BcdJC23Hn3J9x99JDttOPBvdvcv/Mxv/gLX+Jzb77Jl45usNp+wuM//jaVjtNXX+f0pddY3XiB7vRVRndMCAMlVbbnI64f6Hphtexx0ROcUz2hFaNVhM2msNmpPz/R03WB02VH9A3mghZtwm7UiUaIET9EFgtv5noGitXxwzrRnlwqKakjmgvOprjdvO/JvMd+RsFGNMczX5W6Yz3MatqNVEfKxSOym1ieHNMtBvzQaSbPNFEm0xdUgAlKC9ETm9zrv0mbkpt6VrO5sC6xAh5/UHA5jBZdxRgWhVC9Nfe0iRHcnuqWc+Zy3JEuNviuZzg6InQDi9BB7GBKlClbIaHAPYum1U8V7jw4IwTH0SIQfaVzIMERFoEshcvNxPm4YzdBddGCObWwL9WCFUz/CQooogqlbHhutupBfx687psEj4sRoune+kAqjilZlo0xQqjKLlEIpzWTmqSITXm0PmpNPheMPmV3UFr1ou9Z9IHFKtAfRYjQrwfccs2idrhhweVH96mpMiJsUmWThK3VFtXs6asdQyfavB1TZjNNiHekUklZ3QhLhnHSidnp40sWKTCNW3bbC3wS6mLJLmfGCXLSKVDNlbTbkXcTtVRyKuRaWQ9rhnXPYrViWES6ICyPFpxcOTKAcUxcHiEh7hk8BsyccwRn3qs6HrMC30CE0ZhUO6NnWOfs31stUivONYJ2Vppf0H/LPiMug9UqGihYCU7dulxrnvqCDwoOHU10bDXRz3rJ/swX96eBxqfb8Yf6jNaub2CjeS7K4QM2rpRV2rAHDbA/+R0WX3+wsLaiXY+zWiDaVESnPk2HsXczmuUNrg2OBdhPNpqU6ymthLOuuxcmtLPt7EJKAlGqLjQ22myjuSI8lRLeXiPVXp+99vlQOWaRu3dogm/wxBAIIehmFCISgobKeXVp0QAebeprkd14jmILE7M4sFazkDMBp04aBIKQi4Z3ZXFzuKDy8jyxC8TOQQ/eKXAoXuiqIyanWRQTyKTC7ya4qkputmlD+9AqJKGESo1CmTSAKk9C3hXSmNntMv2iU4pEp65SyTtGgTFXdqkwTUKeHJI9lHaqWwfKjpWPkdB1OooMgc4H+oN755XjPO/rNqlox83ZrFeaHCPr80n2uOTx5izlq5sv/GoftJOClwySZrqVkww2M3MUnXpY/jfoZxGcmPhd6VLOG+3K78GGipsPpnmfsVstE31Y4ldLpslbNzxDLppoXQpnjx/wh/+fv8sHP/4hP/fL3+IL3/wmL3z+DU6uXOfjd3/K/ffe4/LRE3LaEPAUm3wG75DscKEnlzNSnmwFsKC9oqLpKhCHgVIzslWD52L87c6rT3LK6vblbEhdbYMSW+xFEpuzJ/z4+3/Euz/5Ie//+Mc88+JL3HrheW4+9yxf+No3eO7FV3n84B7v/OTHPLh7n+12x7TdEkT49lu3+T/9n/+fvHB1wb/2S8/yN/7mr3H9mRdYffM6//B3f8Df+Z3vcJkWdCfXWS8WHJ1eYXl0TM6JcXuJ85Z34zzjJJxNCedg6DqGKHTF402LMtXCVM1awmWWHp45Hfhrv/IMv/qXvsEdeYF/7//yX/Lo4c447RNU7diFEPB9h3NwsUtaxNZKzpXOO05WGlilHHJv/GnHbpy4jDucCNdvHPOr/5Pf4NYbv0B+/C6nRyP+8dvI4x9x7YVf4frLt5Ag3P3kISkLw7Aw0JNoQWXJB+pwgl8u2XUL3nr4MY92IyVX47QXyJ6JiVSFP/6j9/n7/+nf4l/7N5/j+W/8Gs987jlCP+LIXHx8m0eXE3fu3AUXObpyldPTK3xy9og0jpTtBZcy8dP37lL7L3CcPC9dfYmjrw1QPFO4xp2LY04Xx1w9Goji2J0/Yre54PjqCSfHC4bFQIy65jaaTdvgdrvC+fmISNVjFzzH64Gha405vWlae+X8ctTpVd+xOO5ZdLpBNQqcFsT62IJmcmQLLuy6yMm1BVKDTj/+1ATkM3gLgus0S0npHdqkUZVkYxtkNpszpjyyPD5mWB/Rr5aErid1I3mcqKlQJNo6bBt/EGscOeZEb+eMcm00Ip4mbfjWvLO93ltAmq/a4GtOkA6jSs/sCoFSGPOG6ka22wnXdWDTjaHvcL4QYyZNO51KmedgKsKjzcTuo/sse8+148DVq2viEJFuzcVmx4NHF6TqNcQ0KDXRmdYNqRzaYtNYEaJTst5OxeDUqS94DfFs2TrOq0X86UnP6mTNzvXc++QJY67kUimSZwtgRCfytarDXy5OpbpZNR8xyJwj0oL7NFC0qrZChNgHTm+csjhdgx+RUMmSqHXLsF4yrDtiKjBlqlHV1axGWQnq/AeIqnqRwG67Y0oJvJ+bpSVDHiv9mBinTBc/4votwfcDtT9iykK+HNntRi4nx2aTyMnh6QiuI7mWAl+pwJgFh+rVQrekX0aG1YoYlyAdTjq8U/MIpXMlRMresMHJ7G6m2WsYsHHkCUgm+hZPdEIwYmeV9hkrvaQUrUWcKzop8epsVFBKrlgjJ1o13PRG3kISW81Yc2NXoI25xrP7J9x+dqAReRpo/Jmpcu1n7k/fpdnMCfvqziruoCd4M0wy7IsHoqtPPfX8lAa2yHavOijx1bp2wpyZEW3sp3ay6sGs1l77Trh9pjPQcfNERWaUnmQvYCpVCFUt0lrCuP55U0CwZ3jNop4GhPbP1bBYGwZ1HvrQgIY6FHjjHxPUyrV6XUwzqgUZDbN5Z0J0tJhylvJYbQSbq00W0GLVO52EUCpTFaZS9V4rqYoJRrEAP6cOUVVzMGLUEDy9e3wn+KRdn1lEZ4F1M4Jr/FAHEiolFmoy/+epkFNWUefYE/sIfaRGTw6BhCNVvXBzEmpykD2attiQmoKy0EW62NPHjqHrWMaOoxBZeb0vfWDhPQvvGLx2AQJmsCdeJxeWiyGlKtUrAcnpPTtc8SCeYJ9lbYbVtSjfvyrgcKIi8nYPou5R7WypNo70vqqjVhB8rLhYIRZcNo1GqBC1I+5/xov7X8RbWJ/i+wE5e0x0AT8sCH2F7c6ubVFAudtw5/23OH90j4/ee4uv/NK3eP7zr/HGN3+RZ19+hTvvvcvtt37M5skZbrsBFyk5U8cNu8tLpcT5QCrj7GqCoPxbUYcOaTxt2229U/Apop1HpJVupnhy6jQn4mbHJZHCuNty+4N3uHPnI9764RHPPPccL772Kteu3+TF177AydVr3Lt9m/t3P+Hexx/z4PZdpmnikwcTDx6d40oi99/nc2+MPLkY+e/+7g/45P6O9ZVjuuEIWu6ECGm7Y3dxSR4npt3INE2UlEhJszU2Zml9uhy4fhqoeeLJxcSTXWXZO/7Kr3+JL3z+Bdb5Pl+4megfvMPPf+tX+ORf/hx/9L1H/PSte+TSk9KOKknNMECbHU6nwlWESSrn28KUCutlx6IP9FFYRt1SqlTOtxvGvOObf+VrvP6LX6c7eQ554SWo58i9H8LmfRbuMd/8pc9xmV7jD3/vR/zoD97iwcU5VRxdH+m6gX61phLJriM5zycPtnx45xFjUgAYTZPnshU4wKMnif/w3/uv2V4mvv5rv8lLn3uZ5ckpj594fvzbPyUPGy6lI4dIWC44Oj2m/9hz9XTNyUvPMiwWLJYrUhJuf3yPex9mYsn0KbHsLzi59Txdf8zu8Y8hJcQXnn39CyyOIsulVQmyN8Rr04lxrFxcTuSS6RaR5bJnuehQ19sDExM9JRknYZp0OuG7XjUwOHqzK50psBgwKcLl5cSUMt57hmHAVegseLVdY5/ZaQaA0Wohq7WqV1vVKpYfIHtb+pQmytkTUsosjo7ohgWL7ojSZ9JuJO121KRdXUSbi6Sq4moflK1QNYCtw/Zpp86V/qBeQJgp4M6+Dy1l+QBsHoI9Z51oqVoLpTJSxkT1o05g+wEXO4ZuoPN6LdeSkDKSc4JaqRXGlMklMIljWA2UWjk/2zIm0SytaCb57bWWqkJ4ox1La5aKXtvNTGeInlVznHTenPs8p6crFusF+MLQQ5SR1eoIrvQ8uSxcbieKaDZPqUpJcrN+VCmbtYjZildyLUQCIVSbMAupVlLRKeouB64tjxnWS7pBj0txGZm2hJLoQuX4ZEHykYvqeJK2lJS16escLeW7impkpQh5zEybpAwQX5FUkSyaC5QqyWqRWjKbzcTq6ilxtUC6jql6Ls4umSQyJahF6xDvOzya6RP6SOgise81lNgo5xI9LoGfiup9Bfw06TkhQuh7YrCGY6tFlLZCc59igjoJJNQcRwLeKbVfQYZOvRSR2LlcNdnPW6NSNTKNJqcnRnXNLEARs3NWj6CmPz7quYK3WiTvjS3+Sbc/vxj8kB713zc3aUjABM8NwQMasFYxJx6dOiiXTBdAdXJoXGmhwxER1R4dPOXhRAM7pi5DUzLNprg2/fCNMmWgZ55a0DIm3H6a0UQw5qbQHIHyDDS0qx/sJGgMsQadmN+XdTlkPhwzQJLKHFJzaM7VciSi83PXPXpPMC/m6u2Ois29dSO8M79oa3YbnlB3hjbOrGLTD53MiJ2Q1exb+xzZpMIiFYac6Uugqx5XPb5iLisobasJwvqA6wU/YYs+umibfkQXYHuz84EAM9xHSiHXoF9LZsyFLmXi0EMfqDFSY7CAQU+qjpIFyQZkbOt0Hs1diGEGGEPXs+h6Vn3Puu856jrWXWQdA8voGaKjD6KJoKjeIoqbL26pzEngkqDanbwHi646S2PWMSWlGtCwsaUBDpH9FCOgAq322Xgq3h2IyoNyIyVUaqhI1AW4new/axfhX8jb8opeqCVpx3WxZH10Sjx/zObsMWHUCccuZVKeOHv8gJ989x/zyfvv8fk3f56v/fqvc/OlFzm9fp1rzz/Po0/ucO+jD3ly7yFnD+8x7raUcQtS6WKPWyzJ2y3F2yZDRMLeREJdU7xOKs2+VExo6qpqD0CT3cEZMNSLrNg0qzgVl+Zxy27acX72mDsfvs/Jlas8/9JLPPfCS7zw4mt8/ktv8pOf/IB/+Hf+HjKNCGj3/f0nfPSff5ejox/iSyFvRqUuViH0EXHCuNuRxonLJ484P3vEdnPBbrchpZGpJKY0MeW6LzprZejUv38nBRciX3zxCv/H/8P/lOde/xKPfvRdHv34u1w+uUf3R7/Ft752yktf/gb/8b/zd3nwcEPtF0xpS807Sh31WAQd4+vgUMXhqQiPz7eIaPDfepkYukBnOTehCxy/9CLd0XXc7jZu8Sy1f4m63irFKASu+ttcf/YU9xu/yI9/coc7jxM1LonSsfJLnj2+Qu8iDx+ec//xJQ8fPOLxxQVJ1H6xOuYNsNp6HL3jw/sb/tZ//N/y+//4h7zx+ue4eesFaneVlAqnz92kSIZJO/9f/sqbHD9zg4uzJ6SUOD97QkmZszufwDSRqSz7juXVqwzOs7v9Me9+8CF5d8Hi+jVe+YVf4MXXv8iwPqIUR4y65zTXQkR1Fg+fjKSciJ1mb3S9Wt76T00aBDXAuLxUm+TQRfpFmCfg+rif/hsFJtvNjpwzznvGVJnKxM3rYf4tB59pnKGOgtB0FC461dwVNQmZO/Tocawls9tekPPIYnHEan3E0A0mxu3IKZHGiTJmzaIwVyZtAipodFIsNFVBRtNTA1ZIGOqzxp43sxulVe2t+X3rs7YdX1pDwwgACDkX6rSjbhPEQOw7ul73s7AYSJNnPE86cbd9/Wxb2eRCeLzDWXHhHISI7mkeY2hkajY71FyQrGGzdd6L9DEBRBRceNfsqj1HQ8dLt67Sr1ektCNNWxUjj+dcXQW6YYncfcIoQpCgJg4UbXLa9t+c+Fq7rYowlYyfYHKe2k06sZo8YQqEFLTZ6AK+JHztqGGg+op0AJ4QMv3Ksb52jLvIGtTnPMkJzimDwYmQUyanrEBkVIMAZXZoIK9UdR5LJRJLR65Va6InF/SrFWExUHxHFodEb7WI4KpjuVgRQqf1VFB77y4EeoEex4C6Lq6HgXXXM0gljFutLkOlWy9YLnuid3ipVie0yZjWIjUJdRRIgjcb/dZQd7KvRRRgVLO+1f/2ogAGq0WgEJxNNKwOr/OZqPpSgjZbs43oJFq4JX++WuTPZ2/bXsMhkj/8t/l7bbM08aU39O/ml4eF5InlM+gPXRPMzeBABZpRZM9x9Vavequ7Dp5/P0LeSz9AF/yWaYAV9aadpjUdNKaeWfNQYUZ1isSNQ99EOvb83u9Bwh5oHLDBqrPXaQKrBjjK/njOh66NdGz646tt6OiYPDinoVpO701+5TyqX7FGVXXtv9tr18+kibzUmUupPs6ABqUQciamTBwzYYz4XUYGT+qcXaiOjCNVIwA5Z2F5qANDYE5dnyPlGqJrqLyBjWYCYCdtqZVijlVBpQ24KSJdRWJEQjRZj7cPTKdSuJb07tQmN0QWsWPRDSy7Bct+YNUvWPUD675nFXsWXWCInt5D9EJE3aaiKNjQiQY6yrWJhrdOR80yA43WZdjrOOziTjKL3n1BgUoRTfQsDdxZd8D4der0U2muCNKoUl4OqFM66ZDy2QUay5NTpof3GI6vkKadpqmeXTDEjtoPOravEb/ZspFCkspu3LG7/SFnT57w8Ttv87Vv/QW+9mvf4vlXvsjVm7e4eus57r73AR+//WPubM7VKcVFusUKSqaOE8vjK0xJk3mba1sdK8EHG7ZpyFOtamJZAe+FiI7w60EzoDtg6wXXFgJ0oa6VmhKbszM2Fxfcuf0xy9UPeO6FF/jS177GzWeeY3V0wuZ8M2/oUyk8eLLh8cWORQwsvYZV5lzI00hNmTTumKaJzZPH7C4u2G02jOPIlDOpFHJWMWTjQqSSSSkxdB3RR/q+48rxwK3nbnB8/RbT9Vvc6444v3zAw2//EV/9q7/BM9c+z7Vnv0fiHBFI20suL+6zG9XhTYwCW2wtCdbwUBG0UiLONxNjp6BD8FxsCz/63sd8/TeusFivKFPig2//Fru7t3n2pRNOXzzh8tGHrIeR1clXObn+EqsnkUepUF3Hdle4//5DLjcjl5st0XsePXrEOE3m+697ScK6Ns7cbLwCo83k+fD+lol73HwcOLqaOL1+E84ucDlpplKM9MOS2C0Zp0dcPr5g2k1QM0EKx8GzPj3l6NozuCQ8ePsHbB9+hD8+Ybj1LKtnbxKvPINI1AaIU5pvaNN5gd1UefxkxzhOGqjWR0rQ9attp+5gB6nFcXmpwnu801DHqAJ/MwH8U1hBBC4vsh6bqpqi3gmrZbS9Yg+wP8sEKh+C0lFdRKi6jhal4eDdnHOBaNtAefmFkoRdPkN2I8ujYxbrI0K/IMSOEDtKmMhOhfriqwb0uqYlFbrg1FGwak1BMIqKWb8bwcSaePZZGvKvVpuogYp7qlbQBgjMrHjRxmZ1Qp4yuzThtrDsO9arJTFGQLMjXK1zTVSrmqY3qrm3pq6XSgvNKFUUaJRWiNqeJuh0o70mp7b4Uyqq8wkQg6f3nqGPdF2PpyB5UqrUZsdwcoR0Cy77LU4cyRzOSgVPUcpp3Tc+FZepbXYDOrUWyAU3JfzkcTvVaZ482bK4BqvOE3IlXZ6TclJht/OWcePx3ZJuWBI7cFPBOaFY3k2dMnXKuFrJKSPJqMsOC7Sr+npFKMUcO8UzSWZXJsLkiAvBdRXfD5D0PTUHTec7swlPGs7sHb3XkOBV7FkulqxWxyz7BZ1UfEr4RUfXLeh6daEKQKjqFKjm4PuJRi4VP1W6VKjZtL/lgFxk9R4Vy30T8lSRXPFF7c291Z0iMk+zlEknM99fsgUCik5SMfqUuoi2Dqsa1dT6zxpotOLYoZyd9rPDK2autg8CXlp3vy1xFqh3eGvhc23g0EBJG08eCqfBpiHCXvrhDi5a+3/HPgRNaLQrfX5HK+ec+SvT+ph7lI3y7JoIODTkay411aYy1TpLEfdUQV8P2xSCAa/G52f++tRxEAvCYw+CDlg2zDiqUdHcfsAU7anm7aONZ1ohbA9S0fTM5vxAqepKMmnolhsT7CJsEqXzpM6z9TBIIHS6MebqGJO6RYlNFbyrdM7TuUpyXt185jdmL9xeD60oUF9AvQsqyiuZnJ1SlAZUG2QuF/Pu2tJlnJ5LPjhN8IwqYh+6nkU/sBwWrBYLVoMCjUXX03eRLkadEPlGVLCWgdgmInUGGs4Wc1cUJNRczPbQxpK5zECh2mhTCpD0LgkbdVbqpBzHmqta9KZCSQVJluxZsiXa6uZZq02iRBmf4nTk+VkO7BuGjkkSYVgaNeECXEbGSh8CnoEeHYqFqg5uuyqkmrm4vGB850fcu/shP/jO7/HmL/0qX/za13nmhVcYFkdcuXGNa88+wzs//AGbsyfk3aRajEXHOG7N1SPp5opSkWLXISkBNg1ozm1WPEQc4rytDnqq6s/qbD8Z0IJbf27XvlkRlpzYjRNnZ4/54J13uPHMTbbnlzP+tlaBrjZiwXDeGQ87s7m4xIeenDPjuGF7cc7ucsO025FrYSx6bzVNtakwptWSigo4nePxxcj5/fsMxw/4we/9iD/47Q/YPbrPNz5XGK4+x9mdM9Ynz3Gtv0nJmfHiCaHzhCeOPJ3PGQMVDY+SYkUMjhAUHIlUOhcYk3D3Yst2rPxb/9Z/Qaqe/8X/5n+Ji6e88+3fZ3ycID3H8a0bnLzxG9Q+cvf9idObn+OLecFPP3qXt+7c4+H5xsCMUFPCA08ePyKXrHoZ5ywB280LoA/opu/VejLXwCYJ52OGccSfnVNyIeLoYqQbBt5+5x3efvstfC7EEBi6wGK14sr1a9y4eYt0seHjn/yYx3feQ2RHWC1YXLvOi1/5Bs889wrXrlxjvVqxGKLSSYObm+7bqfD4yY7dVAidij4djqMhsOj2uyS0Nb5ycZk5uxzxfaQbeharoJNuFMQ0gKLbra4H44RaeZZsQWa290WlWQXfxJtu/pu9C9Vn5+ZQ+ouL1myqukkKuoe2vRGwQtz2GyqCJsznNLK9uGCxOqJfLhm6noI3LV/PtNkguej678M8rZ51Gq2Ta9MJMZ3m07WI1j46QWq5Vo2m6+b9vNUiZncwv5eWgzKHXZaJvNsw9AHJiVAz4q1gFwVY3h2ASIdmQBVHCHpsatXOfYsYkAYwWpGKrUv2vclNNC+1qmtWSZmQM9vLkcvLRCmFYSEarDoVutBRem/BbpmQLTyZbMdjTzAv4qhUNaOxfc+lrLXGmJm8ZweUDx+Soue5l56hX3Tszi6oVQh9B0NEumNAHaZiN7DuYdpuGHNiTAmZqtpjWi5WyVnXMw7fNLSOtKseEaViSvVUCUQpFMmEGggl4b0CKYdOL9Iuk9NIcJ7QK7Ni2fesVkuOTo4Ylp3WsNOIXw5KrxoG+vWafrEixGjaDEF1nMxNz5orTFqHRJvkSjH7Wurc5JyZFCLkVJFJcEWp3q6KUuZSRUwkX62mqS02IOm0qxad9lSpJt7f06yk1SK1asbVz3D78wGNNpLYV+r7yrZ9tWLQGRLz7uDfwLZkp45F7Wey77K0TrxGBziCuD1Lyz39dHNioT3H4RTDZgPoR6aXbuOnqlbEaSHfDqBd9fvphI4RtS+nH2jL70CgGlpq9m9ZsG6F2JRCZoDQguTtlIT5Ymu/os9WcBZEZ4U0WCq0+tOH9ualCc8tsVzMjaDa8WlZJOa2QJEZ2Igdi4IWNVKUn0io2gEYM2wmanCk4EgOtqWymAJ9H/HeU3FMGVISZNLpQ6zoiNC5JmOgtA+hzgd1fy6B/sLhKOhPKegPeGdglD39Ax880XticCaa167tsOiM97xgtVywWixZDUuWw4KhH+hip7oXr8VXdTqJKJItV0Q7t6qVMqBWVfRPqYQDvYWUosevVKp1h8gKJkqbfExCHStlJ5SxUsdKHhVgKNDI1KQd6ZxsrF2LbixyADQMGGbRTstn9TZutizXVwmdZ3f+iFoFL0mvAanEEEEqiz4CC+I4ocbTwlQmpuIoZeLt73+Xj979KT/5g+/wtV/+VZ77wmvcePYGz16pfPUrz/OTtz7i7R++zXa7hQ7S+TkxBoqly1Z0yllzxtnCrb7vYvome8HezWuZnqu6Aak7FbQVRZqJgK0HQus0WShSLYybcz5+91w/V9N+7U0hDfwLVLy635VCmiZ2lxf4cUtOE9N2Qxq35JI0+E7UEcsbk1EaFcOrY4lTUYmG+qXE7uySPG01PEwCL3/9q7z5V7/Jk90x7//BT1gNK/zVK+oq9fiBblo4yhhxPpOqI+ZKn0YYt+YQo4F8zjaIMQv3H43cvUxaaN97wr/1f/t/8XOf7/iFf/V/zZv/yr/Cxd2PuX7tGH9+D398zFn8HGcX91nefI7r/ZopV+7ee8gnFxdUH/AxqGbNOZ0IgDZ19COY+2DBeXBR1/2incndOHG53TJcnOO9x1UoedJCYLFAnGPablj0C3xfWS16jk5PGfqBiOP++7e5+9Yfc/nkE9x6wfrWC1x/5Yv0x1d45Qtf5pmbL3H19Jjj0yMWgzf6r762cao8ebxlt50I/YDvIhVhMUSWnb4f63cYJQF2k3B+MSEOFoulFjEZahG6pXbjPr2UVoHNWEg5a8ERIi5EShG6qDq2Ji5tm3kDap+1m1TB+2j7RrGhuMz7iLOv7fpsZi1AK5OgVqZcSONIv1mwWq3VYjZG/BIYOqZNIm1H7bB7wZWs7kiHQMYaeo7WdMRqkfZ8h1ufm/uOvn0GTvf/vQ3sbFMz/52lfRlNulB2iUCdi/Vqjbz2fjOamSOGGKRWJLfX62gOnY1Cjhy8UGNTVDROIBcDwllrkTEJ41RgUMfIUiEsBvqTNSl7xssdAUeMPdWpfXYIleCqUc/U1ch7P7soHnoXSdU1cMxC2mV2otbYyTnSu3fxEa48cxPnVwgaAFI2SQXkuUOmiS50LHuY+sLOJ80KEj1eeKs3/9QFpL1D2jkjWNPYZmKuUJzawzrUNVU61fvGANEHCELn1Rlw6DsWy4HlamCx6Iku4HImdoG+XzCs12pSsFqyWK7oFwtCF1XjKgWZTX0cFKFMSoFyYmyZOQHcQIYBYQ0Ztu9Hc3QURy1OmRVThUmok9Z9ZbJGszU/k9UiJZsVtLQpv50mBpZ1r7KQ25/h9rMDDcfhFfN08Xg41bAT1lXtoLjWffFmKdcghSgbBHFWgGMcM2cAQ2YRp3LY94X54VccGphnNWkTWxtz3zbyJkRvq4MWuG3iqdOhhtYaEGiTFJnv1oOYUy4F/SWPjqWCGMion15gKh5vrr/7x2mvbL+sBEQ0rRsL+qnOqz2vs0lPVT2LzKJvfdXF0ClZDu5YPPf+qLn5ndlJUzQTooyZ5D2j9zinFroVDRgbU2U5RoZeiCHgnLNCSLvzpErIQieVHiH5SgpCDdbdb+TUtuAfnitNMH5IBvB7gDSDJuPWOa+UhD54hqhTjBgb37lnsehZLgfW6wWr5cB6sWC5GBj6QXnvsWNwgR5PxMT8FLNOzsyhJwVN1syCa52tKlAKrqoHnk4fylMgg1ypycRlSS/2Yvc6VuqowvcyZsqUqFM23mghm2OHjrVlvs/YxjBYmXlpn71bt1wRF9r9Dl3HuNtqlyd0jLuNgeGqSbA2UXRJCEkdMKYqlAKpZmTzhJ9+7/e49+H7vPL657j53FV++cuRV7/+m6TV8wxXn+Pe7Y84e/iQs48/xIsnxJ5p3DKOO7ocrVuji5muF55im3jFzUWEO+ggt9PUiW6YSDD7aOO6tqvMhJ+znahgIEO7otqT2HcSg2uXhLoVSSqUcWL0AefVNSulxFQq21LYFU3Cdc4RfNCQSaNEoo1dahWKq5RS+OBu4j/+T/4Bf+3fuMprX/8aV9aJl9/8Bfz1N/nt/+Lv8tYP3ubKq69zevUaVRyLfkHebDWRmoLzE713uFrpyxJfj8lObWi9D5QMKWceP7ng7sUFu6SvIwH3zjb87m/9Fi88d5XFC7/Gjde/wXqYmH74XXz3Be7vMrsx0C/WSIXT68/wwo1neHR2zpNUrDEgRB9YLZeEEJlqYrb0sD1Z0GrPe680GoFpmthtNmyHQe04vdfNeVgQvOaDPP/yyxxfv0mZRmpKTJeXPLz9IRcPPmHaPqH6iXDjKt3VG5y8/HmeefWL3Lz+DFev3GC1WHD15nVW65WJOvVzHneZs/OR3XYE5yhkoo8su571wptBydOgIWXh4iIzTUWpMykROwXGw6B7gcM9tecKuvSkqbDbbi1h2hpPoqnv4tp5uX82dcT67N3UcQ0tGnFWgOnnLjMXWaxotu3HbKEqaqYy7ymSyJvMZrejHxb0IXLce4bFMVsZKK6nThM1JZh2Sqp0xbq9qtlozbtg21j1TnVghipaLdLmG1rP71umrtUi0uqY5vxjdcq8a1ejlu9rCKnW9KxqwOhRuudsPSqqQhW/b74qY8QalG1S20CG07pDw4zV+j4XrVEqOsn95O4lV2Qg9Av6pdAtV2S34OzxGbvNFhcHfIgEcUZEUM0ita2l4IIQZN/SLeLAKRQpWSlVWIZOIVPM8e/2xw8RPMPqhBh7QoG8uyD7npQCNQmxenrvGGJg1QV2nWMnzM1bJ8qCcG6PT2n/XgwtNuFtRSc+VozXUtXgRTxOVEPbBZ1M+uUK59S4J0bTizpPV4WuZqV0r5cMqzWL1Zr16oj1cskidPTOMXhP50xqUAuafM5cS3gzp6G25rtmZ2CNyWZII6UqgyLVWZ9BUfqYZKV2S1LQ8emGZ0qZacrkXCmtgWpaICnqHLaPbvjZa5GfHWh82tIWngYe7SZ7mlNoC5k37xbPLGDTkDQtnLWro1SWFso3i1toUiq9ameQ4Zj1xsBMpXJmKxeqTkMaHQnXkL+BGuvuKLqVWct1wFKcQYHjQJnPQfPdftOzHzF++njsD9ce+h2CpXYgK6p7qAZHvHUTMp4Or+4CFXxRLQS+kbu0d1Ia1cbAhWRMxzCXR3Mp5dgve1KrFjSi/vkTGVeNE5ZBciWNQtoJi17oOiEEP/Oic9WTWezMc07HpMHrPYfaDiyzTuOwWmsV0eGBewoQupkf5iOEXhgiLKJj2WnnIHYdse/ph4HlMLBeDjrNWA+sVgOLxYKh74ldRx90EepQga9SP8os6nbZ77lrRUxvUXFJtRpSCi5npOq9gQ2dbOgIsonsaqo6rZgv6IykTJm0Y5BtXNnSzqdiPyv7DkXjB6vWx+4/47jyX8TblWdfZNycU8adOpkt1oR+zbg5Bx+1W+0hbzeEUgmrHr91eBnxUojVkVzk6vPPkmvleOnZnG/5w3/4jzg6ucoyv8JLXysM/RFf+Oo3uPXyq9x59z3uHJ/w5M5tzZKJgVIK4SgybncwGqDxKgQM1SmYdNplbjTsRmUAbJ0zWpWDGCKuZDPK3DcSQgjs/0TmyYmIs7Trg6aFPW4rVHMtpDRSvRbOpVR2KTGWwi4Xkgj0HZ14HXtXQXLWTlyFUoquv3bO3Jsq//f/6jv83p/c4euv3+LWlcq7nwQuLv6Qdz68pC5OWQ9rgvfWLFFrTCGwTYEH5xsq2dZd3Qx2pbBLiVxGtmNi3E1cnF+wGbNevlVLos0E/8nf+5D37/1nnF79XW7eeo5f+pWf49ryCuP9q3xw7z67KeB8h48D/eqEa8dXefb0lHyhupuKYxEHooP1es109mRP+XDQPCGjbf6uFTAlM007dtsNfdeR+p7cd6QYKVX51i+/9kVyET566ye880ff5tHtd5G0RYaO7sZVllev0K1PWR6dcuu5l3n+xi2u33yG06tXeeaZZ7h64yohBhC1pE1JePJoy3YcZ5tgQqTvA8uFJwZmExDQ86xU2O6EzTYprW/oNLF5CETnWEbmqbat3oAuqeNY2W0mpnFU8FpFi62h067rnyEcT0WIgc/cLQwdMpOd1azEeW/24nZQnTMKiblOStUJpjcKk3fEvgNR4wCKkC8vcK4jrxccLRzFe8JqDV1P3o0U7ylpZ0WWw9WCBG9uV9akdFbEO6fNKWuo+rmIl5lNwbwVtr87qEWAVim09mdrfGJNV6DJBOdmRmN+CK2/tzew8VgAsf2sIianPTwzPCJe9ZdowzNggbrWv/zo3o7Hm/us1wN9L8SNUOoF2ymrM5XTZlG1fVQKSFXDnalo3paWKW7uhSYRSjbymPO4UAhdoD9o/FGEj+qGzeY+q8UFi+WC4+M1PjiSd2ymUcXZVvN47+miZ+iCZfFUte13Gk7sg6fKYaXs5ntrLrUGkx7TVnGZQ2SsdJ0wdI7VIrI8OiKEqPS0nIiusOgdi2XHcr1guV6yWC0ZlguWyzWrfmDZdwwhqA2/98qemGnZnjpVyHruuqdYFqjRTFH72ioZqZaAnvVY1lKsdrAaoqizlhhVikaZKpli2TvjpGBDdX/FpirNlayBDv1MxIJUf5bbP53r1GFdeNiOsQtn1lWI0fBbES/OYurZJ2MbyAjO6YLhDOGbx7I3DUDLu2hPJP7pp2+vyTkDGkUvqmCbujgDCW4/P2i++PwZG/6fhaEO3uYsIm/f6wV7AIDqp/9m3zd9uvBXRK9THT//u0dD9GrWC9+3zIbSOMj62JpUbQMA63bX7JBio1gOX0x77kO0qOPBmg1sFKe2sdmbnavmXZRJSIPQ9aIbarRfQRiLjqFzrRTTGCA6KXBYWMzsVNCOYHsd9r0cnEDA7AagJ4kWpZ2j7z1D71n2gVUfWQ4dfT/QDwOLBjQWA8vlgsVSpxsKRiIxBC1CUP6/ay499iH6qlMMqgK1mrWbzlRhKsprzAVysos7qa6iFOU0JnXyIKvugiY4O+RA5kzNSV0vUtJJRruXQq7mnDLzLWWWscyWyJ9dnEGIPbkU7URWcKHXw18SoV/iuk6tnH1QHr4LhG4xC/ZXYeDlr7/JxWbLnY/vcLRaslr03Lv7kEcP7vLTnwbe+dEf8Nu/dZsX3/gKz778Ejeff5Hl8RGPb9zk7ocf8OTuJ3RDTxonhuPC9tEjxotzpcY5j+8cecxzZ1S59lYkNKMGB9pTas0K7Zy0BFzaulNVNK38bWt8oH7xIoVU9qBE3V2gWLdUg9cmsihPvJTCZhrZTSNZhNWVE9ZXTlT4vRvZmnbDpaTWjFU7oNIaLA52qfL9t+/w4e2H3Lx6ws3rE0en1zm+8RJH128ydWvq5SU5ZbZnT0i7DTUndqnw1u1HPDp/gkcQC9+UmaCqk9ZShTQmW2M1HCygBfg793bc/f++y5XVJzz/7E1uf7Lj9S+/Tn/yGBmOif1C7Vudw8fAMAxcW614kkaSwLBccrxacXrtNW489xy//+3f59H9+7p+ObeXfGGZKuLmIjDXQrJphaZmK+Abuo40Je59+BHLo2M2l2fs0iX99RPC8hnWV2+wPLlKHJYMw4obV6/zzLPPcu3aDa7fuM6NZ5/h5OoJfR8Rgd1U2FxOTLvCbpzUmKDrCH3PYqmJwN7v13+96e4wTY7tNpNzxsegVp5RC7ehg/DUcmmlqGiXcXM5Me5G7Zj7QDd0CmqGQDjommM97FrrZ5aC6YLRStrhC9ZMrNqhnPdY73BFue5BPI6qOirv6VYrmxhl+qj7y5gLUjMlJ0rasbtIDN2SPkSGRY9ER8mBlEZymlTEXDRJWZJp98DCMvT1Nfp4tKJfxOoFdHI5NyGbmQutBtlXH8LB5MmxRxUNaM7ARP9dc7DE+nN6Dbha510XaYF8WJCttxpIp+e61+j1A6r/qAY2VLgN5SKzGSt9H+i6gg8B12l+VS16XHLWEN6aW43qGFNhW6pKGJ0ji1LGm05FaYFqR0sRUvGqMchG38pqEb0cJparifOLwmK9oHaQnNcspqzmMo2+pjlqtck6lV0SA9F7Li8uKe1zmy8u/X4/dBLrhxrnxWvTs+s8fe9ZLgLD4Omj0A/BQKjQdx2rxcByvWKxWmjDcxgYlgOL5VLpVTHSx0h03ixpnQKz7LRuKM2YRsGaK2pMo4MMdQvVgFrTeGaNCagpqwOmaTnIxQpEnVLU5tCW8zzRSI1dcXj8pO7pgVaSzVoeYU8x/ifc/umBxuHMVQ6woIGLBjKifa/lvX513gAGCjK89xo6UtyBVazT7r1TAbdeoK1baN1zDMQYeHHBCv3SXovMVCqhNcpbscD8GBrjcej+sQc1baIxl+b71sJc7M8/d/Ph0J/X+UdtQMneb2I/W/DsuZt7KtX+sXNh1m60DolzHueK0ptaf6f6GWw0Ebm+VD9/dCpc1Xvbt7SAKhSzjJXikexMuKwdupyEaVHp+0LoA6731KCp6WPVgDMtmEVDtMreDWSmQZlvtyKuGbLt32hDbIcobZ5qeM3IiJ6ujwxDx2JQqlT7uhrsvtD/HhYd/RDpukCMOuYM4vCzW4f1BKtuSPp6PVj0hdgkw00VpqrWcrlAyUhJOtEQ+77ohU4qmpiVCqSMyxlMXJVLE1qpGC2X1k3Is+tWbdOMqu5Uoe7TwJVy6Dnw9PrM3fr1kv5yxbR7SB13SEpmEwz0PRIipWRc19Mdn1JTJYvQhwC18MqX3+Brv/rr/Gf/7r/PFz53nbPLC84fX2jQURUePbrg7u07fO/3/gHf//3f45nnXuSLX/95Xv3KV1m+fMTx9We4fPyQx/c/4c677zFudrgQyDWTLs6181i0SHbSOom6ClQr2MS6Cg51s4mi1Ba1zw4zUGhT0zr3JJUTH1C7Ui0YC6XKvP5U58iimRguJzKVkAoVFYfvpokxZY6uXePNb/4i1154nouLc7aXl1yen/Hk3n0uHz/m7p077LYKSPS6F4IFVXY+4P3AxILLusC7gYUFcZVSEZlIacf28lxzBop22HMtGnDVOqjCbBnu0TWq1D3tY17j53XeEWJHv1wRlqc8mQIfP6qcMHJ0ZYkP1UoOrXZCDFy5cspLxysYel585TWu3bjBq194gzGBH/5dfuu/+a+YdqM1srSZkwXEOWKM1OrwTqfERYp+NlV5x8s+crpe88HtTzi/+DHXnn2e5ekJL33t59hOW3zs6FdrrpxcZ7Vcc/XqVa5du8bplatcvXaNq9evsFotlEKQK+NYuTzfMu4mnS45cCEQup5+6FgvA97oXM6KmQYapkk4vxjZbhMuOOIwEILHBS1QO68gVPeIJhbWnIJpEnbbSbMVTMPS9QNdDCy6qHaZRjPC6d5QKkyTwOKf/xrw/+/NBbVblZq1fedlX3/bpqy28w4fwjy5Dk6Bb79Ysjg64vGjRxwtogleK9EYF1CpkpnGS9JmQ+c7lsOCxULtmGPUdPqcE9O40z0hOjPtKHMdBAdtPatFdN/f6zDErPyxicjTtci+GsHonCBzkxbnZhte/NNgo01Fqj22r01BJXOIYIhRLVu7TimkVffqagVuTXU/xbUar9h7EBd0mus9BaVJeayO86JTkaKC5PqU1a+pytk3Beb6Cf29SlFGRkU34mLFt7kkUT0iGjhXfWJyarFfY9ApSdGOvtYhuuZ2sSM4oQuRgGcIvbI/iuP8/Im9pFaLmMmNMTRm4OecmSw4nPf44Oj7yGLR451D6kRwSo/qg6fvIotBGRXL1cKaoQuGRU83DPR9r8Y0eKVco9OfmpoZjbIrmmZQKgSjq9ck1owsxq4o5q6VNOi0Kt1batGJSNbpRzGAobQoZWSUcuhcmCkiBwahZnlstUhptYiZLvzzm2h8CmTM3VaxE9/tTyS1pxVcsPAa9vR9HX/voZKrsufqo5xTDpAVrUGObfh2Rbdci9lpoj1nC+izDUkvnsbh3G+ITUdRaV2nvU7DOTQfrk0U/P69N6es+bg0wDTXzIfyrj3caKCiLTzNErgtEjMVQ2g76F7M5DxFyp5UVt3M46/1gOZhoCIAxUCHfr9/Hi2k1Oq2TIVcPbmqALnUoHSAqZCGQhwCvvfUNtUwoJGypnwns4ItWd0NtH0he8DRTk7XejV2AlSUcDpbbbUD2VoRARc6fOjwXY/ve0Lf0y16+kXPYuhYDh3LRcdiiPR91M5FcATjr7pSkepUFuJs162K+H3x+Byso2DAKBcVdKc6hwtSknYSJFElUavmQkhJSp1KGUkTktJ8r+lA7N2+GsiojXJ1qM0w54h5g6oYberwJPvs3dYnp6TNjvMHt8nbLQFH2m7I045uWONEKDWzffKEfnVEKomcRjof6BYL3vjmV4khsFwGTo8cm0tBkmPlI2NNpFLp1reYgLJ5yN07F9y+/S5/+I/+Ma9++U2+9I2f5/rnX+fmjWO+8HzP47PKh7cfE4Lj7BOP5ELeTfiiTlSNOJnttK00a0YrJF2jdqqdITVbloNnfbLE03F5do55buqD+ID3Ae8KXRCcU9Gd8yBUanUkG+nr561ajFQLqWTGWtk+fMh3/tHv8/IXX+faM89w9cYLHJ/eZLk6oj43sd1ldtuP5omtNneg857o1cHIE6jVUUplTCO73dYaNo6aJvK0I+cJERWcN/G1d9Y8Mv2Jd5r1gwhT1RyD4PfroXYSA51zdCESuyVxWBOGJdUFxpQZpomu78E5Sk5ILYRFx+rkhFdOTxmuX+PGM88TwsCdT55w9vCc8XIkhp7RT9q0cR5xjoxOgELoCNEfuHDpWlVFQcaq77g4O6cgLK6sufHKc7g4cOxvkKvu8DF2PP/c89x45hanV65zcnrM+nhJ7CNd8EiG3TYzpcxmY3bNVOXgB3W0in1kGMKc9utt+qJNLw3Ze/QwcbndgYMYF+C9hkIWWK+9BSe2NVHXTDWRcYyThsvNGUxdTwhR3aaiJS9be1ZEC5cpwW7853TR/zO++S6odWdKB5Md9ff3zs9NxFqKJdVjwnc99sv1kmAi3q5DNQFVpxomBSR2UQvmohOOi2nL7iKwWGg3OvQDwTuGoAGy01TI4oDJAKFpEj5di6BFPpiWx9YYaG6cyt5obnYhmFazJKA1nezzDG1SJbP9tg5PTQnilELpnJuzMlpXuoIWrJdbhkEtnmPsdSrpM0EcUkfNFWFfi7QugxSjeGXXCGw4qRqWbBqoWjRpu5amf8Wanxb8ae+5sd30n4UiKkeX6rTbXt1c/O5bwR5PhpARl9RNKQaldFdIyXSQRaA4ou9wzhNdVO1HKpRJGQeuYMDFao82zbFzy7XudzPosS6zDx0xdlqXxEAcOhbHK4ZhYNV3LLqORd8zDOo81S+WDENPZwwL74KWPbmaxWxRNkoGXzyueJuOONP71JnOruGCSptqYGNKE6Uo24KqIJGsjpZNVyo5IUbblmLul7mq+PuABj7X15UZbMymKDadajqNn+X2TycGPwQa9tHPtSPMY7n5xEe7Mq1mhDa5cDPv0IFatdlspnob+zRngln9v3+yGdwcfG2vzdnXclj4W5HW5hRuXrptsiANaOxJPVjx7x0qOo8KNsQmGs4eN8C+ILTvW0Hvm0XV/Jj76YWCigZBWufCLkC7uGdAILRmn27gNMs89heBfRjzlOPgOaGBJn3WNrjd/04z8Sz4DEXi3u0oa3eiTIU4mdVt52wAYICkoKndWWwsV9Grvu6TSBvXD5jVWI0T4J1CekI7q+YjJWh4kHMm1vARQqc7RYy4LtroNlhYzv4DqmIXqo2P9xeHLiiuCK44JHu1mc3OuIxqJ0euyFSUQpZbqnTCSUJIxo9M8+RCUlbxYFIRYUkHVKkpIVNRXYxpN1rnpZrgTAXgshdd1SbCkr0R12f0dvXZ5/n4rR+xWK15/Ogh8eiUev6IuFQqw7g5Q3aXyLhjGrfExUBxHh96JAQ+vH2Hb/7yszz3yvP89Hvvst2NjFO2gh3KtlDyJV98/RahHnPrquPll57nt377Lf7R332Hn/7ht/n8Vz7H66+/zOrkJr/8+QXXrx5x9WqP3z2Pc4Fvf/dHnH38CTEr/SjnbG5GeyuFXZp0MijBOl/oxi5C1wWWy47//b/5LcL6Of6v//bf5vzsCa4WbdCJME4TpaotrdriovxXoDhBfGsuKPlwZ10onFgXe8edOx9x995tQggM/cCy6zUTYrVid7nBlly7iuaWyHwtqUOJ0v1yyozTVq2iq6cYxaj5rKdcwDn6vteTcu4gYQ4yToWDtAaTdf1s2hG9pwueaKYgtQrTOJGz2uGUUrRI94UybqkpEUNHrfDgk3ucf/wJafpjLi+23L9/l/Pzc6Zxw/HRmlL1egvez+vxdjuSO2HoI0OMxNCx6geunRzxxVdf5oVXXuHuo8dsinDtlRdZnR4jXvVeIUTWzrNarVivj7h+4zonV25yfOUa66OeGNvrF8ZtYbcbmUYNyVPwGSB4+qFn6DuWfWAIZoBihWFr4O5GdZgaxwnvI3HR0w3qoF9z4Wgd6fu2NxhnXLRsSxl2Y2WzSZoQXytdp1QYKYk+9jPQ8zPQ0MUjS1Wt32fwFruOlHa44Kkp42JQGolTf6ZajCZSNWG6swZjS+We0sR6qdPucZfmhqB3qLuUCLjMYhmgg4gwhMjF2Y7zsy2bywv6pRaQ3kfWK0f0aqbiJOLEsb3cUapSCL1N8KtrxhBGobSC7XBHbgVtsAngjetrxHvu3X+keiKxNmUwvYnXmugwz0uni/sGgxP9d7Wx3cPVIvsUbHdAYffO471pDcAmMPvZ+sU4AAA0wElEQVTJbEVfY6Ooz43Y6vBVpwDaw7NcIasramvOWHZasPdc0fNTzW32fAaluxvNR1+xXTcORBOxwSPF4YcIseiERZRVkceCmE4y5UIxUXVN2kwquSBVjWDECnkXPOon66hV9arepkkK6szhchhYLVdICBQfWCxW9OsFxA7fRbxpR/uhZxgWdP1A7Dpc6HBem5maIXK4x8tsRiPF44uzxqszrYWu/VieV7XXX0umlkQpk2lOKk6MGpUKSAMZeWZU1OZyOdnxGJW+XbIWsFJVywH2umyi0qia8uesRf7pXacOK+aDe2tGGxDSr97+Q7Qrq0i7lbnWobdWi/6aAQtpwsl6MIXA6FBurpDnl2Zoub1cQRDv5hPTuYBUgzUzjG4TBfs7UUvbFvSDXTSHIKZpl41tMOtRGqevgYhGVQroRdkO0/62F3kdvpI9QUzmMatKkOyDLQqR2iV8SLRqZXmd/+5pSljD5Psj1F7F/i/ByDlFYAwmijbA0BdkCtTe4aOjBKV7FBRL6BpvbgfmwjSDjBloHKDSVlDhIczjmIaYnjr3nFPDAG8p6USHRId0DiLUCCVCCVCaZ3xtEyGTDpqbQ9MMIWIcUG0E+OyQZHhnBhpFL8h5HKuUKUS7KUKyiYZdzAY0JCXqlChTolhYkIz6s5rUcaqm5l2ti+LsbpFny2+KLUQyo8rP7m17dsnp9Rt89Ce3CT7gfAQX6IbIVITOR4rX8XRKieHohE4ECT2u6/j4nfcocs7N5wZefPYLPL6/4cP37vLJncfsRg+pcO+jn+CmC77//Y/5bkq88YXH/Movv8m9Rz/k/ic/ZdE9YDq/w/raMzz6+IjPP79kfOk1zj75gJdPC6m+QfncVXzZcvuTSz784AlDN3D1xlW224nbn3xCSglAu1NDD1Sm7Y7VuueFF04ppXLnzgN+/ddf5bXXnufiSWDhhcvLyv3HWx5fjkoLoLlE6XomTojO0TvP4APBOx7tRi5TmelYMp8GgpRCkcI2JyanfT555NS6uv2WaMe2ig0UUYpTKoVUEsnO2TwlcpegekqayDXrJAWg7zm9cQO/WZFLoe97vQ5Spht6+mHBbrfj7u3bOgW0ohj2DRVnQYmuVEqeGHcbtpeXLJbH5JxJaQKBsttRkibH1+q4d/cejy43St/KlcdPHrHbbkjTSE6ZznmK93SeWfTcmlyd8yw6z8l6wUvP3eSNr3yF67eeo6yOOV0dc+vkhOX6hN1ONQ59r5zpxWLB8fEJy+WaYVhp9zknRHpqFdJYuLxITDmRp1E3Pu+NVhF0wrroGGIkeNsLnBZlWLGXc+XsfMfF2ZbiPLHvib3mcDgRYu9ZDbZPzgJgsXNG/363KezGzDjuAKUyBOdYdJFFpw5b1pXSxpUtwSVBSQcU1c/QrdZK6CJp3Oo5ZjQOR6OlubmhJFWQoIThitcJ6m7k0ldidHT9oEXTWOapnZNKGbdQM9vtRE2VRfQcrRY8mTZMaYu4iZJ7go8UH1lEB7FHMvRRcMsFrotQK3mspDGr3iZ02pg2WlJtlYLZtqvmwzN06vhYUmJ9tGAxdJRqDmJmc15Nd3CIMOY6yGmN5MwQp5o7nXaC285/UMyJzOtKwVFdoTlftlpk37TQRkMVXcICRi8PFgfgtYlZZV+5VERNLWJUSrBgwFDPSXVG81rIpjzXgUqkQsX6YhOdqpqbSSalulbocg+dUrkyanTQBNE1V/IukaesTcMsuh+XFkzXDCWMtOYczlwyG6vg/9feu/ZKkl3pec++RERezql7d1V3k002RxQlcqQRPLbhsQHbsAXZgr/4o/+X/QP8O+wPgo2Z0UAQYGs0HHJIsZtsdhe7635umRmxL8sf1toReYqE1Q20DDeQq5CoU6fOicyMjL1jvWu977vUvMioUpsVw7DCxUi36hg2G/rNWsFOF3Cdx0WP6wOuj7hOaWY6Z6tSzEBEhyUyzztqFmLOBPSI11zPiqHzvK6kzlLFtBYpK12qOp0k7FEnKhWDK9V7KYDm2WlKpkyd9LwUe6izVtOI6iKqNnR6ZsuIWD7CV85Hvt5kcI4O/DbQqMyzNRrAKHrtUwqzduKoxIJDqwUKHoySYFw8zHVHbUXntTB/vTyv3EJVx/mpOGcIvgkq3Aw86vzaZea+ypzJ17nvgVUQnJNFPuCXSmHrnByzgeYOiwezujo6fW2Jt26C/uLxTQTbFFuHQ40zq70qex/2UwuUoL1inJ37jHpQZ46MlJBjifbRddJqKnX+lzPEKAnrWFRy1mQuJhVnV+90wJhfKhJKWq6LQt24n3qHsxPdTp53zLSS5pIly3lQwY3aG3tXca7ijiZlY1WdEoTshcmpV7cTpYF5Z50qZ9qWqjMyZm16rbMI3GVwRvOSjC62XGd3BsnF7GeLVQ4MZDjtaIgteEkKKor9XadEGTP1kKljQsa80KpyMV2HPlxri5Zm46oDEvNRN/PbjDXuPHjExasvqLUSVyuqZHzU2RnRQcoJF3pcmOjiWkWGo37WFcfFlxc8++xz7pxt+cGP3uP8Ts8f/5MPuPv5Az7+5ec4J6ziwP5yj0uJXoRfffyK//a/hnffOWd/9ZoYhTq9JL14w7/5fODx2Y94/lKYxkRej3z4D37Cs2dP8Ptn/PDhnvW9iRcvXrDarvjO97/Hkw8/5F/95V8SRPjhP/gBGdicrbl4/YZ1P/HjH3/Ap0+v+Ou/e85/+p/t+ey3n3Px+oInD7Y8eXDOP/nJD/j57w7827/+KXVK4CCbhaDm5p4+wCoGtts117VVplpRoBE7j8KoBT4I3qmrTdPLOrfosnQOi2qoUlZOb5om0mHP1EW8gxx0cGaaElMtjLVSBGLoeOfdx1Qc3/3oIz775BN2l5cMq57N2RnX13ueP3um1MEqiNfkRpyVRSRQqmMqhWlMjPs9u+srhtWG2AXdy0uhTgdIkwrgfSAV3R/SlJimxDSO7PZ7pnGcOfJCZYiBew4chRVK57rfRd5/2PPo4T2efPAu9x6/g3vwiPuPv8PqkDjsD1xfjyDC2WbDqu/ZnG1Zb7Z0XUfwkeAjDsc0ToQb7RKMh4n9YQ/YvS324JWe23WBs+2KGC1JmMvMy00zZ7i6ztzsss7/CB4XAt5spYJzrAejfDqsbKVJXrabV61CSqoN887jYjQziUzsehXqGk253aNKFaZJ8480ZXQq6rcrQoyUmuye62m2qa0I2Xj8rpZFvFz1flaqQ8xZJ3SRftNrt20VCFNlOqS5g5xTme1B9/vM2aoneNVBqjg3IxR2NdFtVyoQr0IXK12/oqBW6IOvuNCTUrGiSo/v4eZ6h4ijWw3KqPTaxXJeGPqeacrsx4nNWUeeRtWuRUffeTZDx00RdmnPUnbgSJuhRAHVynqyCHLLhbIVNeEYcFRawXQpPCrFSSzf0KxB9WlhBijqHirauTnqgyCVJGIPdZoidgD0w0AeJ1wpOK8W3bWqQB8U8C2aXX1zkh2FQpZEsq5KG0TnukgNgey0Y1eNPaHDDs3JyZgWs0OkdW3nWqeoeJyA0u2lEp3QRSH2jm7wdF3Ad544dMShs0uwIARcdDogtQtI1KJZsvfSDD4imnNI0dctlSOjF815fVE9psvKbKCaFb/lH5SqdPas2gqRRLNcrZgTVVZa1Zy/tGF8U6aOZZ6UXg+as6iWQ5kc2JT5lmOr1ENzkZbatS7VV4mvN7Cv3rpGl+8fA42WvR4l762S1mQWeG7ZuGnbTexGw8LlL2KD0+b8f/7bbLFnAMIC1hUYCHObUFtwLZXXFyKW6OqC0SqITorWM9gG6hwRuxTZWiK9AAtZFmbrcgg4bxcLSyVq6bW0OPagast+ZjPe6jncpj60o9ZbP98Eq4Iu6IRDx50xty8NC84Ja3O+arH4XrWBhdquJatuoFZPLY5qomkJjho81Tvr8lmXYBaX2QXQQEa7PpRjsFxH4eiF0T5cA1Ku4F3Bu6w1KWk+FZlKpoqJecUTqrUcnSZVoQrBKXfXi4IMX5xVDczVqdZlZsYkSNKvm0ZD7NFEVMWAhkimoROpiVompV5Zp2KmSU0ZOQIZusi1q4FNBJes7Qsx7qR2NMxWsOhslaK1ihmcfhuj35ypy0fsqKNVrkWnbKfDFemww3c93dm5Jgw+4GKPc54QehAh5A5yJe9u+M3LC6ap8p2//yEPXl9x/WYHsoEsbCx5Havw4sVz9peXTLvM559d8Wo7MaXCD3749/m3P/+Mf/mvf8v9e+ec/aNHfPnZmtX5Pab0ELl5zfadB0xnd3nz4jnles+f/ckf89vfPeXqzWuGzYAfXzPtR+7cWfH44V3GyfHuu4/4/OkFLqzpYqBOmc+/vOLFqz2PnrzP//Q//jNev7ni1x9/rHRIjBhgGoJCRtxIjVGNELxVCF0rftiqt0pHK0EE6yJExGijy+5SaiWVwlQKXS6ElEjjRBlH0uHAaBqT2Hf4ijqYtCrcbsflsy85f+cRDx+/x5/86X/Op7/4FVcvn3Pt4E3sFCxl7bwUadOTdRfLVZRBWRwpV/aHA8Nuz+bmWoXxUsnrNY5CEJsF4BxZCtM0qvtWUqrVNKqeZEoTaZqUcx4cKQRi73gShMcPtsSzM87XnruP7uPO7zGe3+MiDOSrPW8On6vzUprYbLdsz855cP8B6/VKZ/J0Hd5HnNNz75x2iXa7PVWq0g6kqjtOjIShw8eAd54hRrqoCb4PEMzKFkBENTg3u8zV9QQhaGfPQdcbPc85+uhmRunSKbd+s1Ndwf4mWXKbZ8+MOHTqrNehNBC/XAKCAoycUF3OOAHb/7AL/j9AKDMBu7HXW51etfCsUJ0lwmixr2qBUYuPOrVaHPipMhV1Z1uvevCOkqoVgo+qphXylKhToSZhykVncxRhNazZXU/sricFjJtIZiL4iEhUC1Lvoa+MuTBVBbUkrTSXgFJgKLjO04WAOKHrA2nKZqbgqeJIWQdRxi7w6N4ZX74RxjRqhjDnXXoyKs0TrlrxwXIVWQawHZ3VOcO47YbWMhCFGlpEbdVWoYpOnPbWjVB6l9PunomFEzDhmGrlkAsugu/UaOH6MOqwWqe9i8KyYy3qN6NmNf1EdvaziYwQgVSLDsPsIjPjqL3LRhEtNgi3ViscVusmqOalpSUIdEAXPK4L+OgI0UP0mu84oVTtZAZfia4ivQNnjnLBIV7Lw1kqvhakZCIO7xRsOLHiZtNfWK1VJ4EbLSkDWeZiewMYktXZMyUdsKe5iCbKLmg7RGqaQYYyJMwBMxVkMqv9KVMOmTJaLlLKDMhcrXYFNQq3U61MdZTqyVIp4r6yc93XAxrH4KK+9e+WRB5/3z5wLM9s/vCtI1CdTshtw/moYl7Btx+3ElTjitXy1muy57sVrZJjz9X8lZuoEY50FG1HdsahlbbgdMG0G6ZXGIc4FRY7AyCKNRaxlQrcG/XrePEotJo7Br/3NlrnQk9mc6Z6e9ktv902Fjd/DMcgY8Ld+ljq0aOdoCZDWwx29Y/SvpoHgIIHl5T2psJlRw0OiVWFaR6lR4D5PjfnKVnAhoh1eZYzMn9Itz5HvWCctQIDWa2OJSA1UEoi56DJkkfbtc4ZrU4rBTEUgs8EF/DWNleQ4ey60mqVajQqLinQYNL3iXUzJDceZJ2BRpHmAK6PiorBJSeYsg7lSwoqmDIyFq0cHFUSSkrKlSxp3gjn58hik42N9lKVKapmGL9Xz/7WxDQl7j98l5sPvs+LX/+SknfgPTVNpJs31JJxkvGr+4xpRzrswPXgCuVwTZDC977/iOfPL9lfXPH43Q0//ZtXvHn+O/JhR82Fl599ziDCKkSKE+7ej/zyZ8+4+fKKriqILJM6qX33YeDXn7/iy+cvuLp8w/sPEn/zySdsz+5zdv8B9+6cs3nvAe8+fMKdd97n5s0znr9+xvs/+IjPPwusVpXLNxNd9Fxcj7x+lulXPSKei1c3XL26UKvlzVqr8anwV//XL/nHP/6H/NP/5r/kf/3sKWV3M3dCBd0na6lcHyb2Sad/Sy3zknEw0xw0wVxKGMfJQnCa8OvWqtdTdsJUPDF7QnCkKTIedjq/xI5fqzr0lJK1Qp4zh/2O/Xhg97unTKnw5//7/8bzzz/lcDhociwH2z5NZ2L7YjBKEd72JxGdeJ4mxt0Nu90GgtdK3WFN7CJdCFr1dI7dfkceD5Rp0sFppVDzpDSmWglBgcB2s+Kdh49Yb1bcGwo//KPv8WpyTAgvNufksGZ1cGyfXZAPz3jw4AGbs3OGYeDO+R3u3rvParWZNQ4OTWJj3+lgUiZCiRBlpvG6EKg+UqvQOc+674leTQHanKjjeRlVVMM2joXLyz056wwPFwKxc8TeE4Ozh34W7d7hqHP9DYTxUBkP2YBGxYeIoKLeofMMfdTTbleGtOcvkHMhjQpSvo0hVYg+UkNPzqPu05ZbaKHGCpdOqUsiKs4vXmnYPgjdKpKq4KZCjJ7xkHGMSm8tcNiPKoq1m2d0nvFG93OXmRN60ZoJ06Ew7jPeq6X+PqnmJoRICIHYe+XvR00093nCDZ1Scl0hSVadZ4GS7J4s2EDYQvQ606ZaYrfbZdZruLu9x4s3rxR5BpmLFlhOohqrot9/qx3edo3bxc65Tkzz0DKFhQIemwfiCTqbBBsUWj24oCUPrwWeitbq7JbKQbToU1MiCEyXV4wpmUufmzsht7OdJUcLruVqQpsUp8VTXasz+yAYcyVYFzDnxd41VxM7V6RmK1orwFcjhQ7feULvGdZryhCpsSOHiLpRVXyeKIeiALEDEU9jYdSSKdmTvIrV1VHRGAq+aC7ibJxBdSYBcFCqGiSJUytis9cnCd4WvrP8oOZMyaqtycVI9a7gXMFlS5pN/E0uSrXKmZoqpEK14mcZC3lUavfshlkzYt0B57ToVYssI70MbFRpAv2vVvT8ekDj+Ep869FsZG9Pw2TuOIh1AqoIeFGbPwdi9o++yvz7wfQXzV2qMWnqXI53RrNpSZchb7f0D27dlR1awXjrLTXbOWkVQZvI7dCJn74BDfzcwRBBJzSad20boANFQYbYoML27flGsSyaxszUG8CSNC7ajAYE7IZtv+ltsR+/seOPodGhFrChhk9mAsgi6Fq6H+2ZF7ixfEefxdkZsDMh4LIiSKmK3jH9tosqYPPtOjFBszQBePP7bSW6JnAJmNm1mOG40qN0fGHBSya2Nmn2SPKU4Mm2YEOt+ihC6gohZL3x+kg13rS3a8NVrzoMo+i5NtXbhvP5ScGGn1DLORN41xkE6GKsUkAS4jKiowvV3rZkmHQxF6uAMRbcVKhjhtGOmZRalXOimF2uulCpTV3NVRdyMWAnzj6jb3M/A24uruhXW+4+eMzLz36jyVZwVq3S/cD3A6vzu/jVwOHVC0opECI5T2zvRe69M7Dd3OPixQUXb3Zkgfvbnt9lQWLHm4uducucM417vvvBGc++2LPqPOfnd/mP//QjVmdbnr94xWbl+LuPn+GojCmxGzNXV6958/INq6dPOfvxP2Tfr3jx299x/s4j7tx7h9U68f0nHyCrwH/y/sRfEfjkk6dMY2F/cYUPHWG1Iu8P/OqXv6KPjtityVk9DHLO/M3PfsZ/9d//D9y7d87L8TDPdVD6lFusuIsJNWXZE+bEwDVxcPsPXVfVNh3v9f6qpQ2rT4lqqHTmTSWVxJQzfhznsruIEELQtvyUyLsrrm+ubEZO5uUXT7l88ZxsTjjtgnTCPHxVBPKxd38E19wzLIkquTDtD3QxsncOqZlhNVBir9VRKq9fv0amrIPGQkBEWPU9qe+Jpt9Tq+s169WK++884uF797ne3uXV1YgbBqIfuLm65ubmBYc315xvzlg/eY9753c4f/CAflhBtgGeRQiB2Rmu5EwWUTvKYUMk4kLEead88FrpY6SPHcF5ohc6D+I1zwnapCKhVcr96NjfZFKqM/jqu0C/dkiuxE7oolI9ES16Kah0IJWUdD+9uk52Q/FzFdlFRx+9Hq/3BC96zlGAl0zzlVJhHLUT8m2MklX4HXxHlmn2FplzEdG7ZXBBE86cFXjgNIkyrVBwnmTV4WzOSKkqSJlS1jVpa6qPjnrQ+3YXPKvVgHeePKmWYbfPVu0VpiKMSY/rXWK9XlPEkyXhbU5QQfBDh5fK0At1L6TDpPfXYmoS56GqcDmao1qbmeGqY9onzu/d4cpdkW3mUrvLt4JnaLlZy8E42j/sp2+XrY73ENsv7PvNg88RCFJ1dMHR/lNrM9hxOnPCeZNmCqkWplKZsBkeaULM0U5zk5ZvyFGOo5+nWodDO3rLR5xYIXC012CTs2t0SPSaowAyJnwupnuw5/A6LX3eOr3DR4+PjriKxE1HHSK5dTW8N77hiEwV5wZC7Qmir1eK6kAKmoCXCimoG5wLkeADIQTEHP8EnbruipvJG0GwmSdWcDdmRUiYQUyzxi+UZHa0or6kzhXwyrJwvnUlMiTrgCQDGpNpQadCPjTny0TJmnvURpmqikyr1NmxrNpk8Dawz9Xjcvf/e3x1oDH3tI6rzzKXyV1tHHjmNtCtsQgG+qRWXGyitbY3yJyke8uUG5++iJsXyawjbldIXX6/3URbEt1ucE1rIXbjbpewF319mhQvBKJjEfdxN0HsfYshdeUjuQVRid7Km67BtfdiX/+BGn47g7coTe17x7ju7a/e7oS0fzWFRaPXLJqM9u961HBqIKXVvKpBmqUGZhh9/vnWOwHdUMlufs5q56fNSBHFCzPIkNmiQMwCoxqvwCnIiA2hOTuGgohYHCFDmBoFSl+FilkrrmR87vE546YMfYcLEQmRznmtzNpr8qBdEbOQW2h6VVuUWfBJQYafRB0q2uRMqdTaFmM2TqYCjNq0GlXv5D4VE37b31OBqRqNyjiiyaaDN4vbqp0TnalRDHA0WkCjsS3Xz7c1vvz4lzz+8COSQFytFAgfRnom4mrAuS399oy0v6EcRoLv6dY905TweO4/HFi5zPe/v+YXaeST307cefiQL14Hbm4SfRRyXVNlh/OFYXtGio95+N1rPlp1HHYO8R1//i/+DcNmzerujnR5xcrD5DyHotdpHzyPP3ifuFnz6a//Hb/55BNi33P/8WM+/Of/BR/88CdsHn+XePicf/7kFX/1yw/53ZdXvPniGVTYXe0oq57rUeg7FQSvthulZ+ZEni7w1x/TB0cMgeqquut50D1WtIJmG5nzVoBoN/52Pdv6c8ZDra0gYqs5tj0Y1W4458xJTjtngDlrJcbJq4OU98S+I5UM44G8u2aaEtjuMNuz2hC0VrxQ6pa2q6stZ21ethur2D5eySWTcmYcR7q+MxtSBVq11+t+N41cX19rxT8EHBFfO+5T2Kx74lZnWHgBHzzr7RbnPK92lStJiB84XI705Zp113N+9x537z9gu9qw2WzZrrdEtJuSphGGDt9r93Mcb0jTSJQ13XpDHNTSlNhTnc40ocJmGDjbDPSdJwSbMo0BLm/7aNVu0jRW9jeFlCrdam3DjquaHvQDMagzl+pbTFfmdCcuRS+EnOGwK0zjZEmBGpWXknEEai1sViudGWFrrpp+p1bdN6eU1czAfzt3krwfiUOvxRcXEAoidQYTDt335yKSUXkUOOg1WosaFtbqOExCDJ7D6CiTsQi8txJum3PV4brK0DkV8OK5ujzgXMSjk+Db9PqpelLV5MR1PROechhJ46hahC5y9+6WbtjAOkKdON8EDiFSp4rLGSd6HTgzYIxOqUv4hcodaiXkia6iVqi1HuUicjsXaTf+I7DR/j4uNwrMTpZvp5CVJdl3aE7RnEERK77a4EHBL7mIiM54MCv+5ojZsowlz/BvPVd7je1nF6gzF5dROmZN8+6kUKRWJJhfVko2uR3dZ7Uios/m1WfUWS7iByBUiitq+OKjOUpWOt/TEehwdAihFFzK1MOkuqmUibUQao8vFfEqTpfY0flADREJnmKDWZVVYcVPnMoLTM/qCvgs+Aw+qW6imA1tajMwTIdapIDLCp5QoCG16JTxXI3Ore5Skgp1EuqYKWM285liBU8btuyqOoLVioiCj1Kb5uVIIC9akP8q8dWBRvvk5ytTlqZBS6RFwUHrYMjxVe21qC0BfbFhydOLHc7LkcY3a2dDKTja4dARDA3oHA+cW7oAxwukgYxmetXS6ltgg3bh63bS+hgKNI6dFuzdiOhFVCvidCoorj23uoUgSzfG3Xo9b/Mg3a3X3o6xIPzlZ5ZKA/P/tmjHbx5UdT7GMWCRo+d5G+a0pexYtpNjEtXSgrczZ8BCvZSLs/kd8zHs2ALHWotFDOmYV5pvXxtJS8RmSYAkjFea8XSI6GA7aYKmlChTpB46ytCR+0juOnKMdD7S+UBw7YZt+hpb3GYatThqZV3YIS1go3lVl7bQJBvIMG0ImSKJSrImc9ZqVFK6FGNVoGGVBH0eq7pYtbRUpac0wVo1oW7ztK7SgMZyDd2q+HzL4m/+9V/y4L3vMKy3+GFL7Af6LsCkQHg9rHF5oo4q9vVEOGSCravry8zds8Jf/MtLJgLDtmczCK++fE3oBtXzpAv6vjCmgOs7otvz64+f8uTROdcXmZubgQ+enLPaDHz629fc73Si7MGGLA1dT0fHe++/R99FXr34gr7znN/dkq8vuHz2Of/if/5foNvy/g/+iB99sOWf/tmf8Hl+xJ//H39B3R/I0x7voMaRJ9+7g2wfsdvvOVxfM91c8+5dz6e//ZRpnOj7TkWQpTmgmI0hUGzNBOfnnUCXljMfBdVCtQJLU0828avypQHczKNuGopUKmPKhDDhY0fIhZwLuWR1YBOtol3sDxxE3XBAOxM+eO000TquSz/WsdCFAJtC3WbzZEqJ5JxIOanmYprwJmQIBnRSqXz29Cm7acR3ahXrgqcfBh4+ekiaRn09McwJd+zXpJy5vJrwL74ghsj6fMt6veXhgwe8+/53uPvwXYbVSu8xsSMYXTSuV4x5wk0eORzY7650sNtmy3B2Bwk9OQRzcql05ky1WQ10XdNhtPJWC+245OI47IXDTvcSFz2h17JBHjMERzCRL87uo27BAVW0QlwrpEnnFTnvKdPB7gdV5z44tVXue68gxy2JnIqb1bVrGpNa4fbfTn/b/fU1Z/G+Vvy9V8qu9ewQu4aMbtL0G9Jc2Bww6d3xZq85eZs0nnPWSq0AlJlN0YZ4TodE7wMlabHMxQjOsz8UAxma02TnyNa9C11HcY5DntRRLnhSKYzTxMXll+A8q2Fg3QXONivKJnK42inDQ4wq5GDoVbOjFBYVBHdeyIcDpHKkFZ3LnYhpSluR9rhO7Ix+6x0zFfd4BS+S7+NcpH1PV7xqP7Wb5sW0nJboiTO2uyjQyDVbmdOeyQ5Zli2NJReRW8/rELI0238DHE4p7SI6iFMq+nlbxVrs56ZktGTU0McHUZOe6K0T5peFFsFFVF9RkjIRJBLWPa4MeFQP0jmniXNK+jkXUYpSH3E5U6eJ1Gnnou86SjeQY4d3SQuezpL16vDilbpV0NwxV6N2CyFrh9UnqEm0i1FaLqIGGFUyRTLiCs5VZVi4ipOs1FUzm5HJ3LyymEbUOh32KEV1HtkaAL6Bx1r1erO5HFKbplnmotNXia/nOqVX6B/+fkUpHhUwX2IVY1u6q9m7/Zz+Xdt9seERO87sz2y8QjdvFm4piktLfoXW0Viq9cwY2B99v6XRx9uro7ljyYzWW7K/HKktwPa1VlCkjWfnuBvR+Hr6m8ccWf3KFvj87Lc7Ew0sLLBk+f3mhXUMXxoYaq9xgVJtIvDy+63Osbyv47/bVw3ceHWIoOHE4+fWDaFtSBkVBenmZpQ4zEqRaq0D+xTm69KOZdaElKBgw9T/OjywUkuklkDNiZAifsq4GPFxwvcdoYuMXaTvdEBf10W60CnQCI6INywjtpBR940s1tUQOGpRhlzxCUJznypVJwpXTf5FtItRyGTJZAMcYtuur5WQMm6quKTgQuzhzMGklgYmrHtR2/uVOXE0s2rdtH9vu//2xm//3d/y9Dcfc+fJO8TNhv7OOenmkrqvRDyPnrxLtxr48lefsOkGUhXK7hr1PREO14Gbm8x3P7xHksjlmxuefXHFNBW6zR1KuuSwT0yTtXwP8OqLa1Zdz+sXe8Zd4erqQB89zu84TCPBO9YucO/OiofrFX/vO+/z9NMv+PXPfkrsA/vrS957/zGPP3ifq8tL9uM1v/n535Iy3Lz4DV88ep+Pf7Hm3nvv8cWvfk3nNSG++/AhNQTO7vU8jI7h6jW7fqA78zw4v8O/+vlrhu1W7XGrsNvvbVikJfuiRgWtO+Ewk4XZyQmKlHlFame43qLLVIRgvvzBW+HAaf8yS9VOkfNq89kNmhjnTNrv2V9d8ebVa64Oe6rzRLfsgSXrmijL9jEnFTq5+Kip7hZdg1bVC6UGpSDWrMcqOlMm+0zoOi5urrk57FidbVlvVpxtNwx9ZLVe06827Hd7rnY79lMmTYX91Q3j/po8Hhi8Y/CBzdmGh++8x/Zsw70HD9luzgheaRAxKBViNQz4LqqZxH7P4foCEWE4P2d97yHd2T1K7JQOkTLBOTbDiqHr6YdI1xmoavcwW6A5V6JzlOzY7zLTpFRI8cqnygYkh6Fn3Xt6NeKhCkSvTd7jnboUneSds8xuS4LDx8DQBbrVQIyBs3UgugX0iHUzkmlDxn2ilES3CsT+WzgWHJjGA2kcCUOnmsAQVMOE4EQnwnsfSHnUtTEDDQAxk0Oh66I6iNbKOFkHwgWr4hpIMXZFrhmpjpRsqOqs96yaJLaia1BTmdhFpilxOOzBOUot9F0kdh25FLJUdoeDFjvzRIod06iJ6TgmIp7oPSFGvdvaNHRv2kjvK947rg8J8eZuhq4v0H9rIv52r+BI9Gx5zu9nBC0HOiZ5N6Cy5CIVA2EoyIhiwAU3dzFSESZLjheziqYbO85c2pMfZ0MzH4XiHM7GDQeaoN+bhskcS/FU8VAU5OmE8KyaYKN0tqKpc960j3XptFbRwYhVnaM8Qcd11V6NLYpQp0x2o97Hs+5Z0munwU2BySu1LnaBvtcZGlOsxDAS2rl0akGt9sMqppdZi2zgIoPPFV8cPol2IYoWbIoIYmY0QqE65a1U38YqFvtMKiEX05u2mSKqT8Sct0rO1kk24bdUsln7AmDieaRawUhmdop3Sh/9KvH1Oxpv56fF1lqr4Dcg0YrlrQPhdNESmblCYlzWW8c0ZOpt+EujY2mnRObXEmS5PNvMi1Y7byi4XcLHbcJjkLE0aRzF8PIi03YmhFqQ/oL3GzGpHlUKlj7FcTrYXk+99So4epblrR8v6OWUtMW2VCrqfCRbvEfHcbY1HFPA2vHl6H9nAPh7H+gCJtpm0josS9tSb3LNdaC06kV7V84+b0EvhmOgIcefSPu82yfjmS8Q8ySsJVNrIJeAz1pFciHiQ4QY8V0ghkjsAl0M9CHq9GEfib4NCLPt1QinrZMhBRNcgcsQM4QkhAw+YVUx9dquBjQQBRWVTBJ91NmxQG11Qyq6SRi4kNwqFXouRJQfr8Ir9W+vdi3py1xgpxoNLJ9Vu86/rfH6zTN++dP/mz998t9x9uAxN69fkm+uoRsIOA5TYXfzmjJNBO+oKZFyoXcFHwIpOb78MnC9vqRMwm4KHG4m+kFpNCXBTVa3FqVMTuxGYdjeYRxvCBGtridByEiF4KLuDVPmy9+8RMKGnkK6fMmhFjpgurricHVD2d/wt399ASWzWnV88P6WfR75iz//O97/4FP2F3teXo8Mfc/rzZbx8Yp777yH8/f53t/7Y4Y4sbn8OdebJ5TtC977aE0aR6ZxYri+ZtyNSC2kUW9mKZu/udPktDqlT6iwN+tNyxtNobRugjP3NxVKNipEwLHuou5fJvQrdv2pNkTog86pefnqimdPnzKlBCGYpk6P2ahPpZZbu4aglMfOg/c6zTqXag7fjlYQ0oqcvt7DeMDHSJg6vflu1vjtmi7AD9/7CWfbLcEJnYMuRG72k14j+8Sbl1dcXr6hpAI503nHnaHnzp17hBhY37nLdrtl3Q104sm7PUMcqDj6e3dZr9aUnNjvbhjHPSUdEFc4u/+I7YN3Ge48oIZItgnT62FgFTt649mH4G/NWHImzBPRffZwENXtHCYcQSvcvcN1jumQkVI5PxvYrCPe6fAu7xsg1GjgLGcDGejzCBUX1Cp1s+0QH1lHr25XoSW+Nm+jKkgZzc4X0Ynn0+EA3Pn/aul/Y1GSWiNv+o4QOq3U1go2GLfRWGoRtOsuSF7q49Wh1qi5mCOlXtMu2MyIal0kE5U7AVeMFli0Qnqci3g5YhhIZZwS1dR0UtSqVelvRbtiUtntR0BwXjtZgnB1vWfVJU1oq9NE2mdc54mxp+AJw4rglFqTfKB4IfZhTpS1St7uvWI6UZkLomL7gS7YhYS9EJI0tNPx+7lIK1S0O1Ir0nrRbKpT+KEZRNFBoEX0ejym2Yjw1n3sdi7inJZGl2GBLRdR2KRUeTHjMTUVogTbHwPORRCsE9r2QM2A6swc0AnZ1WZp4DXP9DEoQUo8vmpXwLkMzpFEXZ5KSYRhIFiBRPZaQPBOHaqGoWc1rMljJfgJ79Ruu2lYvUMr7dbJkKZlzVprDQVcUpaFS5iTmujcDwMEUrNpMvS+ULCukTNei3U0XBHNQ2zQn+SqeU1zz7RcY84u2rUt7cq1P1VmKpWgHbTWef/3xdfXaBwft2W9BhzmJO74+41H1aBk+7/Fzmg5VnueyjLEZB6/LvO16I4OcwwojnCxXVTL5fuHcNfSW1gS3WNKkx7H/d6CaJ2SW8dyYIVEay1xy2K3/ebt+sHCd5z5tBy1Pg1KiL3aY4pVex3y1u+3xuYx2BCWKZzt5+eBhMitc1gXzE870wudy9s20kCIjaHH8IRDB9O4dhzjcLZP4Q9NeBGx1la1robdGds2JhHwiHhK9ZCCtcsDhKhJUAiE4OlCZAyB6AOdC/PCbkDDSTUROFDFpmvqNesyhOIUbGSl7vmCeVcXG+5TaS5TRQpJCpOY1N4tQMPnSij68FmMc6nHcWjbs9hjboHOAMLNeiJkuRIbxFyYqd/OmMY9T3/9C/74+s948OQ9rp49xeeRvVTyzY7XT3+ngvoykZJOz86lEEPEIaTDDikrrl5N2q5fb7VKVjJlPID6k+H7XquH415JkSUTo9ogx77XG8+UjL2nItG0T+Spkt0NXgrr6Oir+ubnqyteffopaZw4pMTK6Q3dl8Kr5y+IwZHGzPWbN0yHieQ8XLwm1jWHqytevBF+/JMPuffumtfjQI53+N6P3iPEnpJHXr5+zvWr15RS2F284ebyijIemMYDu5u9zjzISnnBeet0KLdY31+1qieEGHTpmHseqEBxyoV1DAzefs871p1j6B2RhCsH9iNcX+94+eaNzs7oeh1kBmDvGe8Rb3ono2x471XM7Y1HJMKd3uN3B96MiX3raljlTETdd1LOlDQRNpn3P/ojnnz0Q1Znd9nvDqxWHbUUXr14rpPAd5dcXl1wOBwo40Q97Ak1E6Lj/M5dzjZbXMk8ePQuoR8Yb25Ihz1hSpQ44DuZgeub6x3y6CG7yyumww4/dMQhcHb/Hqv7DwnbM2rsKKXQh0AfA33XMQzDbHfrQ9vTl323ipCT0lv2+8nm4WiXqSKsYtB5J86zOevYrIPuzWJuVf4ouROdyH6YYBx1gy2mr0gp4WNH3w/E3uOqo/Nt+rV+XNphcqoRyZU8aaes63t86OjPvv4Yrf8/hORK2h+Q9VapSTKB6XukVEpO6oJSWneYmfIhYDQ0rxSoIDr3AGfHWGr8rmo+IDZAtrZjHCVi3NqPBao59OjQsFlj4wRqLaRp0ipxo57Yb5aU9blmgKO04VIKCaGWkVQmhlWm7zy5enBeaYDOOpFFZyfoW7F5CyrOUbpu1Y6jw4oG7T0YUnZ2v567M07dhRoMqWiBo1loi92rdB6yMT3sZ3IVioEs7xopfTlbwbU5G0v2oYets+t9RRTcVaV6WkZB6/E3jQhGCXUidHGFHwZcDGq9GtpgwbSwCErWhN0q9VR9zhAcPnhwogVK76glIclpgRBR7Yyr5OK1GNbZvcQ5XAz4GOi6DhtlwXTIS3cqeKVOeTM/sZzeVUzsjQKPAq44QhYThOu1rNa3mhtVK+B6VxBXVevVkmcTSjuj+bt5HpiYU5BqSaWBDCeI146FM8Oe1vHSmcZiaXy1olRVIOhYrqN/T3w9oHEccvRYrI4WYl5DAhwtyqWFcPsYbx/zqPhdW0fj6OeO6/HHIGN+yqODHj/VbVzT1BsmHsLP32vHeltR7+afXFJxYBnIFI6e05yzZn7k8d4EMwjwqBYkwLyQrPFlHRUFDGU+1YtzFDRqmHCM1/LRMZZztICaNsmzTRU//qmCJ8+7j5+f06POKfXoeWYA0sCGs83IHDJuxZFF8CzqOTrS8iHKEXi1Dz97/X2bj4HzaqHnA8RAcZ4SIsl7og9EF4jOz1VVnHV65qEu2FA8zWnFdBuhqvg8FgUdvuhC9aViZtLoL6uwTYGGOjOo65idEXPAag9f1BWrfSqVTKENYWyf6HJOZ0B66/L7w4D62xbOVS7fPOPzT37FP/7w+zz68EOuhp797pKw6XEHQYJQbgq+65H9DdG8H6TohRHIuHxAXKSOe90o60SoBTeck8Q6oaYlkFyIrlK7QQW+TpPsTFJA7L2ZUYg6PlEVpLpAdIXUBkWOO7rqqVEIVekQX/72BT/60Qf4+IBf/OI5+ZDsnQqPHvQ8fDjw7rtr7t8dObz8hP/zpzsurj3r7c9Y3b3L3cfv8+53v8v7732f6dETBE9OI4Lj+uIl02HH/mbH1evXXLx6zTgeGA8jh5sdbtTzEmPQ6bem8RiGQRPR7ObiVBZ1otlLZRJHX2FwniKeqVR2NzvqzYjv9qRakZRwMSAOog/4GKk2rt4POtdEaa+aOgSvGrfgA91qjYTApvP0N1c8ePWaPTAROWTbv50QomPoAg/XPT/8wXf58B/9R6TujIvnXzJdPecauLyeePn8mSZoJSN1Ahy9V/H33fv32JzdYby+ou8HHIV+u0XEE+sNAei7FePVFclB2u/xPjKsNDm7eXMBkhke3cfHFat7D/GrM00Wc2Ldr1n3A55KjMFE3s72lAUUtK9TcuxukiaVKWnSJK1i7khTwTnHdhXYboImc0UH9gUvTU4zu4GnLBz2lWmss93kNE1KRekiPghSxEwFmG2+MdCjdtyw20/sb26orurQrVTZDN++GRoAVChTZtqNrM8Gotdqfy5FXXyskERRKlWtRXOvo2TANVDhnHac/VFh54iS0254rV6KeBXauqXzr/c++yEwWqMwu5DLUjxqFKJ2/SBCmgqr1UBwnulQqLXVZD0haoLad55QhFJGrg5qORoCxOCJ0dP1HZuuRzqduyOWcKhtuijNx4a7qUZegRNVOQ7BOdMG1Zl734wnqmkyM23oZ7vX63uq6PnMIky1zFowEbnNdmhrpoEVM5WYgQYtr3LgnU3QVr1CLHVZbyI2ccNTneCdEB10fUc39GTnKNOkk7Odvt6cktGrqt3H7fmcivN9UFMB5/W5Z9BTAcnKqEkHpWyVSYs6wSPTpOfRe/zQIbHD4zgwklOh84nOB3IIhJa+OC3WtjxHbG5Gc1Vt1O6Wg4TawEe1bpUVNG2IcaGSaiHPOZ0mng411XDZrPtbPmPdEKQiNvS4ifnf1gHOHbBqQxCLaZPRrp77ioYSTmZ4fopTnOIUpzjFKU5xilOc4hTfTHw1JccpTnGKU5ziFKc4xSlOcYpTfI04AY1TnOIUpzjFKU5xilOc4hTfeJyAxilOcYpTnOIUpzjFKU5xim88TkDjFKc4xSlOcYpTnOIUpzjFNx4noHGKU5ziFKc4xSlOcYpTnOIbjxPQOMUpTnGKU5ziFKc4xSlO8Y3HCWic4hSnOMUpTnGKU5ziFKf4xuMENE5xilOc4hSnOMUpTnGKU3zjcQIapzjFKU5xilOc4hSnOMUpvvH4fwAWknZ3YgOUMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from lensless.utils.image import resize\n", + "\n", + "\n", + "top_right = (80, 100)\n", + "height = 200\n", + "\n", + "# derive width from height and original aspect ratio\n", + "width = int(height * original_aspect_ratio)\n", + "\n", + "# plot extracted reconstruction\n", + "recon_roi = recon[top_right[0]:top_right[0] + height, top_right[1]:top_right[1] + width]\n", + "\n", + "# resize lensed image to match the size of the reconstructed roi\n", + "lensed_re = resize(lensed, shape=recon_roi.shape)\n", + "\n", + "print(recon_roi.shape, lensed_re.shape)\n", + "\n", + "# plot roi, lensed, and overlay\n", + "_, ax = plt.subplots(ncols=3, nrows=1, figsize=(10, 5))\n", + "ax[0].imshow(recon_roi)\n", + "ax[0].set_title('Reconstructed ROI')\n", + "ax[0].axis('off')\n", + "ax[1].imshow(lensed_re)\n", + "ax[1].set_title('Lensed Image')\n", + "ax[1].axis('off')\n", + "ax[2].imshow(recon_roi, alpha=1)\n", + "ax[2].imshow(lensed_re, alpha=0.2)\n", + "ax[2].set_title('Overlay')\n", + "ax[2].axis('off')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "lensless", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From fc5fbf65244cd53fcef720af791e2fd994e73d83 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 29 Feb 2024 15:20:43 +0100 Subject: [PATCH 04/24] Fix lensed resizing. --- lensless/utils/dataset.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 3ea548dd..14dd2629 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -1050,7 +1050,7 @@ def _get_images_pair(self, idx): if self.alignment is not None: lensed_np = resize( lensed_np, - shape=(self.alignment["height"], self.alignment["width"]), + shape=(self.alignment["height"], self.alignment["width"], 3), interpolation=cv2.INTER_NEAREST, ) elif self.display_res is not None: From fc38d30588e9e331d9ffdf06704f64002506a6dc Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 29 Feb 2024 17:11:43 +0000 Subject: [PATCH 05/24] Add multi-GPU support to unrolled ADMM. --- configs/train_unrolled_multimask.yaml | 10 +++++++--- docs/source/reconstruction.rst | 6 +++--- lensless/eval/benchmark.py | 11 +++++++++-- lensless/recon/trainable_recon.py | 5 +++-- lensless/recon/unrolled_admm.py | 23 ++++++++++++++--------- lensless/recon/utils.py | 2 +- scripts/recon/train_unrolled.py | 25 ++++++++++++++++++++++--- test/test_algos.py | 6 +++--- 8 files changed, 62 insertions(+), 26 deletions(-) diff --git a/configs/train_unrolled_multimask.yaml b/configs/train_unrolled_multimask.yaml index ff639b5c..80eee4ed 100644 --- a/configs/train_unrolled_multimask.yaml +++ b/configs/train_unrolled_multimask.yaml @@ -3,11 +3,15 @@ defaults: - train_unrolledADMM - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] + # Dataset files: - dataset: bezzam/DigiCam-Mirflickr-MultiMask-1K + dataset: bezzam/DigiCam-Mirflickr-MultiMask-10K huggingface_dataset: True - downsample: 1.6 + downsample: 1 image_res: [900, 1200] # used during measurement rotate: True # if measurement is upside-down @@ -19,5 +23,5 @@ alignment: training: batch_size: 4 epoch: 25 - eval_batch_size: 10 + eval_batch_size: 16 diff --git a/docs/source/reconstruction.rst b/docs/source/reconstruction.rst index e5b927f4..4674f327 100644 --- a/docs/source/reconstruction.rst +++ b/docs/source/reconstruction.rst @@ -69,7 +69,7 @@ .. autoclass:: lensless.TrainableReconstructionAlgorithm - :members: batch_call, apply, reset, set_data + :members: forward, apply, reset, set_data :special-members: __init__ :show-inheritance: @@ -78,7 +78,7 @@ ~~~~~~~~~~~~~~ .. autoclass:: lensless.UnrolledFISTA - :members: batch_call + :members: forward :special-members: __init__ :show-inheritance: @@ -86,7 +86,7 @@ ~~~~~~~~~~~~~ .. autoclass:: lensless.UnrolledADMM - :members: batch_call + :members: forward :special-members: __init__ :show-inheritance: diff --git a/lensless/eval/benchmark.py b/lensless/eval/benchmark.py index 13c3912b..1aa84cc2 100644 --- a/lensless/eval/benchmark.py +++ b/lensless/eval/benchmark.py @@ -141,11 +141,12 @@ def benchmark( ) else: - prediction = model.batch_call(lensless, psfs, **kwargs) + prediction = model.forward(lensless, psfs, **kwargs) if unrolled_output_factor: unrolled_out = prediction[-1] prediction = prediction[0] + prediction_original = prediction.clone() # Convert to [N*D, C, H, W] for torchmetrics prediction = prediction.reshape(-1, *prediction.shape[-3:]).movedim(-1, -3) @@ -192,7 +193,13 @@ def benchmark( # compute metrics for metric in metrics: if metric == "ReconstructionError": - metrics_values[metric].append(model.reconstruction_error().cpu().item()) + metrics_values[metric].append( + model.reconstruction_error( + prediction=prediction_original, lensless=lensless + ) + .cpu() + .item() + ) else: if "LPIPS" in metric: if prediction.shape[1] == 1: diff --git a/lensless/recon/trainable_recon.py b/lensless/recon/trainable_recon.py index 7cd48735..5f7b6d52 100644 --- a/lensless/recon/trainable_recon.py +++ b/lensless/recon/trainable_recon.py @@ -3,6 +3,7 @@ # ================== # Authors : # Yohann PERRON [yohann.perron@gmail.com] +# Eric BEZZAM [ebezzam@gmail.com] # ############################################################################# import pathlib as plib @@ -192,7 +193,7 @@ def unfreeze_post_process(self): for param in self.post_process_model.parameters(): param.requires_grad = True - def batch_call(self, batch, psfs=None): + def forward(self, batch, psfs=None): """ Method for performing iterative reconstruction on a batch of images. This implementation is a properly vectorized implementation of FISTA. @@ -216,7 +217,7 @@ def batch_call(self, batch, psfs=None): # assert same shape assert psfs.shape == batch.shape, "psfs must have the same shape as batch" # -- update convolver - self._convolver = RealFFTConvolve2D(psfs.to(self._psf.device), **self._convolver_param) + self._convolver = RealFFTConvolve2D(psfs.to(self._data.device), **self._convolver_param) # pre process data if self.pre_process is not None: diff --git a/lensless/recon/unrolled_admm.py b/lensless/recon/unrolled_admm.py index 8c923ddb..b20eaa07 100644 --- a/lensless/recon/unrolled_admm.py +++ b/lensless/recon/unrolled_admm.py @@ -3,6 +3,7 @@ # ================= # Authors : # Yohann PERRON [yohann.perron@gmail.com] +# Eric BEZZAM [ebezzam@gmail.com] # ############################################################################# from lensless.recon.trainable_recon import TrainableReconstructionAlgorithm @@ -130,19 +131,23 @@ def _PsiT(self, U): return finite_diff_adj(U) def reset(self, batch_size=1): + + if self._data is not None: + device = self._data.device + else: + device = self._convolver._H.device + # ensure that mu1, mu2, mu3, tau are positive - self._mu1 = torch.abs(self._mu1_p) - self._mu2 = torch.abs(self._mu2_p) - self._mu3 = torch.abs(self._mu3_p) - self._tau = torch.abs(self._tau_p) + self._mu1 = torch.abs(self._mu1_p).to(device) + self._mu2 = torch.abs(self._mu2_p).to(device) + self._mu3 = torch.abs(self._mu3_p).to(device) + self._tau = torch.abs(self._tau_p).to(device) # TODO initialize without padding if self._initial_est is not None: - self._image_est = self._initial_est + self._image_est = self._initial_est.to(device) else: - self._image_est = torch.zeros([1] + self._padded_shape, dtype=self._dtype).to( - self._psf.device - ) + self._image_est = torch.zeros([1] + self._padded_shape, dtype=self._dtype).to(device) self._X = torch.zeros_like(self._image_est) self._U = torch.zeros_like(self._Psi(self._image_est)) @@ -163,7 +168,7 @@ def reset(self, batch_size=1): self._R_divmat = 1.0 / ( self._mu1[:, None, None, None, None, None] * (torch.abs(self._convolver._Hadj * self._convolver._H))[None, ...] - + self._mu2[:, None, None, None, None, None] * torch.abs(self._PsiTPsi) + + self._mu2[:, None, None, None, None, None] * torch.abs(self._PsiTPsi).to(device) + self._mu3[:, None, None, None, None, None] ).type(self._complex_dtype) diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index e09cd233..47f28fe7 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -615,7 +615,7 @@ def train_epoch(self, data_loader): self.recon._set_psf(self.mask.get_psf().to(self.device)) # forward pass - y_pred = self.recon.batch_call(X, psfs=psfs) + y_pred = self.recon.forward(X, psfs=psfs) if self.unrolled_output_factor: unrolled_out = y_pred[1] y_pred = y_pred[0] diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index aba35bf9..97612d2e 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -59,6 +59,14 @@ log = logging.getLogger(__name__) +class MyDataParallel(torch.nn.DataParallel): + def __getattr__(self, name): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.module, name) + + @hydra.main(version_base=None, config_path="../../configs", config_name="train_unrolledADMM") def train_unrolled(config): @@ -80,13 +88,19 @@ def train_unrolled(config): if save: save = os.getcwd() + use_cuda = False if "cuda" in config.torch_device and torch.cuda.is_available(): # if config.torch_device == "cuda" and torch.cuda.is_available(): log.info("Using GPU for training.") device = config.torch_device + use_cuda = True else: log.info("Using CPU for training.") device = "cpu" + # device, use_cuda, multi_gpu, device_ids = device_checks( + # config.torch_device, config.multi_gpu, logger=log.info, + # ) + device_ids = config.device_ids # load dataset and create dataloader train_set = None @@ -355,7 +369,7 @@ def train_unrolled(config): post_process=post_process if post_proc_delay is None else None, skip_unrolled=config.reconstruction.skip_unrolled, return_unrolled_output=True if config.unrolled_output_factor > 0 else False, - ).to(device) + ) elif config.reconstruction.method == "unrolled_admm": recon = UnrolledADMM( psf, @@ -368,7 +382,7 @@ def train_unrolled(config): post_process=post_process if post_proc_delay is None else None, skip_unrolled=config.reconstruction.skip_unrolled, return_unrolled_output=True if config.unrolled_output_factor > 0 else False, - ).to(device) + ) elif config.reconstruction.method == "trainable_inv": recon = TrainableInversion( psf, @@ -376,10 +390,15 @@ def train_unrolled(config): pre_process=pre_process if pre_proc_delay is None else None, post_process=post_process if post_proc_delay is None else None, return_unrolled_output=True if config.unrolled_output_factor > 0 else False, - ).to(device) + ) else: raise ValueError(f"{config.reconstruction.method} is not a supported algorithm") + if device_ids is not None: + recon = MyDataParallel(recon, device_ids=device_ids) + if use_cuda: + recon.to(device) + # constructing algorithm name by appending pre and post process algorithm_name = config.reconstruction.method if config.reconstruction.pre_process.network is not None: diff --git a/test/test_algos.py b/test/test_algos.py index b63b5a42..b5e3d94c 100644 --- a/test/test_algos.py +++ b/test/test_algos.py @@ -183,7 +183,7 @@ def post_process(x, noise): next(recon.parameters(), None) is not None ), f"{algorithm.__name__} has no trainable parameters" - res = recon.batch_call(data) + res = recon.forward(data) loss = torch.mean(res) loss.backward() @@ -215,8 +215,8 @@ def post_process(x, noise): recon = algorithm( psf, dtype=dtype, n_iter=_n_iter, pre_process=pre_process, post_process=post_process ) - res1 = recon.batch_call(data1) - res2 = recon.batch_call(data2) + res1 = recon.forward(data1) + res2 = recon.forward(data2) recon.set_data(data2[0]) res3 = recon.apply(disp_iter=None, plot=False) From 853a0ad10a44b6683751ceb338fbc61fc9290ebe Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:09:24 +0000 Subject: [PATCH 06/24] Same dataset object for multi and single mask. --- lensless/utils/dataset.py | 68 ++++++++++++++++++++++++++++----------- 1 file changed, 50 insertions(+), 18 deletions(-) diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 14dd2629..79d54ebf 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -16,7 +16,7 @@ from torchvision import datasets, transforms from lensless.hardware.trainable_mask import prep_trainable_mask, AdafruitLCD from lensless.utils.simulation import FarFieldSimulator -from lensless.utils.io import load_image, load_psf +from lensless.utils.io import load_image, load_psf, save_image from lensless.utils.image import is_grayscale, resize, rgb2gray import re from lensless.hardware.utils import capture @@ -959,7 +959,7 @@ def __getitem__(self, index): return img, lensed -class DigiCamMultiMask(DualDataset): +class DigiCam(DualDataset): def __init__( self, huggingface_repo, @@ -970,6 +970,7 @@ def __init__( rotate=False, downsample=1, alignment=None, + save_psf=False, **kwargs, ): @@ -977,16 +978,10 @@ def __init__( self.rotate = rotate self.display_res = display_res - # download all masks - mask_labels = [] - for i in range(len(self.dataset)): - mask_labels.append(self.dataset[i]["mask_label"]) - mask_labels = list(set(mask_labels)) - self.psfs = dict() - # deduce downsampling factor from measurement + data_0 = self.dataset[0] self.downsample_lensless = downsample - lensless = np.array(self.dataset[0]["lensless"]) + lensless = np.array(data_0["lensless"]) if self.downsample_lensless != 1.0: lensless = resize(lensless, factor=1 / self.downsample_lensless) sensor_res = sensor_dict[sensor][SensorParam.RESOLUTION] @@ -1004,10 +999,44 @@ def __init__( original_aspect_ratio = display_res[1] / display_res[0] self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) - # simulate all PSFs - for label in mask_labels: + # download all masks + self.multimask = False + if "mask_label" in data_0: + self.multimask = True + mask_labels = [] + for i in range(len(self.dataset)): + mask_labels.append(self.dataset[i]["mask_label"]) + mask_labels = list(set(mask_labels)) + + # simulate all PSFs + self.psf = dict() + for label in mask_labels: + mask_fp = hf_hub_download( + repo_id=huggingface_repo, + filename=f"masks/mask_{label}.npy", + repo_type="dataset", + ) + mask_vals = np.load(mask_fp) + mask = AdafruitLCD( + initial_vals=torch.from_numpy(mask_vals.astype(np.float32)), + sensor=sensor, + slm=slm, + downsample=downsample_fact, + flipud=rotate, + ) + self.psf[label] = mask.get_psf().detach() + assert ( + self.psf[label].shape[-3:-1] == lensless.shape[:2] + ), "PSF shape should match lensless shape" + + if save_psf: + # same viewable image of PSF + save_image(self.psf[label].squeeze().cpu().numpy(), f"psf_{label}.png") + + else: + mask_fp = hf_hub_download( - repo_id=huggingface_repo, filename=f"masks/mask_{label}.npy", repo_type="dataset" + repo_id=huggingface_repo, filename="mask_pattern.npy", repo_type="dataset" ) mask_vals = np.load(mask_fp) mask = AdafruitLCD( @@ -1017,12 +1046,12 @@ def __init__( downsample=downsample_fact, flipud=rotate, ) - self.psfs[label] = mask.get_psf().detach() + self.psf = mask.get_psf().detach() assert ( - self.psfs[label].shape[-3:-1] == lensless.shape[:2] + self.psf.shape[-3:-1] == lensless.shape[:2] ), "PSF shape should match lensless shape" - super(DigiCamMultiMask, self).__init__(**kwargs) + super(DigiCam, self).__init__(**kwargs) def __len__(self): return len(self.dataset) @@ -1064,8 +1093,11 @@ def __getitem__(self, idx): lensless = torch.rot90(lensless, dims=(-3, -2), k=2) # return corresponding PSF - mask_label = self.dataset[idx]["mask_label"] - return lensless, lensed, self.psfs[mask_label] + if self.multimask: + mask_label = self.dataset[idx]["mask_label"] + return lensless, lensed, self.psf[mask_label] + else: + return lensless, lensed def simulate_dataset(config, generator=None): From 0333c8b192304f3a9e6fc6a647525b1de738665b Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:13:19 +0000 Subject: [PATCH 07/24] Cleaner image alignment. --- lensless/eval/benchmark.py | 32 ++++++------- lensless/recon/utils.py | 98 ++++++++++++++++++++++++++++---------- 2 files changed, 86 insertions(+), 44 deletions(-) diff --git a/lensless/eval/benchmark.py b/lensless/eval/benchmark.py index 1aa84cc2..119c7ac5 100644 --- a/lensless/eval/benchmark.py +++ b/lensless/eval/benchmark.py @@ -32,7 +32,6 @@ def benchmark( batchsize=1, metrics=None, crop=None, - alignment=False, save_idx=None, output_dir=None, unrolled_output_factor=False, @@ -59,8 +58,6 @@ def benchmark( Directory to save the predictions, by default save in working directory if save_idx is provided. crop : dict, optional Dictionary of crop parameters (vertical: [start, end], horizontal: [start, end]), by default None (no crop). - alignment : dict, optional - Similar to crop. Dictionary of alignment parameters (topright: [height, width], height: pix). Expects ``recon_width`` in ``dataset``. By default None (no alignment). unrolled_output_factor : bool, optional If True, compute metrics for unrolled output, by default False. return_average : bool, optional @@ -76,11 +73,6 @@ def benchmark( assert isinstance(model._psf, torch.Tensor), "model need to be constructed with torch support" device = model._psf.device - if hasattr(dataset, "psfs"): - multipsf_dataset = True - else: - multipsf_dataset = False - if output_dir is None: output_dir = os.getcwd() else: @@ -88,16 +80,20 @@ def benchmark( if not os.path.exists(output_dir): os.mkdir(output_dir) + alignment = None + if hasattr(dataset, "alignment"): + alignment = dataset.alignment + if metrics is None: metrics = { "MSE": MSELoss().to(device), - "MAE": L1Loss().to(device), + # "MAE": L1Loss().to(device), "LPIPS_Vgg": lpip.LearnedPerceptualImagePatchSimilarity( net_type="vgg", normalize=True ).to(device), - "LPIPS_Alex": lpip.LearnedPerceptualImagePatchSimilarity( - net_type="alex", normalize=True - ).to(device), + # "LPIPS_Alex": lpip.LearnedPerceptualImagePatchSimilarity( + # net_type="alex", normalize=True + # ).to(device), "PSNR": psnr.PeakSignalNoiseRatio().to(device), "SSIM": StructuralSimilarityIndexMeasure().to(device), "ReconstructionError": None, @@ -116,7 +112,7 @@ def benchmark( idx = 0 with torch.no_grad(): for batch in tqdm(dataloader): - if multipsf_dataset: + if dataset.multimask: lensless, lensed, psfs = batch psfs = psfs.to(device) else: @@ -133,8 +129,8 @@ def benchmark( # compute predictions if batchsize == 1: - # TODO : handle multipsf - assert not multipsf_dataset + if psfs is not None: + model._set_psf(psfs[0]) model.set_data(lensless) prediction = model.apply( plot=False, save=False, output_intermediate=unrolled_output_factor, **kwargs @@ -174,12 +170,12 @@ def benchmark( if save_idx is not None: batch_idx = np.arange(idx, idx + batchsize) - for i, idx in enumerate(batch_idx): - if idx in save_idx: + for i, _batch_idx in enumerate(batch_idx): + if _batch_idx in save_idx: prediction_np = prediction.cpu().numpy()[i] # switch to [H, W, C] for saving prediction_np = np.moveaxis(prediction_np, 0, -1) - save_image(prediction_np, fp=os.path.join(output_dir, f"{idx}.png")) + save_image(prediction_np, fp=os.path.join(output_dir, f"{_batch_idx}.png")) # normalization prediction_max = torch.amax(prediction, dim=(-1, -2, -3), keepdim=True) diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index 47f28fe7..fbdcd598 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -117,11 +117,10 @@ def apply_denoiser(model, image, noise_level=10, device="cpu", mode="inference") right = (8 - image.shape[-1] % 8) - left image = torch.nn.functional.pad(image, (left, right, top, bottom), mode="constant", value=0) # add noise level as extra channel - image = image.to(device) if isinstance(noise_level, torch.Tensor): noise_level = noise_level / 255.0 else: - noise_level = torch.tensor([noise_level / 255.0]).to(device) + noise_level = torch.tensor([noise_level / 255.0]) image = torch.cat( ( @@ -198,10 +197,10 @@ def process(image, noise_level): model, image / x_max, noise_level=noise_level, - device=device, + device=device, # TODO: NOT USED mode=mode, ) - image = torch.clip(image, min=0.0) * x_max + image = torch.clip(image, min=0.0) * x_max.to(image.device) return image return process @@ -229,7 +228,7 @@ def measure_gradient(model): return total_norm -def create_process_network(network, depth=4, device="cpu", nc=None): +def create_process_network(network, depth=4, device="cpu", nc=None, device_ids=None): """ Helper function to create a process network. @@ -256,7 +255,7 @@ def create_process_network(network, depth=4, device="cpu", nc=None): if network == "DruNet": from lensless.recon.utils import load_drunet - process = load_drunet(requires_grad=True).to(device) + process = load_drunet(requires_grad=True) process_name = "DruNet" elif network == "UnetRes": from lensless.recon.drunet.network_unet import UNetRes @@ -270,12 +269,17 @@ def create_process_network(network, depth=4, device="cpu", nc=None): act_mode="R", downsample_mode="strideconv", upsample_mode="convtranspose", - ).to(device) + ) process_name = "UnetRes_d" + str(depth) else: process = None process_name = None + if process is not None: + if device_ids is not None: + process = torch.nn.DataParallel(process, device_ids=device_ids) + process = process.to(device) + return (process, process_name) @@ -300,9 +304,9 @@ def __init__( gamma=None, logger=None, crop=None, - alignment=None, clip_grad=1.0, unrolled_output_factor=False, + extra_eval_sets=None, # for adding components during training pre_process=None, pre_process_delay=None, @@ -418,10 +422,7 @@ def __init__( ) self.print(f"Train size : {train_size}, Test size : {test_size}") - if hasattr(train_dataset, "psfs"): - self.multipsf_dataset = True - else: - self.multipsf_dataset = False + self.train_dataset = train_dataset self.train_dataloader = torch.utils.data.DataLoader( dataset=train_dataset, batch_size=batch_size, @@ -429,6 +430,7 @@ def __init__( pin_memory=(self.device != "cpu"), ) self.test_dataset = test_dataset + self.extra_eval_sets = extra_eval_sets # additional datasets to evaluate on self.lpips = lpips self.skip_NAN = skip_NAN self.eval_batch_size = eval_batch_size @@ -475,7 +477,6 @@ def __init__( ) self.crop = crop - self.alignment = alignment # -- adding unrolled loss self.unrolled_output_factor = unrolled_output_factor @@ -515,6 +516,9 @@ def __init__( self.metrics[key + "_unrolled"] = [] if metric_for_best_model is not None: assert metric_for_best_model in self.metrics.keys() + if extra_eval_sets is not None: + for key in extra_eval_sets: + self.metrics[key] = dict() self.save_every = save_every # Backward hook that detect NAN in the gradient and print the layer weights @@ -599,7 +603,7 @@ def train_epoch(self, data_loader): for batch in pbar: # get batch - if self.multipsf_dataset: + if self.train_dataset.multimask: X, y, psfs = batch psfs = psfs.to(self.device) else: @@ -615,7 +619,7 @@ def train_epoch(self, data_loader): self.recon._set_psf(self.mask.get_psf().to(self.device)) # forward pass - y_pred = self.recon.forward(X, psfs=psfs) + y_pred = self.recon.forward(batch=X, psfs=psfs) if self.unrolled_output_factor: unrolled_out = y_pred[1] y_pred = y_pred[0] @@ -634,13 +638,15 @@ def train_epoch(self, data_loader): y = y.reshape(-1, *y.shape[-3:]).movedim(-1, -3) # extraction region of interest for loss - if self.alignment is not None: + if ( + hasattr(self.train_dataset, "alignment") + and self.train_dataset.alignment is not None + ): + alignment = self.train_dataset.alignment y_pred = y_pred[ ..., - self.alignment["topright"][0] : self.alignment["topright"][0] - + self.alignment["height"], - self.alignment["topright"][1] : self.alignment["topright"][1] - + self.alignment["width"], + alignment["topright"][0] : alignment["topright"][0] + alignment["height"], + alignment["topright"][1] : alignment["topright"][1] + alignment["width"], ] # expected that lensed is also reshaped accordingly elif self.crop is not None: @@ -795,7 +801,6 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): save_idx=disp, output_dir=output_dir, crop=self.crop, - alignment=self.alignment, unrolled_output_factor=self.unrolled_output_factor, ) @@ -804,11 +809,6 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): for key in current_metrics: self.metrics[key].append(current_metrics[key]) - if save_pt: - # save dictionary metrics to file with json - with open(os.path.join(save_pt, "metrics.json"), "w") as f: - json.dump(self.metrics, f, indent=4) - # check best metric if self.metrics["metric_for_best_model"] is None: eval_loss = current_metrics["MSE"] @@ -828,6 +828,52 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): eval_loss = current_metrics[self.metrics["metric_for_best_model"]] self.metrics["LOSS_TEST"].append(eval_loss) + + # add extra evaluation sets + if self.extra_eval_sets is not None: + for eval_set in self.extra_eval_sets: + + # create output directory + output_dir = None + if disp is not None: + output_dir = os.path.join("eval_recon") + if not os.path.exists(output_dir): + os.mkdir(output_dir) + output_dir = os.path.join(output_dir, str(epoch) + f"_{eval_set}") + + if not self.extra_eval_sets[eval_set].multimask: + # need to set correct PSF for evaluation + # TODO cleaner way to set PSF? + self.recon._set_psf(self.extra_eval_sets[eval_set].psf.to(self.device)) + + # benchmarking + extra_metrics = benchmark( + self.recon, + self.extra_eval_sets[eval_set], + batchsize=self.eval_batch_size, + save_idx=disp, + output_dir=output_dir, + crop=self.crop, + unrolled_output_factor=self.unrolled_output_factor, + ) + + # add metrics to dictionary + for key in extra_metrics: + if key not in self.metrics[eval_set]: + self.metrics[eval_set][key] = [extra_metrics[key]] + else: + self.metrics[eval_set][key].append(extra_metrics[key]) + + # set back PSF to original in case changed + # TODO: cleaner way? + if not self.train_dataset.multimask: + self.recon._set_psf(self.train_dataset.psf.to(self.device)) + + if save_pt: + # save dictionary metrics to file with json + with open(os.path.join(save_pt, "metrics.json"), "w") as f: + json.dump(self.metrics, f, indent=4) + return eval_loss def on_epoch_end(self, mean_loss, save_pt, epoch, disp=None): From db879666b4750372da56d7b765a9ba535a49831a Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:13:58 +0000 Subject: [PATCH 08/24] Make sensor downsampling consistent with rest. --- lensless/hardware/sensor.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/lensless/hardware/sensor.py b/lensless/hardware/sensor.py index 9ef4bb82..08d8fa46 100644 --- a/lensless/hardware/sensor.py +++ b/lensless/hardware/sensor.py @@ -319,7 +319,7 @@ def downsample(self, factor): self.pixel_size = self.pixel_size * factor self.pitch = self.pitch * factor - self.resolution = np.round(self.resolution / factor).astype(int) + self.resolution = (self.resolution / factor).astype(int) self.size = self.pixel_size * self.resolution self.image_shape = self.resolution if self.color: From 5147e06c85f42f83bdb60f2428b915f7062039ab Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:15:41 +0000 Subject: [PATCH 09/24] Fix admm for multi-gpu support. --- lensless/recon/admm.py | 33 +++++++++++++++++++-------------- 1 file changed, 19 insertions(+), 14 deletions(-) diff --git a/lensless/recon/admm.py b/lensless/recon/admm.py index 5b8002f3..b5a781d6 100644 --- a/lensless/recon/admm.py +++ b/lensless/recon/admm.py @@ -95,7 +95,9 @@ def __init__( # call reset() to initialize matrices self._proj = self._Psi - super(ADMM, self).__init__(psf, dtype, pad=pad, norm=norm, denoiser=denoiser, **kwargs) + super(ADMM, self).__init__( + psf, dtype, pad=pad, norm=norm, denoiser=denoiser, reset=False, **kwargs + ) # set prior if psi is None: @@ -114,22 +116,10 @@ def __init__( # - need to reset with new projector self._proj = self._Psi - self.reset() # precompute_R_divmat (self._H computed by constructor with reset()) if self.is_torch: self._PsiTPsi = self._PsiTPsi.to(self._psf.device) - self._R_divmat = 1.0 / ( - self._mu1 * (torch.abs(self._convolver._Hadj * self._convolver._H)) - + self._mu2 * torch.abs(self._PsiTPsi) - + self._mu3 - ).type(self._complex_dtype) - else: - self._R_divmat = 1.0 / ( - self._mu1 * (np.abs(self._convolver._Hadj * self._convolver._H)) - + self._mu2 * np.abs(self._PsiTPsi) - + self._mu3 - ).astype(self._complex_dtype) # check denoiser for PnP if self._denoiser is not None: @@ -139,7 +129,8 @@ def __init__( self._proj = self._denoiser # identify function self._PsiT = lambda x: x - self.reset() + + self.reset() def _Psi(self, x): """ @@ -189,6 +180,13 @@ def reset(self): self._eta = torch.zeros_like(self._U) self._rho = torch.zeros_like(self._X) + # precompute _R_divmat + self._R_divmat = 1.0 / ( + self._mu1 * (torch.abs(self._convolver._Hadj * self._convolver._H)) + + self._mu2 * torch.abs(self._PsiTPsi) + + self._mu3 + ).type(self._complex_dtype) + # precompute_X_divmat self._X_divmat = 1.0 / (self._convolver._pad(torch.ones_like(self._psf)) + self._mu1) # self._X_divmat = 1.0 / (torch.ones_like(self._psf) + self._mu1) @@ -217,6 +215,13 @@ def reset(self): self._eta = np.zeros_like(self._U) self._rho = np.zeros_like(self._X) + # precompute R_divmat + self._R_divmat = 1.0 / ( + self._mu1 * (np.abs(self._convolver._Hadj * self._convolver._H)) + + self._mu2 * np.abs(self._PsiTPsi) + + self._mu3 + ).astype(self._complex_dtype) + # precompute_X_divmat self._X_divmat = 1.0 / ( self._convolver._pad(np.ones(self._psf_shape, dtype=self._dtype)) + self._mu1 From 8904a396c1da0e74a6ed24379490f396b92d0c88 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:16:04 +0000 Subject: [PATCH 10/24] Reset after setting PSF. --- lensless/recon/recon.py | 1 + 1 file changed, 1 insertion(+) diff --git a/lensless/recon/recon.py b/lensless/recon/recon.py index 8ef393e4..a217702d 100644 --- a/lensless/recon/recon.py +++ b/lensless/recon/recon.py @@ -459,6 +459,7 @@ def _set_psf(self, psf): pad=self._convolver.pad, norm=self._convolver.norm, ) + self.reset() def _progress(self): """ From ffcd383b4ca26564ae0b29e516060f92c18c84d1 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:17:39 +0000 Subject: [PATCH 11/24] Fix trainable recon for multi-GPU. --- lensless/recon/trainable_recon.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/lensless/recon/trainable_recon.py b/lensless/recon/trainable_recon.py index 5f7b6d52..09ec9331 100644 --- a/lensless/recon/trainable_recon.py +++ b/lensless/recon/trainable_recon.py @@ -213,15 +213,23 @@ def forward(self, batch, psfs=None): self._data = batch assert len(self._data.shape) == 5, "batch must be of shape (N, D, C, H, W)" batch_size = batch.shape[0] + if psfs is not None: # assert same shape assert psfs.shape == batch.shape, "psfs must have the same shape as batch" # -- update convolver self._convolver = RealFFTConvolve2D(psfs.to(self._data.device), **self._convolver_param) + elif self._data.device != self._convolver._H.device: + # need for multi-GPU... TODO better solution? + self._convolver = RealFFTConvolve2D( + self._psf.to(self._data.device), **self._convolver_param + ) # pre process data if self.pre_process is not None: + device_before = self._data.device self._data = self.pre_process(self._data, self.pre_process_param) + self._data = self._data.to(device_before) self.reset(batch_size=batch_size) From 5c30bf7e2467c5182db16cc1955118b0de725454 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:19:35 +0000 Subject: [PATCH 12/24] Add support for additional benchmark sets and fix multi-gpu in training script. --- configs/train_unrolledADMM.yaml | 5 ++-- scripts/recon/train_unrolled.py | 42 ++++++++++++++++++++++++--------- 2 files changed, 33 insertions(+), 14 deletions(-) diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index ecddc234..2fbe8826 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -25,13 +25,12 @@ files: # vertical: null # horizontal: null + extra_eval: null # dict of extra datasets to evaluate on + torch: True torch_device: 'cuda' measure: null # if measuring data on-the-fly -# see some outputs of classical ADMM before training -test_idx: [0, 1, 2, 3, 4] - # test set example to visualize at the end of every epoch eval_disp_idx: [0, 1, 2, 3, 4] diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index 97612d2e..e39aa0bd 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -43,7 +43,7 @@ from lensless.utils.dataset import ( DiffuserCamMirflickr, DigiCamCelebA, - DigiCamMultiMask, + DigiCam, ) from torch.utils.data import Subset from lensless.recon.utils import create_process_network @@ -208,24 +208,30 @@ def train_unrolled(config): elif config.files.huggingface_dataset is True: - train_set = DigiCamMultiMask( + train_set = DigiCam( huggingface_repo=config.files.dataset, split="train", display_res=config.files.image_res, rotate=config.files.rotate, downsample=config.files.downsample, alignment=config.alignment, + save_psf=config.files.save_psf, ) - test_set = DigiCamMultiMask( + test_set = DigiCam( huggingface_repo=config.files.dataset, split="test", display_res=config.files.image_res, rotate=config.files.rotate, downsample=config.files.downsample, alignment=config.alignment, + save_psf=config.files.save_psf, ) - first_psf_key = list(train_set.psfs.keys())[0] - psf = train_set.psfs[first_psf_key].to(device) + if train_set.multimask: + # get first PSF for initialization + first_psf_key = list(train_set.psf.keys())[device_ids[0]] + psf = train_set.psf[first_psf_key].to(device) + else: + psf = train_set.psf.to(device) else: @@ -234,19 +240,31 @@ def train_unrolled(config): crop = train_set.crop assert train_set is not None - if not hasattr(test_set, "psfs"): - assert psf is not None + # if not hasattr(test_set, "psfs"): + # assert psf is not None + + if config.files.extra_eval is not None: + # TODO only support Hugging Face DigiCam datasets for now + extra_eval_sets = dict() + for eval_set in config.files.extra_eval: + + extra_eval_sets[eval_set] = DigiCam( + split="test", + downsample=config.files.downsample, # needs to be same size + **config.files.extra_eval[eval_set], + ) # reconstruct lensless with ADMM with torch.no_grad(): - if config.test_idx is not None: + if config.eval_disp_idx is not None: log.info("Reconstruction a few images with ADMM...") - for i, _idx in enumerate(config.test_idx): + for i, _idx in enumerate(config.eval_disp_idx): - if hasattr(test_set, "psfs"): + if test_set.multimask: # multimask + # lensless, lensed, _ = test_set[_idx] # using wrong PSF lensless, lensed, psf = test_set[_idx] psf = psf.to(device) else: @@ -309,6 +327,7 @@ def train_unrolled(config): config.reconstruction.pre_process.depth, nc=config.reconstruction.pre_process.nc, device=device, + device_ids=device_ids, ) pre_proc_delay = config.reconstruction.pre_process.delay @@ -318,6 +337,7 @@ def train_unrolled(config): config.reconstruction.post_process.depth, nc=config.reconstruction.post_process.nc, device=device, + device_ids=device_ids, ) post_proc_delay = config.reconstruction.post_process.delay @@ -443,7 +463,7 @@ def train_unrolled(config): post_process_unfreeze=config.reconstruction.post_process.unfreeze, clip_grad=config.training.clip_grad, unrolled_output_factor=config.unrolled_output_factor, - alignment=test_set.alignment if hasattr(test_set, "alignment") else None, + extra_eval_sets=extra_eval_sets if config.files.extra_eval is not None else None, ) trainer.train(n_epoch=config.training.epoch, save_pt=save, disp=config.eval_disp_idx) From 94164dd08d457736ad3f50e1897fc74ddfa385db Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:20:28 +0000 Subject: [PATCH 13/24] Add support to hugging face datasets for benchmarking. --- configs/benchmark.yaml | 11 ++++++++++- scripts/eval/benchmark_recon.py | 25 +++++++++++++++++++++++-- 2 files changed, 33 insertions(+), 3 deletions(-) diff --git a/configs/benchmark.yaml b/configs/benchmark.yaml index 384ad2cb..edf5eac6 100644 --- a/configs/benchmark.yaml +++ b/configs/benchmark.yaml @@ -7,9 +7,18 @@ hydra: chdir: True -dataset: DiffuserCam # DiffuserCam, DigiCamCelebA +dataset: DiffuserCam # DiffuserCam, DigiCamCelebA, DigiCamHF seed: 0 +huggingface: + repo: "bezzam/DigiCam-Mirflickr-MultiMask-25K" + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + alignment: + topright: [80, 100] # height, width + height: 200 + downsample: 1 + device: "cuda" # numbers of iterations to benchmark n_iter_range: [5, 10, 20, 50, 100, 200, 300] diff --git a/scripts/eval/benchmark_recon.py b/scripts/eval/benchmark_recon.py index e9cd86be..1e45971d 100644 --- a/scripts/eval/benchmark_recon.py +++ b/scripts/eval/benchmark_recon.py @@ -26,7 +26,7 @@ from lensless.eval.benchmark import benchmark import matplotlib.pyplot as plt from lensless import ADMM, FISTA, GradientDescent, NesterovGradientDescent -from lensless.utils.dataset import DiffuserCamTestDataset, DigiCamCelebA +from lensless.utils.dataset import DiffuserCamTestDataset, DigiCamCelebA, DigiCam from lensless.utils.io import save_image import torch @@ -52,11 +52,11 @@ def benchmark_recon(config): device = "cpu" # Benchmark dataset + crop = None dataset = config.dataset if dataset == "DiffuserCam": benchmark_dataset = DiffuserCamTestDataset(n_files=n_files, downsample=downsample) psf = benchmark_dataset.psf.to(device) - crop = None elif dataset == "DigiCamCelebA": @@ -84,6 +84,21 @@ def benchmark_recon(config): _, benchmark_dataset = torch.utils.data.random_split( dataset, [train_size, test_size], generator=generator ) + elif dataset == "DigiCamHF": + benchmark_dataset = DigiCam( + huggingface_repo=config.huggingface.repo, + split="test", + display_res=config.huggingface.image_res, + rotate=config.huggingface.rotate, + downsample=config.huggingface.downsample, + alignment=config.huggingface.alignment, + ) + if benchmark_dataset.multimask: + # get first PSF for initialization + first_psf_key = list(benchmark_dataset.psf.keys())[0] + psf = benchmark_dataset.psf[first_psf_key].to(device) + else: + psf = benchmark_dataset.psf.to(device) else: raise ValueError(f"Dataset {dataset} not supported") @@ -267,6 +282,12 @@ def benchmark_recon(config): # for each metrics plot the results comparing each model metrics_to_plot = ["SSIM", "PSNR", "MSE", "LPIPS_Vgg", "LPIPS_Alex", "ReconstructionError"] + available_metrics = list(results[model_name][n_iter_range[0]].keys()) + metrics_to_plot = [metric for metric in metrics_to_plot if metric in available_metrics] + # print metrics being skipped + skipped_metrics = [metric for metric in metrics_to_plot if metric not in available_metrics] + if len(skipped_metrics) > 0: + print(f"Metrics {skipped_metrics} not available and will be skipped") for metric in metrics_to_plot: plt.figure() # plot benchmarked algorithm From b54cf6f6488cac5157095e5e209cdc77b3d65f7c Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:21:48 +0000 Subject: [PATCH 14/24] Update hugging face upload script to split single mask dataset like multimask. --- configs/upload_dataset_huggingface.yaml | 1 + .../upload_digicam_mirflickr_multimask.yaml | 4 +-- .../upload_digicam_mirflickr_singlemask.yaml | 21 ++++++++++++++++ scripts/data/rename_mirflickr25k.py | 25 +++++++++++++++++++ scripts/data/upload_dataset_huggingface.py | 22 ++++++++++++++++ 5 files changed, 71 insertions(+), 2 deletions(-) create mode 100644 configs/upload_digicam_mirflickr_singlemask.yaml create mode 100644 scripts/data/rename_mirflickr25k.py diff --git a/configs/upload_dataset_huggingface.yaml b/configs/upload_dataset_huggingface.yaml index 5dfc91f0..d12f9f98 100644 --- a/configs/upload_dataset_huggingface.yaml +++ b/configs/upload_dataset_huggingface.yaml @@ -8,6 +8,7 @@ hf_token: null n_files: null test_size: 0.15 multimask: False +split: first # "first: first nfiles for test, `int`: test_size*split for test (interleaved) as if multimask lensless: dir: null diff --git a/configs/upload_digicam_mirflickr_multimask.yaml b/configs/upload_digicam_mirflickr_multimask.yaml index 69344056..e7069aeb 100644 --- a/configs/upload_digicam_mirflickr_multimask.yaml +++ b/configs/upload_digicam_mirflickr_multimask.yaml @@ -9,9 +9,9 @@ test_size: 0.15 multimask: True lensless: - dir: "/scratch/bezzam/mirflickr/all_measured_20240209-172459" + dir: "/root/mirflickr/all_measured_20240209-172459" ext: ".png" lensed: - dir: "/scratch/bezzam/mirflickr/all" + dir: "/root/mirflickr/mirflickr25k" ext: ".jpg" diff --git a/configs/upload_digicam_mirflickr_singlemask.yaml b/configs/upload_digicam_mirflickr_singlemask.yaml new file mode 100644 index 00000000..dd2234ff --- /dev/null +++ b/configs/upload_digicam_mirflickr_singlemask.yaml @@ -0,0 +1,21 @@ +# python scripts/data/upload_dataset_huggingface.py -cn upload_digicam_mirflickr_singlemask +defaults: + - upload_dataset_huggingface + - _self_ + +repo_id: "bezzam/DigiCam-Mirflickr-SingleMask-25K" +n_files: 25000 +test_size: 0.15 +multimask: False +split: 100 # "first: first `nfiles*test_size` for test, `int`: test_size*split for test (interleaved) as if multimask with this many masks + +lensless: + dir: "/root/mirflickr/all_measured_20240226-111214" + ext: ".png" + +lensed: + dir: "/root/mirflickr/mirflickr25k" + ext: ".jpg" + +files: + mask_pattern: "/root/mirflickr/all_measured_20240226-111214/masks/mask_0.npy" diff --git a/scripts/data/rename_mirflickr25k.py b/scripts/data/rename_mirflickr25k.py new file mode 100644 index 00000000..d0cdb331 --- /dev/null +++ b/scripts/data/rename_mirflickr25k.py @@ -0,0 +1,25 @@ +import os +import glob +from lensless.utils.dataset import natural_sort + + +dir_path = "/root/mirflickr/mirflickr25k" + +# get all jpg files +files = natural_sort(glob.glob(os.path.join(dir_path, "*.jpg"))) + +# Rename all files in the directory +for filename in files: + # remove "im" from the filename + new_filename = filename.replace("im", "") + + # decrement by 1 + bn = os.path.basename(new_filename) + file_number = int(bn.split(".")[0]) + new_bn = f"{file_number - 1}.jpg" + new_filename = new_filename.replace(bn, new_bn) + + os.rename(filename, new_filename) + +print(f"Number of files: {len(files)}") +print("Done") diff --git a/scripts/data/upload_dataset_huggingface.py b/scripts/data/upload_dataset_huggingface.py index 5b563fe1..003b26a2 100644 --- a/scripts/data/upload_dataset_huggingface.py +++ b/scripts/data/upload_dataset_huggingface.py @@ -128,6 +128,28 @@ def create_dataset(lensless_files, lensed_files, df_attr=None): [lensed_files[i] for i in train_indices], {k: [v[i] for i in train_indices] for k, v in df_attr.items()}, ) + elif isinstance(config.split, int): + n_test_split = int(test_size * config.split) + + # get all indices + n_splits = len(lensless_files) // config.split + test_idx = np.array([]) + for i in range(n_splits): + test_idx = np.append(test_idx, np.arange(n_test_split) + i * config.split) + test_idx = test_idx.astype(int) + + # get train indices + train_idx = np.setdiff1d(np.arange(len(lensless_files)), test_idx) + train_idx = train_idx.astype(int) + + # split dict into train-test + test_dataset = create_dataset( + [lensless_files[i] for i in test_idx], [lensed_files[i] for i in test_idx] + ) + train_dataset = create_dataset( + [lensless_files[i] for i in train_idx], [lensed_files[i] for i in train_idx] + ) + else: n_test = int(test_size * len(common_files)) if df_attr is not None: From 69c3a3033dc504ee8ea449bbc458d8b56157c339 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 8 Mar 2024 17:22:25 +0000 Subject: [PATCH 15/24] Update configurations for multimask experiments. --- configs/train_digicam_multimask.yaml | 58 +++++++++++++++++++++++++++ configs/train_digicam_singlemask.yaml | 56 ++++++++++++++++++++++++++ configs/train_unrolled_multimask.yaml | 27 ------------- 3 files changed, 114 insertions(+), 27 deletions(-) create mode 100644 configs/train_digicam_multimask.yaml create mode 100644 configs/train_digicam_singlemask.yaml delete mode 100644 configs/train_unrolled_multimask.yaml diff --git a/configs/train_digicam_multimask.yaml b/configs/train_digicam_multimask.yaml new file mode 100644 index 00000000..6011f5f0 --- /dev/null +++ b/configs/train_digicam_multimask.yaml @@ -0,0 +1,58 @@ +# python scripts/recon/train_unrolled.py -cn train_digicam_multimask +defaults: + - train_unrolledADMM + - _self_ + + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [1, 2, 4, 5, 9] + +# Dataset +files: + dataset: bezzam/DigiCam-Mirflickr-MultiMask-25K + huggingface_dataset: True + downsample: 1 + # TODO: these parameters should be in the dataset? + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + save_psf: False + + extra_eval: + singlemask: + huggingface_repo: bezzam/DigiCam-Mirflickr-SingleMask-25K + display_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + alignment: + topright: [80, 100] # height, width + height: 200 + +# TODO: these parameters should be in the dataset? +alignment: + # when there is no downsampling + topright: [80, 100] # height, width + height: 200 + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + +reconstruction: + method: unrolled_admm + unrolled_admm: + # Number of iterations + n_iter: 10 + # Hyperparameters + mu1: 1e-4 + mu2: 1e-4 + mu3: 1e-4 + tau: 2e-4 + pre_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] + post_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] \ No newline at end of file diff --git a/configs/train_digicam_singlemask.yaml b/configs/train_digicam_singlemask.yaml new file mode 100644 index 00000000..69b4e3a2 --- /dev/null +++ b/configs/train_digicam_singlemask.yaml @@ -0,0 +1,56 @@ +# python scripts/recon/train_unrolled.py -cn train_digicam_singlemask +defaults: + - train_unrolledADMM + - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [1, 2, 4, 5, 9] + +# Dataset +files: + dataset: bezzam/DigiCam-Mirflickr-SingleMask-25K + huggingface_dataset: True + downsample: 1 + image_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + save_psf: False + + # extra_eval: null + extra_eval: + multimask: + huggingface_repo: bezzam/DigiCam-Mirflickr-MultiMask-25K + display_res: [900, 1200] # used during measurement + rotate: True # if measurement is upside-down + alignment: + topright: [80, 100] # height, width + height: 200 + +alignment: + # when there is no downsampling + topright: [80, 100] # height, width + height: 200 + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + +reconstruction: + method: unrolled_admm + unrolled_admm: + # Number of iterations + n_iter: 10 + # Hyperparameters + mu1: 1e-4 + mu2: 1e-4 + mu3: 1e-4 + tau: 2e-4 + pre_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] + post_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] diff --git a/configs/train_unrolled_multimask.yaml b/configs/train_unrolled_multimask.yaml deleted file mode 100644 index 80eee4ed..00000000 --- a/configs/train_unrolled_multimask.yaml +++ /dev/null @@ -1,27 +0,0 @@ -# python scripts/recon/train_unrolled.py -cn train_unrolled_multimask -defaults: - - train_unrolledADMM - - _self_ - - -torch_device: 'cuda:0' -device_ids: [0, 1, 2, 3] - -# Dataset -files: - dataset: bezzam/DigiCam-Mirflickr-MultiMask-10K - huggingface_dataset: True - downsample: 1 - image_res: [900, 1200] # used during measurement - rotate: True # if measurement is upside-down - -alignment: - # when there is no downsampling - topright: [80, 100] # height, width - height: 200 - -training: - batch_size: 4 - epoch: 25 - eval_batch_size: 16 - From a8e96685702868f32d42bc513043828324021542 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Mon, 18 Mar 2024 14:00:11 +0000 Subject: [PATCH 16/24] Support hugging face dataset with PSF. --- configs/train_unrolledADMM.yaml | 6 ++- lensless/utils/dataset.py | 94 +++++++++++++++++++++++++++------ scripts/recon/train_unrolled.py | 14 +++-- 3 files changed, 92 insertions(+), 22 deletions(-) diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index 2fbe8826..1b86995b 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -10,10 +10,13 @@ start_delay: null # Dataset files: dataset: /scratch/bezzam/DiffuserCam_mirflickr/dataset # Simulated : "mnist", "fashion_mnist", "cifar10", "CelebA". Measure :"DiffuserCam" - huggingface_dataset: null celeba_root: null # path to parent directory of CelebA: https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html psf: data/psf/diffusercam_psf.tiff diffusercam_psf: True + + huggingface_dataset: null + huggingface_psf: null + n_files: null # null to use all for both train/test downsample: 2 # factor by which to downsample the PSF, note that for DiffuserCam the PSF has 4x the resolution test_size: 0.15 @@ -24,6 +27,7 @@ files: crop: null # vertical: null # horizontal: null + image_res: null # for measured data, what resolution used at screen extra_eval: null # dict of extra datasets to evaluate on diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 79d54ebf..9c97a668 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -964,6 +964,7 @@ def __init__( self, huggingface_repo, split, + psf=None, display_res=None, sensor="rpi_hq", slm="adafruit", @@ -971,6 +972,7 @@ def __init__( downsample=1, alignment=None, save_psf=False, + simulation_config=None, **kwargs, ): @@ -988,20 +990,45 @@ def __init__( downsample_fact = sensor_res[0] / lensless.shape[0] # deduce recon shape from original image - self.alignment = dict(alignment) + self.alignment = None + self.crop = None if alignment is not None: - self.alignment["topright"] = ( - int(self.alignment["topright"][0] / downsample), - int(self.alignment["topright"][1] / downsample), - ) - self.alignment["height"] = int(self.alignment["height"] / downsample) - if self.alignment is not None: - original_aspect_ratio = display_res[1] / display_res[0] - self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) + # preparing ground-truth in expected shape + if "topright" in alignment: + self.alignment = dict(alignment.copy()) + self.alignment["topright"] = ( + int(self.alignment["topright"][0] / downsample), + int(self.alignment["topright"][1] / downsample), + ) + self.alignment["height"] = int(self.alignment["height"] / downsample) + + original_aspect_ratio = display_res[1] / display_res[0] + self.alignment["width"] = int(self.alignment["height"] * original_aspect_ratio) + + # preparing ground-truth as simulated measurement of original + elif "crop" in alignment: + self.crop = dict(alignment["crop"].copy()) + self.crop["vertical"][0] = int(self.crop["vertical"][0] / downsample) + self.crop["vertical"][1] = int(self.crop["vertical"][1] / downsample) + self.crop["horizontal"][0] = int(self.crop["horizontal"][0] / downsample) + self.crop["horizontal"][1] = int(self.crop["horizontal"][1] / downsample) # download all masks self.multimask = False - if "mask_label" in data_0: + if psf is not None: + # download PSF from huggingface + psf_fp = hf_hub_download(repo_id=huggingface_repo, filename=psf, repo_type="dataset") + psf, _ = load_psf( + psf_fp, + downsample=downsample_fact, + return_float=True, + return_bg=True, + flip=rotate, + bg_pix=(0, 15), + ) + self.psf = torch.from_numpy(psf) + + elif "mask_label" in data_0: self.multimask = True mask_labels = [] for i in range(len(self.dataset)): @@ -1051,6 +1078,23 @@ def __init__( self.psf.shape[-3:-1] == lensless.shape[:2] ), "PSF shape should match lensless shape" + # create simulator + self.simulator = None + self.vertical_shift = None + self.horizontal_shift = None + if "simulation" in alignment: + simulation_config = dict(alignment["simulation"]) + simulation_config["output_dim"] = tuple(self.psf.shape[-3:-1]) + simulator = FarFieldSimulator( + is_torch=True, + **simulation_config, + ) + self.simulator = simulator + if "vertical_shift" in simulation_config: + self.vertical_shift = int(simulation_config["vertical_shift"] / downsample) + if "horizontal_shift" in simulation_config: + self.horizontal_shift = int(simulation_config["horizontal_shift"] / downsample) + super(DigiCam, self).__init__(**kwargs) def __len__(self): @@ -1071,21 +1115,37 @@ def _get_images_pair(self, idx): lensless_np = lensless_np.astype(np.float32) / 65535 lensed_np = lensed_np.astype(np.float32) / 65535 + # downsample if necessary if self.downsample_lensless != 1.0: lensless_np = resize( lensless_np, factor=1 / self.downsample_lensless, interpolation=cv2.INTER_NEAREST ) + # convert to torch + lensless = torch.from_numpy(lensless_np) + lensed = torch.from_numpy(lensed_np) + + if self.simulator is not None: + # project original image to lensed space + with torch.no_grad(): + lensed = self.simulator.propagate_image(lensed, return_object_plane=True) + + if self.vertical_shift is not None: + lensed = torch.roll(lensed, self.vertical_shift, dims=-3) + if self.horizontal_shift is not None: + lensed = torch.roll(lensed, self.horizontal_shift, dims=-2) + if self.alignment is not None: - lensed_np = resize( - lensed_np, - shape=(self.alignment["height"], self.alignment["width"], 3), - interpolation=cv2.INTER_NEAREST, - ) + if "height" in self.alignment: + lensed = resize( + lensed, + shape=(self.alignment["height"], self.alignment["width"], 3), + interpolation=cv2.INTER_NEAREST, + ) elif self.display_res is not None: - lensed_np = resize(lensed_np, shape=self.display_res, interpolation=cv2.INTER_NEAREST) + lensed = resize(lensed, shape=self.display_res, interpolation=cv2.INTER_NEAREST) - return lensless_np, lensed_np + return lensless, lensed def __getitem__(self, idx): lensless, lensed = super().__getitem__(idx) diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index e39aa0bd..9eabb086 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -107,6 +107,7 @@ def train_unrolled(config): test_set = None psf = None crop = None + alignment = None # very similar to crop, TODO: should switch to this approach mask = None if "DiffuserCam" in config.files.dataset: @@ -210,6 +211,7 @@ def train_unrolled(config): train_set = DigiCam( huggingface_repo=config.files.dataset, + psf=config.files.huggingface_psf, split="train", display_res=config.files.image_res, rotate=config.files.rotate, @@ -219,6 +221,7 @@ def train_unrolled(config): ) test_set = DigiCam( huggingface_repo=config.files.dataset, + psf=config.files.huggingface_psf, split="test", display_res=config.files.image_res, rotate=config.files.rotate, @@ -232,6 +235,8 @@ def train_unrolled(config): psf = train_set.psf[first_psf_key].to(device) else: psf = train_set.psf.to(device) + crop = test_set.crop # same for train set + alignment = test_set.alignment else: @@ -283,10 +288,11 @@ def train_unrolled(config): # -- plot lensed and res on top of each other cropped = False - if test_set.alignment is not None: - top_right = test_set.alignment["topright"] - height = test_set.alignment["height"] - width = test_set.alignment["width"] + + if alignment is not None: + top_right = alignment["topright"] + height = alignment["height"] + width = alignment["width"] res_np = res_np[ top_right[0] : top_right[0] + height, top_right[1] : top_right[1] + width ] From 26f5310a624dd9823cd323efc0bcec50e3e0bd39 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 28 Mar 2024 02:14:12 +0000 Subject: [PATCH 17/24] Training and authentication for ICCP. --- configs/authen.yaml | 22 +++ configs/recon_digicam_mirflickr.yaml | 21 +++ configs/train_digicam_celeba.yaml | 64 ++++++++ configs/train_unrolledADMM.yaml | 1 + lensless/recon/model_dict.py | 38 ++++- lensless/recon/trainable_inversion.py | 2 + lensless/recon/utils.py | 17 +- lensless/utils/dataset.py | 50 +++--- scripts/data/authenticate.py | 221 ++++++++++++++++++++++++++ scripts/data/authenticate_roc.py | 87 ++++++++++ scripts/recon/digicam_mirflickr.py | 98 ++++++++++++ scripts/recon/train_unrolled.py | 51 ++++-- 12 files changed, 632 insertions(+), 40 deletions(-) create mode 100644 configs/authen.yaml create mode 100644 configs/recon_digicam_mirflickr.yaml create mode 100644 configs/train_digicam_celeba.yaml create mode 100644 scripts/data/authenticate.py create mode 100644 scripts/data/authenticate_roc.py create mode 100644 scripts/recon/digicam_mirflickr.py diff --git a/configs/authen.yaml b/configs/authen.yaml new file mode 100644 index 00000000..e720ef36 --- /dev/null +++ b/configs/authen.yaml @@ -0,0 +1,22 @@ +# python scripts/data/authenticate.py +hydra: + job: + chdir: True # change to output folder + +# repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-25K" +repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-10K" +# repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-1K" # for testing +split: all # "all" (for 100 masks), "test" (for 15 masks) +n_iter: 25 +n_files: 100 # per mask +grayscale: True +font_scale: 1.5 +torch_device: cuda:2 + +model: Unet4M+U10+Unet4M + +# -- admm 25 +cont: /root/LenslessPiCam/outputs/2024-03-26/17-52-49 +# -- admm 10 +# cont: /root/LenslessPiCam/outputs/2024-03-25/23-36-06 +scores_fp: null # file path to already computed scores diff --git a/configs/recon_digicam_mirflickr.yaml b/configs/recon_digicam_mirflickr.yaml new file mode 100644 index 00000000..4f11d8cd --- /dev/null +++ b/configs/recon_digicam_mirflickr.yaml @@ -0,0 +1,21 @@ +# python scripts/recon/digicam_mirflickr.py +defaults: + - defaults_recon + - _self_ + +# - Learned reconstructions: see "lensless/recon/model_dict.py" +# model: U10 +# model: Unet8M +# model: TrainInv+Unet8M +# model: U10+Unet8M +# model: Unet4M+TrainInv+Unet4M +# model: Unet4M+U10+Unet4M + +# -- for ADMM with fixed parameters +model: admm +n_iter: 10 + +device: cuda:0 +n_trials: 100 # more if you want to get average inference time +idx: 1 # index from test set to reconstruct +save: True \ No newline at end of file diff --git a/configs/train_digicam_celeba.yaml b/configs/train_digicam_celeba.yaml new file mode 100644 index 00000000..4a7d5028 --- /dev/null +++ b/configs/train_digicam_celeba.yaml @@ -0,0 +1,64 @@ +# python scripts/recon/train_unrolled.py -cn train_digicam_singlemask +defaults: + - train_unrolledADMM + - _self_ + +torch_device: 'cuda:0' +device_ids: [0, 1, 2, 3] +eval_disp_idx: [0, 2, 3, 4, 9] + +# Dataset +files: + dataset: bezzam/DigiCam-CelebA-26K + huggingface_psf: "psf_simulated.png" + huggingface_dataset: True + split_seed: 0 + downsample: 2 + rotate: True # if measurement is upside-down + save_psf: False + +alignment: + # cropping when there is no downsampling + crop: + vertical: [0, 525] + horizontal: [265, 695] + + # for prepping ground truth data + simulation: + scene2mask: 0.25 # [m] + mask2sensor: 0.002 # [m] + object_height: 0.33 # [m] + sensor: "rpi_hq" + snr_db: null + downsample: null + random_vflip: False + random_hflip: False + quantize: False + # shifting when there is no files.downsample + vertical_shift: -117 + horizontal_shift: -25 + +training: + batch_size: 4 + epoch: 25 + eval_batch_size: 4 + crop_preloss: True + +reconstruction: + method: unrolled_admm + unrolled_admm: + # Number of iterations + n_iter: 10 + # Hyperparameters + mu1: 1e-4 + mu2: 1e-4 + mu3: 1e-4 + tau: 2e-4 + pre_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] + post_process: + network : UnetRes # UnetRes or DruNet or null + depth : 4 # depth of each up/downsampling layer. Ignore if network is DruNet + nc: [32,64,116,128] diff --git a/configs/train_unrolledADMM.yaml b/configs/train_unrolledADMM.yaml index 1b86995b..d4998e11 100644 --- a/configs/train_unrolledADMM.yaml +++ b/configs/train_unrolledADMM.yaml @@ -16,6 +16,7 @@ files: huggingface_dataset: null huggingface_psf: null + split_seed: null # if null use train/test split from dataset n_files: null # null to use all for both train/test downsample: 2 # factor by which to downsample the PSF, note that for DiffuserCam the PSF has 4x the resolution diff --git a/lensless/recon/model_dict.py b/lensless/recon/model_dict.py index ae9f291a..050492f5 100644 --- a/lensless/recon/model_dict.py +++ b/lensless/recon/model_dict.py @@ -16,6 +16,7 @@ from lensless.hardware.trainable_mask import prep_trainable_mask import yaml from huggingface_hub import snapshot_download +from collections import OrderedDict model_dir_path = os.path.join(os.path.dirname(__file__), "..", "..", "models") @@ -58,20 +59,47 @@ "unrolled_admm10": "bezzam/digicam-celeba-unrolled-admm10", "unrolled_admm10_ft_psf": "bezzam/digicam-celeba-unrolled-admm10-ft-psf", "unet8M": "bezzam/digicam-celeba-unet8M", + "TrainInv+Unet8M": "bezzam/digicam-celeba-trainable-inv-unet8M", "unrolled_admm10_post8M": "bezzam/digicam-celeba-unrolled-admm10-post8M", "unrolled_admm10_ft_psf_post8M": "bezzam/digicam-celeba-unrolled-admm10-ft-psf-post8M", "pre8M_unrolled_admm10": "bezzam/digicam-celeba-pre8M-unrolled-admm10", "pre4M_unrolled_admm10_post4M": "bezzam/digicam-celeba-pre4M-unrolled-admm10-post4M", "pre4M_unrolled_admm10_post4M_OLD": "bezzam/digicam-celeba-pre4M-unrolled-admm10-post4M_OLD", "pre4M_unrolled_admm10_ft_psf_post4M": "bezzam/digicam-celeba-pre4M-unrolled-admm10-ft-psf-post4M", + "Unet4M+TrainInv+Unet4M": "bezzam/digicam-celeba-unet4M-trainable-inv-unet4M", # baseline benchmarks which don't have model file but use ADMM "admm_measured_psf": "bezzam/digicam-celeba-admm-measured-psf", "admm_simulated_psf": "bezzam/digicam-celeba-admm-simulated-psf", - } + }, + "mirflickr_single_25k": { + "U10": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10", + "Unet8M": "bezzam/digicam-mirflickr-single-25k-unet8M", + "TrainInv+Unet8M": "bezzam/digicam-mirflickr-single-25k-trainable-inv-unet8M", + "U10+Unet8M": "bezzam/digicam-mirflickr-single-25k-unrolled-admm10-unet8M", + "Unet4M+TrainInv+Unet4M": "bezzam/digicam-mirflickr-single-25k-unet4M-trainable-inv-unet4M", + "Unet4M+U10+Unet4M": "bezzam/digicam-mirflickr-single-25k-unet4M-unrolled-admm10-unet4M", + }, + "mirflickr_multi_25k": { + "Unet8M": "bezzam/digicam-mirflickr-multi-25k-unet8M", + "Unet4M+U10+Unet4M": "bezzam/digicam-mirflickr-multi-25k-unet4M-unrolled-admm10-unet4M", + }, }, } +def remove_data_parallel(old_state_dict): + new_state_dict = OrderedDict() + + for k, v in old_state_dict.items(): + # remove `module.` from k + if "module." in k: + name = k.replace("module.", "") + # name = k[7:] # remove `module.` + new_state_dict[name] = v + + return new_state_dict + + def download_model(camera, dataset, model): """ @@ -103,7 +131,7 @@ def download_model(camera, dataset, model): return model_dir -def load_model(model_path, psf, device="cpu", legacy_denoiser=False): +def load_model(model_path, psf, device="cpu", legacy_denoiser=False, verbose=True): """ Load best model from model path. @@ -142,7 +170,8 @@ def load_model(model_path, psf, device="cpu", legacy_denoiser=False): # load best model config model_checkpoint = os.path.join(model_path, "recon_epochBEST") assert os.path.exists(model_checkpoint), "Checkpoint does not exist" - print("Loading checkpoint from : ", model_checkpoint) + if verbose: + print("Loading checkpoint from : ", model_checkpoint) model_state_dict = torch.load(model_checkpoint, map_location=device) # load model @@ -193,6 +222,9 @@ def load_model(model_path, psf, device="cpu", legacy_denoiser=False): psf_learned = torch.nn.Parameter(psf_learned) recon._set_psf(psf_learned) + if config["device_ids"] is not None: + model_state_dict = remove_data_parallel(model_state_dict) + # # return model_state_dict # if "_psf" in model_state_dict: # # TODO: should not have to do this... diff --git a/lensless/recon/trainable_inversion.py b/lensless/recon/trainable_inversion.py index 9cc2c8c7..e9cf6df5 100644 --- a/lensless/recon/trainable_inversion.py +++ b/lensless/recon/trainable_inversion.py @@ -16,6 +16,8 @@ def __init__(self, psf, dtype=None, K=1e-4, **kwargs): Constructor for trainable inversion component as proposed in the FlatNet work: https://siddiquesalman.github.io/flatnet/ + Their implementation: https://github.com/siddiquesalman/flatnet/blob/d1dc179666a08df58c4bdf83c4274310ba3cd186/models/fftlayer.py#L70 + Parameters ---------- psf : :py:class:`~torch.Tensor` diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index fbdcd598..39b2ec55 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -766,7 +766,7 @@ def train_epoch(self, data_loader): return mean_loss - def evaluate(self, mean_loss, save_pt, epoch, disp=None): + def evaluate(self, mean_loss, epoch, disp=None): """ Evaluate the reconstruction algorithm on the test dataset. @@ -774,8 +774,6 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): ---------- mean_loss : float Mean loss of the last epoch. - save_pt : str - Path to save metrics dictionary to. If None, no logging of metrics. disp : list of int, optional Test set examples to visualize at the end of each epoch, by default None. """ @@ -869,11 +867,6 @@ def evaluate(self, mean_loss, save_pt, epoch, disp=None): if not self.train_dataset.multimask: self.recon._set_psf(self.train_dataset.psf.to(self.device)) - if save_pt: - # save dictionary metrics to file with json - with open(os.path.join(save_pt, "metrics.json"), "w") as f: - json.dump(self.metrics, f, indent=4) - return eval_loss def on_epoch_end(self, mean_loss, save_pt, epoch, disp=None): @@ -896,7 +889,7 @@ def on_epoch_end(self, mean_loss, save_pt, epoch, disp=None): save_pt = os.getcwd() # save model - epoch_eval_metric = self.evaluate(mean_loss, save_pt, epoch, disp=disp) + epoch_eval_metric = self.evaluate(mean_loss, epoch, disp=disp) new_best = False if ( self.metrics["metric_for_best_model"] == "PSNR" @@ -917,6 +910,10 @@ def on_epoch_end(self, mean_loss, save_pt, epoch, disp=None): if self.save_every is not None and epoch % self.save_every == 0: self.save(path=save_pt, include_optimizer=False, epoch=epoch) + # save dictionary metrics to file with json + with open(os.path.join(save_pt, "metrics.json"), "w") as f: + json.dump(self.metrics, f, indent=4) + def train(self, n_epoch=1, save_pt=None, disp=None): """ Train the reconstruction algorithm. @@ -933,7 +930,7 @@ def train(self, n_epoch=1, save_pt=None, disp=None): start_time = time.time() - self.evaluate(-1, save_pt, epoch=0, disp=disp) + self.evaluate(-1, epoch=0, disp=disp) for epoch in range(n_epoch): # add extra components (if specified) diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 9c97a668..061864aa 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -973,12 +973,19 @@ def __init__( alignment=None, save_psf=False, simulation_config=None, + return_mask_label=False, **kwargs, ): - self.dataset = load_dataset(huggingface_repo, split=split) + if isinstance(split, str): + self.dataset = load_dataset(huggingface_repo, split=split) + elif isinstance(split, Dataset): + self.dataset = split + else: + raise ValueError("split should be a string or a Dataset object") self.rotate = rotate self.display_res = display_res + self.return_mask_label = return_mask_label # deduce downsampling factor from measurement data_0 = self.dataset[0] @@ -987,7 +994,7 @@ def __init__( if self.downsample_lensless != 1.0: lensless = resize(lensless, factor=1 / self.downsample_lensless) sensor_res = sensor_dict[sensor][SensorParam.RESOLUTION] - downsample_fact = sensor_res[0] / lensless.shape[0] + downsample_fact = min(sensor_res / lensless.shape[:2]) # deduce recon shape from original image self.alignment = None @@ -1014,6 +1021,7 @@ def __init__( self.crop["horizontal"][1] = int(self.crop["horizontal"][1] / downsample) # download all masks + # TODO: reshape directly with lensless image shape self.multimask = False if psf is not None: # download PSF from huggingface @@ -1052,9 +1060,10 @@ def __init__( flipud=rotate, ) self.psf[label] = mask.get_psf().detach() + assert ( self.psf[label].shape[-3:-1] == lensless.shape[:2] - ), "PSF shape should match lensless shape" + ), f"PSF shape should match lensless shape: PSF {self.psf[label].shape[-3:-1]} vs lensless {lensless.shape[:2]}" if save_psf: # same viewable image of PSF @@ -1082,8 +1091,8 @@ def __init__( self.simulator = None self.vertical_shift = None self.horizontal_shift = None - if "simulation" in alignment: - simulation_config = dict(alignment["simulation"]) + if alignment is not None and "simulation" in alignment: + simulation_config = dict(alignment["simulation"].copy()) simulation_config["output_dim"] = tuple(self.psf.shape[-3:-1]) simulator = FarFieldSimulator( is_torch=True, @@ -1121,11 +1130,13 @@ def _get_images_pair(self, idx): lensless_np, factor=1 / self.downsample_lensless, interpolation=cv2.INTER_NEAREST ) - # convert to torch - lensless = torch.from_numpy(lensless_np) - lensed = torch.from_numpy(lensed_np) - + lensless = lensless_np + lensed = lensed_np if self.simulator is not None: + # convert to torch + lensless = torch.from_numpy(lensless_np) + lensed = torch.from_numpy(lensed_np) + # project original image to lensed space with torch.no_grad(): lensed = self.simulator.propagate_image(lensed, return_object_plane=True) @@ -1135,15 +1146,14 @@ def _get_images_pair(self, idx): if self.horizontal_shift is not None: lensed = torch.roll(lensed, self.horizontal_shift, dims=-2) - if self.alignment is not None: - if "height" in self.alignment: - lensed = resize( - lensed, - shape=(self.alignment["height"], self.alignment["width"], 3), - interpolation=cv2.INTER_NEAREST, - ) + elif self.alignment is not None: + lensed = resize( + lensed_np, + shape=(self.alignment["height"], self.alignment["width"], 3), + interpolation=cv2.INTER_NEAREST, + ) elif self.display_res is not None: - lensed = resize(lensed, shape=self.display_res, interpolation=cv2.INTER_NEAREST) + lensed = resize(lensed_np, shape=self.display_res, interpolation=cv2.INTER_NEAREST) return lensless, lensed @@ -1155,7 +1165,11 @@ def __getitem__(self, idx): # return corresponding PSF if self.multimask: mask_label = self.dataset[idx]["mask_label"] - return lensless, lensed, self.psf[mask_label] + + if self.return_mask_label: + return lensless, lensed, mask_label + else: + return lensless, lensed, self.psf[mask_label] else: return lensless, lensed diff --git a/scripts/data/authenticate.py b/scripts/data/authenticate.py new file mode 100644 index 00000000..d1a54e13 --- /dev/null +++ b/scripts/data/authenticate.py @@ -0,0 +1,221 @@ +from lensless.utils.dataset import DigiCam +import torch +from lensless import ADMM +from lensless.utils.image import rgb2gray +import numpy as np +import time +import pandas as pd +import seaborn as sn +import matplotlib.pyplot as plt +from tqdm import tqdm +import hydra +import json +import omegaconf +import os + + +@hydra.main(version_base=None, config_path="../../configs", config_name="authen") +def authen(config): + cont = config.cont + scores_fp = config.scores_fp + if scores_fp is None and cont is not None: + print(f"Continuing from {cont}") + hydra_path = os.path.join(cont, ".hydra/config.yaml") + config = omegaconf.OmegaConf.load(hydra_path) + + huggingface_repo = config.repo_id + split = config.split + n_iter = config.n_iter + n_files = config.n_files + grayscale = config.grayscale + device = config.torch_device + rotate = True + downsample = 1 + + if scores_fp is None: + + # load multimask dataset + if split == "all": + train_set = DigiCam( + huggingface_repo=huggingface_repo, + split="train", + rotate=rotate, + downsample=downsample, + return_mask_label=True, + ) + test_set = DigiCam( + huggingface_repo=huggingface_repo, + split="test", + rotate=rotate, + downsample=downsample, + return_mask_label=True, + ) + n_train_psf = len(train_set.psf) + n_test_psf = len(test_set.psf) + if n_files is not None: + # subset train and test set + train_set = torch.utils.data.Subset(train_set, range(n_files * n_train_psf)) + test_set = torch.utils.data.Subset(test_set, range(n_files * n_test_psf)) + all_set = torch.utils.data.ConcatDataset([test_set, train_set]) + + # prepare PSFs + if n_files is not None: + train_psfs = train_set.dataset.psf + test_psfs = test_set.dataset.psf + else: + train_psfs = train_set.psf + test_psfs = test_set.psf + # -- combine into one dict + psfs = dict() + for psf_idx in test_psfs: + psfs[psf_idx] = test_psfs[psf_idx] + for psf_idx in train_psfs: + psfs[psf_idx] = train_psfs[psf_idx] + n_psf = len(psfs) + print(f"Number of PSFs: {n_psf}") + + # interleave test and train so go through equal number + n_files_per_mask = int(len(all_set) / n_psf) + file_idx = [] + test_files_offet = n_files_per_mask * n_test_psf + for i in range(n_files_per_mask): + file_idx += list(np.arange(n_test_psf) + i * n_test_psf) + file_idx += list(np.arange(n_train_psf) + i * n_train_psf + test_files_offet) + + else: + all_set = DigiCam( + huggingface_repo=huggingface_repo, + split=split, + rotate=rotate, + downsample=downsample, + return_mask_label=True, + ) + psfs = all_set.psf + n_psf = len(psfs) + if n_files is not None: + all_set = torch.utils.data.Subset(all_set, range(n_files * n_psf)) + print(f"Number of PSFs: {n_psf}") + + file_idx = np.arange(len(all_set)) + + n_files = len(all_set) + print("Number of images to process: ", n_files) + + for i in range(n_psf): + if grayscale: + psfs[i] = rgb2gray(psfs[i]) + # normalize + psfs[i] = psfs[i] / psfs[i].norm() + + fn = f"scores_{n_iter}_grayscale{grayscale}_down{downsample}_nfiles{n_files}.json" + if cont is not None: + fn = os.path.join(cont, fn) + n_files_complete = 0 + # load scores + with open(fn, "r") as f: + scores = json.load(f) + for psf_idx in scores: + n_files_complete += len(scores[psf_idx]) + file_idx = file_idx[n_files_complete:] + print(f"Completed {n_files_complete} files, {len(file_idx)} remaining") + else: + # initialize scores dict + scores = dict() + for psf in psfs: + scores[str(psf)] = [] + + # loop over dataset + start_time = time.time() + for i in tqdm(file_idx): + + # save progress + # if i % n_psf == 0: + with open(fn, "w") as f: + json.dump(scores, f, indent=4) + + # -- from dataset + lensless, _, mask_label = all_set[i] + + # prepare input + if grayscale: + lensless = rgb2gray(lensless, keepchanneldim=True) + + # normalize + lensless = lensless - torch.min(lensless) + lensless = lensless / torch.max(lensless) + + # reconstruct + scores_i = [] + for psf_idx in psfs: + recon = ADMM(psf=psfs[psf_idx].to(device)) + recon.set_data(lensless.to(device)) + recon.apply(disp_iter=None, plot=False, n_iter=n_iter) + # res = recon.apply(disp_iter=None, plot=False, n_iter=n_iter) + # if i == 0: + # # save images + # res_np = res.cpu().detach().numpy() + # res_np = np.squeeze(res_np) + # res_np = res_np / res_np.max() + # if grayscale: + # plt.imshow(res_np, cmap="gray") + # else: + # plt.imshow(res_np) + # plt.savefig(f"recon_{psf_idx}.png") + scores_i.append(recon.reconstruction_error().item()) + # del recon, res + del recon + scores[str(mask_label)].append(np.array(scores_i).tolist()) + del lensless + torch.cuda.empty_cache() + + proc_time = time.time() - start_time + print(f"Processing time [m]: {proc_time / 60}") + + # save scores as JSON + with open(fn, "w") as f: + json.dump(scores, f, indent=4) + + confusion_fn = ( + f"confusion_matrix_{n_iter}_grayscale{grayscale}_down{downsample}_nfiles{n_files}.png" + ) + + else: + + # load scores + with open(scores_fp, "r") as f: + scores = json.load(f) + n_psf = len(scores) + + # extract basename + basename = scores_fp.split("/")[-1] + confusion_fn = f"confusion_matrix_{basename}.png" + + # compute and plot confusion matrix + confusion_matrix = np.zeros((n_psf, n_psf)) + accuracy = np.zeros(n_psf) + for psf_idx in scores: + # print(psf_idx, len(scores[psf_idx])) + confusion_matrix[int(psf_idx)] = np.mean(np.array(scores[psf_idx]), axis=0) + + # compute accuracy for each PSF + detected_mask = np.argmin(scores[psf_idx], axis=1) + accuracy[int(psf_idx)] = np.mean(detected_mask == int(psf_idx)) + total_accuracy = np.mean(accuracy) + print("Total accuracy: ", total_accuracy) + + df_cm = pd.DataFrame( + confusion_matrix, index=[i for i in range(n_psf)], columns=[i for i in range(n_psf)] + ) + plt.figure(figsize=(10, 7)) + # set font scale + sn.set(font_scale=config.font_scale) + # sn.heatmap(df_cm, annot=True, cbar=False) + sn.heatmap(df_cm, annot=False, cbar=True) + + # save plot + plt.savefig(confusion_fn, bbox_inches="tight") + print(f"Confusion matrix saved as {confusion_fn}") + + +if __name__ == "__main__": + authen() diff --git a/scripts/data/authenticate_roc.py b/scripts/data/authenticate_roc.py new file mode 100644 index 00000000..3aa85621 --- /dev/null +++ b/scripts/data/authenticate_roc.py @@ -0,0 +1,87 @@ +""" +Install sklearn + +pip install scikit-learn + +ROC curve docs: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html + + +""" + +import numpy as np +from sklearn import metrics +import matplotlib.pyplot as plt +import json +import pandas as pd +import seaborn as sn + +scores_paths = { + "ADMM10": "/root/LenslessPiCam/outputs/2024-03-25/23-36-06/scores_10_grayscaleTrue_down1_nfiles10000.json", + "ADMM25": "/root/LenslessPiCam/outputs/2024-03-26/17-52-49/scores_25_grayscaleTrue_down1_nfiles10000.json", + "ADMM50": "/root/LenslessPiCam/outputs/2024-03-27/10-49-08/scores_50_grayscaleTrue_down1_nfiles10000.json", +} + +# initialize figure +plt.rcParams.update({"font.size": 20}) +fig, ax = plt.subplots() +for method, scores_fp in scores_paths.items(): + # load scores + with open(scores_fp, "r") as f: + scores = json.load(f) + + # prepare scores + y_true = [] + y_score = [] + n_psf = len(scores) + accuracy = np.zeros(n_psf) + confusion_matrix = np.zeros((n_psf, n_psf)) + for psf_idx in scores: + # y_true_idx = np.zeros(n_psf) + # y_true_idx[int(psf_idx)] = 1 + y_true_idx = np.ones(n_psf) + y_true_idx[int(psf_idx)] = 0 + for score in scores[psf_idx]: + y_true += list(y_true_idx) + y_score += list(score) + + # confusion matrix + confusion_matrix[int(psf_idx)] = np.mean(np.array(scores[psf_idx]), axis=0) + + # compute accuracy for each PSF + detected_mask = np.argmin(scores[psf_idx], axis=1) + accuracy[int(psf_idx)] = np.mean(detected_mask == int(psf_idx)) + + y_true = np.array(y_true).astype(bool) + + total_accuracy = np.mean(accuracy) + print(f"Total accuracy ({method}): {total_accuracy:.2f}") + + # compute and plot confusion matrix + df_cm = pd.DataFrame( + confusion_matrix, index=[i for i in range(n_psf)], columns=[i for i in range(n_psf)] + ) + plt.figure(figsize=(10, 7)) + # set font scale + sn.set(font_scale=1.5) + sn.heatmap(df_cm, annot=False, cbar=True, xticklabels=5, yticklabels=5) + confusion_fn = f"confusion_matrix_{method}.png" + plt.savefig(confusion_fn, bbox_inches="tight") + print(f"Confusion matrix saved as {confusion_fn}") + + # compute the ROC curve + fpr, tpr, thresholds = metrics.roc_curve(y_true, y_score) + auc = metrics.roc_auc_score(y_true, y_score) + + # set font size + lw = 3 + + # create ROC curve + ax.plot(fpr, tpr, label=f"{method}, AUC={auc:.2f}", linewidth=lw) + +ax.set_ylabel("True Positive Rate") +ax.set_xlabel("False Positive Rate") +ax.legend() +ax.grid() + +# save ROC curve +fig.savefig("roc_curve.png", bbox_inches="tight") diff --git a/scripts/recon/digicam_mirflickr.py b/scripts/recon/digicam_mirflickr.py new file mode 100644 index 00000000..88a6a036 --- /dev/null +++ b/scripts/recon/digicam_mirflickr.py @@ -0,0 +1,98 @@ +import hydra +import yaml +import torch +from lensless import ADMM +from lensless.utils.plot import plot_image +from lensless.utils.dataset import DigiCam +import os +from lensless.utils.io import save_image +import time +from lensless.recon.model_dict import download_model, load_model + + +@hydra.main(version_base=None, config_path="../../configs", config_name="recon_digicam_mirflickr") +def apply_pretrained(config): + idx = config.idx + save = config.save + device = config.device + n_trials = config.n_trials + model_name = config.model + + # load config + if model_name == "admm": + # take config from unrolled ADMM for dataset + model_path = download_model(camera="digicam", dataset="mirflickr_single_25k", model="U10") + config_path = os.path.join(model_path, ".hydra", "config.yaml") + with open(config_path, "r") as stream: + model_config = yaml.safe_load(stream) + + else: + model_path = download_model( + camera="digicam", dataset="mirflickr_single_25k", model=model_name + ) + config_path = os.path.join(model_path, ".hydra", "config.yaml") + with open(config_path, "r") as stream: + model_config = yaml.safe_load(stream) + + # load dataset + test_set = DigiCam( + huggingface_repo=model_config["files"]["dataset"], + psf=model_config["files"]["huggingface_psf"] + if "huggingface_psf" in model_config["files"] + else None, + split="test", + display_res=model_config["files"]["image_res"], + rotate=model_config["files"]["rotate"], + downsample=model_config["files"]["downsample"], + alignment=model_config["alignment"], + save_psf=model_config["files"]["save_psf"], + ) + test_set.psf = test_set.psf.to(device) + print("Test set size: ", len(test_set)) + + # load model + if model_name == "admm": + recon = ADMM(test_set.psf, n_iter=config.n_iter) + else: + # load best model + recon = load_model(model_path, test_set.psf, device) + + # apply reconstruction + lensless, lensed = test_set[idx] + lensless = lensless.to(device) + + start_time = time.time() + for _ in range(n_trials): + with torch.no_grad(): + + recon.set_data(lensless) + res = recon.apply( + disp_iter=-1, + save=False, + gamma=None, + plot=False, + ) + end_time = time.time() + avg_time_ms = (end_time - start_time) / n_trials * 1000 + print(f"Avg inference [ms] : {avg_time_ms} ms") + + img = res[0].cpu().numpy().squeeze() + + plot_image(img) + plot_image(lensed) + + if save: + print(f"Saving images to {os.getcwd()}") + alignment = test_set.alignment + top_right = alignment["topright"] + height = alignment["height"] + width = alignment["width"] + res_np = img[top_right[0] : top_right[0] + height, top_right[1] : top_right[1] + width] + lensed_np = lensed[0].cpu().numpy() + save_image(lensed_np, f"original_idx{idx}.png") + save_image(res_np, f"{model_name}_idx{idx}.png") + save_image(lensless[0].cpu().numpy(), f"lensless_idx{idx}.png") + + +if __name__ == "__main__": + apply_pretrained() diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index 9eabb086..068b2847 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -200,19 +200,32 @@ def train_unrolled(config): psf = dataset.psf - # print info about PSF - log.info(f"PSF shape : {psf.shape}") - log.info(f"PSF min : {psf.min()}") - log.info(f"PSF max : {psf.max()}") - log.info(f"PSF dtype : {psf.dtype}") - log.info(f"PSF norm : {psf.norm()}") - elif config.files.huggingface_dataset is True: + split_train = "train" + split_test = "test" + if config.files.split_seed is not None: + from datasets import load_dataset, concatenate_datasets + + seed = config.files.split_seed + generator = torch.Generator().manual_seed(seed) + + # - combine train and test into single dataset + train_dataset = load_dataset(config.files.dataset, split="train") + test_dataset = load_dataset(config.files.dataset, split="test") + dataset = concatenate_datasets([test_dataset, train_dataset]) + + # - split into train and test + train_size = int((1 - config.files.test_size) * len(dataset)) + test_size = len(dataset) - train_size + split_train, split_test = torch.utils.data.random_split( + dataset, [train_size, test_size], generator=generator + ) + train_set = DigiCam( huggingface_repo=config.files.dataset, psf=config.files.huggingface_psf, - split="train", + split=split_train, display_res=config.files.image_res, rotate=config.files.rotate, downsample=config.files.downsample, @@ -222,7 +235,7 @@ def train_unrolled(config): test_set = DigiCam( huggingface_repo=config.files.dataset, psf=config.files.huggingface_psf, - split="test", + split=split_test, display_res=config.files.image_res, rotate=config.files.rotate, downsample=config.files.downsample, @@ -238,6 +251,19 @@ def train_unrolled(config): crop = test_set.crop # same for train set alignment = test_set.alignment + # -- if learning mask + mask = prep_trainable_mask(config, psf) + if mask is not None: + assert not train_set.multimask + # plot initial PSF + psf_np = mask.get_psf().detach().cpu().numpy()[0, ...] + if config.trainable_mask.grayscale: + psf_np = psf_np[:, :, -1] + + save_image(psf_np, os.path.join(save, "psf_initial.png")) + plot_image(psf_np, gamma=config.display.gamma) + plt.savefig(os.path.join(save, "psf_initial_plot.png")) + else: train_set, test_set, mask = simulate_dataset(config, generator=generator) @@ -248,6 +274,13 @@ def train_unrolled(config): # if not hasattr(test_set, "psfs"): # assert psf is not None + # print info about PSF + log.info(f"PSF shape : {psf.shape}") + log.info(f"PSF min : {psf.min()}") + log.info(f"PSF max : {psf.max()}") + log.info(f"PSF dtype : {psf.dtype}") + log.info(f"PSF norm : {psf.norm()}") + if config.files.extra_eval is not None: # TODO only support Hugging Face DigiCam datasets for now extra_eval_sets = dict() From 03bec460997b72458c490c163670a83ed6b27487 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Thu, 4 Apr 2024 11:51:19 +0000 Subject: [PATCH 18/24] Add support for programmable mask to Telegram bot. --- configs/demo.yaml | 16 +- configs/telegram_demo.yaml | 20 +- docs/source/demo.rst | 10 +- scripts/demo.py | 60 +++++- scripts/demo/telegram_bot.py | 362 ++++++++++++++++++++++++++--------- scripts/recon/demo.py | 169 ++++++++-------- 6 files changed, 433 insertions(+), 204 deletions(-) diff --git a/configs/demo.yaml b/configs/demo.yaml index 47f13ba4..bcf0e617 100644 --- a/configs/demo.yaml +++ b/configs/demo.yaml @@ -18,7 +18,7 @@ display: screen_res: [1920, 1200] # width, height pad: 0 hshift: 0 - vshift: 0 + vshift: -10 brightness: 100 rot90: 3 @@ -32,7 +32,7 @@ display: capture: sensor: rpi_hq gamma: null # for visualization - exp: 0.02 + exp: 1 delay: 2 script: ~/LenslessPiCam/scripts/measure/on_device_capture.py iso: 100 @@ -56,14 +56,20 @@ capture: # remote script returns RGB data rgb: True down: 4 - awb_gains: [1.9, 1.2] + awb_gains: [1.6, 1.2] camera: # these gains are not applied if rgb=True red_gain: 1.9 blue_gain: 1.2 - psf: data/psf/tape_rgb_31032023.png + # psf: data/psf/tape_rgb_31032023.png # path to PSF, DigiCam configuration + psf: + seed: 0 + device: adafruit + mask_shape: [54, 26] + mask_center: [57, 77] + flipud: True background: null @@ -84,7 +90,7 @@ recon: # -- admm admm: - n_iter: 10 + n_iter: 100 disp_iter: null mu1: 1e-6 mu2: 1e-5 diff --git a/configs/telegram_demo.yaml b/configs/telegram_demo.yaml index c5a3048e..8255be52 100644 --- a/configs/telegram_demo.yaml +++ b/configs/telegram_demo.yaml @@ -11,18 +11,30 @@ rpi_lensed_hostname: null # can pre-load PSF so it doesn't have to be loaded and resize at each reconstruction # psf: null +# -- digicam (simulated) psf: - fp: data/psf/tape_rgb_31032023.png - # fp: data/psf/tape_rgb.png # wrong + sensor: rpi_hq + device: adafruit + mask_shape: [54, 26] + mask_center: [57, 77] + flipud: True downsample: 4 +# -- measured PSF +# psf: +# # https://drive.switch.ch/index.php/s/NdgHlcDeHVDH5ww?path=%2Fpsf +# fp: data/psf/tape_rgb_31032023.png +# # fp: data/psf/tape_rgb.png # wrong +# downsample: 4 # which hydra config to use and available algos config_name: demo -default_algo: unrolled # note that this requires GPU -supported_algos: ["fista", "admm", "unrolled"] +default_algo: admm # note that unrolled requires GPU +# supported_algos: ["fista", "admm", "unrolled"] +supported_algos: ["fista", "admm"] # overlaying logos on the reconstruction +# images: https://drive.switch.ch/index.php/s/NdgHlcDeHVDH5ww?path=%2Foriginal overlay: alpha: 60 diff --git a/docs/source/demo.rst b/docs/source/demo.rst index 6d60100e..8e823da5 100644 --- a/docs/source/demo.rst +++ b/docs/source/demo.rst @@ -9,7 +9,7 @@ It assumes the following setup: * You have a Raspberry Pi (RPi) with ``LenslessPiCam`` installed. * You have a PC with ``LenslessPiCam`` installed. * The RPi and the PC are connected to the same network. -* You can SSH into the RPi from the PC without a password. +* You can SSH into the RPi from the PC `without a password `_. * The RPi is connected to a lensless camera and a display. * The display is configured to display images in full screen, as described in :ref:`measurement`. * The PSF of the lensless camera is known and saved as an RGB file. @@ -98,11 +98,13 @@ you need to: admm - Apply ADMM on current measurement. unrolled - Apply unrolled ADMM on current measurement. -#. Install Telegram Python API: ``pip install python-telegram-bot``. +#. Install Telegram Python API (and other dependencies): ``pip install python-telegram-bot emoji pilmoji``. #. Make sure ``LenslessPiCam`` is installed on your server and on the Raspberry Pi, and that the display is configured to display images in full screen, as described in :ref:`measurement`. -#. Prepare your configuration file using ``configs/telegram_demo.yaml`` as a template. You will have to set ``token`` to the token of your bot, ``rpi_username`` and ``rpi_hostname`` to the username and hostname of your Raspberry Pi, ``psf:fp`` to the path of your PSF file, and ``config_name`` to a demo configuration that e.g. worked for above. You may also want to set what algorithms you are willing to let the bot support (note that as of 30 June 2021, unrolled ADMM requires a GPU). +#. Prepare your configuration file using ``configs/telegram_demo.yaml`` as a template. You will have to set ``token`` to the token of your bot, ``rpi_username`` and ``rpi_hostname`` to the username and hostname of your Raspberry Pi, ``psf:fp`` to the path of your PSF file, and ``config_name`` to a demo configuration that e.g. worked for above. You may also want to set what algorithms you are willing to let the bot support (note that as of 12 March 2023, unrolled ADMM requires a GPU). + +#. You can download some images that we use for our demo `here `_. You can also use your own images. #. Now you can run the server for the Telegram bot! It is recommended to do in a screen session. @@ -115,5 +117,7 @@ you need to: # Ctrl+A, followed by D to detach from screen session # screen -r telegram_bot to reattach +#. You will most certainly need to adjust exposure and shifting parameters in your configuration, ``demo.yaml``, and ``scripts/demo/telegram_bot.py``. + diff --git a/scripts/demo.py b/scripts/demo.py index 760b663a..a1405a38 100644 --- a/scripts/demo.py +++ b/scripts/demo.py @@ -13,6 +13,10 @@ from lensless import FISTA, ADMM from lensless.hardware.utils import check_username_hostname, display from lensless.utils.io import load_image, load_psf +import omegaconf +from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full +from lensless.hardware.trainable_mask import AdafruitLCD +from torch import from_numpy @hydra.main(version_base=None, config_path="../configs", config_name="demo") @@ -37,7 +41,34 @@ def demo(config): print("\nCopying over picture...") display(fp=display_fp, rpi_username=RPI_USERNAME, rpi_hostname=RPI_HOSTNAME, **config.display) - # 2) Take picture + # 2) (If DigiCam) set mask pattern + mask = None + flipud = False + if isinstance(config.camera.psf, omegaconf.dictconfig.DictConfig): + print("\nSetting mask pattern...") + np.random.seed(config.camera.psf.seed % (2**32 - 1)) + mask_vals = np.random.uniform(0, 1, config.camera.psf.mask_shape) + full_pattern = adafruit_sub2full( + mask_vals, + center=config.camera.psf.mask_center, + ) + set_programmable_mask( + full_pattern, + device=config.camera.psf.device, + rpi_username=RPI_USERNAME, + rpi_hostname=RPI_HOSTNAME, + ) + mask_vals_torch = from_numpy(mask_vals.astype(np.float32)) + flipud = config.camera.psf.flipud + mask = AdafruitLCD( + initial_vals=mask_vals_torch, + sensor=config.capture.sensor, + slm=config.camera.psf.device, + downsample=config.recon.downsample, + flipud=flipud, + ) + + # 3) Take picture time.sleep(config.capture.delay) # for picture to display print("\nTaking picture...") @@ -131,17 +162,21 @@ def demo(config): if save: plt.savefig(os.path.join(save, "histogram.png")) - # 3) Reconstruct + # 4) Reconstruct # -- prepare data - psf, bg = load_psf( - to_absolute_path(config.camera.psf), - downsample=config.recon.downsample, - return_float=True, - return_bg=True, - dtype=config.recon.dtype, - ) - psf = np.array(psf, dtype=config.recon.dtype) + if mask is not None: + psf = mask.get_psf().detach().numpy() + bg = np.zeros(psf.shape[-1]) + else: + psf, bg = load_psf( + to_absolute_path(config.camera.psf), + downsample=config.recon.downsample, + return_float=True, + return_bg=True, + dtype=config.recon.dtype, + ) + psf = np.array(psf, dtype=config.recon.dtype) ax = plot_image(psf[0], gamma=config.recon.gamma) ax.set_title("PSF") if save: @@ -174,6 +209,11 @@ def demo(config): psf = torch.from_numpy(psf).type(torch_dtype).to(config.recon.torch_device) data = torch.from_numpy(data).type(torch_dtype).to(config.recon.torch_device) + if flipud: + data = torch.rot90(data, dims=(-3, -2), k=2) + else: + if flipud: + data = np.rot90(data, k=2, axes=(-3, -2)) # -- apply algo start_time = time.time() diff --git a/scripts/demo/telegram_bot.py b/scripts/demo/telegram_bot.py index 1310563e..250a9252 100644 --- a/scripts/demo/telegram_bot.py +++ b/scripts/demo/telegram_bot.py @@ -13,6 +13,7 @@ import pytz from datetime import datetime from lensless.hardware.utils import check_username_hostname +from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full # for displaying emojis from emoji import EMOJI_DATA @@ -51,6 +52,7 @@ CONFIG_FN = None DEFAULT_ALGO = None ALGO_TEXT = None +MASK_PARAM = None OVERLAY_ALPHA = None @@ -63,12 +65,14 @@ RAW_DATA_FP = "raw_data.png" OUTPUT_FOLDER = "demo_lensless" BUSY = False -supported_algos = ["fista", "admm", "unrolled"] +# supported_algos = ["fista", "admm", "unrolled"] +supported_algos = ["fista", "admm"] supported_input = ["mnist", "thumb", "face"] TIMEOUT = 1 * 60 # 10 minutes BRIGHTNESS = 100 -EXPOSURE = 0.02 +# EXPOSURE = 0.02 +EXPOSURE = 0.5 LOW_LIGHT_THRESHOLD = 100 SATURATION_THRESHOLD = 0.05 @@ -117,7 +121,47 @@ async def check_incoming_message(update: Update, context: ContextTypes.DEFAULT_T # create folder for user user_folder = get_user_folder(update) if not os.path.exists(user_folder): - os.makedirs(user_folder) + os.makedirs(user_folder, exist_ok=True) + + if MASK_PARAM is not None: + + import torch + from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full + from lensless.hardware.trainable_mask import AdafruitLCD + from lensless.utils.io import save_image + + user_id = int(os.path.basename(user_folder)) + np.random.seed(user_id % (2**32 - 1)) # TODO set user ID as seed + mask_vals = np.random.uniform(0, 1, MASK_PARAM.mask_shape) + + # simulate PSF + full_pattern = adafruit_sub2full( + mask_vals, + center=MASK_PARAM.mask_center, + ) + set_programmable_mask( + full_pattern, + device=MASK_PARAM.device, + rpi_username=RPI_USERNAME, + rpi_hostname=RPI_HOSTNAME, + ) + mask_vals_torch = torch.from_numpy(mask_vals.astype(np.float32)) + mask = AdafruitLCD( + initial_vals=mask_vals_torch, + sensor=MASK_PARAM.sensor, + slm=MASK_PARAM.device, + downsample=MASK_PARAM.downsample, + flipud=MASK_PARAM.flipud, + ) + psf = mask.get_psf().detach().numpy() + + # save PSF as PNG + psf_fp = os.path.join(user_folder, "psf.png") + save_image(psf[0], psf_fp) + + # save as NPY + psf_npy_fp = os.path.join(user_folder, "psf.npy") + np.save(psf_npy_fp, psf) if BUSY: return "System is busy. Please wait for the current job to finish and try again." @@ -232,6 +276,9 @@ async def photo(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: # EXPOSURE = 0.02 + vshift = -26 + pad = 10 + res = await check_incoming_message(update, context) if res is not None: await update.message.reply_text(res, reply_to_message_id=update.message.message_id) @@ -252,7 +299,7 @@ async def photo(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: user_folder = get_user_folder(update) original_file_path = os.path.join(user_folder, INPUT_FP) os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" + f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME} display.pad={pad} display.vshift={vshift}" ) await update.message.reply_text( "Image sent to display.", reply_to_message_id=update.message.message_id @@ -291,6 +338,113 @@ async def take_picture(update: Update, context: ContextTypes.DEFAULT_TYPE, query ) +def overlay(user_subfolder): + + if OVERLAY_1 is not None or OVERLAY_2 is not None or OVERLAY_3 is not None: + + alpha = OVERLAY_ALPHA + + reconstructed_path = os.path.join(user_subfolder, "reconstructed.png") + + img1 = Image.open(reconstructed_path) + img1 = img1.convert("RGBA") + + for overlay_config in [OVERLAY_1, OVERLAY_2, OVERLAY_3]: + if overlay_config is not None: + overlay_img = Image.open(overlay_config.fp) + overlay_img = overlay_img.convert("RGBA") + overlay_img.putalpha(alpha) + new_width = int(img1.width * overlay_config.scaling) + overlay_img = overlay_img.resize( + (new_width, int(new_width * overlay_img.height / overlay_img.width)) + ) + img1.paste( + overlay_img, + (overlay_config.position[0], overlay_config.position[1]), + overlay_img, + ) + + OUTPUT_FP = os.path.join(user_subfolder, "reconstructed_overlay.png") + img1.convert("RGB").save(OUTPUT_FP) + + else: + + OUTPUT_FP = os.path.join(user_subfolder, "reconstructed.png") + + return OUTPUT_FP + + +async def random_mask(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: + """ + Set random mask and reconstruct (with ADMM). + """ + + algo = "admm" + + # get user subfolder + user_subfolder = get_user_folder(update) + + # get seed for random mask + seed = int(os.path.basename(user_subfolder)) + # add random number to seed + seed += np.random.randint(0, 1000) + os.system( + f"python scripts/recon/demo.py -cn {CONFIG_FN} plot=False recon.algo={algo} output={user_subfolder} camera.psf.seed={seed}" + ) + + # -- send back, with watermark if provided + OUTPUT_FP = overlay(user_subfolder) + await update.message.reply_photo( + OUTPUT_FP, + caption=f"Reconstruction ({algo})", + reply_to_message_id=update.message.message_id, + ) + + # simulate BAD PSF + import torch + from lensless.hardware.slm import set_programmable_mask, adafruit_sub2full + from lensless.hardware.trainable_mask import AdafruitLCD + from lensless.utils.io import save_image + + np.random.seed(seed % (2**32 - 1)) + mask_vals = np.random.uniform(0, 1, MASK_PARAM.mask_shape) + + # simulate PSF + full_pattern = adafruit_sub2full( + mask_vals, + center=MASK_PARAM.mask_center, + ) + set_programmable_mask( + full_pattern, device=MASK_PARAM.device, rpi_username=RPI_USERNAME, rpi_hostname=RPI_HOSTNAME + ) + mask_vals_torch = torch.from_numpy(mask_vals.astype(np.float32)) + mask = AdafruitLCD( + initial_vals=mask_vals_torch, + sensor=MASK_PARAM.sensor, + slm=MASK_PARAM.device, + downsample=MASK_PARAM.downsample, + flipud=MASK_PARAM.flipud, + ) + psf = mask.get_psf().detach().numpy() + + # save PSF as PNG + psf_fp = os.path.join(user_subfolder, "psf_bad.png") + save_image(psf[0], psf_fp) + await update.message.reply_photo( + psf_fp, + caption="Incorrect PSF used for reconstruction", + reply_to_message_id=update.message.message_id, + ) + + # send back false and ground truth PSF + psf_fp = os.path.join(user_subfolder, "psf.png") + await update.message.reply_photo( + psf_fp, + caption="Correct PSF (your key)", + reply_to_message_id=update.message.message_id, + ) + + async def reconstruct(update: Update, context: ContextTypes.DEFAULT_TYPE, algo, query=None) -> None: supported = check_algo(algo) @@ -325,53 +479,24 @@ async def reconstruct(update: Update, context: ContextTypes.DEFAULT_TYPE, algo, os.system( f"python scripts/recon/demo.py -cn {CONFIG_FN} plot=False recon.algo={algo} output={user_subfolder} camera.psf={PSF_FP} recon.downsample=1 camera.background={BACKGROUND_FP}" ) + elif MASK_PARAM is not None: + # get seed for random mask + seed = int(os.path.basename(user_subfolder)) + os.system( + f"python scripts/recon/demo.py -cn {CONFIG_FN} plot=False recon.algo={algo} output={user_subfolder} camera.psf.seed={seed}" + ) else: os.system( f"python scripts/recon/demo.py -cn {CONFIG_FN} plot=False recon.algo={algo} output={user_subfolder}" ) # -- send back, with watermark if provided - if OVERLAY_1 is not None or OVERLAY_2 is not None or OVERLAY_3 is not None: - - alpha = OVERLAY_ALPHA - - reconstructed_path = os.path.join(user_subfolder, "reconstructed.png") - - img1 = Image.open(reconstructed_path) - img1 = img1.convert("RGBA") - - for overlay_config in [OVERLAY_1, OVERLAY_2, OVERLAY_3]: - if overlay_config is not None: - overlay_img = Image.open(overlay_config.fp) - overlay_img = overlay_img.convert("RGBA") - overlay_img.putalpha(alpha) - new_width = int(img1.width * overlay_config.scaling) - overlay_img = overlay_img.resize( - (new_width, int(new_width * overlay_img.height / overlay_img.width)) - ) - img1.paste( - overlay_img, - (overlay_config.position[0], overlay_config.position[1]), - overlay_img, - ) - - OUTPUT_FP = os.path.join(user_subfolder, "reconstructed_overlay.png") - img1.convert("RGB").save(OUTPUT_FP) - - # return photo - await update.message.reply_photo( - OUTPUT_FP, - caption=f"Reconstruction ({algo})", - reply_to_message_id=update.message.message_id, - ) - - else: - OUTPUT_FP = os.path.join(user_subfolder, "reconstructed.png") - await update.message.reply_photo( - OUTPUT_FP, - caption=f"Reconstruction ({algo})", - reply_to_message_id=update.message.message_id, - ) + OUTPUT_FP = overlay(user_subfolder) + await update.message.reply_photo( + OUTPUT_FP, + caption=f"Reconstruction ({algo})", + reply_to_message_id=update.message.message_id, + ) async def take_picture_and_reconstruct( @@ -385,6 +510,25 @@ async def take_picture_and_reconstruct( user_subfolder = get_user_folder(update) responder = update.message + # (if DigiCam) set mask pattern + if MASK_PARAM is not None: + print("Setting mask pattern...") + # get seed for random mask + seed = int(os.path.basename(user_subfolder)) + np.random.seed(seed % (2**32 - 1)) + mask_vals = np.random.uniform(0, 1, MASK_PARAM.mask_shape) + full_pattern = adafruit_sub2full( + mask_vals, + center=MASK_PARAM.mask_center, + ) + # setting mask + set_programmable_mask( + full_pattern, + device=MASK_PARAM.device, + rpi_username=RPI_USERNAME, + rpi_hostname=RPI_HOSTNAME, + ) + await take_picture(update, context, query=query) # check for saturation @@ -471,9 +615,9 @@ async def mnist_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> N return algo = DEFAULT_ALGO - vshift = -10 + vshift = -26 brightness = 100 - # EXPOSURE = 0.08 + EXPOSURE = 1 # copy image to INPUT_FP user_folder = get_user_folder(update) @@ -510,9 +654,10 @@ async def thumb_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> N return algo = DEFAULT_ALGO - vshift = -10 + vshift = -26 brightness = 80 - # EXPOSURE = 0.02 + EXPOSURE = 0.5 + pad = 10 # copy image to INPUT_FP user_folder = get_user_folder(update) @@ -521,7 +666,7 @@ async def thumb_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> N # -- send to display os.system( - f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.vshift={vshift} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" + f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} display.pad={pad} display.vshift={vshift} display.brightness={brightness} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME}" ) await update.message.reply_text( f"Image sent to display with brightness {brightness}.", @@ -549,9 +694,9 @@ async def face_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> No return algo = DEFAULT_ALGO - vshift = 0 + vshift = -20 brightness = 80 - # EXPOSURE = 0.02 + EXPOSURE = 1 # copy image to INPUT_FP user_folder = get_user_folder(update) @@ -603,7 +748,7 @@ async def psf_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> Non OUTPUT_FP = os.path.join(OUTPUT_FOLDER, "raw_data.png") await update.message.reply_photo( OUTPUT_FP, - caption="PSF (zoom in to see caustic pattern)", + caption="PSF (zoom in to see pattern)", reply_to_message_id=update.message.message_id, ) @@ -614,6 +759,15 @@ async def psf_command(update: Update, context: ContextTypes.DEFAULT_TYPE) -> Non caption="PSF used for reconstructions", reply_to_message_id=update.message.message_id, ) + elif MASK_PARAM is not None: + # return pre-computed PSF + user_folder = get_user_folder(update) + psf_fp = os.path.join(user_folder, "psf.png") + await update.message.reply_photo( + psf_fp, + caption="PSF used for reconstructions", + reply_to_message_id=update.message.message_id, + ) BUSY = False @@ -653,11 +807,12 @@ async def button(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: elif "exposure" in query.message.text: EXPOSURE = float(query.data) - # await query.edit_message_text(text=f"Image sent to display with exposure of {EXPOSURE} seconds.") + await query.edit_message_text(text=f"Exposure set to {EXPOSURE} seconds.") - algo = DEFAULT_ALGO - # send query instead of update as it has the message data - await take_picture_and_reconstruct(update, context, algo, query=query) + # TODO not working with mask + # algo = DEFAULT_ALGO + # # send query instead of update as it has the message data + # await take_picture_and_reconstruct(update, context, algo, query=query) BUSY = False @@ -715,14 +870,14 @@ async def exposure_command(update: Update, context: ContextTypes.DEFAULT_TYPE) - Set exposure, re-capture, and reconstruct. """ - # check INPUT_FP exists - user_folder = get_user_folder(update) - original_file_path = os.path.join(user_folder, INPUT_FP) - if not os.path.exists(original_file_path): - await update.message.reply_text( - "Please set an image first.", reply_to_message_id=update.message.message_id - ) - return + # # check INPUT_FP exists + # user_folder = get_user_folder(update) + # original_file_path = os.path.join(user_folder, INPUT_FP) + # if not os.path.exists(original_file_path): + # await update.message.reply_text( + # "Please set an image first.", reply_to_message_id=update.message.message_id + # ) + # return res = await check_incoming_message(update, context) if res is not None: @@ -730,10 +885,14 @@ async def exposure_command(update: Update, context: ContextTypes.DEFAULT_TYPE) - return # vals = {0.02: "very low", 0.05: "low", 0.1: "medium", 0.2: "high", 0.5: "very high"} + # -- tape based vals = {0.02: "very low", 0.035: "low", 0.05: "medium", 0.065: "high", 0.08: "very high"} + # -- digicam + vals = {0.25: "very low", 0.5: "low", 0.75: "medium", 1: "high", 1.25: "very high"} current_exp = vals[EXPOSURE] - del vals[EXPOSURE] + if EXPOSURE in vals: + del vals[EXPOSURE] keys = list(vals.keys()) keyboard = [ [ @@ -761,7 +920,7 @@ async def emoji(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: global BUSY, EXPOSURE - # EXPOSURE = 0.02 + EXPOSURE = 0.7 res = await check_incoming_message(update, context) if res is not None: @@ -770,7 +929,7 @@ async def emoji(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: # create image from emoji text = update.message.text - size = 30 + size = 15 with Image.new("RGB", (size, size), (0, 0, 0)) as image: font = ImageFont.truetype( "/usr/share/fonts/truetype/freefont/FreeMono.ttf", size, encoding="unic" @@ -785,7 +944,7 @@ async def emoji(update: Update, context: ContextTypes.DEFAULT_TYPE) -> None: image.save(original_file_path) # display - vshift = -10 + vshift = -20 brightness = 80 os.system( f"python scripts/measure/remote_display.py -cn {CONFIG_FN} fp={original_file_path} rpi.username={RPI_USERNAME} rpi.hostname={RPI_HOSTNAME} display.vshift={vshift} display.brightness={brightness}" @@ -812,9 +971,8 @@ def main(config) -> None: global TOKEN, WHITELIST_USERS, RPI_USERNAME, RPI_HOSTNAME, RPI_LENSED_USERNAME, RPI_LENSED_HOSTNAME, CONFIG_FN global DEFAULT_ALGO, ALGO_TEXT, HELP_TEXT, supported_algos - # global OVERLAY_BOTTOMLEFT, OVERLAY_BOTTOMRIGHT, OVERLAY_TOPLEFT, OVERLAY_TOPRIGHT global OVERLAY_ALPHA, OVERLAY_1, OVERLAY_2, OVERLAY_3 - global PSF_FP, BACKGROUND_FP + global PSF_FP, BACKGROUND_FP, MASK_PARAM TOKEN = config.token @@ -847,9 +1005,12 @@ def main(config) -> None: "The photo will be:\n\n1. Displayed on a screen.\n2. Our lensless camera will " "take a picture.\n3. A reconstruction will be sent back through the bot.\n4. " "The raw data will also be sent back." - "\n\nIf you do not feel comfortable sending one " - f"of your own pictures, you can use the {input_commands} commands to set " - "the image on the display with one of our inputs. Or even send an emoij 😎" + # "\n\nIf you do not feel comfortable sending one " + # f"of your own pictures, you can use the {input_commands} commands to set " + # "the image on the display with one of our inputs. Or even send an emoij 😎" + f"\n\n⚠️ Try one of the {input_commands} commands to use images we've configured. " + "Or even send an emoij 😎 " + "You can also send your own image (but brightness/exposure may need to be adjusted)." "\n\nAll previous data is overwritten " "when a new image is sent, and everything is deleted when the process running on the " "server is shut down." @@ -864,10 +1025,15 @@ def main(config) -> None: "can specify the algorithm (on the last measurement) with the corresponding " f"command: {algo_commands}." "\n\nAll provided algorithms require an estimate of the point spread function (PSF). " - "You can measure a (proxy) PSF with /psf (a point source like " - "image will be displayed on the screen). " - "In practice, we measure the PSF with single white LED. The used PSF is sent also sent " - "back with the /psf command." + "Each user has their unique mask pattern according to the Telegram ID. " + "\n\n⚠️ After doing a measurement/reconstruction, you can try running /random_mask " + "to see what would be the reconstruction if you use a different (wrong) mask, " + "as if someone (like a hacker!) were trying to decode your data with a different mask." + # "\n\nAll provided algorithms require an estimate of the point spread function (PSF). " + # "You can measure a (proxy) PSF with /psf (a point source like " + # "image will be displayed on the screen). " + # "In practice, we measure the PSF with single white LED. The used PSF is sent also sent " + # "back with the /psf command." "\n\nMore info: go.epfl.ch/lensless" ) @@ -877,25 +1043,30 @@ def main(config) -> None: # load and downsample PSF beforehand if config.psf is not None: - from lensless.utils.io import save_image - psf, bg = load_psf( - config.psf.fp, downsample=config.psf.downsample, return_float=True, return_bg=True - ) + if "fp" in config.psf: + from lensless.utils.io import save_image - # save to demo folder - PSF_FP = os.path.join(OUTPUT_FOLDER, "psf.png") - save_image(psf[0], PSF_FP) + psf, bg = load_psf( + config.psf.fp, downsample=config.psf.downsample, return_float=True, return_bg=True + ) + + # save to demo folder + PSF_FP = os.path.join(OUTPUT_FOLDER, "psf.png") + save_image(psf[0], PSF_FP) - # save with gamma correction - from lensless.utils.image import gamma_correction + # save with gamma correction + from lensless.utils.image import gamma_correction - psf_gamma = gamma_correction(psf[0], gamma=1.5) - save_image(psf_gamma, PSF_FP_GAMMA) + psf_gamma = gamma_correction(psf[0], gamma=1.5) + save_image(psf_gamma, PSF_FP_GAMMA) - # save background array - BACKGROUND_FP = os.path.join(OUTPUT_FOLDER, "psf_bg.npy") - np.save(BACKGROUND_FP, bg) + # save background array + BACKGROUND_FP = os.path.join(OUTPUT_FOLDER, "psf_bg.npy") + np.save(BACKGROUND_FP, bg) + elif "device" in config.psf: + # programmable mask + MASK_PARAM = config.psf # Create the Application and pass it your bot's token. assert TOKEN is not None @@ -916,7 +1087,6 @@ def main(config) -> None: application.add_handler(CommandHandler("mnist", mnist_command, block=False)) application.add_handler(CommandHandler("thumb", thumb_command, block=False)) application.add_handler(CommandHandler("face", face_command, block=False)) - application.add_handler(CommandHandler("psf", psf_command, block=False)) # application.add_handler(CommandHandler("brightness", brightness_command, block=False)) # different algorithms @@ -941,6 +1111,12 @@ def main(config) -> None: # emoji input application.add_handler(MessageHandler(filters.TEXT & ~filters.COMMAND, emoji, block=False)) + if MASK_PARAM is not None: + application.add_handler(CommandHandler("random_mask", random_mask, block=False)) + else: + # to dim for measuring PSF of DigiCam? + application.add_handler(CommandHandler("psf", psf_command, block=False)) + # Run the bot until the user presses Ctrl-C application.run_polling() diff --git a/scripts/recon/demo.py b/scripts/recon/demo.py index 054bef99..74224d49 100644 --- a/scripts/recon/demo.py +++ b/scripts/recon/demo.py @@ -9,6 +9,8 @@ import matplotlib.pyplot as plt from lensless import FISTA, ADMM from lensless.utils.io import load_image, load_psf +import omegaconf +from lensless.hardware.trainable_mask import AdafruitLCD @hydra.main(version_base=None, config_path="../../configs", config_name="demo") @@ -50,70 +52,78 @@ def demo(config): elif len(data.shape) == 2: data = data[np.newaxis, :, :, np.newaxis] - if config.recon.algo == "unet": - - raise ValueError("Not implemented yet. Issues with TensorFlow and PyTorch compatability...") - - # -- resize data to fit model input - data = resize(data, shape=config.recon.unet.input_shape) - - # -- normalize data between [-1, 1] - # data /= np.linalg.norm(data.ravel()) - data /= data.max() - data = np.array(data, dtype=config.recon.dtype) - data = data * 2 - 1 + # -- PSF + flipud = False + if isinstance(config.camera.psf, omegaconf.dictconfig.DictConfig): + import torch + + np.random.seed(config.camera.psf.seed % (2**32 - 1)) + mask_vals = np.random.uniform(0, 1, config.camera.psf.mask_shape) + mask_vals_torch = torch.from_numpy(mask_vals.astype(np.float32)) + flipud = config.camera.psf.flipud + mask = AdafruitLCD( + initial_vals=mask_vals_torch, + sensor=config.capture.sensor, + slm=config.camera.psf.device, + downsample=config.recon.downsample, + flipud=flipud, + ) + psf = mask.get_psf().detach().numpy() + bg = np.zeros(psf.shape[-1]) + + elif config.camera.background is not None: + psf = load_psf( + to_absolute_path(config.camera.psf), + downsample=config.recon.downsample, + return_float=True, + return_bg=False, + dtype=config.recon.dtype, + ) + bg = np.load(to_absolute_path(config.camera.background)) else: - - # -- PSF - if config.camera.background is not None: - psf = load_psf( - to_absolute_path(config.camera.psf), - downsample=config.recon.downsample, - return_float=True, - return_bg=False, - dtype=config.recon.dtype, - ) - bg = np.load(to_absolute_path(config.camera.background)) - + psf, bg = load_psf( + to_absolute_path(config.camera.psf), + downsample=config.recon.downsample, + return_float=True, + return_bg=True, + dtype=config.recon.dtype, + ) + psf = np.array(psf, dtype=config.recon.dtype) + if config.plot: + ax = plot_image(psf[0], gamma=config.recon.gamma) + ax.set_title("PSF") + if save: + plt.savefig(os.path.join(save, "psf.png")) + + # -- prepare data + if data.min() > 0: + data -= bg + data = np.clip(data, a_min=0, a_max=data.max()) + + if data.shape != psf.shape: + # in DiffuserCam dataset, images are already reshaped + data = resize(data, shape=psf.shape) + data /= np.linalg.norm(data.ravel()) + data = np.array(data, dtype=config.recon.dtype) + + if config.recon.use_torch: + import torch + + if config.recon.dtype == "float32": + torch_dtype = torch.float32 + elif config.recon.dtype == "float64": + torch_dtype = torch.float64 else: - psf, bg = load_psf( - to_absolute_path(config.camera.psf), - downsample=config.recon.downsample, - return_float=True, - return_bg=True, - dtype=config.recon.dtype, - ) - psf = np.array(psf, dtype=config.recon.dtype) - if config.plot: - ax = plot_image(psf[0], gamma=config.recon.gamma) - ax.set_title("PSF") - if save: - plt.savefig(os.path.join(save, "psf.png")) - - # -- prepare data - if data.min() > 0: - data -= bg - data = np.clip(data, a_min=0, a_max=data.max()) - - if data.shape != psf.shape: - # in DiffuserCam dataset, images are already reshaped - data = resize(data, shape=psf.shape) - data /= np.linalg.norm(data.ravel()) - data = np.array(data, dtype=config.recon.dtype) - - if config.recon.use_torch: - import torch + raise ValueError("dtype must be float32 or float64") - if config.recon.dtype == "float32": - torch_dtype = torch.float32 - elif config.recon.dtype == "float64": - torch_dtype = torch.float64 - else: - raise ValueError("dtype must be float32 or float64") - - psf = torch.from_numpy(psf).type(torch_dtype).to(config.recon.torch_device) - data = torch.from_numpy(data).type(torch_dtype).to(config.recon.torch_device) + psf = torch.from_numpy(psf).type(torch_dtype).to(config.recon.torch_device) + data = torch.from_numpy(data).type(torch_dtype).to(config.recon.torch_device) + if flipud: + data = torch.rot90(data, dims=(-3, -2), k=2) + else: + if flipud: + data = np.rot90(data, k=2, axes=(-3, -2)) print(f"Setup time : {time.time() - start_time} s") @@ -146,40 +156,13 @@ def demo(config): recon.load_state_dict( torch.load(algo_params.checkpoint_fp, map_location=config.recon.torch_device) ) - elif config.recon.algo == "unet": - import tensorflow as tf - - algo_params = config.recon.unet - - if algo_params.gpu: - # set gpu to the less used one - import setGPU - else: - os.environ["CUDA_VISIBLE_DEVICES"] = "-1" - - print("Loading checkpoint from : ", algo_params.model_path) - assert os.path.exists(algo_params.model_path), "Model path does not exist" - - model = tf.saved_model.load(algo_params.model_path) else: raise ValueError(f"Unsupported algorithm: {config.recon.algo}") print("Applying : ", config.recon.algo) - if config.recon.algo == "unet": - final_image = model(data) - - else: - if config.recon.use_torch: - with torch.no_grad(): - recon.set_data(data) - res = recon.apply( - gamma=config.recon.gamma, - save=save, - plot=config.plot, - disp_iter=algo_params["disp_iter"], - ) - else: + if config.recon.use_torch: + with torch.no_grad(): recon.set_data(data) res = recon.apply( gamma=config.recon.gamma, @@ -187,6 +170,14 @@ def demo(config): plot=config.plot, disp_iter=algo_params["disp_iter"], ) + else: + recon.set_data(data) + res = recon.apply( + gamma=config.recon.gamma, + save=save, + plot=config.plot, + disp_iter=algo_params["disp_iter"], + ) print(f"Processing time : {time.time() - start_time} s") if config.plot: From 10afc42e63a702b90c33fb9b518dee68fa7f9695 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 5 Apr 2024 13:27:34 +0000 Subject: [PATCH 19/24] Clean up. --- configs/authen.yaml | 11 ++--- configs/demo.yaml | 4 +- configs/train_celeba_digicam.yaml | 71 ----------------------------- lensless/recon/model_dict.py | 1 - lensless/recon/recon.py | 2 +- lensless/recon/trainable_recon.py | 8 +--- lensless/recon/utils.py | 10 ++-- lensless/utils/dataset.py | 8 ++++ scripts/data/authenticate.py | 44 ++++++++++++------ scripts/data/authenticate_roc.py | 2 - scripts/data/rename_mirflickr25k.py | 6 +++ scripts/recon/train_unrolled.py | 14 +----- 12 files changed, 59 insertions(+), 122 deletions(-) delete mode 100644 configs/train_celeba_digicam.yaml diff --git a/configs/authen.yaml b/configs/authen.yaml index e720ef36..bf456cc0 100644 --- a/configs/authen.yaml +++ b/configs/authen.yaml @@ -4,19 +4,14 @@ hydra: chdir: True # change to output folder # repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-25K" +# repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-1K" repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-10K" -# repo_id: "bezzam/DigiCam-Mirflickr-MultiMask-1K" # for testing split: all # "all" (for 100 masks), "test" (for 15 masks) n_iter: 25 n_files: 100 # per mask grayscale: True font_scale: 1.5 -torch_device: cuda:2 +torch_device: cuda:0 -model: Unet4M+U10+Unet4M - -# -- admm 25 -cont: /root/LenslessPiCam/outputs/2024-03-26/17-52-49 -# -- admm 10 -# cont: /root/LenslessPiCam/outputs/2024-03-25/23-36-06 +cont: null # continue already started file scores_fp: null # file path to already computed scores diff --git a/configs/demo.yaml b/configs/demo.yaml index bcf0e617..c4dfee47 100644 --- a/configs/demo.yaml +++ b/configs/demo.yaml @@ -63,7 +63,9 @@ camera: # these gains are not applied if rgb=True red_gain: 1.9 blue_gain: 1.2 - # psf: data/psf/tape_rgb_31032023.png # path to PSF, DigiCam configuration + # -- path to PSF, + # psf: data/psf/tape_rgb_31032023.png + # -- DigiCam configuration psf: seed: 0 device: adafruit diff --git a/configs/train_celeba_digicam.yaml b/configs/train_celeba_digicam.yaml deleted file mode 100644 index be255876..00000000 --- a/configs/train_celeba_digicam.yaml +++ /dev/null @@ -1,71 +0,0 @@ -# python scripts/recon/train_unrolled.py -cn train_celeba_digicam -defaults: - - train_unrolledADMM - - _self_ - -# Train Dataset -files: - # dataset: /scratch/bezzam/celeba_adafruit_random_2mm_20230720_10K - # psf: data/psf/adafruit_random_2mm_20231907.png - # vertical_shift: null - # horizontal_shift: null - # crop: null - - downsample: 2 - dataset: /scratch/bezzam/celeba/celeba_adafruit_random_30cm_2mm_20231004_26K - psf: rpi_hq_adafruit_psf_2mm/raw_data_rgb.png - - # ? - 25999 - # vertical_shift: -95 - # horizontal_shift: -30 - # crop: - # vertical: [22, 547] - # horizontal: [260, 690] - - # 0-3000? - vertical_shift: -117 - horizontal_shift: -25 - crop: - vertical: [0, 525] - horizontal: [265, 695] - - celeba_root: /scratch/bezzam - -test_idx: [0, 1, 2, 3, 4] - -# for prepping ground truth data -simulation: - scene2mask: 0.25 # [m] - mask2sensor: 0.002 # [m] - object_height: 0.33 # [m] - sensor: "rpi_hq" - snr_db: null - downsample: null - random_vflip: False - random_hflip: False - quantize: False - - -reconstruction: - method: unrolled_admm - unrolled_admm: - # Number of iterations - n_iter: 10 - - pre_process: - network : null # UnetRes or DruNet or null - depth : 2 # depth of each up/downsampling layer. Ignore if network is DruNet - nc : null - post_process: - network : null # UnetRes or DruNet or null - depth : 2 # depth of each up/downsampling layer. Ignore if network is DruNet - nc : [32, 64, 128, 256] - - -#Training -training: - batch_size: 2 - epoch: 25 - eval_batch_size: 16 - crop_preloss: True - diff --git a/lensless/recon/model_dict.py b/lensless/recon/model_dict.py index 050492f5..fe306c87 100644 --- a/lensless/recon/model_dict.py +++ b/lensless/recon/model_dict.py @@ -64,7 +64,6 @@ "unrolled_admm10_ft_psf_post8M": "bezzam/digicam-celeba-unrolled-admm10-ft-psf-post8M", "pre8M_unrolled_admm10": "bezzam/digicam-celeba-pre8M-unrolled-admm10", "pre4M_unrolled_admm10_post4M": "bezzam/digicam-celeba-pre4M-unrolled-admm10-post4M", - "pre4M_unrolled_admm10_post4M_OLD": "bezzam/digicam-celeba-pre4M-unrolled-admm10-post4M_OLD", "pre4M_unrolled_admm10_ft_psf_post4M": "bezzam/digicam-celeba-pre4M-unrolled-admm10-ft-psf-post4M", "Unet4M+TrainInv+Unet4M": "bezzam/digicam-celeba-unet4M-trainable-inv-unet4M", # baseline benchmarks which don't have model file but use ADMM diff --git a/lensless/recon/recon.py b/lensless/recon/recon.py index a217702d..02c8007e 100644 --- a/lensless/recon/recon.py +++ b/lensless/recon/recon.py @@ -312,7 +312,7 @@ def __init__( device = self._psf.device if denoiser["network"] == "DruNet": denoiser_model = load_drunet(requires_grad=False).to(device) - self._denoiser = get_drunet_function_v2(denoiser_model, device, mode="inference") + self._denoiser = get_drunet_function_v2(denoiser_model, mode="inference") else: raise NotImplementedError(f"Unsupported denoiser: {denoiser['network']}") self._denoiser_noise_level = denoiser["noise_level"] diff --git a/lensless/recon/trainable_recon.py b/lensless/recon/trainable_recon.py index 09ec9331..33a9b9ec 100644 --- a/lensless/recon/trainable_recon.py +++ b/lensless/recon/trainable_recon.py @@ -116,13 +116,9 @@ def _prepare_process_block(self, process): process_model = process if self._legacy_denoiser: - process_function = get_drunet_function( - process_model, self._psf.device, mode="train" - ) + process_function = get_drunet_function(process_model, mode="train") else: - process_function = get_drunet_function_v2( - process_model, self._psf.device, mode="train" - ) + process_function = get_drunet_function_v2(process_model, mode="train") elif process is not None: # Otherwise, we assume it is a function. assert callable(process), "pre_process must be a callable function" diff --git a/lensless/recon/utils.py b/lensless/recon/utils.py index 39b2ec55..f3de9028 100644 --- a/lensless/recon/utils.py +++ b/lensless/recon/utils.py @@ -80,7 +80,7 @@ def load_drunet(model_path=None, n_channels=3, requires_grad=False): return model -def apply_denoiser(model, image, noise_level=10, device="cpu", mode="inference"): +def apply_denoiser(model, image, noise_level=10, mode="inference"): """ Apply a pre-trained denoising model with input in the format Channel, Height, Width. An additionnal channel is added for the noise level as done in Drunet. @@ -147,7 +147,7 @@ def apply_denoiser(model, image, noise_level=10, device="cpu", mode="inference") return image -def get_drunet_function(model, device="cpu", mode="inference"): +def get_drunet_function(model, mode="inference"): """ Return a processing function that applies the DruNet model to an image. Legacy function to work with pre-trained models, use get_drunet_function_v2 instead. @@ -168,7 +168,6 @@ def process(image, noise_level): model, image, noise_level=noise_level, - device=device, mode=mode, ) image = torch.clip(image, min=0.0) * x_max @@ -177,7 +176,7 @@ def process(image, noise_level): return process -def get_drunet_function_v2(model, device="cpu", mode="inference"): +def get_drunet_function_v2(model, mode="inference"): """ Return a processing function that applies the DruNet model to an image. @@ -185,8 +184,6 @@ def get_drunet_function_v2(model, device="cpu", mode="inference"): ---------- model : :py:class:`torch.nn.Module` DruNet like denoiser model - device : str - Device to use for computation. Can be "cpu" or "cuda". mode : str Mode to use for model. Can be "inference" or "train". """ @@ -197,7 +194,6 @@ def process(image, noise_level): model, image / x_max, noise_level=noise_level, - device=device, # TODO: NOT USED mode=mode, ) image = torch.clip(image, min=0.0) * x_max.to(image.device) diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index 061864aa..bc9bf8d0 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -1389,3 +1389,11 @@ def simulate_dataset(config, generator=None): ) return train_ds_prop, test_ds_prop, mask + + +class MyDataParallel(torch.nn.DataParallel): + def __getattr__(self, name): + try: + return super().__getattr__(name) + except AttributeError: + return getattr(self.module, name) diff --git a/scripts/data/authenticate.py b/scripts/data/authenticate.py index d1a54e13..14f1d97b 100644 --- a/scripts/data/authenticate.py +++ b/scripts/data/authenticate.py @@ -1,3 +1,34 @@ +""" +Script to compute scores for the authentication experiment. +Scores are computed using the ADMM algorithm. + +Default configuration is set in `configs/authen.yaml`. + +To run the script: +``` +python scripts/data/authenticate.py -cn YOUR CONFIG +``` + +We would run out of GPU memory so wrote a bash script loop the script: +``` +#!/bin/sh +# loop forever +while true +do + # run the python script + python scripts/data/authenticate.py -CN YOUR CONFIG \ + cont=PATH_TO_INITIAL_RUN +done +``` + +A ROC curve can then be plotted from multiple scores with: +``` +python scripts/data/authenticate_roc.py +``` + +""" + + from lensless.utils.dataset import DigiCam import torch from lensless import ADMM @@ -150,19 +181,7 @@ def authen(config): recon = ADMM(psf=psfs[psf_idx].to(device)) recon.set_data(lensless.to(device)) recon.apply(disp_iter=None, plot=False, n_iter=n_iter) - # res = recon.apply(disp_iter=None, plot=False, n_iter=n_iter) - # if i == 0: - # # save images - # res_np = res.cpu().detach().numpy() - # res_np = np.squeeze(res_np) - # res_np = res_np / res_np.max() - # if grayscale: - # plt.imshow(res_np, cmap="gray") - # else: - # plt.imshow(res_np) - # plt.savefig(f"recon_{psf_idx}.png") scores_i.append(recon.reconstruction_error().item()) - # del recon, res del recon scores[str(mask_label)].append(np.array(scores_i).tolist()) del lensless @@ -209,7 +228,6 @@ def authen(config): plt.figure(figsize=(10, 7)) # set font scale sn.set(font_scale=config.font_scale) - # sn.heatmap(df_cm, annot=True, cbar=False) sn.heatmap(df_cm, annot=False, cbar=True) # save plot diff --git a/scripts/data/authenticate_roc.py b/scripts/data/authenticate_roc.py index 3aa85621..e426b88b 100644 --- a/scripts/data/authenticate_roc.py +++ b/scripts/data/authenticate_roc.py @@ -36,8 +36,6 @@ accuracy = np.zeros(n_psf) confusion_matrix = np.zeros((n_psf, n_psf)) for psf_idx in scores: - # y_true_idx = np.zeros(n_psf) - # y_true_idx[int(psf_idx)] = 1 y_true_idx = np.ones(n_psf) y_true_idx[int(psf_idx)] = 0 for score in scores[psf_idx]: diff --git a/scripts/data/rename_mirflickr25k.py b/scripts/data/rename_mirflickr25k.py index d0cdb331..58b9b080 100644 --- a/scripts/data/rename_mirflickr25k.py +++ b/scripts/data/rename_mirflickr25k.py @@ -1,3 +1,9 @@ +""" +Utility file to rename files in MirFlickr25k dataset (https://press.liacs.nl/mirflickr/) +so that they match the names in the larger dataset, i.e. removing "im" from the filename. +""" + + import os import glob from lensless.utils.dataset import natural_sort diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index 068b2847..fdc081ae 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -44,10 +44,11 @@ DiffuserCamMirflickr, DigiCamCelebA, DigiCam, + MyDataParallel, + simulate_dataset, ) from torch.utils.data import Subset from lensless.recon.utils import create_process_network -from lensless.utils.dataset import simulate_dataset from lensless.recon.utils import Trainer import torch from lensless.utils.io import save_image @@ -59,14 +60,6 @@ log = logging.getLogger(__name__) -class MyDataParallel(torch.nn.DataParallel): - def __getattr__(self, name): - try: - return super().__getattr__(name) - except AttributeError: - return getattr(self.module, name) - - @hydra.main(version_base=None, config_path="../../configs", config_name="train_unrolledADMM") def train_unrolled(config): @@ -97,9 +90,6 @@ def train_unrolled(config): else: log.info("Using CPU for training.") device = "cpu" - # device, use_cuda, multi_gpu, device_ids = device_checks( - # config.torch_device, config.multi_gpu, logger=log.info, - # ) device_ids = config.device_ids # load dataset and create dataloader From 27a0c90d2a868554b745bda886f0fef395cf4bad Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 5 Apr 2024 14:41:25 +0000 Subject: [PATCH 20/24] Remove alignment notebook. --- lensless/utils/dataset.py | 4 +- notebooks/align.ipynb | 183 -------------------------------- scripts/recon/train_unrolled.py | 3 +- 3 files changed, 4 insertions(+), 186 deletions(-) delete mode 100644 notebooks/align.ipynb diff --git a/lensless/utils/dataset.py b/lensless/utils/dataset.py index bc9bf8d0..2d72b373 100644 --- a/lensless/utils/dataset.py +++ b/lensless/utils/dataset.py @@ -1153,7 +1153,9 @@ def _get_images_pair(self, idx): interpolation=cv2.INTER_NEAREST, ) elif self.display_res is not None: - lensed = resize(lensed_np, shape=self.display_res, interpolation=cv2.INTER_NEAREST) + lensed = resize( + lensed_np, shape=(*self.display_res, 3), interpolation=cv2.INTER_NEAREST + ) return lensless, lensed diff --git a/notebooks/align.ipynb b/notebooks/align.ipynb deleted file mode 100644 index 881e1ca7..00000000 --- a/notebooks/align.ipynb +++ /dev/null @@ -1,183 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Reconstructed Image')" - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAFKCAYAAABb6Yu9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9e9BlV1Xnb619zv066ZAOmJAQHgGDvBwHnCCIgiBG4wPKQBRBBxNAUBQcBXSgLEDUMqJSQ6n4mBk1ViE1SgTMjFP4AJVSERFndHwThBGUBEJIQh7d3z17rfljrbX3Oufer9PdaQztfLvr9L3fueexzz57r996L1JVxX7bb/ttv+23/fYv3Pju7sB+22/7bb/tt/8/2z4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/223/bbfrtb2j4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/223/bbfrtb2j4A7bf9tt/22367W9o+AO23/bbf9tt+u1vaPgDtt/32/0H70Ic+BCLCVVdddXd3Zb/tt9b2AWi/7dmuuuoqEFHbhmHAfe97X1xxxRX4p3/6p7u7eye9/fRP//TdTqDv7j783u/9HogIV1999d3Wh/32/08b7u4O7LfP/PYDP/ADeNCDHoTDhw/jj//4j3HVVVfhD/7gD/CXf/mXOHDgwN3dvZPWfvqnfxpnn302rrjiiv+v+7Df9tu/VNsHoP12p+2rvuqr8OhHPxoA8C3f8i04++yz8drXvhbXXHMNnvGMZ9zNvbt72m233YaDBw/e3d3Yb/vtlG77Krj9dtztCU94AgDgAx/4wGz/3/7t3+Lrvu7rcK973QsHDhzAox/9aFxzzTUb599000347u/+bjzwgQ/Ezs4O7ne/++Gbv/mbccMNN7RjPvaxj+F5z3sezj33XBw4cACPfOQj8Uu/9Euz64Rd48d//Mfxn//zf8aFF16InZ0dfMEXfAHe+973zo697rrr8JznPAf3u9/9sLOzg/vc5z742q/9WnzoQx8CADzwgQ/EX/3VX+H3f//3m8rxSU96EoCuivz93/99fPu3fzvufe974373ux8A4IorrsADH/jAjWf8/u//fhDRxv43vvGNeMxjHoPTTz8d97znPfElX/Il+K3f+q077UOM23d913fh/ve/P3Z2dvDgBz8Yr33tayEiG+N7xRVX4NChQzjrrLNw+eWX46abbtroy7G2eJa///u/x7//9/8ehw4dwjnnnINXvvKVUFV8+MMfxtd+7dfizDPPxHnnnYfXve51s/N3d3fxqle9ChdddBEOHTqEgwcP4glPeAJ+93d/d+Nen/jEJ/DsZz8bZ555Zuv7n//5n2+1Xx3rfNtvn7ltXwLab8fdgmjf8573bPv+6q/+Cl/8xV+M+973vnj5y1+OgwcP4ld/9Vdx6aWX4td+7dfwtKc9DQBw66234glPeAL+5m/+Bs997nPx7/7dv8MNN9yAa665Bh/5yEdw9tln44477sCTnvQkXHvttXjRi16EBz3oQXjzm9+MK664AjfddBP+w3/4D7P+vOlNb8KnPvUpfOu3fiuICD/6oz+Kpz/96fiHf/gHjOMIALjsssvwV3/1V3jxi1+MBz7wgfjYxz6G3/7t38Y//uM/4oEPfCBe//rX48UvfjHOOOMMfN/3fR8A4Nxzz53d59u//dtxzjnn4FWvehVuu+224x6317zmNfj+7/9+fNEXfRF+4Ad+AKvVCu95z3vwzne+E1/xFV9x1D7cfvvteOITn4h/+qd/wrd+67fiAQ94AP7oj/4Ir3jFK/DRj34Ur3/96wEAqoqv/dqvxR/8wR/g277t2/Dwhz8cb33rW3H55Zcfd3+X7Ru+4Rvw8Ic/HD/yIz+C3/iN38AP/dAP4V73uhd+7ud+Dk9+8pPx2te+Fr/8y7+Ml73sZfiCL/gCfMmXfAkA4JZbbsF//a//Fc961rPw/Oc/H5/61Kfw8z//87jkkkvwJ3/yJ3jUox4FABARPPWpT8Wf/Mmf4IUvfCEe9rCH4dd//de39v1Y59t++wxvut/22x7tF3/xFxWA/s7v/I5+/OMf1w9/+MN69dVX6znnnKM7Ozv64Q9/uB37ZV/2Zfp5n/d5evjw4bZPRPSLvuiL9HM+53Pavle96lUKQN/ylrds3E9EVFX19a9/vQLQN77xje233d1dfdzjHqdnnHGG3nLLLaqq+sEPflAB6Gd91mfpjTfe2I799V//dQWg//2//3dVVf3kJz+pAPTHfuzHjvq8n/u5n6tPfOIT9xyHxz/+8TpN0+y3yy+/XC+44IKNc1796ldrXl7vf//7lZn1aU97mtZatz730frwgz/4g3rw4EH9+7//+9n+l7/85VpK0X/8x39UVdW3ve1tCkB/9Ed/tB0zTZM+4QlPUAD6i7/4i3s9vqqq/u7v/q4C0De/+c0bz/KCF7xgds373e9+SkT6Iz/yI23/Jz/5ST3ttNP08ssvnx175MiR2X0++clP6rnnnqvPfe5z275f+7VfUwD6+te/vu2rteqTn/zkjb4f63zbb5/ZbV8Ft9/utF188cU455xzcP/73x9f93Vfh4MHD+Kaa65paqgbb7wR73znO/GMZzwDn/rUp3DDDTfghhtuwCc+8QlccskleP/739+85n7t134Nj3zkI7dyqKGy+p//83/ivPPOw7Oe9az22ziO+M7v/E7ceuut+P3f//3Zed/wDd8wk8ZCRfgP//APAIDTTjsNq9UKv/d7v4dPfvKTJzwOz3/+81FKOaFz3/a2t0FE8KpXvQrM82W3TVW3bG9+85vxhCc8Afe85z3b+N5www24+OKLUWvFu971LgA2dsMw4IUvfGE7t5SCF7/4xSfU79y+5Vu+ZXbNRz/60VBVPO95z2v7zzrrLDz0oQ9tYx/HrlYrACbl3HjjjZimCY9+9KPxZ3/2Z+24t7/97RjHEc9//vPbPmbGd3zHd8z6cTzzbb99Zrd9Fdx+u9P2hje8AQ95yENw88034xd+4Rfwrne9Czs7O+33a6+9FqqKV77ylXjlK1+59Rof+9jHcN/73hcf+MAHcNlllx31fv/3//5ffM7nfM4GoX74wx/efs/tAQ94wOzvAKMAm52dHbz2ta/FS1/6Upx77rn4wi/8QjzlKU/BN3/zN+O88847hhGw9qAHPeiYj122D3zgA2BmPOIRjzih89///vfjL/7iL3DOOeds/f1jH/sYABub+9znPjjjjDNmvz/0oQ89ofvmthznQ4cO4cCBAzj77LM39n/iE5+Y7fulX/olvO51r8Pf/u3fYr1et/15TKPvp59++uzcBz/4wbO/j2e+7bfP7LYPQPvtTttjHvOY5gV36aWX4vGPfzy+8Ru/EX/3d3+HM844oxnBX/ayl+GSSy7Zeo0lETmZbS+pRFO1+e/6ru/CU5/6VLztbW/Db/7mb+KVr3wlrrzySrzzne/E53/+5x/TfU477bSNfXtJL7XWY7rmsTYRwZd/+Zfje7/3e7f+/pCHPOSk3m9b2zbOxzL2b3zjG3HFFVfg0ksvxfd8z/fg3ve+N0opuPLKKzccWY6l3d3zbb+dvLYPQPvtuFoQji/90i/FT/3UT+HlL385PvuzPxuAqckuvvjio55/4YUX4i//8i+PeswFF1yAv/iLv4CIzKSgv/3bv22/n0i78MIL8dKXvhQvfelL8f73vx+PetSj8LrXvQ5vfOMbARybKmzZ7nnPe271MFtKaRdeeCFEBH/913/djO7b2l59uPDCC3Hrrbfe6fhecMEFeMc73oFbb711JgX93d/93VHP+3S2q6++Gp/92Z+Nt7zlLbPne/WrXz077oILLsDv/u7v4vbbb59JQddee+3suOOZb/vtM7vt24D223G3Jz3pSXjMYx6D17/+9Th8+DDufe9740lPehJ+7ud+Dh/96Ec3jv/4xz/evl922WX48z//c7z1rW/dOC645q/+6q/Gddddh1/5lV9pv03ThJ/8yZ/EGWecgSc+8YnH1d/bb78dhw8fnu278MILcY973ANHjhxp+w4ePHjc7soXXnghbr75ZvzFX/xF2/fRj3504/kuvfRSMDN+4Ad+YMNtOksLe/XhGc94Bt797nfjN3/zNzd+u+mmmzBNEwAbu2ma8DM/8zPt91orfvInf/K4nutktpCS8nO+5z3vwbvf/e7ZcZdccgnW6zX+y3/5L22fiOANb3jD7LjjmW/77TO77UtA++2E2vd8z/fg67/+63HVVVfh277t2/CGN7wBj3/84/F5n/d5eP7zn4/P/uzPxvXXX493v/vd+MhHPoI///M/b+ddffXV+Pqv/3o897nPxUUXXYQbb7wR11xzDX72Z38Wj3zkI/GCF7wAP/dzP4crrrgC73vf+/DABz4QV199Nf7wD/8Qr3/963GPe9zjuPr693//9/iyL/syPOMZz8AjHvEIDMOAt771rbj++uvxzGc+sx130UUX4Wd+5mfwQz/0Q3jwgx+Me9/73njyk5981Gs/85nPxH/8j/8RT3va0/Cd3/mduP322/EzP/MzeMhDHjIzsD/4wQ/G933f9+EHf/AH8YQnPAFPf/rTsbOzg/e+9704//zzceWVVx61D9/zPd+Da665Bk95ylNwxRVX4KKLLsJtt92G//N//g+uvvpqfOhDH8LZZ5+Npz71qfjiL/5ivPzlL8eHPvQhPOIRj8Bb3vIW3Hzzzcc1ZiezPeUpT8Fb3vIWPO1pT8PXfM3X4IMf/CB+9md/Fo94xCNw6623tuMuvfRSPOYxj8FLX/pSXHvttXjYwx6Ga665BjfeeCOAuXR4rPNtv32Gt7vPAW+/faa3cD9+73vfu/FbrVUvvPBCvfDCC5tr8gc+8AH95m/+Zj3vvPN0HEe9733vq095ylP06quvnp37iU98Ql/0ohfpfe97X12tVnq/+91PL7/8cr3hhhvaMddff70+5znP0bPPPltXq5V+3ud93oYLcbhhb3OvBqCvfvWrVVX1hhtu0O/4ju/Qhz3sYXrw4EE9dOiQPvaxj9Vf/dVfnZ1z3XXX6dd8zdfoPe5xDwXQ3KGPNg6qqr/1W7+l/+bf/BtdrVb60Ic+VN/4xjduuGFH+4Vf+AX9/M//fN3Z2dF73vOe+sQnPlF/+7d/+077oKr6qU99Sl/xilfogx/8YF2tVnr22WfrF33RF+mP//iP6+7u7mx8n/3sZ+uZZ56phw4d0mc/+9n6v/7X/7rLbtgf//jHZ8defvnlevDgwY1rPPGJT9TP/dzPbX+LiP7wD/+wXnDBBbqzs6Of//mfr//jf/yPrS7sH//4x/Ubv/Eb9R73uIceOnRIr7jiCv3DP/xDBaD/7b/9t9mxxzrf9ttnbiPVJBfvt/223/bbZ1h729vehqc97Wn4gz/4A3zxF3/x3d2d/XYS2z4A7bf9tt8+Y9odd9wx8zasteIrvuIr8Kd/+qe47rrrtnoi7rdTt+3bgPbbfttvnzHtxS9+Me644w487nGPw5EjR/CWt7wFf/RHf4Qf/uEf3geff4VtXwLab/ttv33GtDe96U143eteh2uvvRaHDx/Ggx/8YLzwhS/Ei170oru7a/vt09DuVgB6wxvegB/7sR/Dddddh0c+8pH4yZ/8STzmMY+5u7qz3/bbfttv++1fsN1tcUC/8iu/gpe85CV49atfjT/7sz/DIx/5SFxyySUtpch+22/7bb/tt3/d7W6TgB772MfiC77gC/BTP/VTACzg7P73vz9e/OIX4+Uvf/nd0aX9tt/2237bb/+C7W5xQtjd3cX73vc+vOIVr2j7mBkXX3zxRnT0tiYi+Od//mfc4x73OKH0Kfttv+23/bbfTqypKj71qU/h/PPP30gYfLztbgGgG264AbXWjYJf5557bsv3lduRI0dmKVP+6Z/+6YSzCu+3/bbf9tt+u+vtwx/+cCvJcqLtlHDDvvLKK/Ga17xmyy/3BjBgBcIAQkGXhjR9in+zfYQBwAjCDoAdEFYAVmDsMGEgoJAZx4gESoIKgVAFSACqEFS/mgBQEPk2KMCKyoAQQQkQVggpKgsqCcACZYWyAgQoA2Rf4bsgCkwVkCk2glRGrYSpKmpVTCoQAYRsqwxoAYiBgYAxNgYGtmcaYS+8AGCx+6ISqAKYAJoAqmp98WNH3wqsb8V/Y/9bAfjpqD4i4vs17df2G6ECWEOx9t8nUIwkFABBZ/cgzLXEku45tfcLzGRhsvEQBmqxTdjHKR0D7g9VClAGoDDAZLsLAaPamBYFithNZReoa6BOwJE1sK7AkQpMgkVv+1PYLRnkplcG+biSjwtDfM8K7O+L2hXYz8FszLWNdYyi+igRqm82+tp6ZtfYfHe553HVeJuzoUVBn0+ZiMQcmACs/e/jav1B+7uJSZe75hON1JYl1Ob0CJv3xc/VAijZJmT92lVbY+06NXU8Pzr6msy33egvsJhUn1mOxTF/gPnb3Oh6arHeaXFcGvrjTom1rd0tAHT22WejlILrr79+tv/666/fWp/lFa94BV7ykpe0v2+55Rbc//73B8AYwP6P2uIE5gBEs0Ua/4AgB4OD0I7a5B0AMMTmvPrkhQMKEQQMgQBq1wkAQbWJXQWYCBAmAwlWO6YAKk4mCFDyXqY5qwpAyLBOtV2b0oFK2voFAojQ+sFiRLM4AR3UCCezHVfgz6fRb0VYAcmvBZ0DjKATnegFISYPoUBRMAefGPsgbrG+KxQTkN6UHRngE9dnB6GlglXSvqBVcV473n9QAqoTnUmB6g8TgNgexC/K8LHy5y/k4xfvWP39+EYxP/z5tltTBZ16dsIPh4YYx6CxNhLU5mwADLc5a78HgRhA0DQi4uM7tfEkMDRBfIwVJZC3/RXqMJXf4LxlJiQToyU++DSeU7BNLNtsaXzby6Ytv4sBD6f3ov5u2ecxp461rsQczw80ez2UkMbWRhuNbdr+vEjas20bjWNpywc9OW0DNNMdYlzy3fL6Wr7COO8ITix7/LLdLQC0Wq1w0UUX4R3veAcuvfRSAGbXecc73rHV339nZ2dWAC0aNyghJ2CU5tJ8SNmXVQzZAEZxACowqWhQxSCKgRQFaguX1KQgEogqJgeNDmZ+BzJKZj8HRdcZN0eiEKrGmSsZd2Y4BlIjkqqAVkAE0Mm+a1VIBaooRG2r2oleW5MVbf0obCEyGfgwmXQEB6sgtCR+Dd2cjFmSqZgzpDFxqI2D+jtB+4zxDmAQBOEjJ5X9WJmR0fx9s0918Vt8b7KG/6BkjECbEwEgMFBqnfSxCAmHY+zi+pke1/mm1cZdqgHcdrIxlywyQ9THoM8l269Nngk63Il9n3m8oKCEkAoJa99vLBODYk6DoYBrDLQzW6lf2OhhH+c8FDFHMsmNflLqmsZ4HysIBXgsqWdGPQefYAIcM6yP/h6pziUgWdLMDB6K+YIKJi8/eP6+3JfXfttx50ByNEnk09223TMPSZAvYBOITka721RwL3nJS3D55Zfj0Y9+dEvtf9ttt+E5z3nOMV/DBop8CXayRYmLzOqcvEiMiIaqg5wLFRQFBmjj8kiNK4Sr4yh4ROqLjCgkIWqTmGESDomr51hMNCJAGaiDNhWR9NMgCogodIPQKUQUVRRV0AEobSDbXxb7AnjgKrqgCyW4R6ckwVHG5IvPkFjaeem34uObJ3KWXOKcAZ1uFHSCW6D+HH1qLxdFnvQBhJkDz/e092CbBMjCDlw7IVI4QQrw8f6NahJPSJEMOz8InWlgydWVBFn7S5j2RJ70ROpPLU1Sz6Da5ZU+Tv0YDZnb4SNAnBtwUH96dEVmZ8Oqgw/8l7GtG9tjDJp9ylEeJoAnt3gnWdARdKYmmJ5G/O9ML5cHJreFtNG0A9RPCwaFxJg4SHrf3gcJQqCLbSm+589tYsFy/+wB9h7DzCxFm5sJjr8tpZXl4xxvWw5NLjt4Mkst3m0A9A3f8A34+Mc/jle96lW47rrr8KhHPQpvf/vbNxwTjtZikANqkBZVl4tMnZOJHqHrrrNdpBBhgGIg20dq6giFujCjYAcXIW2qOQLAzl6rqqnOfPmTK6iVxW1BwMSmHxcYYEgijAZAThwdFEjsBxFgSgC0bYItmfQ1ABXTiZMCUjpXp65DZwegTMRdmJpdX9P1M9e2rIm5XLvAtoCzrCLKNGBTAZQXagDZkoYs13+2CzSVDPfvFMCcAIbjeO6SHjkRi9/IDU+y9u+1E8I7ayGJMMRh21oFJdWi2YPib+ueNpAEDLQDcmIOZJoYfzMUtb2xDizk1w+5Z6k6JexNCrftjbm2wclTB6D4rtG5O6OMeRJsM/LR/DBbg2gq0hrMlMwZte2Ake5xZ/2J79so/lGeK263jRmO+bwk+sfTgu4tGYHpBK6V23It3hVQ29ZOyVQ8t9xyCw4dOgTgPBBWGNwWNIIdaAIAbLjCnhAgFMeOYKxcCtohYMWKFRQjVRQyXkrUnA5MBSeoKpigzcBqxDzu56ZcFSgEQnbsBMWaBGsG1sW2IwVYD24U95nTAKi6sFQBnlyNsFD1HK0FwK6QgJbMIWGnACsGVgoM4tx+AFG6RlavxDXzdxeomjquSYyYL4LMidn3/nYmECbozD5U/W84x5/vt/ye25KJDaI6AdiFST/r+HQmQNxITQMwFmCHbYxKcccLdSkxbA1OaWUyB4RpAtZi+vBd3462QG0OkkMQYfKxmMuJS4t7yD3qv4ZNxyaNOmAF+xWylcGNQJKLQUhG0ZdQ34n/GmeoW4NkJoudQBsAcqk7Mz3Nc+TOLr2kqpnrSMfQFioZTjZ7q0XjBrltOXKbpJP7lKW67G3jbam+yuCT5+k2Ru9YW75urEmgz/8ZAB9ny/3O/asAbr75Zpx55pkncNXeTgkvuL3bnFcM82lFKB86yesG9OAz46UxCgTMBGYFuVVTQ6JBF+HVv5CSSzmd4xJV2w/bqeQkgJyokhvEFVj7tiuESp0shARQ0TnQbDSVPdZH55StxQRZp/3BIVaaS08az5COQ/pcTtz8fblwMvhkJ4bevyCRnNZo5+QzQymJD18yvstFEdcPbi/6lT28Jk0Sp7rU6Q+nTqiac4SDMWcpyqUknQ3c/Lljji3fRT6G21vOVslMQjJ161fp8yO/i2Cz5nO6S/5AAfs9u56gN3ZYsr1d+uzqOpn14zjatsdZEuwYoL0ufywAFH/miVIwn8Cg+cTYk4VZ9H85yXKftkk/lJ5LNpmm5SnRpbq4/Im06H2zX5LRLNZuKxadg96dteUr+3S0UxqAyNmOIDZon/3VKhQDFKO/olCAdJKoZsNhAoq5R4sr/s3W4xy6AqJkL9EvrwFQShCZTzfRTvjWMGN4uA0bUSSIEqoSVG3G2LUUWsVniboTAuaIke6UDfxLcFinv5lcalF0DyHn8BWdeGbbStxuyUElRnN2Tu5XnrjdlmzOHUFQgwuPRRgu2iYVUQPibdLXNkkr7rOUvvJiC7sOpwUZrdFERVN9hipPpUtAAULZiZHQ6V7Gp7j/nPgEq7SEp23ULc6Q2bWwuE8AuW02y00zYL8wwgGhOzsE+HR2TbZc+a5p/JdQKgST+KPlybYk8lmsjv3LAVbfnY7h9DeTg7Ryp/Y192mGTPP7L8CT/bc25v4cRD4nEmAR0GyR+bKZmG9bUycA9e06Mf/C8Qi+5nlGs7pkNC2usWzL/n46gOiUBqBQM6iDSnVlRFYmcOPrYpnOCWIDIIIZ6BlgFrfd2HVA2jzFINSBx201TdLR6FfIZl3NNKlgt6px4uLqNAZ0MPBSpnQyB+LZFh4HC7Ylls7ReNQwvFbnitboB4t2N+Pmno1N4rlUE2SGL9b0ktHN9GSOm3OrRWcwbbw2mUudnbUEvW32ZLRrziWTNk5kRKOSjU28d1CXktZOe7W6Z1x1APLBCNtC1rwsmfS8L/+2SVHZR4D83M1R7A4Fe5OoDu0m94etKc//uFO+f/jl2R3DScIBjd1nb0n476zFdPbjNb7HT4HYirl78x7Ef3ldJCYhmKvmjEBG+BWAktvLGrPh49kmdIxxeqiF9Ea+dpqtz0FIFqdmdmL599HmJ3CXFJ3tGrO1k0DTHXRtjjvNijXf+xVMyFwuz33dB6CtrQ+ctfyKI4YiNNrhANuJILGCCpmBmgEuMLEAnf0lcscC1c4Jo0+sxlFIn5gBQD1gkrELwSR23JoJlanzl7n7gRpB+UME29KORg9mv1G/FPmPcfkAn/ieGdRYJLpli98zoc/cfn6k+dvRrQuuey/GvyCdMgPEuE4AYOfoN/sW/Yr97ISPir1rLf2gxjVH/9VscRLOBiH9YP7eMwAtG6ffKPWq21/mEU+69Y3mt7Dcv0kaIrQg7EU5DkjbfdDCVDuoJ+hzoyDxYh45F71hOV4OegD6tkFZSjLbDCU5EjJfPw7VBN0JGBrwUZ4v6qKI31ScA1FgJjfni26TwBavJuZIxCDF7zlWbDlEsuXvEwWfJVaHvbc4YCp3jCVC8wjdxlzmgOblOlquqWPhP461neIARJ2azlZEH9p5EJ66PciUFBYb4/af0iPhyf2TicSDPBUQbdxWk55UW3xBuFGJmsquqmICtcDLNYA1qDkvVHHdfaU+k2ezQ5PYceKvnLhzQxFkqmocfBhpCZuKluW6i1Gdw/t2or+c5Lr47KSwq4TIz+qO85Te2Hw1x1+02Pbq0+y+PtyFLEOEOpENrpH9QVvMkEuroXrLRCQAfblQM0jmz7mrgMEEozSyT/680p4mRjQ+t8E/t28hwQb4lDbGAvg4BgPSXQ06/2twWMGoUBKoG7+CmLdBjzkE9NCBZVfzljma/BLzb3FuYghmLzZR6uaxGD/rfKybKnU2dMsZmn+ME2QhfdniaCEXSCrqAJstzxWxSUvsXc6Nk0HIA3iWDkE5Fg7S53ZXE4eeiJrKO2LOgqna1s99AJq1BEDxaoNqNPCpPvDaYn9scQoKk7knDwANBB4Ads+dcKNRn7wUhAhGvJnctVvRpCNydij8hyrMWy48pNYOSBJ9D/Yw3mrTG0hf3bFwshhyHMMj7Kq+OD0WxzFcJ5O7zC0t9frxCNuAIGmtNq5jx3dX+SCMkZam359h/PreNC72xzBlQM395FiMPgaZmHGiYk296uq2kHwyuC0BZgm6/bcu+zQZjwkaKSyi92S/sVKLYZm3vZe/zW31uZ3VMZ0lUO9Rfwbx0TXwsTUi4KbbUnACoMbtI2mGgxAHMd5mykqP2AYl78/HlrTl8ys8O4irRINf03nfgsnoa8pvmF+MinEeG51Ydi4mSRyWWKG0NOMUQgJGsv4i99EPvyvqtmVbCmyFPOTCdyrsBwI8xhEt+DySNQVLFIz1TGOQ7pP3naxYoFMcgIBm/dPMd3fH3uCje0qp4DsJTAQqZIAzALoCtAGQcz/wOVjRpPYgWoXUDH5phoUXGyVuYhfmqlvb1EuERGCeCsFxAZ2tRDo8fy4p4LKlhRt9cB+L9lnYP+H70+VnazVdI3NFmTbkc2r6XOaHQ7pevkZMfvuklhsugFo2iOh8OPLf2REh0zSgqwghZtNhRktfNCNBzmxwZKSQTWBZqlIC9JZSYj5KASNinAY+2GV/GlYFiUtDmdr5NQLKNF03gNxoTvzSx6wgBVCnMSzorg3m5i0YIAmEdJ5FADYtJ7g3YYybE+Oab5uBZRvHgj2OywCUJiWzrcGWqcInkrAR1DCX6vL6mfMSgETBGnbcLJqFXN6Gtd288QgECy4PfkHhweeWOqsAYFaw6IxeZFOu6PahOJGWzWQMX9MlzAho9ivEumeb0xakq4BQ0jqSg4uNQbabZmiOeZ8dnO5KO8UBKNiQJQ86tU9Cd8MeQBhQjNNjBrEBEA8EGgEdARkAHbQxSAS0BFOa3GBI7GWTswSWJscgb0LEa3SCMFcjKWYJqQLAskUyU9Fl2wuQYt+23/3PUD2N2tc4J4lgOZqZPEb35hz2fNQzMc4AtKU7if6Q7w+7Wfg3ohHMJd5mFX0mI8tjsDgmCEKo2TjUOrI4N2FDpQ6+TQWr/bUJMMtmsdnSC5ixrLrovGW7aBz7xlMFkdhGyzO4RPqeUMMFjC9THHmQtY98gXmMDt6tcE8X6s4Wk8+ViUyIUEVTa5J/nw36NgDKEyAfs3Q8SHM51KRxvjqVbGO+F1VPIMQUsVR2oLTRms8zA7J4odSwSMNb1kGIlHqmDLK1zqJtLPKztvVD6LnrcOLS0BKrC3Xw4QHNthnvBs5IKcFiCgFznBI1J6gEvnmt5+9Bkk5mO8UBaJtI0HlxxQRxZ0PTlVLTkVrcj31SgWWyLp4iZ9AWQEfq6pJqfGKT75Vamh0mwUCdcI7OwQ8w3arp5ruxt7GN+W0uKX/etw2I9Bi+t+dO65u69BNCV3D42a14efulWr4s9sckrcAs63CWnAJsevqe2GOf/Q2S280U4TiylCyy7nsJhtHnOE4wj9EB7Jlp8mMpLVT018Nu4AmVSmOKyceMXCKI347K1sbcKWiRx8Gixo3jJVBS2tflBAhlZbQeihpZr3vGg96pbGkKO9Hof/d3gwZCpMZQ5WBOodST9Kwx7gHOs2HIL2dpC1oCzVEM/qEQEELLZqF+To5jm62XxZppDJifLxqq8vkxULPRtguEhyqoJREm3x0MQehzI8Fw2GBi/qi6pJgeK6ujo+szGpEndNoday4y1Q+wZxp8bSONTwNuv14wSkJADSCCZVnZBkBtXNE1G/8qUvGc3JbfVKfeGY6C17EEo76+3QbEDAMZBwVhgFjbvOulFeKN2gXsq7RJaDp0bpLPjEMBt4QoM1Z5yblt0+Holn1Ha+nSMymBEjznhet9WDKicY1tTOmScc3R1xJSAwGTkltv7GpdtA+PrOJ/5dwVXZU5+dGhRMrPlWnMsp/RumqvDzXBOdBqai5loCm1srDigxW8AvlYZVXUhL2knmULwAnOJjafjHFT6BzN2vzoT5qzvttzR24FRpeEbNIEQTMQDgiKJLzaRt+uVW2uJkmkxPPR/H0P2ollqJWyeqmp4/Lnct/yZR1lHWTGYUPpsQCavD9jWmg+A4CqH9doRAM/2gw6RnpHtEltCDSzKZb041IayqzyMsau5YYMgPU+kCzGHx2AolzKoIuLx7omNI1Oe8aEIu0ZZI7fudvbvp+MdmoDEAFNyRkTJM/ONnG0/akEy0I9xEaeFNRmjrItXo5rKSAiEGGIho88py6wBauSZTWIkJ1u+8h2i8RbSJqd7YDje7VLArxk/maeQv57pZ4yJrj6mOxHUcFvSBDA/N7RQj1kiz3yLFNbE7HorL/d9wrIAan2JGHXWF69L8R89lxvHX092sJRUVdLOEPh79v6mgM0kypRO2GfcaxHbfZGGAwlhjK7GIo52gel3+Sc2lWW76b71BkIxd4MQxWRvNT6kEuScBot9ni4uHieRxGwrLDvoqbG5Rgb73OjfTGt88RcSkDLF7IEkj2ARbPooItPoBHfWZ0tsdRTlvXejg9gaGs1jF1EzemkqQlEXcRzg1MDCls8xb0kI2tGy56xUPVuWwcb9kRXnTWwCxDSOQBl77ec3b6NXYyDX0+jz+l+AjQ1KvotZ/3Jn0uV911tpzYAhW4JgM3M2KSBR6TNUcATgSpKUUhRyKCog4IGU72FVZ5YbR56ctGWAUFsYpKoZS/wtyIgCJmL9RHfrOCaYA1t6fHt8MWqas4T6TmOoW2TTPL+PCwRAhH1cbJ6oDFNZMw5qy3QCFANQFmCmy7uo+hSSagc41/ERC1phKCrJgOQAnwYpso0Q3l3pkfrgzjBnWc8X4LPktPE4lPTnrknfBDyDIxwot6VJkvgX9qdKN0niLsWoBaFFoKU8LR0ip/eJDlViOtG2ZCOW3H/OZMzl49iT8BNLmHSk5p2dhnN0B5aQIUZ/+MQCUAKPi8tvTZO+cHDvpntmts4gyXgLLmdOG+ba2X+TGNG6FJJY7B03p0IpA6JaIac8aorGYoMTlv8BSsDVRmqQFFtGtRWV0owYwSj+zkLwfxt+aPHOgWarY3qfH3PnAV9nVOyJc9csWeLwx1cROcCeALt5WtYUqgjODntlAYgXtmIm97VOZNwhxYFC2FQxiCxtglgdi8kk3aMEGiTYZuGhLoeXKIGEIVvm3PH/nKFGJUUu8TYVXWX63kaSJvH21i6aMcGPMuWCV98zylhMhfbPoMzow4+4hdr3kw+6+rifNI5415SX3i2Bb/d841Fmp2s8qjQtkDttuogZmPVwSu7D/exjHzPS3BMjzCjVcvFFBkwWv0fgRPlSJrKs2tlaJrnGJyPS3CprSgIEcjnmrCgFoYUoBaTnCVeRGNsKCVCVUQBuQ5APWi0+7hRew89yqrDjuU9jL/RniNGklwLwKzNNLU04eSifEuGosLo9IxK0pYtt20vZVvrD4sZR7CUhtLhmeZufRb/bUC4LS1tjQkZXWMRHuqJ/3QNCLr9B40UzbqeHyH3a7alschDFbYv5xFmknAe6pIfMAKtw+wY/XX1R5d6Qn3YI/ByC9BMlz1p7dQGoFYj2UgUeyU3UjF3y6oYhLBCwSg9BqgV/6KuIou8b5GQlGDST9PFMlw8FwMiCo7dJtSk5IGmtlkQKnXVTWvbVmBmF4+t5XWbVVDLhdZogXM6MxVbIiLRz0YjaN5voU1t0SwOIn2NfiD1pR/qnDdvMrGtvks6L4hpSFBZEuktYL7XJsrPEv2eqTr8B2KAi0ttgihlC7hyL6xWIS/khJ1LBj0AYk4U7P0SKUAEYXt2JoWGJyZZ7E/zTShRXwrgSdxbW5xz5/RcmsapQ22vaxrAE/0RD0HoEpSxBxXkJeeZxGLcqL/rmB/hzq9pfyPkS45nCUJ5Ui4HLlP95W/5c7k8MoexZelkwWp56PJ2GZA3U+B2loShMz5B5yd3erF8zj0eAUCTNJd+SfkyeU1lIGjzjdIQ+1qHT2Xh3jfAbyTz+wBwJkc3hns5Zns+3Am0UxqAjO8zJU/xxcQsYFFfSEAhwgjCSKG+MBAiF0FNrWZgAxFUSclKFM1OYMBmq6XpTV2UFf8dkl2GaY91sZz6J/4il4R2eaWYpEHMMpcVv6lfKDyemgiu8x5SWmR5hjauDciaT1uobTFveUpNRKH1zf6VxVQH7L3VtDj6Moy/CJEbcK/WCCXBkjUG+BRfxBOZbUbMPE8oqM6uRHixFeeYM+LxfKHGWb6X3FMj5J5vQAmq9h0uATWCSEAEg0Y5iLmqrce3DW3GmfWxemIVO5bTuJIzHz1TQpNPXWtARBaHRDrre2RYBhkzItIlolDdBDhJe7GzVzR/EUvJZ5sklMWUo7Utkz+/g2g563RJ+9aYp1TqV8i36OMRF6f+o60FMX64JbD1SwQdiG5mr9CGzc4c5nXWrp/XZTpnpo71+xPBVHUxv11ai8XemUb7MnO2SM8ZLTOIXfF88topDUCTSOPwmmukhiknIrypJRJs+T7drgNhqGeV1MktiPBAQTswZZxkW3W1WoZqgZ1fAZ0UqD2Wgjde0XJlLfdl9vHYX29eszFBYmFl8Mn2oA3K6PuzobPMf5oT0rQwclXY9jQ1OLbuGJyv1kFwM/mmYunH1ZmBtPzTKHWLRh6DCK8M4tJcRwkmcTA875+CB4uLKhpKrgIVhlZ2K1NpzESuA7VU14QdAdh8g23cGKhEWBNjAnuGZuoDmPL/mTBPLchz0Oz9FuBjQab2WRF5NibU5MzRFaJJ9m/j2+1qBJIwNpDbgQTF11UYsRv3z5hJwEugDaeENjD5x21s/hJoMoAtfw8xVxfH655/zuZDtp0IOgAdbeUp0JlNRyoSJ/SkLq0C7MGyzSqweOTlEmzSqfM+3BDJtnCGCNqWf25pd2JzdKN04Zm05oxDK3jpG7ntKju3ZLoSqcTCjFCPk04drZ3SANTSfyCVhaZEljh5X5E5A5jBwYicVTjt+k+IeN0fbfWAosy2ehSXRVB3yWtmqVVT9LS6QN63IBiRXLPv3/b9BMYB8wwEy0wmmXMKYgFFcjtF0z1n9RGwyfWYoZ5m121kTrkF6IWCZwmSBmj9X6jYcp409gmeSfyc+7enyYt5XlrAZOMcDKtwLpPJA/bUJB8mDIVQlMHuLqTVMpSHRyPQXfrjmtve2FK3394PwZPemsMLF20SGMjtg9uIqRLUQclGNNLs9PQ5kbtt8O+yVQqMNwR0mSf6ufCOczFWnBmz2B87eoIV9JsIva6U9/VOXdEzrxVb3jd77nTecgLvJT3dCU2MNZLjWOKyxxLXomQ8aKumG+uoJuI/oduIsE111b/P1ORqoFVKV5UjAUccv9zyOp/1VRNgpi28FVuRviCY2t1Scs71PN8DgEIdfrLaKQ1AWUTv8Xz2BlXLTA+6VjN4VwIm13EX0k6oBSDPzKlsKrkYagVBiE0J4zdSJhCzZ501jyUr40NNRYe4tr+2sEOcHN5hs+VFtrQHtQkfBCP1JXNp+dh83W547hSk2xfIsylkD6ueDRyY32+eHaGTwCCDYTvpPmZ2dr8yEGSxw1Rkds4ed8nhAaFCEsuVVXxjNYlIFUUVTL2OaAaUbAFaQuHyHQQ9JMDtTAIeGGVQcLHvI6vp56FOEMLbzilPkoZ6vryw4wSMxBnd3SXsQnNLFbVvXTmX3bdDYhV/lyEOE6p7xM2Ci/27+NpazukWcJnBZpskswShJSAhnbPt3G3bMSyuvZW0ezRCEw/UNxCgQu5lG8CjUNE2b/I6WuIvMF+jjOaEa6xCkloC8JZOB/n8xmh7/yKWqDrDsI4pRem9ONqR607JUaldK22KsGuH683JCUc9tQGILPgu9NNdqeN8tQeLqruktIqA7rViHISlz+AQXQkAkhoOIT3ZZlmC7Ti7rytGNDy1+hZEK8AH6Gvk06FPXbY8kTYAJZ4Nm4tDtpwfx5RGvLqswgiX4VC7sYvukdetk+wMGnFGmD/nIZYdxszuFgRSnZ+PhaJOhhXrdgQQCiirTItm4Bc2TrZw3xeK8LaoXSrpKq7IECAYHd72spvHmDofBA6gK+LBzZYI16iZoIItWFcJ1XVckXGDJIiNIrJHsPcpA1DktQa6ao5me3KQ73x/PLPA7ELKFS0JQFTuo7mqalK0GlPCnUg2FaQTy5aeKFPd5WBlziQmYUbwDGC5Mba/gPlEO3ktI4WvfwG1vH0EgChWvMxOie9LHA5cC9fwtvlvMWZ2bfR8jotrAD7nwuNtAKT4XC9uPSjzoFd1odhU0gaiUsNvMsvHWYHbU9aeLEfsUxuAIBYboZsMEIG7uOw/qI+8oDOZNRZ342JMAhIPCon1MUExkaevVyOHpXGMANLkmyCoagbr7FNDi95vrI+9FulxtG0pcrK4vpddN4NPBsklfQDQSLydk1VtjEj/Wh18IgN4bgFCfXLbNaJ4dFf9t9zR6OxF3GG++CYiTOxEEQRSjzAig6IAG44FmbnZGAOFuaIqUFzNmixDGNGDlENCymqWkO6Abvoo2q+Nqo3hoZbs1tUeCiNmyuCUqbmg23r63g7MwfSEG3F2HqfWvw5C8dZC2SL+Do1h08YVt2BI/8zqzFb6PLjp0h0UAFtn4TUZ6sXZDMggsQSf5eeS2i65pQCi/Pte211t2+5NaPZThb9nV9Uv8bNg/ujRmpZC0JjpkkA9bDqm5g5JBbMKE5pvElJQkoRCnVfb391NP1y3lUwTYP2zXsXKs9VZUNzt5bilyD3aqQ1AHnTaFj+hLzOPZWjZc/zFkVNYdXfYlgWAuo1mluJdbKuiqCIeDsAgv69x0gQUWC0gVaxVPAudg1KaMMERNvtLXlSzZzv+4Wgg4xM3or7DVXPJVC5vv5SKtoHPvHViFuqv+DvAJzJbd8XZ3M8mJnfns4CIsQknkpJ6rKlXLbaIgImBNWtXnTm32PTp3JmOpSoiADFse9avHLTZVV9DI/rZJdzHLQ9sIrrNOCyWUzDuKxzAaUHMNj+oq3eLWgZojdHJrgPBFplfXlT/7el1Ymy7lNjfaMiP3SUhJpD6JmltRHxP9T5WTXM4cTlUMEtIGr3coFZ7gc5yYm6bsB01++RtNtj0uyy+31Xd9zYQa66lGhEabgZWaNIzx9pbCmp5ayui9scvpa/n5UVyaYyW5cAlHSmYO4yQ23MSXctOCKo9Fs9uE7J2Z1oiiqx60Y+T1U5tAJokkaJObCoDVTxHEhvCD0FawgjiEktwyALtgMMwQgF/yS0tv0IjD70GUKnX2zGX7EnFAKgopuAmtHMrW421y5l5F1oLIKQk+fg6yY4J0ZbrMv+2/DuvAyAyGHTIQOOqTVfcPca6FaN7YlE7O/aHzYfRIbDbgrpdSdzLK6TStatIuyOG2XOMI/WzxQhkA1tfhO3dqL3fpqfV6EkwOBmmgqalkD0nRHnAHHcANRtL2MjU6/5UJqyZsKsWjNo6hgAp6k4x7e42VyvEVXnZ0rUUGnT2De1/9VHvYMXuIIERlqKKO/2eNDleJA68JQSNm3Ln1luPloQ7LpoDz5Yd5/k1Z2CzBBik77Ll+rz4+0SYvW3I4e9bI80IqTGirTqfH9PuGcrpPWyseYs5KXMpyOZCAhHfz85QUQBPSPZLd1bfWABu4SXGGIWr/5wFDCkp1myXx09WO7UBaK0QDZ9ItG3irvccVLHjnKVpW4Iw+Sxxo2Ek0Iz5C5eaQgKKCSEiIHcBkuYZ56SSjPhNpGZnyml68+KBfeao56OtAVp8bmPGgHmanYiajjbncOaMZFxzeR/Mfsueb+yumDz7pZch7yq4Cm0TOVK1xr85exuT3OwbeSNwGj6B+XtF/j113y8A0hUHpq7QcHpsyvj87F4SxQcPwARUJ1RG1sWdOnpJ8O5JlUP2qFNnKJrxJiQIvzfD5hEpeTZm9Mq4DYDQEFEpwCZAOWCvw19PqNPfb6eRlL53+DFSImiZEYgsDdMI6EjQkUDkRMhj5FrqQklMDPVnVHLOe86lbE5WWezfxvGE+L5088rgs9R9KqxkekP99NDR4eWEz/3I19vWFOj+zDEYsTn9yTW8Sj8vGKHAhBysHH9HKe3YwiTA5GEk6LI/kIDfx2vmeh0qOFp0WYFSbeMK0KTApOBqNlz2hwqNRkVHMW66iHgpJ6ed2gA0ZR8rbz74tYQO3rk/nySxcAjOWWoXnQUmOUVarkg7EpxcAIZoBK7CQ4W64V1JISRdxRbdS9wXi+t4ZX5IfGYiebytEszFNy204G4iG3DOf6qY23PntgP7tCnYPd66n5oZ/cuM5+6w0Z6N0Hg/afE2nc2NRDMhWSFdrZNY8X9ucneur715nSfNIXg2jMXgKkwVwWJjVZzT1+rbBC9PkdVW86az/VnkSYBEOjteSBsYw4l/zClWQJh6fsEIOBGzRUqT+QzWSyMPUbB8DkBxzy59wsckj1FkwyYrrMgAeZqq4mpBU9loo695JDKzkmlzTuHTVJzaxz7WXjsvE/2lRLQNgPK62gJCMxCJY5eS1V7gc7QFN5sG8VDojAPp/PjOrRnNSJdomgnfWlkF7RlKQoPB6Pa1GL8Y75CA4IxUToKcXc5DYmIx8BkmoExocUsBjuwzKTLQdymoW5BPNgDxnR9yfO37v//7zfssbQ972MPa74cPH8Z3fMd34LM+67Nwxhln4LLLLsP1119/gnfbwgrJfGtqFcCiu4ul28mTu9kHnGuIFzhRj3kQDgN3f/mVIiV/t/tU0s4F5i3NOHKjbWGv44FjY/juVJW9EL/D1ZgHM75zxBkAM4KVmSkgwKY7RjMKBhQMGPzTjJFhlCzttwHsXBJjQKGCoRSUUlCYUciq0EbMCZKk1DfGLhhrMHYRqY3gNiZtPl8VitAhkFr2C5IKEpcQdKEuc2YhQEbWtuEIoJY91vZLLqSnMawbRGOA2YNoOQdDfxKTyF9W2J8mElTqNsJWYiITQxfPTPowt5bqfpjkcT9Rbj7IQwYfsw7lCP8O3r0Cqvi54gGQUaKBUZQxCFmlWA+GbTkEqW8WzOu2Cu7zeaRNrr55qtJinmZmKX/utYby35lTcwaiUdylnWl5vaXkteeiysdoQls3ls1mxeKiWUJcdCWAZwVgJ20rtSzjg8SmKFVbJdNgeuMRJ/WKywocVnOTz3W4Qs0cjx8q+UEIoxJWan1YQb22kHpMWc9g2WdMsCwnDzY+LRLQ537u5+J3fud3+k2Gfpvv/u7vxm/8xm/gzW9+Mw4dOoQXvehFePrTn44//MM/PHkd8EkZnF+P2u5vIhiX5SQPIJoxSX69TKRREuEWtESEM05r0Z/8e3B+2xinrKU45pZQJJe7J6DpiaP0dNw3Sz99vXYZB4BLMgErhAGhcouseuxg1D3gogi02Vm0ufnareeuBt1Jnb0vJnNZxHpJvJfCdNDO8Ws4KCigPU1Pc0mh7lDShihev6Z3mX4P9X3z8kJnupcqk04PdVZ0r7H6ITU4tQmJxO4rAImDAaPZIzPF8muFzad4b7KH22ZAsEmL2dwR1rfuHtzPsP6R1b9yu5SplJPXHPUxaOAT3xMqE6PZ2DJTE9z3DJNjQJctr53lGgqwyTpGpGMy6MjivPyZXlP7PBZVQxM7YgEHmsZncDcLk4A/Z1QhbdONMEuJtS14PGOu+LqOZK/Ni9clH9emZRNmuxBxwu6gBfAVTGieb/1RO0Nvs5SaRkC3DuaJt08LAA3DgPPOO29j/80334yf//mfx5ve9CY8+clPBgD84i/+Ih7+8Ifjj//4j/GFX/iFJ6cDPhci5YQtAluYJRaQvxFyzs1S5Pc5FcSrZVvwF5nU+wD1ycGYq4Cx/J64WwG66gXzSRdrTNLnsT5zXEykq6fiOdo9tB8egnT0wY4PCOiKMjjfE0WwwpMtyF/3X+uGy4jYsVIW2gApRq+ipcFs2QaCXJqrswHeCuGLZk6sPfrIzsmp7qsf1QYRnQDGs+dFn2lgZpwzACHtz4AUABDeadvYBV18aTTPORqllKemuehlKpJ5T8HQuNTwDAwFXL+2ndFT7PZkSKF+Ix8eszHVQhAmEKVZoNJUhk22o87ItFp6IQQMDkbB6ce6CUbQH4nRJVHvylxnuASeNKfbBN1m/8HimOVLyNfD4phj5fIiqnOWiyhRdgK60UU3+tVeLTqDq33RzWhAnNaYLx9vCcaZ+1BM5JIu9dCAzAu3ye47SEIboqBqFQMyTQgaEFnmo1dLR5fjYo6P0j4tAPT+978f559/Pg4cOIDHPe5xuPLKK/GABzwA73vf+7Ber3HxxRe3Yx/2sIfhAQ94AN797nfvCUBHjhzBkSM98OmWW2650z4oTNe/djfWiCQeyF9sMC6wFxwqhFDBBSMreT7FdRw8yAEuJ/Nrb3G5iBJbqmq2Juics85rKM2ZY5eI/JrCFvk8ODBGjZ/mhp4azU8F0AtOdN+0nsSSE9nOYWu65ZrkFClH8gCMiNePTAlTu17PM0Do5YaBIJvWcoKfsBCV9rffz21/FdJowpJvy4lDs/pqm2khx8GE+T9Kh9fZW9q7WS5Cu2MrvxDcdNwke1G5uq04XA/oQbEBwrlchb07ndHseB/sN3Dos9EmRWVz+wZTS0AKiKv+EuhKuxCCIQstlJYOQACaXTUSYYYnoC4nyjYgyosgZw/N52zTRy+vke+V0TlfI4uKx8TppQspdY4zBii8lWR+aKMlQKsU3BhESfNM0W1oTq+a1Ml9izERGI3rpoAF7vl5YB8S4zwafjbisIUmzBNb9Ui/YGSOmTG+k3bSAeixj30srrrqKjz0oQ/FRz/6UbzmNa/BE57wBPzlX/4lrrvuOqxWK5x11lmzc84991xcd911e17zyiuvxGte85rNH3jBbSxagNCuzw12wBh8MXCaP8G8BKeSpZ/gogOA4BwdAe7JhPmbzx1YLpg0ISc/fEinZkZvuV6PqfnCNXtD1/nuoq+NaEuMDMKfuWZb19z2SbtFOPlSOkfd8BlAEoGlESNks767ZPd75LIYMVA9at+27qgNdIJrT5BDLXPKTYAhKjPas2SmM51bAk8GoKZCQk8z1Bf90fnCxuEyzDtydoM04aQ/MSUAGprTQb/ism8BQMt79r8TSWFACnnsiLo2QFxFo8i1bVhtHSF1G4wWsoBQTye1NOfJvBjLjWFagg8tTshDu9yfVXbbwCnWbfTRaQH1l4n8OvZu6pyiukgy1xsYF1r7hRZMKSfGt9sRIxGuM7QONlmFGXazSKAbtasojUF2yIlYtCVwRT809qV7pSdsQ1l8Lcecy0yy3MlIHU876QD0VV/1Ve37v/23/xaPfexjccEFF+BXf/VXcdppp53QNV/xilfgJS95Sfv7lltuwf3vf3/rfX7hwMZMigXq4I+WrDNJQPECsy51pn6L67uKN9QJ+batLVd9nowzJXD/OYzF27DreFpevyH1xfOHeD5TH1J/jviclWRIfcq2ml4Iex48ahpjbgG4du8eUgq3FoWNKaIKwtetx/UHAEVW65z0JxLTkP/eZabiyyMzw0HKA6w0PdNeY3wUOubH928xp+ZX3nJN6ioUDfZTS598AJp+11NJa3NozxnuApoU2Tm7trEDshQZ7zbeZoyfgFHJpB+lyBRBKGz58CjSOedncDqrgDlsUFf5kBPSwj7Hgulz4h9quLo5mNG17S8hg08GGsbGy2sSvk96cWSODAMU1wU58OidJ1EF0PPgoBtSomOKOfjkfDd+WPZ0W9Hc8WCl3VmDyUCmq77Rk6W75BI/tLWewKZpc6OfYWagbfafOY1YvorQeizdbGJV7h7DsB1L+7S7YZ911ll4yEMegmuvvRZf/uVfjt3dXdx0000zKej666/fajOKtrOzg52dnc0fQoSJibog8O0lOpiEyJo5jBwlrHk+LSmP72vpepYqgKPRn73pUmsnAjjRZhxT2oJjyetiqVJH+rsZ6dNGfoRubMve25HVOSegp8oMsCrYlnBUGlcVTGldXNk4sfyE1uwVmPtBl3rQgk/jCnlsE13YYLSXTxSfsjhv6fac1ZezRvPN7sOmhEfpiETa9b5IFLuNRsBKjIf1IKTGHrM0h8cYg8zldoYCECXXGlnqGCi6bKfud+gXYzXhjIBuoiK0iHpm9JIn/kgsAEVclSSV0RLbMtMWLyW/6jyO2x4Gc6YrKpYGo9WK6/l+DQcVQg8Qxx4t3P1CdOF0Y42L6iY36osn1PsDd5XySudbSEBwKWdWXM4v1wAo/+bPGPfI+Q6pJNwktBxzA9wMQV26ikeZa106c1nQAyIiaP9ktU87AN166634wAc+gGc/+9m46KKLMI4j3vGOd+Cyyy4DAPzd3/0d/vEf/xGPe9zjjv/iSzZ9C6Hfju79DwW6bjom0BKAEmUM4GkANFOUb7l5/sxU/yS2pc4/bpXXQzCNzWYaixVLaWHZ7X5l8r0BHEBUoOnndKcC0xaHZ9w8+4FdyfoT0QfW47maPrzbupquJ/IJPr/3nPITaO9TFEojYKstKD93fkX59c8BaNP8sPW1biC5j3Z2U1QYFQ8K3QyK5gqrDiwRmxGXDSCKi2zjmZZzwuDP8hiSEsjLj4SRhqiCfSuQrm4WkyYav6emdq7a14GwgU0NLhy2PzQGDVuXgxqPtdxiUi7HMIsH6QGz00MAYOSIhPbTm+bNGc9ckmRry2WEczGsuCkU3dNp8QyeFkfcbdJ3NRfr4iAdsXmgLXjn/Qq7UUhIWRgrZOMfJT5mGSqQ1noe/8U6sNcYsna308bImUQUuUFOXjvpAPSyl70MT33qU3HBBRfgn//5n/HqV78apRQ861nPwqFDh/C85z0PL3nJS3Cve90LZ555Jl784hfjcY973Il5wOUVFhOPtnC2aeLq4uW0pomQ5JOzoWAJPplaZxDMXFzeF/1YouJJaNu6HNOnJcb038dFd/J4La/p+cbRI3dsb/zWMdt8tbrE082XNgQ9lDWGpH9Su0a2tQTXD0TMyjyRTwedINSbOs5G36nTkm2u7/lzG++RT9k21v0KNEf2IFytGiI6x5wCThsFdR2Suc3bXXqm72AkAq63sVabEl+MPzB/3wTzIhS1mCMWRSHFyGqEwQFGZK46U9hYTkC3qQTBdXwlH/d8/gS3ly7XTmb3M/jkCcqLLR/nfa0uOhd1Dp/RnG5Y+7oPW2/YrzY4jzyks74tqHZEqucJlZ/B378UA2Z1BGyOdJIAUPr5hCS5RLfIM52E0ExJrcYm1bRjKGl1YxL4ZM0xROLzIjvVdKVvVJqiFq8Wmf11Y6BOvJ10APrIRz6CZz3rWfjEJz6Bc845B49//OPxx3/8xzjnnHMAAP/pP/0nMDMuu+wyHDlyBJdccgl++qd/+sRuxvPPtgR9fDbcPfMkBzonIH23xHl7gM8GjcvX25CbF8csgelkvcd0/9Z1567yWohb82LfEnzI/7N4EPbzcmrO7K8WwvmciwqPN24gNB+c6Edt4BMwY98nn+4ExQBGtkAZ8NR0VvXAzjkURIu9jL5wg5DGfl0cG689Ajq3gfN8X4APdR1KY1H9xsgnOfhouMEKlASg7skHDhrX6yoRLBZr7pAQv3CTErskGc4iPZ8XUEDEILIZbwXUAoD6OAVz3xxw0DloAZptBWyEMXLIZZsq/PzmXb4NgIJb2gY+yzW8DYDStSK8YdDu+QkHn4oOPNIWe3rpy8WQQSev67aOdQME23EpuKdlXvf7R3G4GmPtgAnvOxK4ZBrXnKSyes/7VNSOD0kp0oo1WjjTFFruwYj96ql34NnrO3PZA79jWLa5Jp54I9VjMsN9RrVbbrkFhw4dAu6BPhmWAJEnVkyIZcqBxKWEPrQC84mZKdGc3d0ORAtwu1MAuystuBxOnJHfuyUa9HsFMx6xPNsyL8zXuAndPQdUBqAuposHndb23SJWFhXrYXngCgZYPFGs/8m5+zWANdRj/ivWPlgHoDgNigOYMGDtIapriOdHUMs/4edsMtXRFB0LomBa7M90w/rUt13ftr2yfH0GwEwe2EmQMIgUcn94PzreibDFYAh5glvLLZgdKiwDgfr1PW0OIg6ou8YmyEJOVtqfK3IZR/Y3ByCw1bAhAbGAxgmlVBBXMElTtcVcYhjoWNJdG5c1+ZR2VVNly8U4UVoqefBytoLclhLOsNhyBDAtNl9n5GlmxgqMnmqG/H61ApNYYcrJAXTWr6X+MvcrRGdezqhgKjRJUr4Iw+hSACqKHQAHxLbTBNhRYMdVcaMDD8Omy1iAldt1QmM7AdglYJfdlTs+qXe5DS31ANVgqFnJSoULUCYGrxl8hIBdgk7UEs727Bm0IF2xjm313oYbcfPNN+PMM8/EXWmndi64JVeSJ2QGgKwAdlXdjLtKXEKWqtkXn/YAkHYr9S8bhClfM4NO9o45SS3WRnjAzPCPkyS36FIOtBTMhzAInEFQTLiIBrI79MiA7k4QEBcJC7WRyK6Oy2vcee8m8hvGa1tEaFeWdDc43Jm6TWYWqChXEM+aAROAJ4htzG6889T7zMxmOhiLextPQ/EOGCA292UK4pt/BDvHidYvdg40iKEqe5Bq1CaNJ9E0wuE9aG9nPqZdPcltNFoWvgRThBYF6ZkqIpFrqdq4foKtASRJuoREJP0ZJ2AWZBlc+ExCWU7ADECxNks6dslM6pZzsj5RAK7ojg++Xls5FUUrIW5rl/r7CfFumTy40RRHhxz1rH4gJQTILEmTfL17mrO19/7ELQYkiSdLaXF+ZmxhQMI+vhFGFvOjOu9D6Gs9zyG4FCXFvCArcSs/b0zgvJT9PMghl9e86+2UBqDwuGmLfdmWbG40mn+GcS4AyDUhHYByho04lxdMXL7HNqlsyfGdjJYXCTBLUEixoGH33raGbVp2LLa5HxPNJJaoMiNpEoahMkhbrx9iFXOULPGckLsFqLtyqqXQGZy7V8Czmzk3neAmBjM8vHIOsyCq/mip7/bZ+kqudiD4QjOZKQcPxzkhFXYi35nugnkxNkHSsjlSkROb0L83Q3DoWNgWMtikHtNZxYuL9xkTZ85ZdRgPQhKyTgTbdpBkeIyPE1hSS8qas+NGgp8IK1aoSVpraX0P57yWAy7mlfe3CStO7ODc9QzRge0M4ZIJyxxA1k7k78v1rdi4bg+dmLmj+HujJjPPOcdMBBZ9yv1afm/HZNDySa1poHwAqpoUFiAYQAQfV/b5EhkmwOnxUr+Wtyb/o+EgmRSlQIsXatOLHYC9fpEwoRaGVPKMJZ0J7AHWdgNt67tANl7GibdTHoBmhd0yxxV/5++02OKnBDZQ46DaYnIAyqxvC+yKtgS45eLYtuCW++bd2oqXy0s14U765IuUKY1YlARIOr/mclh6CbZ5zR4bhshcEIbJiMXpaUuVBoAHEBegUDe2wsBHnJhBFVTJEn+qTfRdANKoU/Bd9tQR7xPlEeIJcp2geM0gbfNCSZsDQujOQ8UQaqVBOsgoMFP5Z3oTRAKElo8rFn8jlrDvzRGmZeykhlRKpn/nqEgpi5smapPkt+gdsu0tCwlNsmNAC0HcL3qwwe8SQRvPuBr8Wv6WVVp25Hz3rLISwBWhKaqfsnQxn2fIj7UEp/jMaB+qK/+7xbU07k9nH5vriyxg07NhKBGoqgs7zpVkUXiO95sTIJgMQndg3EJLOtOpaRrrTJLL9rAaNIi6ttYChLv0A6DZj/LtZo+cxjQYn+ao4PeMvoXDpQEyYyKGEBvDonD1rf1ul441Ni8Gf7LaKQ1AJTF2dTmx8+pcTqoMQDExkugemWd7wSY0RwUUNDWdAnNjZm5Z8ln+tgV8otu0+Hu5f+OxBI1bVU8GmTn7FkXt/czahGZw9rsYV++rQHvA6Rx8CiIfc0hCPazUzONMpj7aWvLaHyAWoo1j5lmNN6R0J5dbkLNT2WNa9uwJ2gy9YE8fRKH/7jEfbZGiL3CJ1Zw4/Rw/Bf87PKhqAdYuvIT6kuKd+kmi5As6ZdRzQ506OrXaq45u5LEpsXOGSY0JCLjQ5vEXsoySgpighT3DAYFU3ZFEXWVmrMKskB6iTETPXbFcKjHvgg9r4AP0/IcKSO3j2c5NnHwb/G0AtCTs3PHGCOhCpMreZ+n9xRGFGIXd7cI9T0wdp6g16doBNDFhueCCsfC/ZyCa+50Z0swRON1oaXXSTzXmCvW52bIWZOGY+txberA1WhA0jOZjTbOBj3sx1mSZ5g+DsMa82DvadXP5lQChZQbFu95OaQDiNIcAtBxHDHuRGnrqpRSEfl6I7exyJ4W6LTkOZK/a8NfPrtwtziGzJ9uA505avky0PMcD67JbcOjlY4LGxG3nUSKSLhGyUrJHwLyhfFMlVGWIDCANFVwADrdJGFIS+8RUXzVSDQ2JyAP6yW235PdGGzyiCC8Vl6e6wq2nKrWXUBEZzxT9UciM3mTSlgXfqam5EqAE6Cpm9KQBSAy+HR8yYKesDWDgrseUCEd+cQmEiByWhUBsE1O89Ha/ZRBS/+7ISD7CcffudB3usDZKsySoXt9DWQDKZMMqsbKkvxEAqK37cd1waYg5lAFo6ZjR1LmKpE/qTAbYmaK9xmlJuFOLnGdh/4f3vad1WiyyAKHWb3Lg8czuipZMeJcZNVIe7Wn3SX0GOhrm1Znv6RnNtaBNrKamVZO02Qa+q98CMBIAwW0/s1RG6daNcUvPFNkp8njmzO/BLAGdqZyIsYZpHpTyqPVHnmsYumfrcRO2o7RTGoDg3H8r2ERznOmZsNG5y8wlxPyrQPXVFZHbFDYfLCRx3WSYFozGCTddfOZ1kI+Z0bp47uCgqE+8kHBKgIsPkv3uwYgwsFDfBAAJN8KFdlwHnYgM0i09JGdD1UFHAWi2dSTkZDfYs6uGLGu2ffYr5+xw7VRT8bEtHgplt1ECgNRDasjBp5dmaNnQExPNSTKMkhPFl+IAI86DGtGt6l5UiUvNqzZcaseQJlQsMaqI6dQpGAjtoJPQ0rrffQ7n3ocxhEEOjIi2sgiDgJkboLECQw3XkKBP4WfXZ1JIQAKZg0X6GkQzPKVytorlBM0Boc1rd8t1Z9xAntjAPPKfgKJdYox5seTxOkOlILIiFuFj0HKxOQh10UI7ji0vNruqf7Q0BWmhMXo5luija0wGRUtRlCuhqiYe16X3AOtWVFJTD3QLJvp+JIYo6KGga4gaXdEci8fuiu/rmNJzJuqWQShmzcmUgk5pAKp5woSqnToAteHUuXQAYC4qJ7/bcDZIdLKBUPYC1fQdmGeiPVktr8lY8LMI5/hK6dn9+QcCRiek7PqMcCCgABXtU0tcVGKYdMQEkJdjjnHqkdI9Q1n2jrG+2PltX9g6VI3okz1ZlDEgDknAwMTSwoR8E47g6s7dZjsBkZlWnKqYzYdm4xKcZSFy1Z1tnBY1gBYxb7m6rPzDgB69FDLC5CAfSR8Z7oKc3kcUbluRYkX2fMHpCEeMjXZXWdZZ31qFpZpDf8NRII91BxCGF5Qzvw9nQrQ9W3PdVie8Mq/0as9i1wnXXkXnqiNBw3I75gmc9ZQJqAF0I2YcG79F5LSfQz5nwJ4FnDoZDJNLaALMzd5HSkOR1JmLQsDoasEa0k+7UOrbEoCa7hpoMRsBPjyXxAKnxrRF0lHySdWkEgebKCIJMkBiH6twBOEEaq1nCXDivFBdxtyN86dQCzs9KMSIEiuTz6tM22L9ZbiL13ky2ykNQGvtHECBLz6guevH3F4mQFSgA1Co2wKEFi3mXMTPhDogLpcddraFCm27XrQl0wVsrlHkvwMJ0Z+jbcEtwkNPwBiUMYCdaMMlHJ6daBwj2jEm+aAFxFkQ5DxSOnTEPUVmdl+I/lJbIS0UlQ2EbIEIiuvH23P6g9jx8a9bmYzjo0YPRI3Y9NLcwbWhB+3RHMBbbgZ/5gjTGdTHDFF0L0iPSwzOobZIfzaiEpKQet+KkhEdtgVutrQI7jNl5UTuKsue2t7VcDaXGEUJJL22UgQGxnuw5lFYzF7lFyjswJxsIwWEwR0zqALqjEDEF3VXbetDlKaXYjFAE2Few+dEG6XPxpJjE4TiGJecItiyEV7W2WXCzhFCZGgoIrljjJiSvcmxMQyKI7xQIy4Xb9yA0G/Q1NWMlmk1G59g1wjQjySkBQ400udLs0NG0tBiklIwKE39ryalN+k9hsKZxsgBR2Fs4gBtzBK01kiknK4TczweoNeRCuaU45FOOvgApzgAacXcc7WiSZItPgb2e850v5HpYMvoErpjzgrzidQ4bD9tQDfMBo7tZQIK7jn/vWy0+B5EvRkcFweH2I7EDVESt5W4gTOlzofLKjPcZuEwIi6ep8DS5umWWNPg0HMRhPa7q/Sij0Tu6usK7FDqlZjsaosTfoUovmbjrQj3cAGgrm8gF2uJ1CQ4V4X0xRdSmf3dnZMMMgciDEwYnHCFtJj8+tq1lZ14+eIu5MTZgV2JDYBg0uPA7O7mBaqESSNA1EbMSmVoK/cuXqylW9bs4vHMwSN1hZxLRM6Rm0QYUrATaQIKqWd+9xILAh+3zumqarOftiwGagGlNVRoJ0KBaMsWazUfs9znk32oJq20tECZgURIMV2lpd4/VlMfFw1pyObI4LzX4HNEiXCEAoQXz9i4wwAe72OII4F0s/K6/ki8wKpMi4L/C1BlmLefc7ES+9UZHe8PUZfw+lCqazesD632T3DF3j0lgEVR1ebARIqJxIrYkUAKm9bBxz1oX6h5sy5g42HvYjulASjLhDL1BTSrP08dfMINeJaiJ66T2lLq2Yzr7y0YuOX6id+WeJG6fFSASvPVObhOB0D9c+8tbCfkC6DP7JjgfU6ZaityVQMFpAOgVhRbpaAQQzQ837oueE4M2VUSyXBJxl0rnACGjSi9AzvGVVYwddDoW9SnN/kBLScaFNAaMTVk+nPVmQoinFQGkMVfoIM4gzCCWyr8cNsN9WW3mRAmEIov8iAeQTPtb+sDswMI23gGbLd0NtKN/60Mcrwrn6c6I0I6S54aMtGAFIlF6okWOtg34uZvBu4NBvUkskFvtQf+TjSPsA9X4dbHaMcCQkedl3ucE4uK0vpTYFV79gp7530NNRW8gxJrdrSIHB5oEjSAZieppNhtHJlfZK6Dmi/Qtigz0mz/bHE+mostokne7XI+75oqLR2rSIAr6AHBPh8iwa64Gyy5lLtBjOKa/j4jCHZS9WBuB+Ck3wupWxHuODN3l5PaTm0AApJoYJMz4hLI9eIxqPFudPly0sKIrxGKMKZtmbom3nOoq6MrqTt7rtU7e5Hq/WpxJ97vnExx1v90fAs5aQ9l3maAdbQBqMdIBCWNJVvUWTIeoGqBZ6wGQAq2NCztGX0kXNqpnooG5J5KGgGnzq+pEwmx79W5cXJUiDE1ycNWHauVokZaQD15IrtrKkFEIWR5zSz9vDbut0nACNfhIE6c3qmrsWBSw+Bg1FR5aEPY5gZrSFUGOMTu2ef6FqYAZ3RjhQS3Tk0fooFsTKhKHUCh4KoQ6YG3xUF5gFoBOcSxyVEhAJKC6eoU1Zw90BiEIN4VZpOayCSfLHFszLUZ85I+twFNfN9G3Lcw1c1ZAAZALG579U6STRVM6fxmP1dTGbHnuYuthE0ToT4WByaLeeqSuiauIj3DtudbttYHfzyfq00l6NJICFAtR63/ngN+FehJXN1TgSuaM1WEBSj5OaqzeB/1R4G4GrUCkxCmSlgLsFZFVcIkUQ9p+ZK76vfTAzu9ndoAtOTM4uVzJziZu8hza3l+ZhwChLalospSUBwXOcgCdDLXc6LPFfYGBPHLC3lL/41wIhXaC/DpElDYehjmhNDGQuGE2uU+KgCzp4ZhKDu5VlMDSDgUgGaeYK2qqbgUJN1A3MVCNe8c6Vx2Xnyh9lJylVX0l8IJ25wUqhvTJ5DlUFMBxJ9RezY6eF9hvD/WauDIDhol3KVZPPuwes0UI9EVliFa3O6TPS3bYtXOc4MJVMxwYcDl2YSFLB8ZOUEgQMgi0M3wb1yTUlIbuougTICKOpD4GHNnUGxM0pzwwWQyNSWLF5pTm1NVwxmlq3ctX6rFE23Ndpzn3zYCnRdF2ygm14JLo7l6IEuDfjgJmtt0MOhAl2qDmAezFqqteHaTwrO6uJ/PDkixzbKKx4HbPOPaA/inLp4ZiYENBjKdptKHIsAn1tRGzI52ABKPTQx1YyGzP+ZrFbI+hxMVo4OYVEKtjCrkuf3U5xN1j8VkygoAmnMO2wjQXW+nNgBlbqrpV9AXQzVC7rR4NrcA9LQ71TekCYQ54ATXG/viWjkmR7FZ2fROW+acgqD4DWexd8B8kacxmGkH/IuCIM4JmlrIDJzsMSJQbpdp6UvU1GzEDBVTtynZAhAnBkWQMusqxNkwFX8AApS5EQYFICIQNZVREKAgKPHw3fip/V1pL2pHQWib1BMJE6UlkI0I/gIGayTrBEIGA8zOk13JGUacB1M2utXLQIed8im0OzQEwDuBzZ6A1cVPYm7qYMv51cEzQFdUPQsEUF2KpFCVMZI60dUrLTGXjVR1/Y15e4WKKrwNqXHZI4CBxLzg2Iv+RV4ypeZgUH3WsF9vQ/rRxbacv7FI2hy1/nUxxedHiJNNpI+Ld5k6ninb/5uk5oS8BgMT78UBiEhRScBM7jBCzaXbPNQVhQQjKcaiWEFahmrk7uTv8fc2wFw2nx9RCoLYHy0AD329hpq4v78u5aiHhkzVNq3ooQLU3btZ7R3HCIYmzaeKJRmtQBVFFe1pxUT6u6j9vXSVerzQ5ZbQ9iS0UxuAQv+lmCOBv/BAk6il3lz3/VBy0TYMb8uWmaB4HRmAdHFcTl211DhstG0MRt6fUS7vXzIhsTAbC2YPa+TU17gbYMNFl9zd2SaaHWQTuBgAKdkkJXRHD1+h8zQtfp5GiWj1/gQFc3BxopGZ9B5VpOnRrBckPYVpvFpygh9OxDFE3dEWLVdkqKO0vYE+kPbNrt5UIjAbzwCTiEJ6anr1oJVO6Mg/xS3NLY7DWWphVwvG3HDqwGKSJ6t5ALbwAFU/16gRObGmcC6YFC1XkITEFWUvzH4m8HeqprYyW5Y5coxiKknV7qDRwJ7t1Ra4e7IPWSQY3QCdoHR9GP2FUqeOCyNsSKDQFJTcJBSg+VNy2LQEhcRDCbqEUB14tHabrgIN7Pt7skEg9xC0fvlDsLlnM4nfx4c2pmw845KpjeddgnLQGp9mbb5iU1ZowJDu17IX6Bw8QvKJLN5h74rrDurvFWh2sUHnzGgkPJ1EDbCr2ri5ZGWZXqg9Z4f/DW4iv+jFINy1dmoD0IbHSmpBXNQ4/+LjF+o48fNbyp3FpcJeEMOe52Hsy/NymcByQhPC5o3SSfk9L387GpORASviZpQsrxPMI2tAhCmKq960cWay7L25BBlJikRqDAvGRfi62X4DqOBKrSPhmt1aZLSEc8HNw6uiQDFi7urc7RiRZ6GnhDGuFlbqwKWTIJ5moBc37Es7b4j+xvmLd8b+VOFyPahiBXZi5GDkQF2ZvDxBN/JW77CSFYNQZrN/MUOKZTyo5OPsXPwAweBjUohQWVGcgEzk5Rvcz5bIY3dcaqVCTVpXUZdaArq5MRWN8lBOE6s9+JKcNlOfZtnJAdy5612x9P+Zr2vEdjYXGc0FL4EPMbXxNExQ80wjP0cCNAFVAVGFVWQ16bOAMEIxqvUn1G5w4sk18ZmhvaBgNu2ZC9t8Sl7pEFFUsjGMSbEn+CTmNK4hwfnEsXmSpWHaxRyHC1k8kGqXXjTxFfAhVOrqN0nahnAMiflbHbxGX4uhqszMcUUHr+q2RFVTyTXX+hndpPRnXpkbLx0nq53aABSjvKU19ZkCpTqNd851xoHoXNKZ0XbMgSffNr+7xpVgDkIK5yQbx4xNhmJbtt9t73cr05EmiYOQMJudg4CVeoChG+Q5dL4NUqjP/nytMJypZxkQL17mxKYqeeLW/CCLfqWIWXNxFndpF6yA5n4NhNorFwL2AFV3bgiVnvUwsjsDEMGoEaEUirBIFr8tcK5XNrIATcZAhBVH/RWPC0IAtkBLxcSENQt2STGwYl16wtOJAGaFskIKLB8bU+NsmajF6BQxb73ILcixqT0r2N252V3U1ev+SFfVVM9c3MffRoaBnhGiWJ/MFiHGiLnBpHHdQXh9rg5k28QWX7crwOEKrJnMQ845aEMxnzMRuDK4moHRwGdgag48vtsFEftd1X0bVVHV0MDAsbr60BiJUTpgZg/WIMSzlZCIe5fUw4U/PMAUk29r6YQ91lcL6wnGVDqfqL5EmrqO8s3T9wAr+LFi4xphIHFtTcSF/BphHuuq2k5rwmMR8RmvIwDI7xldadcIaVEEqtRoQZVON+Yj2R/MHme5xvcloNa2DctSuGhCRgKsJHluSDZLPW0e/qVtcq9XEZwNsU8+v2g4FrSObgOl5UPlbUbrl3c3qhdEV1ztUkVNFaGWnJI9Jqek04yT9snon01Gca48wDuAiaQn6JlnyO1GX1JTBQ1q8VQrqKepAbrdJ3K/+UM2ikVg9v6CPH2QWsCdi6cW7R6u2s1QAstf12O5+7s1qWcEY6CCkRmr4q7XTPZJpgpSIkghjEwYuGJgNXtRMXVRheWiEzIbmxTLeIBCgd9OGHsMlLo6RN0jjoUwaLisG/CbBOSgonBjvFEShlOVIDzaSUQhG5tCcLuWtLEv2ol08AYx/yssqwOzAWpRWKE86mA9VasVU4lcwi1d+illJgGF51moMuN1Du3VElR6xU2mYIx6Pd14Pk+KMfMCBdASEUQT39eWkKvhhMJ+aPdq6YQUzQbXJAEH+fYpfTraDZyLDINNrJ0wVrW1lCZcApbg98LxZoPD9WfMCXJnaz5dIwrOTWp22eA94hQGWiLUYDwicLuIYhQDpKrF7I1bJZ2TBzR7tVMegDbcqr3F7vYeY44sCLz6f0tMyLjQOArMBa4MREAnf+18n1DsKDhL5R592aZmzcdk9mcJTgB6FHYHC8DAZ+2HFwAihMm/R16qkNjgaTrM9BA54Ao4RLYWxeqLnBXs2YardKN+ZwCiYqep01akGEmwo4IVxImhuPeROnjEc2izfYC4ccPFVXisChYBeaZZRg/V7EUbbOCi4k3Ec5tRnrADwooYK7KUJCP1uB1zjzUXZzChFoIUoBR1ABIc8UJeEvE/VDCxSQOVCFMBKhs4marQAEibLsVtQQJQDdsNg8lrrZBPCRejRDQRMBsnFlcXQtHjuOx1sYPOQNrinAbqzBioG+8jo7WBnzuABNdPisEBsYshhBo5f7i4xFPAzKa+LdTuZephV+tQWituCzITmnHj4kyDupHNJCQvEhHP7l1oedIUzaa1ZAgVbnhnTzUFk34Eism3AJ+4XMvO7gAUtjtbFi6Nx8DFWgzi0qpZprW5jT9MQBrqucCw7h2FnoInGAc/vmV9DwbCQbRgLsmxz5FYWqHyEweseE5W9bCKJeHJj5B/O7mgdGoDUHbMANrYNK+exNEo+gtvsR3+0snPiUtkYAl8QLrFktnJ57RFnlrM2SDgsSC3AgoW++Kd53dP+cdYlfl3+xLcHgDPlmC1aAaf8UxhRfBQM499Ye1+YiEJqXJ7DqIuAdlRPWAtAG+A2ubqrRWAUQkrdXmpuYG3aCKAuq68mUAVnlEgVx6ijXeQ5Z/8puJvsylYrrcDRNghy4RgObG4PbfZDDxS3oM2qJhrtYGSe7gxef48RuFiRJkLKhPWhTAxYeKevdq4UL+e62MHseBV0rDYFHMr936HCihy5IV7fQCDGaG5u9dTV5YUopaMNgmUbf6HitAIs9vxiNxw7VHz2uO6zFHDVYRUrN4QM4gLBi4oIQGVJLklALJ79bfjBTtM0gQAMc9L9Roe5EYrVd1wFQ6iHO9fMOf+NVRrMYax3tFzGFoWAO0MrPRZkz+DdphPjXbVSV57YWDLxFkWGzpYkGsrw2O2uZrHfeI5JdTXmBGi8L2aBdv323Rc9P63WmDVGJ+gi6wE0QKQBZ1vcsLLpnvsP/F2agPQ0ic6wEbda8SNvPFCVdFq5mRuoQHX4vKcNlrsWzI6eQu9N9C5tqzP3Tgxz+WgxvG3pr7OjvWDNlxZ4xj3IaP2Z//CETRpXDI3HbwFiRLUPNFiwMSzIGhUTnT5JlJwawBCOCyY1DIWwciKFZvUMSpjlFClWeyOalhsxNQDBKxUGugUTVIJ0LN4a347JkMVJzDcZKAYMnIAYuyAsAPGDjEKs6v4eoIbC1514tmIrrm0G2CZ9EdNRcgYyQBIigFQKWR2InYiBzHwEaM8uRheB6Aet7JWapUr1SkrAWBhM9ALsCOKlXSDvTnXuDSo4lyzpzqKd++qoHAaMZsIeamNbi/QNlltnAkO0sporiSufmMuGLlgKAXkiKehUgt3ezV5VF3qMILp6lFSr58UsqtZMSKroIShamE3absz8Pjfawc/U4W6tAp7F5b6yFWnrpeM/GxHbc2TQTo3mX/LzGFH3K5iE0sIWpVQVdBL0ZtKujjgQPszImyErvpuDgvRuN9mgk2vokBYV4sH2QrBXa9t7ZgnJVxNXaBUQFR8LdLiJnGHYK/3Aai3TKyDOKcJWh39NxNe9vkUc2dpC1rakbIUFMfk77I4T2FqjzAWNi4qTliAXzuX0OJ/wknAOCP3NItggOU8yC4tvpoiF1oT85lATnSLq0piYwcdK0FuK5I8qVXw1cZBFlRiCNuEVQfBRnDiWdxgP/h9VkTYUcKKzKiubg3XhMomhSgG8XPhiTlhQZj2LASiAuIIzIRLaKbhF+3uz2kUEwAxVmBPw+OxQA5A6iAHhsXixuAUNlUcwwE1zB4mQa2ZUd0TbmJqiUu1AMSRfcCD/yafqk1tZpJkuFFEbJICltmBnWioqSVHNTvajo+pZQi3p2TS2by2d2HOFMzapJ8Y8F72IaS/kBg9/gtWKZNQ3JmCO2B5Kv+BGKNvRKaCNEmZgJBeQs6dudw5cYQBYm1BuMHMRImIZvJq6zqM6iHhZ0m/SQEJPC0mTjExYyoKKbqpDs+gkREttxYtmrk6oEVV7yU0tI2hSlhrMZfyGmBfoVWbU0oc3ySVwLy8xNElfgFaMOrgxIcVXocKbdwZsLg9tc8JphHRiFFp1w8QkvQgjE7lTh4InfoAFC2ofoyTf20p2tHFXV2cmgULI1Zz6SefnwWR3BpHiTRvYwLlScToITJxwRBcyDMLuJK41dEJwhAuOrGQSdFcc/Jqcc8WVatFTwQMLq9bBDW5Lcj+3mF3l1WLlK5Ebd7arfypU7E0I0hOqHzRiASht5IEI8LxgLACe5kCn+utu/0ZzQPO87EpWi618PZqEhAFyKETLGpd7BU+JVSJ4XhAWKFgBGNE8ezXHo3knLF5kZnTxlDIQKgwZLCJRMVS1owM86AjwhFylU5RrMmOsWON2LWA1Ept7rCEqopaclUDcM+ijchYAYQalCEYyaTKUQwIvQatzXeCwZfaXGqLgQTsdeZ75nAj8VBB0QGNIjvh7tVwCSDG4EGyJaRgMqgcQNiBASPEM3aHGzoBwmJpkhrd1l5TSzzgVCzlkiXsk1ZOwd4heoE77XMyr7fN+kT+1rVZyex5qUIopT6qvhhFO5ItASivVeTv4pxdIMXiuNw01qSNEdQKN64rwFW7g4loW+KR5SHWYSsr74x1K2/v92N0z9tCZgNuWe3jMIplEql2qGkg4t033eyMQ85onEHprrdTG4BygR4gsQP2Z9gQim+t6XxI0+522XClXvkWJH45xzLjFAuiSVMOPAXur++EKN515mqMo1G0SMdGeAE4d964lMTFbvimRu8UgLDlW4Nx4lEVc/CgyxGEkUwiGNxjooLc9dZFd5b2jAzCKFZSwDh7QRFTS61dRcfw/HlkNp9BCAOxe7IZwYN2rt6WA/lT+ij7sxJC1QZESh0iT6RDapw5HCBn3LXz3O5QEfYfAx5CcfBZoZiRHWEf6Op9ZvE4HGkeG8U3LYoDDOwAOALFYQBHSLHLwGEyVUh1Y/E0hBeW+V+7ZQNcDcCsUipbBnIt5hqOYpwq1NBMw3pRPU+dOZLY3DY1HMGe1QJoi0v2UUO1tm/N0QCu0oOHgWqoUt3KZoYu+ySXPBHeeXY8k7taq6kT4QwEkAgmyD223ANTFOySdhUCVUURAbXAl6DpHscWrzbZUzJJzJoLoLEpPqsoZkcLgB2cgKvnVjPugDxghvyCFMsuST3xt4NOIy5YmE4Sd9XmI/VFHukbPCOBpcdhV7eJO4D03H9BVyJxQQ0akp9bu7ZvULe1JVyEd7cimJIe9GDeUaUD5IyYxuc+AG1vAUDAfJy4Sz6tKqgfuk3lhnSJkIAGGIEJAMoMUD4/XnxN3zMTBYUTGzuZxN51JXgeqt4RDc6qPVQsBD9AMJ8f7bvOZ6P6xSRiSMzVtQyKUdWAYQQGpSYFlLCpqJXfplZZM9QyFqHfgws1htqIvLi0BcxUQWb3sNEQMmmAXX3WGUeDAPVnMXVblwBbSnqgG1ERiWMMiOwAApMno4Tpzouam/MYz0oFTMVcsMkAyLDXVBITwTMgcHPJNocvwlBsDGkAdlixguKIKnagOEKC2/1drdk9i1ySBHtSVmZ79mKlHUp4wImR9QFRPq4Y4VcY5WHLKEduUylEGFGxgmAkYwwKCEV7ndrI6WZeX57Tj6LguUEFqJhKNoDGVUSiBVI5MQo2PsQ9tVMueRBu04Azeq4uVDLwManHXeiVQVUsyWYFuAq0EkS65GVJcM0+WFWakJK9nZdrONalsTB93SgirU/3tuTwhnN+yBYvdwofTE+IapFFIQApSzvsEy3UcZS4ygCp5jXh+wUgYc+METbeyHARwQl9yTeSr4sN8wOJ03ho2kANbJR6uDeFLXcj7Uq0vC8bGZaU88Tb0rRxp+1d73oXnvrUp+L8888HEeFtb3vb7HdVxate9Src5z73wWmnnYaLL74Y73//+2fH3Hjjjfimb/omnHnmmTjrrLPwvOc9D7feeuuJ9X5bIGdwBNTTHCmhRSRHsOEyy1GWfJZlGCKvVk5cEHM3F6LLoBR/x7xlsaBYmnxb29aKCEVRIUtZ64mc1H9X49Lycbu+rfP55J8KmhRlUpQJGNbAuEsY1gReA7wm0ESgNUF2GbJbIBNDnfB0hk0hKl6vxitwoqKooKhgEMHoAaG5dIKQeNyFb6yoRSGDQItazlM34lvtobRJsaqgQp4N2ROEIsz0hHCsdl87k290hUFX2KEdnMYrnMYrHCgrHBhGHBhHHBhWWBXbxjJiKAPGMmA1DNgZCnaGggOlYOXbWApKKShcMLAdO/KIsYzYGVY4bRhxcDXgjFXBwdWAgyvG6SPj9IFxWiGcxnBJiVwNSRjd+y6cH4rbUVbEOMCE0wrjjFJwj2HAoTLg0DDi0DDgzGHAPYYBZ/CAgzTgAEYcwIADYBwA4YASDsDtQmRxQMwCci+zqowqjMm3CjNAiw5m10PBBLZNGVXNK40mnyfVNl5sVBlS2ZJd1oKpFtSJIZOV8YAYhx21bYswigwYasEgtpXKKEIGhGIGNBFLCzWpBcWudT7V5x6Ps6WPpjJWMfuK+pbSCygE2qKB4+Qw3iUjHpo+FT3rA3WDLRbHwL3KaLTPYpnliQuixlYBu0coWi0qUNjdtKkVZ8tbAYmccK2Ghn3ShJRWjJo3oTpDOX8GB6FwIGr9XxLRJfjk7eS145aAbrvtNjzykY/Ec5/7XDz96U/f+P1Hf/RH8RM/8RP4pV/6JTzoQQ/CK1/5SlxyySX467/+axw4cAAA8E3f9E346Ec/it/+7d/Ger3Gc57zHLzgBS/Am970puPrTDbMIH06E7MtSQKhi/PhoJAZmphSywJ0eYu2BKDMlW3j0JoUFesD2xdRbw5fLToOczZw69OhAYjFWIQKkpo7p2tXWiAbRyCBGVVMnxy5ojSyr1nCG1Yyzk0AEbNfsJB737iHlQc1mMTTN2UrmVDITe6saT73MtiZLyvo6Xnmz9mVoj3uKAVfsicUpXifDPPlKg30BiKMhSxVDZna0Ap0kVUZLeKZDVzlRSZ9IDh+jhgZRgRyKASVjPCPLNglwpoUu4iaO+qFxsg96RhUDIhXXsG2SaVsUkMz5Euoo8gzfhOK+liqj6ACzZAQ2iANIbnni7PEqNRzg6nFTWlzKMF8jSgQJa6bJEqhdYoYGS9+6PFb5mfSIpfanCao27k8ma0a+KiE9C+ImCBjaaRNk5BylkugCwY9I4Y9mwKRUdrHReHplFwt11RnsUo1PmMtadok/YaY9N6pmBv998jaYfFr/t7Fg0fV7T9+7SBle9ETwEEodoR22pIitqQGRpPcA9ErVbbEsy1za4DTXiO53Bfv8ORJPwBAqnrCVyQivPWtb8Wll14KwKSf888/Hy996Uvxspe9DABw880349xzz8VVV12FZz7zmfibv/kbPOIRj8B73/tePPrRjwYAvP3tb8dXf/VX4yMf+QjOP//8O73vLbfcgkOHDgHnAa69mbNFi7fGMOKyciIziHERXO37IGgJDzNPs6yAinS7zJ2ssSn1VMzn6BKsmr1ha5splX3f0jq6rdFsIbVqrmoBmEwFZWAMw4DVYBz+igesuKDQgDKUpmIRIUxi3KdVNzaCQMLgWqC1eJp3S/UuYOyC2/NZRL5goGpjXxSrIhhYMapgcI8winxbGko1SXFE9hkA1H20YrO3wejlF0ZSjINiXJmqLwq2jVxQyLy5ENIHuGVAKA6cFYI6KGhU0CCgQSEDQCNhGMwpgQabSMKKiRW7bPafI6S4gwSfIsEdqNiFYBeKXTVV3SSKdRVIFXOQ8HFENfXbjgxYoWBFAwa3UzEAqIVOVqmouxW6FuhUwbWaCkvMzbsxOFQhRVBZLOBSLfBSYVnJBXCCVCDC2PWEl2ulLilVhogZyw1rbW5R45pdHed1j4gZQh4yTJYEVMMJw4NwSUwiZ5fOtSpqpGueJkAnVP+3xoRdTDiCyfLtQRD+mMGvxzrL6ylWB/lMUSZ39UQ3BjcvI59JQpauZHI1XBBmBnowjp83qPvPS2faYt1RWn8mzjQvCdo1LQTvEmjSZPuqIJ3avBZ0p4pMT/Za7nDNOYp5wK3InWMADM4YNtWqFExasCsDdrVgrWYL0hmNWUKebrkZAbgeN998M84888y9endM7aTagD74wQ/iuuuuw8UXX9z2HTp0CI997GPx7ne/G8985jPx7ne/G2eddVYDHwC4+OKLwcx4z3veg6c97Wkb1z1y5AiOHDnS/r7lllvsS1YgxhhqkjB8Jgp5zi7qErQ7N2FVLd/UUDvjmDV7xo9tvpIlh7JNQF0C0NJetNmCtOYXnds22WrZgt/U2RWat5gStFqKEiPdbrthBVcxGwpcF63w/HGR+NIDToPj9Tuwc3zhxUaASUVkDgiFIgszA2pBqB6EYoRY48pAd0Imf5r4h/ZcNkKhhHMgATXnh1Wx9GRlVMtgEADEBaWQhy+F5ARzklCPxidTFZKDEI8KHQAdDXx4hMW7DAZA69BkcJS1NhAjrRhUUKSCPICFqnHmlSqkmhygPECL6ePZYacg7FOljYkoQ0QwcUUtAtmt0HW1mJKkIjWzPyPqXVaPJSISc1JQbslMqxjzELZCUtP+RsZtdQ9Lc2M2EFJ4zAgVL3VgGRCYrG6UUjEX7KJQFkiB5yEzS4QUY/yY0bI4GwE39t1iU+aaZlPmWjLakIS31SzaJJshXVBfcE1icUIQhpPwGgF3EIklGfaP5n6XbLSqCXgWa1aoqc91Aura/qZq+CUSRRPnZy7jffZc7QtOl/xx2F3fWhCvqtnTxFzoK2mHmq0XznfMABSfJ08KOqkAdN111wEAzj333Nn+c889t/123XXX4d73vve8E8OAe93rXu2YZbvyyivxmte8ZvOHJpdixgrR1H8LL+Wolw4HmIEsQt+kA/R8SuggFEOdyX7cbgksS5BZQsXR5Jb5Ay0ln2gBhfn7HqJyqD0UvTwwYBPRFz1VizYn9/lUBxwLFjSVziSEWtXr2fhgKvWg1HTb8JULoBsADKqd4XQjaSF4VdTUXaCp31ruMN8X0BctXA9MoRb5xtzFmgkHBmA1EsqKMOwoymDZGAa35fDApg4nNGlv8F6rA1ApCh4AHgEeFTQQ1GsD8OhBvGxBjS2+JgCICJPbHFgErXZAtfBPRrWCcAQIFwvqpQGDMgqNJonSYGDJ7j1IDNYCrQIqAmLBRC4rqGBSq4qk4iUBqQJEEBLznoSC1TLjRZyVVoJMJsGGo0oY+6W5hbMbrT09k4+66gBQ/03JQEgLN0CyyEqCcnWvM2cjRJtquM+BYHK4SQC7UOyCvQR7XxMCU8sq+hrdtlpmSyJqizfxyAEpPNryby1GwltUVJS+tmYqO0qAld2YY4u63JNC1gBPoZazdFIh8WdmN54na06OaoEJVakz2GHn5vZcCtVqHq4Qy+nnKvWemmVJwZb0hdK+PUf7uNsp4QX3ile8Ai95yUva37fccgvuf//79+izbJSbtgDQ0JmXzkl3iYdcBReJ+4IjAeavYBvIbJsgSwCKc/N18+uct5iCcVTmRJYbZquvOUfEaf4ZjJLApA+WakZIIYBNw27BgFbSwaLpqemSTQVHzQYhXhIgEokZb9rHoT9b51arAlTVlSnzllVr4VYQwBM2IPi+TnTinJBiCKuRsFoxdk4jlNMIwwoYBqAUQins9WHY9aqddDU1P5naiCyrDngAymjXYJd6aGSjOwDWsGxllc3oT9654u7nlSoGJVQWrIhAqICYfGLJBjznMw0oxFixOTkMZcTAjKEwuJC5nHsVNi4K9rieNaoZ0mlCnSqqhNRj+evEpSBSl36ETNKfCDzBnQgiu0WoOtk9DZ2YtlF2+5/Dv5Bt6jYwCUBigrrnDjcJw2QYFQP5FmCZprL4GzYiSdgFNdV2k2aQCxf2tmTuYp219bf0WGiv3hd7LBTP/jC7YmQOZaBndEXnbIOINxBCXnBuGkggNHXZntOczjqPeLboP2NTJZcfJxi3UU2jE/HThD62VS0X5BEirNvgGRB2OpMVmsu7BEGJHp2cdlIB6LzzzgMAXH/99bjPfe7T9l9//fV41KMe1Y752Mc+NjtvmibceOON7fxl29nZwc7Ozt43XoyVpkkdv+dEoQXd5lPENpE+H/MkoMUtlnaeJl2k4xsQpH1LjiZyi2735tlLulnsi5ux38NPy8/BhBaM1iQ4henk1QibOecap2kJjQtAMXFt7VjuT+qR6GIgFffKzxb9DCIQACLodpwMMpI00eYk2t1R42r2POEnl9VwZDacgcA7BD7AoNN9W7najAlcPHFm1NxBqJiCw45M1uZmLUwW++NOTUNxEPKa51HWeAqHiqgmxpFDDciJBxnspUG4SUrFKxIxDRiYsSoDxmFEKSPGoWAY2GxODJdewzZVwUMFF/usZUKdJkzTGpNMyfxAEK02fqKYBBirYqiEMhk3Hjk0Qw3aHMHVHEY8uU8b63inFq4WKjjbIuupO1vZuKPXkKrcBRC0ueCcOFIOPJ+RXfk632KuxdpM/GZeEnMnpHyJlsEA88+I0s1LzW2GPaLT/47PDEBLXrHVQ6Cm71JfieEoEaCTFDQAuhou06PZI6Qtzg3v3eb5HYwVDO4qLJNFO7MxGPnKwQpEWZOwvi0H8uS0kwpAD3rQg3DeeefhHe94RwOcW265Be95z3vwwhe+EADwuMc9DjfddBPe97734aKLLgIAvPOd74SI4LGPfezx3ZDTZ6J2Asy1Vb4JmXgfdsSiLfh6Fju2tL701zIHkAxqwNxjLp+zfM1z/fa217l4yRkRc8tzyed60ME+OXuYp8kNlkKHWm43RdFOBCLinsh05KIEVsbk3K6QV/xMqX+W0mKQlckJlvid4y5xjKnb+nN2S9PcLNqhp0uErbcM0AjwysAHpxfo6Qw5nVFXxRwGPHGmGcsd5JzDbyDk4CFF3b5jUhMKwJ4JmzjyxMH16x4USj25aoVi4uA4zZGjMlkeMOYGTIQCkCcEKr6NBVRG8DgAYwGtGDxwq2ytFdBRwaMAYwXGCTgygcY1eHcXtGuTsorVuxFRrNXVLe5AYBVGyd1/jUtTEUzaq6qKRvZtTw5EpviCB+2GdKPFN2e5yTcu2hKkFlj8UVWG+Pja0JveKAfK5hkSBHgvVix7isXvOS59K4lUnzn5xzvTl1MYjWHEgjUF8bFzpLRACO0EZXYtoEdiyey2SIctaU3sDxLXmOj0vLFvyUDbnSKM2a+l+SG3gVDPZB9/19mg3Y0AdOutt+Laa69tf3/wgx/E//7f/xv3ute98IAHPADf9V3fhR/6oR/C53zO5zQ37PPPP795yj384Q/HV37lV+L5z38+fvZnfxbr9RovetGL8MxnPvOYPOBmLV56oIYufkP6zf9moHs1u+50qQbOaqSQosPJbuGCD0XHuKU3fXBg+bqC+aTJgLX1+ZYzaq8x0M7t2HP2VCpBrGMwjBunVI/ebDVR5ndwiWoKwu8xA1P43cYtZ52fq8jyONgrUv+uzWu1T3Jp3/trC7jprg2UBiJceYlMXVYGMvvMWCDuhUAjow7m5kwBQNSf1VLdOKiSZa+uxQrLwW0ZwoqJ1FLZKMx7DzFu7mihPQjUOE3FGqbqWBNhrfb35EBniTxHENmGMkJKwTQMoKGAhwE6DtCBoUMxAIJJFVZRVKBcQTSBeAK7HYIAV62Zl5Wquhs0u3OX/R0VWS3Vn00aUSvdbMXaLBNGd5Yx8BLyAGXtKY6iJEWXDGB9oZCaYm6gZf8Q8qqkVCGorskNqccTqaIXKKxbFU9ze0l4rWbtwxJLjEPQTe5yCRp5cWn6nv8WB6ZcniG4QI0Lx2m+0Jw7pPRTbksSn58hP2feYh0trxe+Fc5Xoa+xughPmbONsY7jzl3ezMfvRYyOvx03AP3pn/4pvvRLv7T9HbaZyy+/HFdddRW+93u/F7fddhte8IIX4KabbsLjH/94vP3tb28xQADwy7/8y3jRi16EL/uyLwMz47LLLsNP/MRPHH/vswi5lEm3UHWGu12rS0DS/86xwMbJzrdlAFxM/mw0zwCUdbdL8FqCWO/4pnVk4yFo8ZnnTxsPW7p1If8YQTDj/YhwEugEeXCCyp6ShT2ZI7kHB1GCMYp8ccEx9QnbZanoZn+GCLSL/QLBCIE5A2D2WyjbAoRCadcVApQypZDHo9hzB/kK20QrlgZt+fas/LZJSJUBJkUlQYvFjXgmCCbpyUuCpsQ9LeUPoNUyHa+p4AiAwwrsikk/u8HnMxvI8AjSEaAVtKwgZYAMBTIWWJqKAhoKqNmBYMZrgjk+cAXRGlGTR60WNXS3QCduoFo9y4AlaxUIWyBw0MnIzaYKrNlLccMlNliuMII5SggVTOFmLRZXYiWfTZq05J+xlvKb14ZRkghy2HssBinyzy0ln6WcMG+ZAcx8WqzHphbeQKL8uQe3OiP9ydkgHBjqkoVUmKHUb5wLDKFzu+RrRnycgswvyfqS/8wB87kQQKYS5P+1bEKEvoICexf2vX6FkMy6AhSQNPL5uJPT7lIc0N3VWhzQuc6qWxGTozrPE9lLOwBgR4ADk32eVi3lTiBxzNOc1y1UZh0wrMUkXyYvjfPzeVntlgGtX2nb9AvOKTZsSkRZtJI8Ve2aUWQt9rS8aEQYB8IwMMbBbA8DmzGci50xweIGplpQpVgyTQ9QtY3MLiHhctC1xQZ1fWE2VXqUioaDnwgGVewAOABKAcAWMx699hDS2SIsAEYmrEbFgQOE1RmEcjoDp9lGO4yyKhhGwjgyBq9uOgJWkoG9GB2T529zpwKIx64Y+JBWsFaMaul3ij+hgLBLhDsYuJ2Bm1hxMyluhuI2FRzR2oBnUvESIYyiI1hHMI0g2gGVFcADir+L1TBgLAVjYYzF+kcEL2BntqBpXVGnNdbrCevdNdZHKnbv2MXu7i4O7x7G7etdHJ52sV6voXUC1hN0qqBpgmWc1UAP0KSQauBzRAm7WjApQ7x8L7m/oZphx2ojFYKOjGlgyGoARgZWBVyA1UAY2QJ9zaPU1qZOinoEkDsU0xHFkd2K3d0J0zRB6gTFLhRrCHZRsYvqPlt9BW2ukCXg5H3NB2DjzG1XWq7moODF4jUKmUEwopYZaCmoQ62iTjHUUxZItbGe+kY1PENjHVBzvMnS29GcDfKGdFyDS8rSpj2/xS0SDoOx1gGWoWLJrXdXIkK4vGuTi+aju/7MiwP6F2/NMKjzsckzEA4+mlLpqM8f2eScgDnfsxSsMqex5Eay9DPnKTbxYo6PinlP0tE5E+Mi4ebRW4v8afcrvq/CUsBE2vxKYWEhT4lvXbBQHVOX1MavkTOCtvDUvxqjR27ktAtEOeRwUxZWEPeEnCoKnQSo1rc1umonA49BWfGzwtZijWG0dK0AhDBUy8wAdy8mNU6b2e0TA/fCau7qPBQ2GyGLGe1VIFKtoqYCIsa1slb/tOdTgpdy8JJ8oWVp0oDX42EDXiWbNQOPGGhE4RHEI6isoFysP2Uwl3FirwprwZR+SyvgxmKxV6UAg8K0eIwyEMougF2FHCFgTRiOEOQIAzXKVEiytNiMtiwVbGmrlM07T92xwN9Iq/3ENlZm+wFoJK9nZu7ppVgGh6FYtVlz9jF1oJDnKWjqKM8k4S0qoFaoB5/mFRTWxDzDN9ctjvL33i3rNKI5nPm8ai6O8T2maNOBJRhQByGZgFpNEnLQD2/cPv6mmWiS4uK5lss9nilTi0xPxA9qTDT1EWzXi7xgwuhecPkZemXh7KHaZeZjJkJ32k5tAFpOscwKJBaCKWVoRqibwjtrLlTml5knQRwbx2RbR84XF78vhfOKOa+Bxfd+taV4o4m9EbS4hCyzN4SMY13q8B86d+SqOWJM7ES5MJgHVCeARghtkamrHXo2Ers+SdSgMbfluG8ElebpGn3jMOKTen4yA1Rhc88Vd/uurjpk9PxhTFb4DCV8h2xVhdxleTv9GgIDoQnQiUCDZW8QT7LKZPEqxAVcGKUUjCOBC4zQ+4quIpYdoAqqx/FYYKnnu/Pg3MjuZcSWGoNTYLahKFxn3mGE4vnnhjKilAHEgxeyc36Y/ByEU1Zf7swmAdm7JqBaAOtQHVgHQjkCS0M2EobDBuqijKkaLZyqeceZSggR7mOu2x7jpVIQQZnGcETwrruyD+Z8ICtGGQp4sAqpNFi2ich3N5C9RVVXzZItOiqKWhhUBDxYOiFAoXXwuRqK1gxAMeG3uSXYROsrJztrHysMZSqQNQnpJwXMMcMoQDhq2KRPPrFdRQDoNEcABH0g5OWb7WWM+bGYHbdJJTKdCbxUuAYwEaOAtwblkZl5A8rtTj0AvI/mnPDc9XZqA9DSXSR/pvkU0vIAl6S1j/3ylCX4IP0dL65g+2RohMI/Y1qWdM6S10g9xObU8iPVrUkKgOt8TeW1EuATumeo1xBxHt2zH8BTqFQmEBUwDSAaQMUCYIhd6gjuvs5vFkSiG7ktLkhDdHJ3UxPYLD9bUVPVUfEFCgchmIhknCEhEq4E4WMmL/fMxnXDo7lj3asBshJQPc6lrC34lBlYw8pHrNkyeR9waW8n7CbuvBCxPuoceRVYfZZJUCfxgmHiwaU+vi7pWKkJfw0aQbh2rVKKgc+KMYyMsYym7hwG+83BfyIDSXs+tHjGqHOmBM8obRIFVcufZmo5I+bKwOBJSNmdLXarYqoKXgumKCSjhJYVm2BxsmJF4UQMgFR8PhIFopoLe2HIQJCRoKtic8alHaaCEQUjWWYKc86Id+tBzx7lXYpgGICoM2AZ0E0VqLDg4qlZ3bbnBpgT525H6cR4W76Eo7Wg1ksWMq2t6ImGeiVRkSheFCVvIVvwj9udwummOxVsupgvtS7RMv0QmDAT0k5Fm552HNnaAnrKX8mBtK0mUL5bfHZXquMby2Nr/3oAKEY+G2+CWfStqW61v8zQE+fLAXMQyQMfUk5MnDDzUzpqCWSb4vQ8unsOQJn/iaWUH5Q2Hywfmg4XUkR8woyTCS6bQ7XikoVnLR7Iq774BOYS4KuN41PR5q4rpJFkGPCYDyjMPuSlt6EWwU/iGZqdiCsplD01AczuYpmK2by2ikK9hEF4WYWagRVeX0nNi03NnkGs/T2ryX0DgJWYqk7VCvGNg0nEQgY+w8BgNgVV9WAaKoQ6GCPbU6vbSezlxdnVlgUWDLjDpkYqRJABkJGBnYJhHLEaDIDKYK7X5Mk7xcURVUtFI9RnjQKAl5E2YzKBq6BUsazha7G+BRB4vj4eBGUsWE8FvCpWb8ZTIa3ZAEsiBZWQWdm80Fw4NQCwxNADoINnOxgIujKbD3FP7lrAKBpFJVyVGipZ/7R0MYLCVl2WigH95HnRKlXPV5elnmxd3bYqO7M3X2fHLv/0NlNW2WfLGcSdG4g+aCY+rnrb6Hv+7vPcF+pSilk+0/IZ4jnjkwioxbaw91TtdyQNkuh1nzL4ROqhug3uYoxPnrSzrZ3aAARsZwu2gE8QpKWskU/bjOTfvE3jdBs3ka81zwiQfSLQzrfFucI8DC1US7rxUKkDoc6hxcPEegDQXEKhHXERRn83eJLVoxmbmqQXIJulbEfKXMBulCQAJL1OCxmxjKzKjaOt6GWzPW1CGDY5VoZaVHwUq2uZr8nILrMa+BVyTzCTKqzgFjXthzjYqqoFzK41rSMj2CMqDsAesRTCShQH1HIEwstCDEVR2PhQU7MVlFItaedg3LnVi1Gg1fKJmkqEUf2aABSEXSbUgVBHI9hlVVDGATSOsDT9Ps7qTIwDUHj8AV39hWJ4UFhRIBgrsPJSGzwCukZ715N4vsxKoIlBNdhjBnQwG9ckTZUcEoeoOxk4W6WR7bsYCIkDkAwMHUwtysVyw5lHoWWzM5d0mKTlKlzzRoz4IstADrdlVZ+fxqxYxIq5bmT127G3u8apZyjLMlUAabZFZaph8zvk+Dhmmb9jfp/u0bn8ZWnXiZ6E1Br8IwiYHICyvUedQVPtPlotpWsmfBsgM5ch04GflnbqAxDmQJJbCO+8ZV/2d1FsDnfe4vpd9catXHTna2zahGJpk0eLe6vXGgpVVkxXy1jcPXb87MiHH9kilwiaAahNqC6pwFVPKxBGWEG6HXIvuHA+cHsPKYPF08MwQVDdi0g6qLGXHIA4p0VohvLau2A1uiwDMjUdEqM499uCSrWDuUkDQXQZRAVD1OXhAYU9X1uE+is82BKYoJbjSty5SyxbQWQd3nFMGgvhyFCxHhlrFHO5LmafGQpjZDTgHSCYtJgBvSqmShBx6c1LUYiYp+FKgAOuogkiQQysPYM2Vgx2EOKRLSmqu7KTn6CeiVrVZ6a7j0dqoDJYiYeBDEBXk2KoFVgT1IVIUQJ7XadayWr/aMFUBy8HwCAJR/VYP+HmbclKK7GVZXcXdRRYah8mCBUDE/UEqmKpIpgZg4bnI3uRNbRgZ22J5kLiUkTBwShwF/kFp40VqK2n/TNzXZ+OlsPMM3jEvsztdgCKjHb96HCcCSYT6FZk+x7PHG7j05ar555Ucq2Em+qqb5FwIWsIRGDzNj9aqJCrc5CtETafN5750zPWpzYABSfgYkvoPENtfTSxNv+dj8tTKx+baX6oGOLYHrvisRPoDsmzF7+4M82Oc85+1kuxh4uU8Dlp3TYAasrjMH6pq/E9rgeevJPUHScoPW/n1MjzvtmyCu+lDquVrJrkREBo3ttiIQOewr1aphEWqwYKZnfJ7olWbOjcaOMri6iA2TzCdnjAUAavMWPqP1RfXGxZonc91cxagV0lS6TqwzY6O1iK4shKsTspdkWxFkFFsczeHniqTO7opWAMYBGoKKpWQMmqaAJGnMNGpYRVgbkuk1oQJxGE2Zw6ygDl0jMxtDUubkOyaBBxj70onUzk2QcKUEbFqih22JxpdpQxsqJU9XglK50wDYxpKKBBLF3PYM4BNAxuBPVkYSrGHDgT0bQFaqXLBQY+lu2ATV1HBCmMSgUVJjET7F1B/fmc4CKkUbE4IW3AIx78mrwJ/e4rL4NQQc74hPdl3ratzmNpS4J6rO1o7Clm35tESV2iBUJNH/ZLwFLpipfb6JFAFV3jEFddKvRcgGzOeMouATntCxBiAXp5yCWwUHqMTESQjsnP9ukD+1MagCIwPwXoA4RZfjKg0+aIzcneahlYtgn88Tp4di1tXEpFD9SaT3Fqk0nS3xOAI/DiX4gEJN0N06QXv1JL1VCbNLNhLsoANBMFpV3HUnF4IKSrzDxtpQEEVQgKCNViN/ypo3chqQDGxFockwUQ2hxW4+Bd3RIR9qR9QU0w4ltdMopjbdyMsElhiLH6AI/gMpqXGts2kBFOVIFOwLoC5EZ28vxrkwBHxOIeRNEK5ZWiWBfFehfYXcFByAJFd2G1jJgYWtTyvkGNSMM9HMQkvDppy4OnYlJLYTYbE1lAq7iDg7g6c42CqmbY18kz76m65CktcNZKggsmr1tkOe4Y40DYGYADg+IAK1ZUsRLC6KUzqhhwVveem8hqMRUqKGQSMHN8kgWxMpnjgnpiVDdvkHvyabjZF5gLfYlkowW1FFQ2SQkoII1os7D/WRogFbgnVjAN2rI0xMIoCpOENIKkGSPce6+ty3AKztvxthMhoEuGcPmZm60ZU391Ip6Z1vhbsdTOxLNSW2/bSH4sbwF6rA9HocN5z6qXWtdc86iBTxBOl7I164IY88ip3IsTGfejt1MagMz91mhSMNBwM8ZMjYsOQhM6vc4pYbLkEy2Dz1ytFkkateWkwuJalPZnnmmeAWH5K/WTA0Ub6GwBn2UodNyU0rVVIEqYyBbBFJIXGfwGCCpVDOTxLHCuTQHWnkRUw7XGJ6ul0Ff30PJjw2VX/BrxjtiyRkfwOEfJiJBaByO2VCwDQIly2INJQSt2tacT8VoAXZs0VsAYpGIQy2vHof9RT2s5KeoEyKSYJsF6bW7JTWIC4YhLM3AAYRgrKTACWkWxngTTVK2gnHvAgSxfw8Ae90IWhDkVxgpe9jpcnEXN9qIT1POJKRnoTqSu+vLxKYwVM1ZDwc5I2BkIBwpwgAUrsHmb6eQ2FM8i7R5nkxPsSgNGKNakGEgsdZlzzVHNldjGK+wHMXfIHVM6IfRsBu2fOR4o9XBKaPEM1woVgVS0GCoS89wj6RJ2z7jtcVMaFtIeeBxZMOY5SI6nzbiy42xZrbC8717Xizg1SnuyBNPzegyoxug4DMUx2WQgmNMhAM3DOxMs3eiSKQQthsuk2ZY7qw2JT4YEmL3H21jvTCVPjkR0SgMQ2AmEj3EjyvFSfJxEjZ6Ht1sMbU54iH7a1lfRVExt01lqnrh9BKbmV2jX0dnvOWfA/G75T05ABLTI2aUNKE51ka7tbnMk4iqM24b3uxMb45iZpmanYicUFQCkp4rUNK7BM5EqCtVEtCyIMvAz3o2yAWEwYKrqnByjJON2GSwLwGpgrEbzThvYDN1UjWGTsDGxsQKDMgatVt9JqwXQwiLSzWOPPRYwvIEG895jwZoF68IYioCLQMjq+ahWVJlQa4VMFg9Uq6nk2nPDJldlghRLYrouXlzTx0zIpE0RclVezx6tXFAJqO7lBjbj/sADVmXATilYMVmlS6DFIbGXWOB4sx5fRR7bVAYFD4oyqrmmD8AwWgXWyOxQtWJSwVQq1gqsWXssEFw1JoncqI05I6Zl5IIDwnUeDi7u/9+K8FGrMeSSIwGtXLfa+RPYVdiZwwqj/pIzP9aWCWhux0pEAwKWqYe3SUX9ehE1k/nBHkbd/NGcttR2fI77yvRoBgVO0+KWYe6d5bQhIGLVmj2xRYUHCKU75USSs7YNiADL5XLX26kNQOndmypoxqBbc9v9xnzT9vPsUhk0lqq1LL3k/G7RlpkRlrE/hJ4yPavxNo5Sn+jNkT82V13QYrLEqQWzisM2ryzQsyhQPDOBaZV6BP9I5hI7kmKg6sTFOKOQcswBjJpvUoCLSTPwKgU9cI3cE6ozW5buxh5JW0ZpBszVuTDg9goLqjTV0zDad2LnGyNtDsE5eoFSbUxIgOngUXhCFVatVJp6TApDSwUXr69TqgeIues3KqpOWOuEXbUSB6K1pRwKcotUiqAWcndYq5J6hARHQNhVxVoZa/WM00RQLeZWjmLaEZhdRcoALSOGsoOBd8A82HMTIGrlvC3rhNsNgwkgRmXGNApqSBEUGWQIIxWsMIJIUFz1av8mrKlid20RN1QFa1WzZWWjuTt9cACDmleivfwOfm1kNFywndgmLp1ITePjErUUewihkA1CfTEgssOZknpyYFoqybc3I+yZU4seLAHjziSqOGbp5L2XJDBXRYR6PRje0kBIF2fpxt69nrT1QF0aynzrjIv2P8z3vX+CejfDfhFqUc0XyLLYgjneByC099+cOqRzBkRGpwv5iycXHAjNqWwb8IdAHNNu+XeATwBQNhAup3fwbUsZp+9rog3ay1bfH2ATrtfhe1mMJaUBc8k5P1+TMNAklSKeE466CiUAcwdk+fBcahHqBI4kbEhesC5+l5TZgMUzHKQONWbRObv2iO79pM7rEYBi0fUc6WQcgOJvHuyhFGYUl6qeu009u7RJHuIlArCGmc3E19hghK6yYCIjmAA8MNKrhlJPmMmqFouiFZMIdlUaWJZwi3YVFEoPxkR4JZGpvXaVcESBXRGsxcZQnABYSXADeqEC5REYRvCwAg8HQLyChrEfCtXqcU/mfTipYlCHCQakEKbR0+mwX78wBhpMAvPqmyIWlzXBAJawRhUGY7KM36ImqYGbl1obGETgQcwh+xZxZKaOZLMzgVCKgTn7ZFKCZc5AJN0xVZ1mKV/smiVJQuEiMSWZYSklbDab47pBRDNZPxYJKI7bBl53JkXR7Gig23xyOptYNdts0NtkrtgR1Y5lCUL2a5d0GpnhDkAyu2J6rG2seP5+ctu/CgCC2aV7ELLvH2DEeCT/zh2A4B46LbAdaKnWljyOpM9lrGueMFlFlxOU5lcX15hnfYojl5M6OiiAGCfvzGEv6ZFRLuiE5xkUn9UBSgWEMda6wuORgNNYsNKCwQNDw63Z6v8Yga9qkfKTc8VanF/l6gZwlwocdCw7D7kgRy0KntjKQhsGKJgsC8FqBFYr/xzJElquGONoiTmZbEQnVUuzdcTS+Ag5EBWFFLHcaAXgNaFUJ5SFvIS2ubqb7cc94VQtG7O/SLN7WVods2ek9D/UgYPV09KwuyGDuq3DvQYnUawF2K3UsmILeWYEsgwKhRRU/PpcwGNBGe15I/+dgYKBIFWbC1XXqDqhoILVCxl4OQmbFsbxFi0oqhhFQWplu638oLEf4o4MNHm8TrU6Tut4f4BlpIA5aRDsuc2ZgS0uqBE2L/VB1Dz7APXsETYPfEgxxfwkZy6CQU//siKjy53b5IdtpGG5+vJqPTYpattV9/6ciR7IUlBmN4HmJ9ggcilrbIPHGfzRHvA3I14+mVtLtp58gY07LH+g5YEntf3rAKCQhBaI0MJmyEvUhgQKIFTSVlytT89cVTRAKdP6DEJ5H5C5mPBq0fmcWJyzmdRvOQn86KiFvexM8qKwIEVncpxtYp87Vu9HMLinkTk4GUc8kGIU8zwqRGYXgRigA8bdKhk3TubNZlKQZxggNiKKzigTXGBDSAsmnkWKGMdIW3hMGAfGOBJWO7btrNDKaw+D2zTYVUKiwGR1embxlQyTyFi7zXWyvouhL5SAI6q4XQS3VsFpU8XOVLAzKcYqqJO9D3Yf/oEIAxOmwsBgRfrMu49AGgDhJETNPsUxDh6Aa3EYwHoyJ4HKBK2RYZtQtKJwBQ0Vg0xgFQwQDKwY4YG5PrEtSapgPU2YZEKVNYpOLdmnSnifmcpU3C5l6YbMFiSVAVUwFTAqClFoHz3JrHhaI7Rq1OHGb+7xA7h4aXMPRi1cIB4pS26EVMDGSUJyCuLXHQsUxZ1TBLUwpPj7EmdyfKJn5+RMDo8m/cy3vJ5OxI6UQWzZ9upFl12yVctnWIKpXnk07pSfL99RgZkzW9aqMaffFGgOBm3c/ephp1gSs1kdoyX0He0571o79QFoydQo3ANrIYFQ4jKCaPsCi3fTkvdpl6bEpauF08lWfiHgxmrx2J7u1b/senSa0OFsATyzu2pfPzFxkgDFBVH4E5xKQ5J6fjL1iU5W4ssGRX0gjDqro4cxpWR8P8VikTZvK9hjgCyjQwmO16lvZDvoKkHzMLN4m15qmQmW4WA0zp93AN5R8AFFWSl4B1bttLiLNAASgq7hbttiNoQCWGCSf7oBTtbAuprqsJo4g0nNGYAnxrgmDEfYJK0CHGCYHQwVxIpxIBwAg5gwMQNVe9oaGQA1a58QWxE3UXdNl15Bo6q7bwOTEHbd8UGlApVQasWAtZXkHgq47AI8gB3YBzXQE6moVSC7E2Q9Qac1uO6CZfJ4nj5JNSZ5ZYi45DYQeMXGGPsc4SIow4ixFExDwTgUrNcVwySo1Tz/IKFss3lCnjfQktRGCqWYbN1upJ7dIqQnGyufwmo5+sJ9uLJgKgZCVX0stYcORHxMr1NztJb6c1JVSMdCiLdLDmH1iSNsdZOrts0VigGUBLtxbO514EN1shEMNtiYsPA4bRlm1RdCuFkHKEWwUJSwqbp4rHzXCI9dUr+T005tAMqIj/nUS1YVAElK8RflIRONY1W4hisEDtd6Ve3ZV/Itl5xKlnX6q4qeLEFozpXlJDw9PHObRnh2w341MptWREcXdEkP/lwNRNi91TTuxR6TY+7aIcIQTD1WyB0rOOJLImDS+qAeMS/Uk4dGklJDchsCc76JPFQh/cBE04GBkaAjgJVAVxWyM0APKDCiVwIFIJUwFCs/Y1mtxRbe2lRxRJ1rriqYINjViuqUuU4VulYMa2DniNWuWY3mhLFi8bp1isFFujIwRmZLHSOAVrJEnVosaacW87ALgqnSypWbPCBNIqxkgayTZ+pXAESCsQiGMkHLhILJ809MPoGLS1NqdYAqME2Kaa3QtQKTWmYDUbN7wTNLkNctCtdnsGVVGF1FVixxqZYJq8KQdYGuB2B3DVpPKFVaBm00KYYBGnxLLJ56yh4NYusBtRQMiAUhq1jQb3U7nGkh1FzRycq+R/WfNWTxb1tiq21tG6HM+/LKPda2XHC+b+tlnKlr8BFMaaxAC98wYDWnhAGEAV7ht9GBzcs3ihGMcvXlKmihg72PmQXfBkKAGxPTlUOfHyyMlxPxd5rp1JHjGL2jtVMbgLh/Bvcfqh04Bwr0KStBX9noXmiHPOauqa5yIcOWQBhzcPNbtBaKgi7RLGGKtpzdOZ+YelEQ7c4XWm/R/5A6wvEi37lNRZ/BRqDcRBvJQdvFLCVOoSiGZsb9wKcBikHInBR8QNUBqKV1gYDJVW5e5iAIsfqnMdVkNWVGczrgFYF2YFLQjmIYLWnoisgSQTjQFmKsqGLXFwlTkKkK1gmqFSKmqlpXweQvcyKCrgV82HLiWX47q/8jUrA7MQ5PpgIcCrzv5mQQkoCwuXGrFogwJmWsPUuCqL17VsaggnEQ7FTF2iWgSQgiRnAFxo3SGmajKoJKFcprCApotPFnn6TCFjNUeYBSxQRzLqBJQBNAYnnvBjBWkaNNbUVIKRY4SuxZrV3wHQqkMFbrAt0dgGEN3l1jmCp2q6JOZDnwhNyz0WxHSsVjgDzuCynJJQPsqrw+RxkkliIJpGCxFEkEhkgBajWAJvKijT07QJcJjnVNBDGN2Z9XAW055jgAaXmJ+JxdInbkNd9BqCaW1VJzCVYw71hCthPPb5FtzHkosu9PIy85Gp/QmIiWPsHd5LtaBam/dpkRwCpd2mx8xhTvAxDQUhpYRl1YwUInkll4iLHP9hJQ94yLl2sR/g4fatxfziwLbArzS6mrJe/cmNRLtYCd3bsVAGYdPxYzaQNTtmcfin1y8Tup3YMoMjVTe+EW1+rBl4SewxTBmVthMbg3Fbln1UBkdqAGzEZ4Jtf9M0wdV/za5LFLNtVTMKOr7JgZQ2ylYBwYq3HAMBaMKzanhMFUYySwSHpX800ASkgHMGlnoupSR4XqGioTRAXVY3dQAdmtUM9TJ5OgThN2dwccPlJwyw7h4AHGaSvGzqgYB0Ep4s4r5NJyJEW1tWypYzyND1mGgpZ8VQRDNYlrVYHDlXC4Eo4oY9c5f0YU0YOVj6mAVgWKZS8YPPPkOACTCEYZMIjgiCgmUchEno1C0eJ3YI4MxbNta3KaqM4QVHgwsS8QRsHo2RuIK8rkgM0ECEOFUNXsPRriNrNrE+zdVoV5RKplNidWsApKk66dmyYBOdMgyijC4ImAiRfzPnPox9psHXV5IustgPlMP1bJKghL6sucl7yTbi5FFJtHE3oyq3hzuVfbACgah+TjjBko6JUxVSYiOYXjdHJ2RmhST47cD8YYLpnprH/7KrhFo/jPCanXUwPQxxoET6gYagHfByOkE4Bd7SlcKHnIAXN+BovPgJaYOMv4oH6FfCX7nhVu+e+jtQKX9vw52YGnFLL4En+uuE3Eqg8NgBTsUhBzxGLY1uLUyO1APliDI3shclf0HvG9dtlAHFiY2EGezebDIWH10gV2nGIgxgjLojxgQNGCAV5XBoQVEQZ3XDCmwWJ6lAkoChkIwwgvPW7qjKIRfW+EXFQgVZthfZoAwWSlqCeB1IojuxNuv6Pg9FUAEOG0FbBaWQ62woSBGWMpVkG1KJQGs/N6rSIaGcNA4KJYccEKFTsQnF6B09eK2yfgjjXhjgm4vRIOK2MdkoR7+hF7SpvYiN0eRIAKRn8XxW1+u0SoXFosFDRsbuapxl5aQ7WAXfKCmuprImANxq4qJi0emKtAAVitILpxLwQSk/ZIrVQ7XHUbGRXgc5jcYcbshxajFTnijOFSFI5UqLYNUqClYCrcs2VoWEi3RcgcS4tVFYm3lmJCEN84NlbwXtdiF9+9L0tMa13MUs82cSlGKj579uxeqXZ+57zl2zZtT/TQtT6W1UJghbwy5+1nLuMIZ7QpvoXdrUtqEal1MtupDUBroI2zGPq3PJ3pTUXG2LXHaQzUp0hUC1gDOFLdwLdkP7yFWJwzaefptuRW9ubkOicVYBXM1DY+bDmlBwefVM7HVGY+HYXcC4rQAgQHdNViyzzlhIpcN2dlswVaagMeGmw/mFDIHAfEQUHhmXlh+utKHufi/u7qYpjCawc106u28eKWwr+A6wCuBWUdqXg8rb+ESgbmESbqtXjctZwLJq5uTFcMIijV45NcAhM1NVwVk5poXXG42oCICg6vK247zDgwMk5fEQ74tjMqdgosG8FAODAW7IwF46igwUCH3CW5rAqGHUYZASqCSgUTCdaiOG0tOH0N3LEGbt8l7KyB24VxhxbskuW+G4bRKr/SAPEYIPNVLObB6OlqFISqVntIYS7dwmLu5Gp0shZL1ApmU8N5lm0V88KrrhbcnQS7k2CaLMuDxSNahVMZYHFOymA3aLN6lVrPotxUrwp7x+7uHVpobSvH+GcmNoCi4mo69Wq51XPMkWWRkKzWPj6VdF9x4eSTV+eSdVRsrt5l481deSn3B03XjVXbr8v+dw/ZtfXATuqDDmRKsXzyTAvC2zPvZApvOEcjuEE7KFLsawRym4OBtDe2i6AfnvXjhJiBvdupD0AudoT3WptmLh2ErSE8EpuxTjtBbvFAWcm6x3zPwz+fXvMJs/cryhJQb8egAADQp3ah+VIK0ZgiSp4MHMI+1IBOzchOJIAbhwuL2XmoWt4yghNVIFwFqUlHRvCMkXb7UNyHCZMnrNTEGUMV5AGQVnAuuCk3UKeaRCQFVAtobVkPaqWWdh4hHbrYysLm4UeMkQtWPGDNPdv3APXNpNuoP2TVN+39r8ntRwIjylWxrsDta2C1S9gpsI0JOw5Op+8wdlbAsEMobBLbMAzgnQHDaYzVyrJXKwnWsGDWYWKMk2LcBcYjAO+SFZMTk3yUDHCL+0NXYayFWyyTxSapz9cCyABCRSGxsuZcfB6oqfgLMLG9K88oavyrKHSCOTCsBVgLdBKoGEBPqp7a33W7npUtRpQdDMnLr5tQ4N/FmAOSHv0fyUjFVUDh8BN21ZhDlRSECuYJRAN6TaS72mZKK8zX3pJ91HT8tuO2fY+PpVSRm41GzxMCUHv67vkm6NTBydoGLxySz5KdxZZ92nY6oYu0CaQui+azgOUDWJ5L8tBDmwHLEbyr7dQGIM9lE0GEnOZFYwKoz48S4O+SEiQWCFrFA7lzBNmYqkvJZ28wocV2NG5CZ99m+WldNRhqRiPk6lkO5hhKCE9LM4CTWmE687w28ZFg9hDA1HI97kgAHcAhKTAh3MGa0TlUgGxp+wtZVmu4Ko4Bj4UxV2Kd+bpbsOtEBRPYNi1Y14LdyihrBmrBFIGPLum19a6AZ56zeKTCGMTyxllqIcEIwaCCwQNOAQMgG0iLO6litrgj7u48ecWCsQAjE1asODAwDqwU6x3CuhYchEtDPKKsVqADA4aDA1anF6x2gHEUgCsGYeyKOQqUSTEcUZTI17RmL31tWRKMmTb35114qprBahEJFEOoFD3Oh8hipBQ+F9TzFBQvKeF65lqNE1OxGk9VCVUUUi2xapVqGRagmNgyKYdul2wEQTSCMaJoMXuSwGxoSm7L7pwcyeSzl0BSvVYRWf+iHx7rI+oZJVwGEF2bpIbIYpBVWSfCeceqXK63INMZhLLKDtgEoTgvf277nikELY6y37LqPe6etSqhiJkwb7OrKlp6SMBeQWhpehecs9bqdM3hj3hu+pk9Q/TZHMN3oZjcAcHlWJysduoDENqYNhAK77cGPM55hd98BAkHN60KW1AOTHIn4CMw4StP3/ht71NnwjMWfMqWu2Drb5ECKFyrFWicyUBmtA4A5tQpdfUTA/awcX03XBcfCNWU9VrJIu99UFU9qzNHbI2pNqXAUuD4CjJnK3NYYE9OyWQuxEpWSTXctIUsONP0/2xeUOSeZZXtfGUUoebpCJpLelHSntGdUdyzG4PbbgZS57LjfACe/Zs8go9UgUmbui+KxNYC1AGo1Qd2tERGQxmx2lmhnLaD8YwRB+4x4MDpBasDBkBEE0ZZo9QKXguGtaC4d1IlYD0w1rVApJgNRhgSGa2rE/RamyRanYFQMd5ZXd1pAcduZ2FTCTJb1VEWtEwWWkOSnVwCFZDnygOZNDoywOx56WgEaATpCgUrDDpYATpXv4kaTAjBXe/NzV+F3QbpUgyRefQ0RtEq4tRa3AnCXLRjQpEweo6AJUCcSFtKNmF4TwtkKwHeBkDL66YFp/k4XZyT13S+X5eM2prF/Km30ZX4u6qbDZbiUDtKYJ4tWQpaqoOyCjL3JGRqoEJShu8TfQ+b7bih7F3vehee+tSn4vzzzwcR4W1ve9vs9yuuuAKtqqVvX/mVXzk75sYbb8Q3fdM34cwzz8RZZ52F5z3vebj11luPv/dJPm1ZDzCfWvAxb2V1pIOPprnALiGFDeloLaZzcChr33J27M22hCrseeTm8Zv3bwlRCThCwGECDhNhl/ry4rCPVVhJguoZnVUxScVaKnZlwm6tOOLf11oxacVaPTEl1KNSPBccB50I4LCCWDIAWmDlswczlBvxJ4yFzHjuxFELdcJewl7hYOLvxeKxcmR8rjfJnhgVHqQYBlxTuY0kJgGxuW+v2NySd8qAldcXKr6Z8s9UXcOawWsGHSHoYaDeAUx3ALt3EHYPE3Z3GbtTwa6MmGgFGQ+Ad07DeNpBHDj9IE47eBCnn3E6zjh4Os44eBrOOHgAZxzcwcGDI047veDAgYKdAwN2dkasTlthdWCF1c6IcbVCKQMYo9XWEbYA1nWF7FbUIxXrw4Ld3Yr12lL8WDohwoQCoQEoVu57GAvGccDOOGJV/h977xuyXXbVB//W2nufc933MxPtWCajmIq1H2ow1mJFB0FSI4kaCtZ8kRarbVEqE0EDVhRbjNYGpNDSYu2XEoWaL4WKNIg1tiQixtoGRNQSMBSk1FFefZMx89zXdc7ea70f1lr77Ovc1/38mXnGOnm7H85zX3/Odc4+5+y917/f+q2CKRfknI1NnBIst4ORyQRUZqsSWzLjMGVczRPuXc24urrCdH2FcvWUbYd7KPM18nyFXA7GV5dnIB1AaQbnGcgzJM+oecaaZ5zShCVNWFNB5YyVM6rDz7UrODDG7Op/RW3cAh4z2W/b7Bjn+qO30TrZxz/28+0ulXK/X/j49wRc+17uz2fHCtqhSw7C8UgXV4NLS0lfZiKuYKzw0NU2qf43Vq2RWnkPAB978uQsn2iPbQG9/PLL+Ct/5a/g7/29v4dv/uZvvrjP13/91+P9739/fz/P89n3f/tv/238/u//Pj70oQ9hXVf83b/7d/Gd3/md+MAHPvB4nQlLJ5Rvva3XkH8v2AJ0HkIYD2HH8Dfhn34Eb9yu7YfJJbVk/3D3g/8u0/7CqYY3SoZGM7PcYx9NN/dvXBOhsz80tRumEK9gSoA2qDJUA6Hj0FA2MIK626yxesDY6F7Yc2aMn9Nh2K6VqziLlwY811xKjTxh0a1OcQ3aSj9bXEChQGrmqtGNB8ysMU+K9eRPUkVWxQQXTsF8rQCDsZJa3R2HZDPI8mBhOQ9FFNwAbZHj5LGL5r7wzKjNyltXtewNohmJZ0x5wiEXHArhalKUsoJZsUKAZowNlCw5M3FCWizviZYMLJ5T5OaklS5wdgPdlB0lcqLZuG64Q4T8WqyIXSANg0bJtDDYcxgs/QxGIUNBZmKQSSNIKVjzjJVmNJrBmJC0gCWBGm0xpMiiF+3xPZGGBsbKhEapW2RwJCTBSpyzoQy8UJ30ZNosUZ7atg0VensujPr76Oy6e899u0vA3CWQLhxX96JjL0IuHYPOvg0BFLbQiIN66PozLlR7+n0AvU6DwoSROMIjOKxueWN0OJjiXOjY93f5bV5Je2wB9A3f8A34hm/4hgfuM88znnvuuYvf/Y//8T/wC7/wC/hv/+2/4a/9tb8GAPhX/+pf4Ru/8Rvxz/7ZP8Pnfd7nPXpnQgApOqhD4cwFvoVxmah7Ds6DeoMV1E1gOjOuH2DVjG3UV4bO3TkI7xJEj9g626hfaEBhFd29Rc3KLkvs7qfpcbFkY1M8v0Fhi7iE5jSkXI9uSWP6YBvLbsFINmsn8npYDSll4RZyt14oZSaAFriBTzDqGxXPCm/oMYWUMCkjQ6ABJSX02I2IlaJWpx8hMDIUE2VoJpBYMbYDW85MbfZX3TwmFSQBcjMhZPfQ3JUKmNvKGWc0A7Waa7DWZMJIEkQzFAXg4kSdDSkpUmpQTsiSkBNQ2WJnwaeWlgQr++0mIEzIhoZEXshKSSCBoSIAGoQ04f4hL7tAffwCdm+0meuwVkGLram55JDATFboLzG4JGBKkDKB8gTiCZVmAAWEYiauGHEpFu3UR1pNyKo4jiviO2SjynJ+wjfbhvnnbjszg0A9hytiIpGMKn3/cbaEpX9ppm3n2ATDaIfcbncJm0vzd2ebhPsTAM5ch9FTHX5ze86PYmCUJ4+s/O6tIN3WNY0DQkyBU9doZLsv522Ml4VVR2d7nYWOXmV7TWJAH/7wh/Hss8/iz/25P4ev/dqvxT/5J/8En/M5nwMA+OhHP4rP/uzP7sIHAL7u674OzIz/+l//K/7m3/ybj36igHr6c40clpFklAcrKb5vsa7qFksBbP/QxhGL9GOL+ks28SjOnpTuoOgEmO5LbApn2bACxuoLbRCvMuD5Pf5aYbEhcsAq2eBTCFTbYA1Z7jZ0wCURmUWUAM1kxdWSadHkAojcTygweK6yBalBXthNtQ9tq8PD1ncVrI2xpoY1JSvK1oyYNKcEZvaA6yZ41K8FsJIJc1IkTShQXGexEIRXNq2wvyK2aFK1sgYssOqxgFlV4paVGEJLc0JbFOsqONWG49pwszRcNcVBgEUYk1ocK5EC3EBJkFiN2BSKooxJE2YkHDRhkYS1MlpO5p70+yzi0FyN8awAb6mVnehVDYlX2NycROGeNSFaq6Iugro21HXFWitatQxrFaDBymtrSpCSQSVDywSkGUgTiCYIFYAyBAkkDF09X2c1BnLlBlmbkb+Kc/aFqUXinHGW3EpC7rFSzxELq7cZlNxZy0Ph2Ra+2/NGcb4QPtgKutuSOrde9vP3LgVyjNaEIy3SNfeK6KU1IVLWt4Lj+1880kpBu37bRDZravT4xfwIP/eta6bznc+2QMw9zCJ8/PbEBdDXf/3X45u/+ZvxhV/4hfjEJz6BH/zBH8Q3fMM34KMf/ShSSnjxxRfx7LPPnnciZzzzzDN48cUXLx7zdDrhdNrIH1566SV74SoQDU+vPw/Z4m4dlBDCaRBAig1LL7IF9UYmi0cXGQ/SC/YJcQMQ4BU2I4TxQDM21+FYH16xGUqhHYcFtOljgmB50kBrwI0QDctIPNGNnOXYpHcP7fakVTaknLI/DDHXG6vn5BjkF+oILCVUUlieijNvN1sUKyfU1LDkhNnJMqcczM3WTwV6ZVA47YwyoyQDExzYFx7/T911VUXQakNrFbJ4cFAMKLFUY1UwHIDbvw2WuLo21LVhWS159bhU3KwV86qYK4xZXBVWv7WAoMjJisKJCjSz5Q55VrQKG0qtMZaJTSiIorKRmwoRhJPna1FPNgSMPcHKHyRkNisIMQ5ciNVasa4Ny7piqba1KtBq2oqS5RmBMyhN4JTBPEPSBOXJgQiWl6RBP+TWb3UhAjKXqcXp3IGmCaQCdR4y1ewKTeulzG0uamf5Nu4+HTwONko3Aphx7F+ePZfFlD/7M4TbeCTavR8X5Ev7xHHH7+86f3x/KThgvRrhEbR7/dDVQYFbLPk+L86qA3TTijaN9EyIXlrpRnuM+vbkIAivgQD6lm/5lv76LW95C770S78UX/RFX4QPf/jDeNvb3vaKjvm+970P733ve+/8/qJAhz2AoDtyxWBbqF3AJGzCxldgWwT7kR9VQDxovzGUGG1E8z/suA/eT7GhLQFjc2BgoyAa5pSkTVDFdDRSXGcdpkGYkAskuJvG2QuiYLNpb06pSIoaQTg2TZBckDVPUFQZqPXFsn6lWXE1q3YKL7fNBs3mhDUzTi6A5pxxKIo5K0pi5OT9IYtndNJLR6SouxlMLlp8hByw0GpDWxvWtWJdKtqNoDn44iiCpTasop5VbghAo3EWtFPD6Vhx/2ZFvlkx36wox4rpJJbnc7Dkz8xAToyULFGN2VCKEzOKl87mnKDJKowuiSBFsU6KpQnWBjR/gCbECBmC8KlG3hQTuweWnETXhU9T1KpY1oabuuJUF5xaxaoD7opgPHcpI6WMnCakXICUIWzZHwITIA0ZognN0XptsEEUBiypJJaQzMlLkQtECyIXjFS9IKSh5Zo4QK4Z3LwK3D0YMOw0bC16/Sp8CbTb9jPp0uvbv+FuvcTeG2dDd82c/TaOeXs+h4yIaNK5iHpEIRS6r893jQOPQmgMfp9d+yWr5y5rJyy8J9Necxj2X/yLfxF//s//efzu7/4u3va2t+G5557DH/7hH57tU2vFH//xH98ZN/qBH/gBvOc97+nvX3rpJbzpTW+yN8O40HEb7qEtItgeDNANkLCK+rG68vNKLZP9gwspcFd8SHb77vd5sKU0/noEqka8Z79DFRhQQNFZ2xsDKzuaLVk8ILFziJEJHmO7hpdUCPcJ7GAOFmACmgso6e46G7AGFAgLx4A4VAGtAMQ5ggkQJqxsNC5IAqmMVsSC1aLISpiEkCbgQGbpJLa8ndQdISYAoxQBM1vNoeSuMRVobViXhtO6YjlV1NSwYsWChqINNwScoKhiLH3CRp0vkqCVUE+K5dhwOjacbiqWm4rlpmGdBXJgoDA4E6acQOzoPCYUGENBygwqGVgS2sTgGThOwHoSLCdBWgW5KponoiYyxm4OGLaaxUcakGWznNDQXYetAuuqWFbBaW04VsGpKVZRRME6YhOCXDKkWFVWzRngZEAQGPS+qhclVDaGBjL+uUj4RoIpF5pc2VBoUtMziDyCZ5oPC5BUrJSEmoUUODBTBuPfUEcIEWfZCrjF8H60mbrHk42THsPrvRC6LUjYezPuBexdfJdESJivgwBykMheLF2y9vaf9zZaOeMys7eA+o/3Cu0lwXiX4jtaTq++veYC6H/9r/+FP/qjP8Lnfu7nAgCef/55fPKTn8THPvYxfPmXfzkA4L/8l/8CEcFXfuVXXjzGPM+3kHS9+UJqKCGL/XQ322gN7X4T91BgsVSCg3pI7/jRXW0/QO8WQOfD3ylqsOUB3D7hg0ORo+Iz9uTWTsPhOhM7sAXWE7AkoHnxMk3ksSJ14SIOWWfAs/HVBQbIqERMmRawNsvah9HlqGtd4qtFD456gBxNLNCvJsCIjPyyEWPhZsgsSSARcMuY1RyGKSVMKeEANr44t3Ash9K0igZzMXFilJIwJcJEMKBFFSxTw3FJWPKKNVWsChz9RuoJoAS06m47slyligSpBF4APQnkZkW7v6B9+oh2SGgZkFygzj5AIBSBWTxE4JQMrZiSZbpOGbIk8ASUojgdBSk38KkiLYK2KrTBCD6dYVoZpoV6UqglePozaXavpapZeKeK5VhxOjWcFsFpVazqZdA4g1IGlwwuRgUk2RgZKHn+h6Kz9gc9jte0MzaMZPfaCh0mo2uJ/Aa1sdRSciLTsKrNgiCawFQhvIKpINGKTAmRpbS5fNzFisFr4UM7AMQPbvu5eUk4XBJIoz1ye27eNWsvCqGIA7CiQxE3Ogjg/OXFXsU1X3SBxc2gR9l538dL236faHul+dW1xxZAn/70p/G7v/u7/f3//J//E7/xG7+BZ555Bs888wze+9734l3veheee+45fOITn8A//If/EH/pL/0lvOMd7wAAfPEXfzG+/uu/Ht/xHd+Bf/Nv/g3WdcW73/1ufMu3fMvjIeCi+f3qddEfVXb4DrG8x3jYf39322tRDxZAadDlTIsjjP7f8WKov5aHd+MBXR6R+64wdxp+MsoxwMu7cDb3HHsWffRB3a/XlEDNJw+bVmwLn12FMR7blqVado3TvnNkyKtVAiVYLEhI/TOHe6vFc6hZZdaVxTXjEHDOTJAMyQYoMifM7tLKThqaGFAyl2IlQ7GVAkyJMJP1Wdhjf2xOplUVp5YAj0OI/675CieAuQTZXUMClKpIawMfK3B/gb6c0TJhJcUiBSfJSI2BmUGF0HJCSxnCTg+bEhJnFEqYAEPp1WYlKtyPL2p5W1CAiUz4EIGcZNRQIA51b7B4SlPIKpBTQzs2rMeKdmqQ1S1JR+QQWWVT5QRNjJqsxHZjqxkEMjh6FWe9IEJy6iSwE986lN+EvhvE7l0mMdYDkoao7EhULf+KHAGIAkVBo4aMjEwJmRKaV5wlnzu2lDOyl3CLZfCh6+zZ7NjvtRdIl6yh21aMXJxtdx1X/dBu/YQ+Gu/HQoJyW5jul/4QwPH5res+k5X7tWj0xFxUVy+cdX+dl4TxK2+PLYD++3//7/jrf/2v9/fhGvu2b/s2/ORP/iR+8zd/Ez/90z+NT37yk/i8z/s8vP3tb8eP/uiPnlkwP/MzP4N3v/vdeNvb3gZmxrve9S78y3/5L1/ZFYQZEO61/Zi5dK92Y1GBzeP2yAL+kgB60D5xLjvR7VOo/yJ0v22/V/zICRszeLAUFBM2lO01ZSBl9No3pml7jMc12RCFTQUk3A0z0gAnCJI25MbI2pyL1FBl6vsxxDPlbeNkLjZO6u4Yu8iesA1LLV2bYGHGJBvZbFbgCoTFXYPM1Ova5QQkVkeZWoAcrP0+kMOOtzHCqBN7DpS57prfOD4xWgXIcf2NGS0RxPx9SAmYSXFQQWkNvKzQY8JSGMfEYDY3V1VFUkPtVTJBVNlYpZuy5f94TSZLi7FYSK0RH3FrNREoJSCZVcfIBmRoAFXAJOUKWRWyNNSbinpc0W5WyLIa4g8AcwIltufMMIGXqJOqxs0ishINiRKYM1iz5QNxODvRc7qEqrlrmXq9oerjIGFzv2ZlFCFk8iRgzYAUSKuoLUMkuZvPS3wMc4yx5WyFuzmma9BCXm4xg0ZxdWkhvqREPoqguXS+8e3esvDBTrIdYpSmdxzxUq/j+m/9jPxXkaLRy3PvXZHRr9HVP3bkAZ16Au2xBdBb3/rWDne91P7Tf/pPDz3GM8888/hJpw9rIYjiKcVn4+b3/IFetke+13st4ZI1tLU2CBi92DlrpqNscOeYaI+Wi7Rr3o3kFg9GCyj7a19vNmp3+5ERiQZKyj7TobAc942QFEhipJ6kyahkmDrjhCWdWqwpElcl8pgaWUVRaOf0G8GpJnAERYFFbWFkbpiZcSDBgQkHYmT2aq1+zeaGda3cb7HqVhSMiZCT1clhBKM0e34TA1mRi6KuBPY4jDKhJYZkhh4Y+ZoxXyU8dWBczYx5IuRCLuANjdcoYeWElpIVk0uG8FsS46SEIxkH3UkUa43NSomLGOfaRIak48KgOQMlgZOThDaCrICgoS2eZLs2yPGEdnNCvX+DdjwB62LKAhM0FU8QFSvpky3uh75ZMTuiDGgBU4FSQaKCxMUoeZRBQpCsqE1QW0WTFWiLJd5XhWZASJG8Ci+IkNT4+lL18t4w0zs1RmpsBK2gQQmL2bJ5B2Ib9KpHbONcG4tGYvh7aYG+yzJ6kBUxnnM4dVhBI8z2EQNZg6596z7cckOeLU/jnmFD7YVsdCZWnH3s+bURQq9vLrh929+r3d+g6xmHzoOjLGPbawJ7u2QcyJcAB/FuL3i24+wHlg5He4xx2lvEwQLx5zKlV+uVsxNS/zwK9pEPXA5R4xxjJrAMHmtU/V5QjQwJJS4B1Jm1hZ16B8bxZslxVqxOU3O0opk+G7YoaggZeWpz1NesFUcQTmAcQbgRwiRGoqpkA5rElip1VzszzgPjoeSTmrWWDMI8kaHBkBVpAtYFkNVYq0FWCbWxCSA6ZEzXE66emnHvqQlXTxXce2rC/FTBfG+y7WpCucrgQ4LOjFYSlNkg1gosAhwbcKyKU1UsVSzm5AR3TMZlNzMwFwJPDMwZKObGI/XSe1VQtaE1gawV9bRgPZ6wHo9oxyN0OUGrM/em5IXpjBQ1FUYqCcmTUHVKm4mMAsgENBNAxAVJC5JmJEvmAYlazlhjWPJsA1XLFQo4foLxvKmYe5Wr5QQpeU3eSL71WKADvrvtHerIiE29BN15/CXykm8hNNj9HD63xi63/edhn8QxcC5FHtSNh/Q6jj5e+2XHTXwzrih3KczjUfbW0f8VQA9v+7V/uNeRcNrdr9iG1cNl/Ciy7tprPAr5uULc6DBoxk/GkddTMvtne73rcZvnAfZ50HMDsQkjuDVETEAmd1P5RPeudGSSl+q2n7qeSiZoWuSgxNV5hy3lQD1nSI01wQUQJ+eFa+zILZgwcgYAggDV8FNMDSsxlspYVsJNJtwQMDdGyQJKjJrUSq2T91csSTeRAEXB2QrYeXkcgMw1mGHXT1NGzoSUCGVuaBXQZlBn5chN8oTbKWOeJ1xfz3jqesb1dcG96xnz9YT53ozp3oz5akK+ytA5YZ0ICxNWNSTiqSmOi+DmpDjeEE5HYF0Utfq9ASMxMBXFFRPmiYDJnpGwI9IaoFXM3XZacToecbo54ubmiJv7J9w/HrEsJ9R1tRgRRc4bg1NCmRLynJAPGelQgLlASwHSBKUJ0AytE1ALjOwvG1cdnPjPxyuFO9ZLafCakMlWWaoEbQRkhlQTwDZeDLmnajD9Va0URDXgNgwmEZk7Nl/21s64EI8I0MeYIbg9n/eL8L7xHZ+P++8FV5zDJ2Pk7fR99u3hEmmvvj742kepd75Onff9kmX32gieaJ85Amjv4ozmCy5kU7Ti8/jzaAHMR28hfNxxtRvS22DcxNLmcLg09G346CsaCsFoE9WutkRGbNVUsy1snK1MA0yZNa61FqUaxF1VXhYhDhRIOTYqf2VFi3LAwzUT22Kf1IvEeawJQGd47pyJ/lMN1yFZbk8jwbo2nBi4IcLLjVBKc/ZmwZJguTKeCc5qeTOJCbkRtDRQY7DHPCxn1p+T1zgSl84sDJlgTBBIUM6QlMwFxwykgmkqKIcJeZ6RpgzOBSlnpJKRSkKeGHliaLG4EcFq8dRmwuZ0JCz3CesRqCdATgpUQ7QVNtfYBHOhIpMjGK2MQhXFegLqSbDcrDjdP+H+/Rscb27w8vGIm+WE47qiSTNIPJmQTSkh5eT9MyGUpgSeM3Ao0DJB0wxFgUoGaDJXnGRH9kVtIYe6h6UqBojgasg8FTJePWf4jRBEi1mh5iJVmLUHWMwp9RkSs2fTlKI8X8ytmA9BoQTcLl9wd4vjAntPxO3PxrPtLQfc8X5c4C/9dt/Gcz+6T2ava1/cSeP4dwWaLgmcvUB6ZTbmw9pnhgAa7xFw/txjfNPwHMa/j9we9QdbiqY9slHQmC5Hu/3H39nEFs/s2I71SlvPPTPgGXIz0AHDSxUkQskEnhJytsh6YzaWbxGgAq0pRKzgWSY1V5wLIqP9cC0vWC45SCSbad1JkcSECKshzITE6xH53RH1stlW72afLGunUhxJzOXXrGiPJMLKhBsWHBJjckqaxBbnKeQQaCEUZ49uXpxthgESgkdQ7HKQGVbyG/B8F6MYSpmRcoZyBlIBlwyazcJpJaEWwpIBSg2cGpqDBZDUDhzkqQ1YV2A9AcsJWI7m7qseD5PkibPqyDcirNnZx0XRpKEuK5YbwXJTcXOzYLl/xM2nb3C8fx/H432cliPWdkLTBpCXFE+MMjHSnMCTsWbzlEFTBpcELRlSJghPaChQSd3iIc3GYOCTKSp2hIZPYjEcKzRllD2oJuQNDKkeV6QuhEB2nWBD4gk7sSBGAbfldQXwYT/dt7ll7WFC6LbePzr34u8geGi0ZPy17jXd/azb2yh7Abdf2C/t8/AWYrRXQuXhSPGM+mH9Rf/i0l2Mo94lePefv7r2+hdAD/JNDc93vP9nFvET7ci2RWb0pUF1+9Gd6zGGxHr1LQzvOGHTTQ/KxE4eSg5hNs0YyRBaVpXTMttXMq0dqihglEBIkVdtIZ8IfvmNnFlBfZ6qLye+wscyIiBfxBz9BSsa11S6Zt0Ll8FACaSwWEO1ZNjGgpUbrjnhKiXMfj0pmSttZsKUCFkJmRiVBY2sEmlicyTCEyU9b98E5/AchATMgpwTeCJnjWaQWzl8BdCVos2CWprFlNjyfhQAa3LiVIU2gVSYsK2KuiqWFTitQG3udGIrqsd+j8QTghtgJTQWz+25v+J0f8HN/SOW+ycc799gubnBshzR5ARFM63DpWoqjDIz8pyQDmb5UEkGqvD8LyHq5UWshLa57TgYDIJ4k7AVRFSjFGKykt1gG0MUQoXESoxzc4FMJmcSGaKvMLLX9WBhq4jrTl5ygRURoHFpjBlzabtLx4/oTqh38Xnzp372S6v5DkSBvlHwRLGoSDqEbu4Fjkkn2Ah9QxvG5ooJzedMcR5cFDFZ71rr/dmk6Bpth/a87X6ccI2HAIquWvz1YQJlL4ienCX0+hdAozAJpWRvOe73f3xF4yFtP/x5992DTjZ25i7J+AQ6690SV1IpaaenScS+mc8rkG/JgQnC1EtaK8SYFEC9tLXFmsig1Oxccc57FDQ8xkFqeSHq0GGt2BInEbV9DMkm/lsowA2ozQL0kgWSyAksGUIVQhmNE1o26p7JkykzJ1QmrAXOss2ovhhakq1VYSXASDCbeN5Tc0JPq39E1Mw9xIKcFTQDNAFUgDQr+CCgGZCiJhBBoLZC3dJhFSgxFlEsC7CcFKeT4HRqWE4NxxvFzQrUZvceKaMk419rvlwKmyBe14rltOD48gk3Lx9xc/+Im5dvcLo5Ybl/Qr1ZIMsClWow62TPqhTCNJkFlCcCTwAXQD0xUlRQW0PTihWMCmOSoGoAE/cC2mh2+nkl9g+cwdqfu7qCksjQdErNc4dM0FHfABRAC4GqPWcWRpagw7JtRIKO1Wp0+HysanNptuyxbSF8NpVvN1PZL7j4Ct/pHhhwHj8LJtq8MBcDzNpNQLc0JISQS4SoB+N5U5vAojDzXTDptgzshdAgC9Xnc4CHxPf31DuTZ24VufYGgCGqSKpeL0y3H56dbJSAT1Rb7+31L4CijaPyklW0FzwPWdNjQD78tncjGBt5yGauig/vu6wha+GbfYSOvZIWihaP1UKtcFsm8lpKDGp2HaxW4lpAWJV6qKepCYfqdXdYbIJxs8rx2iy3BIrN4mkugJrXjKkKrApd0FcNUvZlVodn52Sg1QWUOvNC9ViIl0dlMrbpxAIuAmkJtSlyyijJodNKKAxkrzpILJ24cxFLgFWv0U7O4CiwekLqvHjMipTMfRkLJ00KZEXLtviQmgtxXSsWNipSXgHOtkLUBtwsipsTcHOsuLlZcfPphuP9huMKrI0hxEDOyCljpYzisREhtmD9smA5LjjeP+L+yze4uX8f92+OWE4r2mkF1hWkDczibjyyonyFMU+MabKk2M5iS5ZoJK2hUUWlZJEWNWUBNdxt6sIqgAzkxMrGr3c++QyxqJHw6rlBObPFsjJAxUpjaHO/cDauPOMaPBcWcfTqM2uslTPYFhfh2ISNSQ44j7EGx/OtXDuCW2dkPywhFAi9/ggGQQLY5GKx37Dv36lZPIkNQIekdpfMbrEKklAFvPTtZXPO47fkcpDSdshghkG8BzbTL34PmCdB4WTGkRa/F/GvwXo0tM8cAQScC+pLNvlj3NPHve3kGnYQ7lhXdDjdfsq82jM+Tt9sTjBt8yqTzSvzkBGkhUJmrhgbpOZPo2Z5PqGxCQErBtdCZI/G1frcU9estJkLT1UNAlbV4bs6rFuGiiOHW2sD2F1WKpuLrrJYfMY8Oc6MIEjZ8uZH0DrBiuIJE7RaLKZlYztfPCZWaauEm3xhtXLX5AANIE3ANCuKVSiAToAWQJOijlUMq3GckTRwI6TVrU0Wg0xX4GYBPn1U/Mmp4k9uVty/X3FzbEaR07zERLJqrSsnFCSQc7ItTbEuK9bjguV4xNFBB6fTCXWtoLUiNcFEipKAxMY1MDPhUBhTMdQbJoYWRkuM5vG8YLRW18bJ74GhCd0CYh8zHnQQ9oVLHbGo6p4q6saCJrVVJgNJDPCSC0Gq0RxJMYtByeJjq2/jDLIlMZ6pWSs1hg22dTVQcuMSkOzUZ+wBGH43WlJnX44lliO2GVZNgGcALztBnSLpvEex8ESvzoX0NlGwjaGxPWStCh6+njaBTb6dcVyOSnfsHz2N9z6HzRXdHnTaJ9o+8wRQbCMqLu7mJZfcQw53V9ucbRtOh4fBF1bPWMFl00teO1z9vjHQy40nQWcSSKGlqkGD0VwjVAVILF9FBa3TqWyubSGjjTGt3z6LRSziA2ACq3EGQ40JO4jFyAc7hcXjE14dJ0xNLMuo2aIuooBn8Vv+qqKxYmHFKVkhO4Yr9fCFTtTcdNkILhsSGiVLhiVgYQIlI9WcmZCyImXyfCJH+yUFZ0IqlpTKWaBZIGxxogruRe7E76EtVub+AjeAVgS8rq2M46K4f1R8+tTwJ6eKm1PFaRGs1WoWNQDEjOxouxqBeyEsVXBcKtbTino84nQ8YjmdsNYF2gRFGmZS3EuEq0KYMjBnwpwYh5wwlQyeCnSeIHNBLQV1KqjzhLUULKVg5QJBQaMMkQySbIzbwsiaUJDB7qY1akArbmceHLMu1el6ErHXGjILKLnLzgoZGquEciQ427Wyu94qgp7UtHIZ5ozgfOEa3W6jFx4Y5+n2fvRs+ZA+n43DmNzyFvyLZHFI6oIaiCJbBKcsioJi6md1T8FW+tcHcgABWohA2vfkctOtO4Fk5fDa+ZwkdkvR5+sorIid7YTcja4+9420vbszXxun23n7zBJA0cbsS+Bc6DziM36Uxn3bylDFSTYdyT49R7JFJ157QXQG6/YxT8xYKQo5M0TZCCI1NDrrVYNpyJpsQrGXN1AnsxRhC+gro4lVQDWVyoLIRAxWR0ChmTB2qyeWko3ox908Pj9FgrYf0Grzt7vHSRysAKwgnMiqZxZVZFGUJMjVF/BEFmBvDWgZ1NTqEHlxugkZUTaaYRaAUegY2o/8JrZqYAfhur1PiiVn1CS9PHm4+1XJQR8mfFQY68o4LsBpUdwsguParPZQtf6olwrPnpOlvlCr5/xIVchSIcuKdjxBTkej2GkLWBWZFBMDVynhqUI4zITDbMLnUDJKLuBSoHNBmyYsU8FaCtZ5Qisz6jShpgnC2VBwavBrNAY3Q7YlYU+ATf4MFVVkE0A+G5gY1QVR8yBF1JNKYDSyfQJgoY52qMkKGkLCpb210XaI9w0GmIj4z6UY0Gh38PC7bnjsJ81dU5IAuCtYw8zogxLD2jJYNgoPaNK5E+RsUXrMmK/LtsbnIIQw1ogQlI1biMpv3HZWUzQp0caTClOck9o8tTm5M6Oe8HL1mSmAxgp0ocmM1tETuombUW05MoGjSe6KC/O/glyrCE90mOSjNHzCnRv7ySF4bMA2D1ZWNZqZ8KkTedneDuhw9FEyxBu5S01C9Homu8YJ1BdsJmgIIYapVe4DUUqO1NHt2Xg5h16GWsRfC5IM+B2FkXSq3S9VMfd6VSzScGzktXG4J41mn6E8MXJpyKeKcmRMh4TpkDBfZRznhKuJMc9AzoTskzpQfSBAU0ObGqRUq4yaMpaUseaMWjLWxFjJBGddjSx1ERiKTxitEmojLCtDVmCtXhq8e2WtXEEigAshZxitT7MOWOkKQVkbdK3QZUFbVlBbwFJNADNhSoy5EK7mjKurhMNVwaEUHPKEnCZQKaglA1Myap+SwJMh0UpJQHE6IrKMm8jNilgeHCafIvcHhOxIRW0OWnFeQWbC6txy6j5gCs5BNlg5XEGQbFRDqSSklpBXK2oHeEwKjATGGvE5bACEQO1dWsbHiEY8Th1+e+eMU5jp0GC/Sj6BNMa6fx6vR3nShQ9tAqi/xrDzXXP9IYuV/1xggten6pn/0ct5WQZAlx2Rd+VHVfvMrFJyvj6ffiQewxv68xrozJ85AmhUjUI78VhBv3lxA1+BbXl26N1hQpQYiFZ6JCiqmXAXU7F4j09wDKNG04cO0cdtgZgRBhKFtUaAMx2LB4shVr/F2AdMjJIG74H10+4BIzuvVyZzeaVQ/7FN9F7czmUvOcLJBJJaLpDfA3KkEEtUTfWlR0PjtFwigbomreCmYGmmPZPgBItHNLLFLxFDEgM1ISVByRVlIkxHQpkz5puEqynhUIxtoGTLl2GPjahT/CgzpFjsRDOj5Yy1JLRcUEvCmhgLCLUZn9siwEks5NWE0JoJodasDIX4QmQuUTL3obtTMhEmtrpH7KZrU0JSD6jJCpIVIhXSKpo2ZALmiPdwwiFlHFLBIU2Y8oycCziKzBGhCrBKoAsbiJpztgVDtlsmHheyGBz1sidwDdtDIBYXSoZsE68eywyLJ7pQQgaoWk4VKoMzgzJBJgJXBlZGroy5GscdNwbBCuE1ZBgdzxYROhvfd4z7GF2eh93HZZcFFycLEDyF564D6nOmo9nCjdYXax6m8mB2xEJONHR2L2BGMTmKy62FRd5lgqPdPMTZu4twRrgXAXDUosPnBGz5cJEMDMs/NNh/s3Wq93lQlm936VW1178Aot3rvaToTLDhG3llp+FhA/bImfNOxGehlBCM38qMgKEa5dkgO9d49OyIW3sl3Q8vQYBzMgxizdAzclEVdsvFkgmVtwGrrh1FfzLYoM2KvoUrUiHuwoKZ8hSZ8BZojigZmqME1Swfdsunl3dVo2QBAdwJcLVfR4EiqyAJIXmMqEFxcqFaSQBmtJQsxsVkJXhOinIklLmi3CTcZMacCFMBcobVw2F3BYWSywYdxmSCSEpCyxlSEtaSsDBjVcYiwNKAkwKLAqtaPlUTA3ps5ZBNwBUQDr5I5WxAjMwJJREOiZCzjafqzBEqDZoqlBsKN6hDqDMIBwKuiHCVEq5Swb00YaYJhSxuI2BIA9amWKliOQErC6QIUCp4auBSQGUC5QbiAqIGv9NuidgYZAplw0Zn8Pad/e8DNyxvuJBip5vTYhYiXDhjYshKaJmQFmPDdv4Mcwcj8oG2WRBjN+HBumVYQ4/U1BQle+nxT1dme6HDsI50mJ1d6aVt7QFhK8MQg2kvBi/N8PPVJa6RgI76Dk9FILx1uPjejfgxtjfqLlRB6izlhM1CEoRiqN1D8coLdD64vf4F0N6YGKONbm6eIU1e4Y2MATDCOcdpsIkN6VZO5HBvTL7aH/TlC7nct1fz6Bmd4BjcfcYKZukeBbBaUHnIVA+8EWFT8sJst/llQpWxeSZ6ngFFMNo0fIGYlZJM6Chvd4tVIWqlmtWFjoXvYtAPIjvyjgBkF+gsMGaEOL0Ly+adJvYCalkNKOFlwzUBeiS0QqiZcWRCyUBOBCps2jybYz2QsZQJNBkZqRSzJlpOWHLCkhgLGFUMur6oxacqPPYs8CqmsH4RI/FWTqK7pJCswmtK1p9iixeJQpKioaE58WgTuzfUzGo6FMbV5BbdlHEoBXPOSMyeL2m5PkttOAnhJCsWOqHxCVom0LSAphk8zSjzhFRmpDyDkrpFhD56Q57Y4mcxOW1qMPtqbA+tASoG11dHjxELUhJwNmVDBZBKoMksIVrY+e6s8mqFW5bYXE4xH/bCJ8bGq0ni7suHiLs62GORBswxhYm3Z9kFCnAWCzqLCw1WUMC2hYYzPtieI2wIv3FZCzckgHMAHQ0APg5VGENulbk3uys9jgtYjle8694J2br1hOXQ618Aje2SQhFfhCQf/KSP2vaHi4G/BfiDeiZEjAxdGbWYTfvfcPevwVMdmi1mBqHl7LENVkdoCSx8r3ZFZOUXiNXLbts9EzbTXB1FBwBkwR37R8ZKIIh6QlbAhtzVl1TAPpiFBI2kF1wL60el2YLUodnBFWfHh2fgh5WVVB3Boz3oH3da1YL+AIPFhUgTMFlpa4Zx01mMnVCTLf4tE9ixxprZy1UMJmIGsJoF1LiiUkblhCVlnBJjpahlw4YM67kyPlbCCHe3ZJQ/z16iW8AgEmRmlARzBzq0jwT2TNSshrCqiK0sQmHGPGXMh4zpKmM6JJQDIxdzqTUQWlOstXYQxMvuKlyRoDwB5QTMB+T5gPnqgGmumGZBmgGdshXQIwazmCJGMJeNPwfx7EcRRRM4etE+i/wqogbODdmVDlFYRdwGtAlIxUqoE5vPQPqsGV1Ftx1VIThezUza+yOMKUo65ZQ2S2LuMzriQaN7KsyOvqLvThJC6/IXF7b9u03mDeHDc+Ub21IX9EfqeVnqFs/ZoAQNB9HNzNILwuf/CqCHNF9LbTTJNqpGFekVHDICliN0YHBADHpMjAQZhg/64pkGEdUwPPTXQggRQAO7fmD+FT62ghBUAVHd3CguUDRRd58podN2RIQrLDntQALxmSEgVBCzxW7DiiGBMrrmLx5rEkgf7xJmFm2eA/UMe0vHoKGCqlHnNMUm0GDWQHJ0XtKE7Am2yV2GBRYHo6ReJ8lyn1pmtGzs3LWwB9MNDacJvZ6QtIRGYjRFSDiR4MSM1SudqnJfhIjRa+FEU8CgydnQgy0bPBxuySUQCll5iMIGB69sFl9KDCrNoPEKE5pKKJzx1Jzx1CHh+opxOBCmg+XcKDGq2DOuMAvo5iR4+WT5R0tlNCxAWkDTgnyomK8aDteCq3uEfJ0Mjj2boKQoIhVwXlEjdSXj+TOL0Z63oSoblBuUK5CMVlcFSNmto6JANau0sWIleC1U6v9sFAUd6XmeSgigB82icZ9L+mdYGRj2GVHYkY8kHeA0HJUi2KJb3HkUQH0LF9x45jPRgkGsnO0xljpTMdnXdPhJLEr+N37TO9sTg9we8tytLWwbAmdkBJbtuE8YfBDtM08AdZVIB5WG0KEgw27Ao9/TGBajlhS/t0VjgzUDoa3f7tZGsRjxkkftwWP22IVPz8ILGz4W+oZNg0uuqftgFLfNupIXQssz66Ujk5KV3Y4rMf4cEIllZ6u4JeR6q8/mqN1jvmZbGMVdcNpfe3LjfiJDPfdEoGrkPQLLC0q+SCsD7JFvE/ohjAhTBPzVRKjCyn8LG8ODiAMJyJc5gSGg/Kk1YkvpIHUBJFggWChh5eCRc9CGu9cSuVbvCYvswihBLCeLDPiQFZiUMXk/ZzBm37+RJb2WDKSmoNxQVNCyOUonBp6aCfcOhOsrwtUBmA8AJwvb1wpDMUKwSsOpVhxPDfePitNCqFKhqYGKIB+B6QQslVG1oCAjcUaihAkJmo3njj3m4WV/TMlpZOUXmr0nzy1RkW3cqytGQp2BPMOUCYs2RczURlpDMGBrH9wjfc4oWO7SL/fW0qhAjtu4zm6iIVTHsHjioH60cLH1M8V3er7u3HL/75XP29bPuGdXfCMeS/6b8aI3rXh39SYoCa58eX96WtJZYCn6Paybl4y2J9A+MwTQpZszjsZILgklBZu1GprFo97b20ODui816BPZ8WLSf6OukYin1DnZ5mNd4GPsGuPNBY8EVYdxjBoqqMFjLduEUddgm2tY0FCctMtwcldXuLy0m+tuLYlAGvWF5myCCEAeI0BVUBPLz9EGUq897YmqPVm1w5icGkYt6C5oXQA16iFVBMsMyEpWZwiKJqSwgGCMCVEvSNlVAQWiJLaq0UJI85wPJWgzNF1TWCyGFY0IlXwMkbmcFBsbBsEET+LkxK/OCO1KEakDOGBW2eTM5KUwykQoDZgrIbkVWrv7VKDJF2e1Y04JuJ4JVwe27cqg5mDCEkHmVVGp4YQVN63i/lLx8lFx/2Q0QMoNyA35pJgrsICxMqMQoaSEyS1WFYvTUNrop8x1m6zgXxYU2WDUZrnEIm3MCuQuUlWD/xpZayjeZt16uT14JK3/HdW2UXiM7/dza9z/wlQ5Ez56tocpWgbhC9K1uJYwH2izcHwu2cH9fWh2vZM0CKPLAudSs71ico8CbnCT7S9+d+FbHMn6s8lN3ay4mPh9ARiU+Uevd/FI7TNDAO1v+B78H8q3bFyBafj6rgS28Vnetj/G4btVKonY0GbOb8iwbXtcVeIx9/euiS9agSgN93QP5sowpH3wCZsA6s7lgFX3LqgnqYXGZHfR8gvsLkkzgUSB3Ir5JmICaPFtbZBqPGQqFarVhIDA4NiqYCH35vhFaGCxmmOjbNViKJIKMsWCrigKzKIo8FpGGmDy7dlJM6oeITK+OjKtncmOJ4BnkluAnZsaoWZiS+IjYwMP5mslBREjqyHckgJFjY8taZw94lSWKzZBjT5nVaSTgouAFifsTEERZBZiVjGh6o6oyHAvmZEzI+eEXJLVJyoJStmg7w7GOJHipIIbqbjfKu6vDfcXxSKEhgyqDaUZDx5yAkrCVBLaKUMTIyMhuTWpGgF66lFwhY2zHHxPHnPo1qPa4KMaQ8xoeaRS/5wboYgLZcRUtrmTIH0NjCk+Oq3umimXvhsF17jf+bcOc6AQPOOqHXMAg5J7SVn0eaR+3JG26oE9vtyIhv51U0gBlTODi/ppQ/P2uUrwciO6ackBsYt5T3ec/wlbQp8ZAmjfQggNVtCocIxDK3aPnwC3B+bt14EBI2xPzrZzqydCqF2Nv3W8W3xNr7Tt5ksEzcW3PocinhMnHRJB2ScGRTxIYQuLu9ESbBFNGoAKdR41j3Apw3BazqwQS4fDry1hoQGrIkqDShVIMyFkhHTa2e2zKIqY4uA17PzeGbNCgfR7a0mrigLFROZmyxqOE8ZGd2rZJDHbVA25Vhubbu3uDSslIVsuTMS4XFuhrKDskGJHRyWP/CYSK6UNRiHxeI7xqCW2eFZzeUrkRfRcgLInM29wdB6u2VxY4fINJSpob5gTOCWQZbFCgtWgEWoWoy4i4KSCkzSc2opjq7hpgqWSPbmqABhpTVjXjLxk8CkhnTJaYlRKqBQEtgAhm2BVgNXxkzGmkrllpZhjciXCKmbtmEYEgIyyCY1BNQGVIc2srIBgozvkgp7HWsyoFZsSeRcbdkyxS5aQ7L6nwUqOOd36/PK9NH4xOObjbRvOEO+bhpn8gMn74BbjgFU2rdI1EHVBxP1qTDiRWu2t/muC17iK3XQToN0FJ9s1jlL+QfLyFbbPTAEU7cIN2w/CGNBjwdrQKejC/tZCk+Zhz3EQiUMQTG/blxKGj5vBaDh/2I/ykGn4OwqeOFmgtobNC09uShwBAdQwdJhZGGGnQbQvwETJqHUGRFIIqS1lwBdwCUodiwcJFBUGt9bWQFUQbAfq6Cl13zN5simpu7TcDWeX2GEPMLIYs4AixTdDPTfIKqF6ppM/J0uqDZtvi8KJIdaU0JT7ui+N7HVim+tKm7+8eczMmSKgZiElv7eFTeDMrJgJyEkwsTojN5yeBsbzlggpAVNSlKzIuRnrtsPmDbUIgDwmQvZ7RhrSTVy7YIb6jyllUMoAF1tKuUK5Qodn18Rg2WtrWCugKo7Oy9Da+oZajX1hXSF5geQE4XgaRvpqrkQrf04whKXAwBOSbH1jwOn/YYzYbt0ReWRUrBItxElp+3RwZCG4l14YlcdY4x/mSr9r6T9fD0y4FpggCsWUHQ2q43HUQTfj3JfdQZWcJ4jQueHu7EE/8MX+x7pkc1M2Vm4Y04TxkrN5MxB0Ok6TNC4u7HCGHgxTVzT96mKgx/WMAugJt89sAbRrD1vrx9eXBuv2/XgkurDHJnzidbjdFNhqWoXgGCXdaL096ELitHthMwqgdPvzcEv3JDX3TRpE2YWAihUZgxeVE7IcCE2OXIsuU8/EJlFog8Nv/TMnHBVSj3+ZRkxi8R+IMV03Zz5QFXe76aA1yjYB+h2243lEAkCkJ6rfnhBUmy82LAdy6d+Vvt1NjaiDPQKL+TQh745ZSSCCVoeziiHkmA3anUA4kOLAhJmBAwOFFYXVGMh9WWtqQAdxDu/iSbI5kW/uAWPjdzPoR0OjZjZ3BMDJodhsgkdTAnIG54yUE5gszhIF8qLCAMsWg9O1QlaP3yWCpgypK1pb0VpFqxVoKyDFEmFbBThZATqy6GcwinewgAZE39x53c1J2/ww2W3P0MaELYRZA5BgW0Zz+0f7k9oDzUYdbK+4P6jt11Rz35KVwfCxEOkAgJolBN0ET9REGmYFwjpSYGNM2Curw3245US8e6Xv34SZDtoO1yHXcIJXh2p0QlW3Oh2h2FkZAl43Wm5j9x5kVr7K9v8LAbR/7MBty2a0eB7e9iLsLtylDf8zPIQLnrBG+rafMXeNw/FC4nXabaMAGt53FhDvQ0cHe77PJirdIvGOqgshT8cxdJcC7Dk8qDCrp5JZDm49kNcCV5JehhuOdmMJxcsW456sqzAgQgO4iS2UcMGB0ABjTmhfmELA7BW2EFgB4gUayGMx3WXjHg1idvFg9XB6jELZki3hrrlxwnqsI2DuhRQHYlwDOBDjoFYKfFI1xBuTMw6TVUpVu7YiQBaYixNWzC0Tm/AiBZO5c1eKUhqE6rz6hHC/WdXTlMnKSHhhNGVgIrH6TxAvGWHCp9WGulasq1moVRm0ruC6ItcVpS2oUtBkhToFEEkGtQyi2gWQ192GqD9YtTSD82JxfvM0lA/726SBpFocUCpIKqBBLxq/FGyj5Hy67KcBhu9GXe5By3tYPTPQkXi2vNvDbtTM4iVskycm8aiHKtB9yPDXMk7YvcaJ8YcOvLDPH2x0+L20HASEIArHYUC1ATpfX/qip90F2k8UEPIY23J+uodK81fQPmMFUDziUbhccpjF9uiW5n7wxOttgRytHjr7bHeYMV4Tu4yxq31HLnV8vKhL+6EbOQBtY6iRgRQo0G6gXlrBYpDaxzhc2CTY4pdIkX3RTALTpLd1BSK2yAa0U0ggHNBqd4g54g4ES7CMpFVoL6vASme3aZvjXUx2KyhuXYXFBDZqluDhtl+ahj5yOYf3gWA+c/a48vZQWMWZFTB4XNQQLRJRJUsiNaQdo6hp0RnJNWogk4IkljRCclg0iaAIGdO0bCcxi4WQSUBkikAGMDlYBGq0SsrJUGo5Yc4bpVDOAlXjfWNnIDCGCi997sSirXkhPXHnZGtIUjHJiqYrGoxvTrVZwnBrIK5AC/sz+5pr91ARrlWziNXph0i3GGLE4cmPoGzWHaFa7hAM0i5n/8LZejveMxr8wLlgGu2LS/M7hNeEAIRYLEVcU1MYyMTCLgG44W27JNY6A+ilickI1+V5P7bY0yhs726yrRkxwn3sRDHAbQKRo1mGbsTRXVHpdAqXlreRAuYJtktOyTvb+973PnzFV3wFnn76aTz77LP4pm/6Jnz84x8/2+d4POKFF17A53zO5+Cpp57Cu971LvzBH/zB2T6/93u/h3e+8524vr7Gs88+i+/7vu9Dra8c37d/xHtBw7vPLnmoCrZ6MufDYjzqSIix18MsAGtYuFFr33T3MyVk35Hx0HuBEu3SwBhVvUtbBbgCvAB0AhDbAugCyALj36oWiK+VLWjdGLWSoZNWBipZeeZGSM1KL5AY0wB5ELoLXqfXiUWj+TZiADu9D2t3RWaGx0kIxclAIx3RFvbIjRdENpJHYS7GBIzKhbCCcQLjBLJYFHRYzpoz//qxVNwdBFDVDTbeYOXDm6JWqwHUXHsX37Rr8asj+vy7yFciRaMBlKENLA1ZG5K2bqEpmvnvu0IQItPcXoUSJso4cMYVG+nolAvmkjGXhFLYKrcyDAiQDRqtGcY8nchiW15zqCV2SDlhBWElt1qirzHQ1FxsCcZEwc6Orc3ieFUFq2+LKlaF15NiQBJYEpImJCQUIswJmDMwTYpUFDwJMCm0iMG5gbNtP9zHEtz77+I3d02fscX027zVXpmVBJSMuSGlBk7i8Tj0+9HRbQo3O1xr83tz7ufdbLFLIduIVNKwVjxSEwDVUJpSjVxWawXWCqe6wJYvEDdzuGPkmmRq9ndcBPcL6BNujyWAPvKRj+CFF17Ar/3ar+FDH/oQ1nXF29/+drz88st9n+/93u/Ff/yP/xH//t//e3zkIx/B//7f/xvf/M3f3L9vreGd73wnlmXBr/7qr+Knf/qn8VM/9VP4x//4H7+iC7gkZPbf79+PD38Xp7cs+bPfbWiY7XznGnX4vbfSxOeTwnU8KHY6zyhoLknKu4TQOJBGXvoLwofq9pcqQMFdv/i2AlgIWGkbqJXgUXJEHZOR6ibuQAThibjT3GQyrrnuGveJShIbba/VNzLm5GBsoEJW8jrTZsX5fc4eE7DYgKBgg+vGZp+RZ9NvTyNCsg3qbiG1S2SYhUbnjyEK+bmHssdqK3Sb0/68iGzRSiQbGwtZv0kjz8ghyQ5bZlVkEUzSUMTqGRVVpCBmVXVAh2viTuHDyZikk0Oup76x5RDljWmaMllJn8KoOaHlBMkJKBk0ZdBk5RioJFBmcHb2ci9HrjDUHrvwM9dgQvaieezuR00ECRg/G/x/pY3DzdZpo3pCXAdvxKRcCDwReAKo2BgIl2gXetg8CuPiPE6T0cLZrwl3ORD2wgAwBUkYxoCRBVoUVNTKsXdlcS/6LsVy9t+3fj2BEt2QjZsA2q9Ro4J8q11aK/qpadsuLShhzcekjETJSzfrrjXpVbTHcsH9wi/8wtn7n/qpn8Kzzz6Lj33sY/iar/kafOpTn8K//bf/Fh/4wAfwtV/7tQCA97///fjiL/5i/Nqv/Rq+6qu+Cr/4i7+I3/md38Ev/dIv4Y1vfCO+7Mu+DD/6oz+K7//+78cP//APY5qmx76I0Cs2F83WGs4HYBm+iwGo2AZh/L5btmfHo7Nj2/vAmGwhcNrtF+6AcLkCm2V+Ni4e50FHJy9d9GAyh4tJL+xmc4IBTraSJrLMyNDwopgIKdTrg1gc00UyOVJLDUrLsN+K/0agDlBwhJ3fsXA1m+vL37MLctruclRrtKSlbSKzu2YCbBAYjFEYWcJpzKVQDrrDB9U/EZjsHenCCeYiDN0/ESGJHbP6E7aYspVtyAmYEnBIgqtEOLDiwMABwAQy9xptRTospmSlthMb60EBcFDFQRVXopjEhBMpb0nptMGQE5mizQzwBJRZcZiAaYLlA3ntdfFnJo3RMkNyhpYCnivSnJCuEliKCc9GIGRwMd43MskARgFzAdEEpgnMBZwLkA1tB3B3v6KZOzUKJ4i73nqAnKzERHivgh6Kk22SYKXZebveyOtasLlnx+SH/dim3Xexnkbobm8Z7YVPGC/N9TKrFKGoPNDfMGx+3Gmq7CdnrAIbQc4W77HxubHJbwke8bwRYxVDtdJRio6n6Tcj5u9woCiN0iGUg4Y17huLYVzC6NN8ZNPs4e2xLKB9+9SnPgUAeOaZZwAAH/vYx7CuK77u676u7/OX//Jfxl/4C38BH/3oRwEAH/3oR/GWt7wFb3zjG/s+73jHO/DSSy/ht3/7tx+7D/t199K9GT8/exYXtvN1/2ESQfu/889uOw9ijYNPuo5Cu+tiHrWdK1fbNpw+8knHhGbEEJcUJgB6nZNO4QxEaQRSC8xuTBJbzKiPXffvW06LdkQbu3Wfm2X3F6MEAze1hd2PnUmRWZGSdihy4hGKjLM4wKhvRou+sV/juR6q7hKMW+QsFhp2rKeJEkAkIGcNN8tGHeYtmOBw7/6ZYibFFYlvDQcSHEhxRYQDMWZNKJKQJSNJhv0zmhtzqRn32wFGvzNT5A1hkzjZNipAmoA8A+UATFfAPLvwcUuCCjupKqDZ3W05QUsGzxk8F6SrCel6Bl/PoHsz6GpGup5RDhPyVJBKQcoZORfkNCGngpzsM/JjSUloJUFKgkwMLdQ3KVZoTrrbz4ZZS+bVXciMcEuRIS9ah2GqbUjHzQo6Z5e6hL2JQ+ytmz0r1X6fWFubD/smVs9paVFaw8bQLfOpN9q9jsl5bgXFv82DEn3aBFGGKVKzb2HZn6V0hJTam3Rn702RJPdK9DoN47ZPsh3jE5fCA0+wvWIQgojge77ne/DVX/3V+JIv+RIAwIsvvohpmvDZn/3ZZ/u+8Y1vxIsvvtj3GYVPfB/fXWqn0wmn06m/f+mllx67v/Gs4l7uoznxdxsmo2oxtlHfelSJoV0Ht4es54faH/5xDh2/2UMlB076bmBRWCKB9HKXCMJMDyEEz7zbjp8SjI0gEYQYlWCkm9J6Jrx4wJmEkCJh06169TtsREVylnrQ2SnICTcZVjkzm+WRQIDC4kqRjxPgCJzPtw0JRV1RDaEUz9ye8farM0ed34ooxx37xdqYfb5yACdYvMwFmTVIgVKzWFYiRiZzXwEM9RiIUgJxQmJjsi7xNzFKSsZskKw+UGCnmUK4ak9o1UygCaAZoImAiaCxJa/9QgQtDEwEPgB8pUjXirQoWBkE44BLKyEjYUoF0zRhvi44XGXMh4R5ZhzmhGnOyJOZfJITlE2qkJsWwfphbje7md1xZphsSLU8InHXrXCCMqElE1RrBpakWFnRWtBWbVbBPtvgklIeo3eUZ+EN2e8/HmMEKwSgZQWM2ZvdDCC3ItQ0yc7Wgb1SNK4ofRb2vwEz2GLGPUvrlmAc+3pR2OzNwFjUaLP3DJKNTdD0v35kUoDb1s22PxaeeHvFAuiFF17Ab/3Wb+FXfuVXnmR/Lrb3ve99eO973/uKfx9m/LiNkM1xATtf/0fRFO2VCKBtcbMT3mHH7g/5uObuTnhRfOZjkNiWf3ZffIMzUvtA7JyKjuyK1Zi9pgtS5HYohKnT6Uv3Wdi5kltSJHYMdRdMsGYDZDQyKs4OQttcUgBeHyc2zWo0cUKOsGM0zxnpiel+byMXxWI9IXQ2V048gojHKcxleK58oNPYRz2FrvB6FrnFCExyShYL5LPVsQEncMpIqSBxQaJsQggmEIyULxlbOBNKZpREmHPClLnHcnJhi4c5JQ+60uquRAY007nVkY3JWycGpQwVI0HlBqQ5gQ+MfEWYrgllZSMaxQouDahAUcbEGYcp4XDt2xXhcE24viYcDoQyJVCxeJIi2TlUe72gQI6NQLDg1EPzPuZkhQJTBnvNEPV+r4WwTIRaBeIAhxjY45R42Ho4rtPRGOfAhdhv9F6FZ7ptjwrM23OHexM4UIrMoCabACJ4Dg5ccRpB5ONU1X7GsHy8EPpFJVmAXtNrq+U1HDAkrJydBFZji/y1r3qhCHfB4neq5wgNv4/OtOEGPqH2igTQu9/9bnzwgx/EL//yL+PzP//z++fPPfcclmXBJz/5yTMr6A/+4A/w3HPP9X1+/dd//ex4gZKLffbtB37gB/Ce97ynv3/ppZfwpje96ZH62hcOnAuauwbvfojcPhoufP4oTQeFiM4f8JNqu+Pp7oWo6fugTdeS0Oj82jT66Qs8RCFNIEnQsuXQgA0yrB6ZD9gth5LYGCliAuJseMTu9/eJ2IWSmRTmmrY4Egs603Is9LIaIk8CZtqtOMdo6WYBmTJummXDpmyMIJAAkljS97BYeNItBb+ZWn/UhViUB9feCzNQjGjUShUwpy50CjEmthgPI6xQuEtEvVigomTGnIFDYcyFMGXbLMnUFhwAqGCAmqWWuEvFBLX7KjNZLaNi71myWQ0TDL04ATwJeG5Is4BXQVpt0ROSnhOlyZ6VsG4MGh6noUxAtjpDoAQE7J48gqENYYGOoCsRexDCgXVxYAW2mGJYQmENCfsz8WFcMeYVnTu4YqjHrYnPLrGc7KeNDPsEy41X8XClgxDJpFF9NInFP229ZhCMi7AleOI2EMg4FaPFiTlmZFKmLAHq9bI2tWiUDV3oxjjYu3GA88DWXhixP4AY5MTDojicKNwSZzeHht/tO/Tq22MJIFXFd3/3d+Nnf/Zn8eEPfxhf+IVfePb9l3/5l6OUgv/8n/8z3vWudwEAPv7xj+P3fu/38PzzzwMAnn/+efzYj/0Y/vAP/xDPPvssAOBDH/oQ3vCGN+DNb37zxfPO84x5nh/74i5eA7Zwie4+2yNobsuHV3nXu5o1PMwRoYDh9TiDHvccl17DNNA6OKOUhhHV1Xqfnp3ZFwATWgYsT0bA3JxCJQLOm2ZKyh3pZq4355ULeh6yPBRWRwGRCYOeVa/BJeYaZ7ISCY23pFF0aO/2BM3qgYMEzmOmmwWsffExbdN6LYJtIoIsb6WXCHcLSMX7CagmQwAmOGXMdh8pABlKZ2SohTbiUmIFJwUlsYJ0RVEmGAN2cTbsYpaRlQcnL4lh96Wpa6/MbmklcCqgXIBcQJ3LxxjjTGM22KFZsAYJr1BUsW1tgqUKViFjxa4VsjbQUpHKimldUdaKPNmCmhQAMYjcDedUNWZNJig1CBvnXYedN+kKSMckqkPfW4MlpwJVg40ioYL7toJwhOKEywJoFDB7C2c/RfbraEzN0L16wnFzpQ3cFbeQUOIoUauRBQTfoMS4hVns0lpX1qirO9T7z0NvlQDeE0TSFp4Vt3w0tKq9Rj0O+hGd1VkQYqzHGPJtvJvjgjgimB5mcr6C9lgC6IUXXsAHPvAB/NzP/RyefvrpHrP5rM/6LFxdXeGzPuuz8Pf//t/He97zHjzzzDN4wxvegO/+7u/G888/j6/6qq8CALz97W/Hm9/8Znzrt34rfvzHfxwvvvgifuiHfggvvPDCYwuZvSAe788l4UK47dbc7/MkDZKLbRwUdwmZ8TsdfvOobZyN3f28STYNm+CMkI7C97R9Fgk6jE6pws2BACpo5IFNwpYLpMY6zSB3YzW3kjzzRgQgA0JnI+cxDViNXJOVrdCcWn0egyEbZU9wVGmDCYnNjoEi6Hm25zzOxbjNUegsSgQQYHk/PmGVNsQcNfZVyJFcYi4KJXMJGt0QnJIHFg9QMguuwVB8Zj5ZSWuP9TLBhFd2sMCcQIcE7pBog0+bUWNwZWWgkbvTyAr9qWOYecpIUwGXGSlPSNmQakoZna5VLIeptYZlbbhZGu6fKu6fKo5H206rAuJEqY3RsIJ4BdOKlFdQqqBc0bihkMWhLDiY/T43s5qSEdI2F5ZVgA4dCYGjiuykt8GIoC1qQYXbCi6IqHPBRRnHvXI4zv1RKN0lfEavyKVp042BsNz8h2HJqac5yDAKzYqkLT8VprRvaKPAd+rZOY0E146fYIyFntPbB7EwOoHtGf3cXvCMyiwufGfalH8er+PisBM+F7bbWvmrao8lgH7yJ38SAPDWt7717PP3v//9+PZv/3YAwD//5/8czIx3vetdOJ1OeMc73oF//a//dd83pYQPfvCD+K7v+i48//zzuHfvHr7t274NP/IjP/LYnS+4vZ6HUBrvGQ8bcG6hxvu9EHpy93k/IiIgMxx9r66Nu8fnjyOE9kKLhpHJyUzw5Nqru8Dsd4PVM77wm2rINjHOLhJXoixh1IAEnntD218oTOPW5kuHE7RQBaF5+QICae4T2TgRvbSzJ7X2Wj0AztN81f9vXbnYz0v2vc3uSzsAgnsyBKadEjqJYxiqzm5mVgOZ66iSEz/CFlJ0V8z2+BoUK8TibS6YQdzzeHhi0MTQQ/YtQWdDkpkrjTqqQbNxzlFO9viSPUtNBWkqyPOE6XpCvprAUwHlhKYJVUznbqJGRF4Fp7XhZllx/1Rxc6w43lSsxxXtZBbfiZNjfS3/J2lG5hVMCyhVNBaDmidLHk7kuWAAwM3ynNjuY3NS0ii9TqrmvtKIwaorD74QQ9CoQbhBqMLstGDm66pTt2rHcMReiRz/7ufzPsYyDHNzP/qD7AnTZPPDxmBYRM4A7wKmEc7dYsCwyI89ut07AbCSR4poAxuwdzYEUJ+iYaGNptyZAOLQjvzzYaX08dol7TjfQ/LtldjXSEN/bBfcw9rhcMBP/MRP4Cd+4ifu3OcLvuAL8PM///OPc+qLLWqFAOcCCNjcbO52vshycNdweHL3+YKqQsCGuz//6tbuo/pO2NSqW7qfj8A4NoYBJK5yuwvBydxAsLouCG4Bwmamx4/P+qVdLYwERQ1yOd8vqdHNZPJuABhsH9vUmQFocwnZZBOIpK4dNAGaC6AOIw+oqN8TG45GGbllBMnZmNgElv3dfP3hCPHOjy5Dl952nQIhYwdYyaDDkZ+rpEjqVPgCE6Tw2JrvR0Rouj1GZicczWzWz5RAJYOK1e+xhFACJerxEE1swigDOtnflNnKLiSzfqapYL6akA8FXAqUHJ2mcLYJ8cRhoKkYi4NWNKmQVqFrA1YB3MKtjbGAceKGG26Yp4o0VfDSIHMz4ImqU9dsyrUhragHvS2/Ub2wIPWcphhTPZhOMWdNADVnkYA0d8C1HqCPdV7PnvE2M8YpNc7nwZDpLvjRk6U+xc54Gv05C7m1dpbUOUios3mCwXyKgarbd3eIRqFzyz3WMJB7gvns1uHWcty7QtsFRVOFme1+MMGFvu9u3F1C6Am21zUXXCSVxqAawyhh5YQFVHCumOzvLXbfvWYtOrrfotN7GdM7yruDjP/byCT355pVof0YRp5pC3l8boABc+mcZb0rEHeEoIg6OAS4RTIIArALOCAPvydX08KCaQqsau6VoORprhkSbxxwpF6j3ilvjKvMg7hhnZAFxZ1mzmn+aXj21GNS293RPpm3xGHAvPYR9rW41IZVcjejC+cVhBWKEwUFD3eN3sr2kGvI1IlMg4cOvnSS+yst14i9zHUxsAKcYcBr+1DPzWBjNs4J6gwBXAAUBk8JKAmpJOTJXXglg1OCRIkGAYjFCuh5DpHVTmgANyhXSCz2VYxYVoHaGpgbTrkhl4a5NqTWwGJWCWgFuKJRRqXWa0kZJ6An24qp7qkHLKxAnlV0ZVQvUy7MaGzQ/gpF1YHiSDfxMQqRUcnYT699Qvn+d6GEjOHXPud1A4v0Gogxr7piR2aSxE7AJmQ6S7Wv1l525HxRCWE0fBh6EG3JrqE/6m671fYL1m0N7PzLM8nlc/kuxZjOd711w19le10LoNBcLgmQ/X2PfXj4G8Oka6c4F1KvvkUPNr27m+R7AXSp82dm72BqDLuO5D4a5jVtPyElZ8E2dVR9Moiie976KeJ3HqDUPkk8FgOj1SeYdp/IylzPSr0eiTq7NYSc8FK6EJIQQmoCSNlcX0mt4kvqmrKiqXGL9RiQxwsEgYzzPB/R7s6x69CzheX81gb2z5pFguyTLgQRDh/pt78poYKwgLGoOBzck2gFTlO0IbWkB/t1E9TKFueSZFtLSC2Dm73OwsjCYEkg8fwdNdg8uSASNmSYJRoxMFn8h0qG5gxNyfO6GCBjWiB3cSYyd1nOhDwRuBAoq0G5OOIzaiE7UTRt5q7z+/sy1JJzSUDUkFjAbHHAnpPjAAxjUE9QyRBpYBEwSh9TjRVCDZ7sBaGMRiaQKsiHnMeCQGf5OMEEECCE/ZS5NPdjH9m9jy0Sk8OyiDeqhmhr8QvyuQHfkWQ7aA/Yh2Y0mAuxwPffYbCUcDa1o091lFm+SPXw7Hgt44WeSaxB0MS5Y0KcJZYOQmdcYmjYJ8zN/dr0BNrrWgD1e4jzpX5cu0PzDQh7CK3RHTcqDLHPE4S642xKqF6eHdH5scO3/K77H1JfVKHwEtvDyFD/nuCWivaJoyKoLENyjC/VozY09j1UL4fENoIH/Q01FgvfKh4TkXD3qPv2tzkaCG+o8ac1VSQhqLMviPpCFQFqRWflDs9BJyEmeMzGdORLDMnRQtnY5qNl18NxSJ3KPqwUmHUVMaMOGCazJDmg52rCywqyeVE2508jp6IxkAY5StAYKKhxJ+g05NxQ8E/IcobCvnMwwga5ztCUwWlCSgWcMogTtsKBlqMyuRZ/SIQ5M+ac8SK0SAAAocRJREFUUHJGzgkpR6KrOEpOfPKY4KytYWkNSaWXk7DsfOrPUvootBhO6gq1B9ajuJyGnWqCWDVoe1NH0gmxW+I+tokRDrgFhAWb4IkNuK3o7wXQ3hs1jodQYEcFlAXnVe+IXFgyOuomBlIEa8TnyHjywMrrIGVCiJELie5n2w4bfevsUxctmd37UTBEXCd+e5fXZR+TGNv4u/HmPEHhA7zOBdBIzrcXOuN9Hdf0MS/kQQLoyd3nS0Mft7WJ8fXFoN8dxxm1ejU3bx/v/psNNeNaW9S45ubnDcHkEyyF5uT7jgKoTwh7oUJYiX3BsZgIi5c1cMurI7x147EKHrgM6wM1oFbbqStyGK/FPrDnHXxtZgwYQ4B2JXW8WzEP71IoxnHSfPnHtlQiYkvmTjPuNyaL8dhCa1p/EjI2bxWryKqMrEDRbY0CweIwzFBO0OBk4sj3YVAystEgBA2oM4OcjoghZHlGygUpZaQ0IScvQhccbkhgJSRVQBKWRriqhHkSzAfBdGiYDivKoSHPFTSLxYBETEMgM08rKRYARxASEiZNKJowS0bRjOSVWO22keW7hHaftvUatFnrmbDdVzK0nLEimDACmQuxUsJKjJMSjkCHX+/dcOOwBM7DpuMYqLvf7I/DML4/+5IcEdm5J/yCtouyZ+8AFaHN4kBYIS58us9YByuKtzhR9GAYvAyfy9h2iZIqZyvBKJxCedhf/CiALnEX0e54+20UWKHFPSEN/XUtgEYNdxT2sUULLWesIaK7/cbP4pgr7l72H97GHujtr/Zm2L4TwDaT7tR8tP9/prDo7mddyAzHhaJTxysNpqEMZrnfLdbzfgL2vdjCY3WxzH3WFO6G8Ro5QA/sihrdv4gXrPNTJmdRIHf/xE0KfgJyRRHeraDF2WhZ7Mq3zPLQoW/ftktbcpUlEHUbcwL14wgIzclDtdNdw+5dA5DYyyb4cR0sQRmgRAYgSDButhJ/ydmV1fi6snZSzpztXFETiDn1RE1hK6Og3h8rQEc9zqOuSJC77wgK8tR+noF0pcj3GspNRTkJ8k1DWq3MBAhG0Aa7wUIGy65IqGrIuqaMqlvOPrND250/j8hg1uyTjnzR0m7BwaHlJryUExIzOCq7UoJQRkXCYjwNxtoxjPXRso1x1A2P4fPQ6WKfNhxjHBNAJM7GMw+WkLB8IgvXlIaA8/fCiuRu5dHtFZoUgM1151+obD0YBqoOFxK1uuL7DdjT9b9NQI3SdL+OPEig0G6/8e/Y9hbRE2qvawE0DqxLII24X8D54IyNd9/vfzsO6sdvow4+HOlS7CcuYD944gKGsXqpQ9H3UGxk95N+4oD3CCPQcH00q2yzmv2IkU3arScMM9cFU4u4j2l55mJiczGpJ6i6e0fI4jq9aia0K4EhfLpMxHkNTIGdh0Hd7WUJi2apkG5us7jqmCt5eB2K2y0D0+9i6k43e2axgDMrEitSSh7vCo+mu59UURVY1RBzhYHmRJxUYKUOnInYQh8KTtIfmjEPhDmXwMxIbMAE+5cBstiX0ScAmhXIAknNYPXJXH/KEcQwodmIocniPvmgmKpgXgWHRXBVFYdVsHryZ83V8c0ZSBOQCoQnCBcIF6jVSnAB52UVkvpQMgsqLCAS8iCKlQpXFiRO6KR5iayMQ4Kj/CjqeUA4oVHq2De9uCracAwvckwPvuN9jAkM77f1wBNH4zuG5W55Qm8XPhTw/y0NgCQET1gf4yT1nhCjQ6E7DHqIDfuu3UO/Ex57AF1n5NhbQK6kIb570DaeZ+zuXljFeWMtuvwoXlF7XQugsFBG1+QYA7pL48WwD3a/pd1+r74NR7rL93opcHXpAh5yljG+uB1m4xO+lfnQzZBQpSJoGqbGsDvtriUmmwsMEQvIRhDXqm+Tx5/EWRPsi5i0/bAes1WlXssrwARbTGeLM4QBF8qjcXV6sii2445u1v2iBOzn4TDrhsmnzl7AJJ4YahREibQvflGnJmS5JU66xc3Yat+wIdxs7TVLAUQQEgvCQz1/ChB3yTEnJM5g9prf7BecgZYTGiens7HFkFWA5s4mEdSWUBt3toecGYdDwr214Kllxqk1HNfWgRSnXFETIDUDNAPTAVRmcDkgTweUMqPkCSUX5M7YYFZNG6lcBo2IkgtWt/aChkizbVJss3oaZDQ/Uc+IaSjnQX1cjMriqK/tp1W0Ud8Dxuc+josNms+MM9eocDhlYypoT0hVT0qOcWqDzffs0iR2cMkR9R7CEhq13b38GvTEse8hbEZjB8DGUu8XfrZ87Be7/Y2ME+xNzPj+yS6Or28BNC5Q4wMITXdcw8f38VvgfO0fk1OfYJztcsf3lk0MirZ7/5gPPJSWTShvSZSAdC3PXHKDHRi+/O4bpsH15h3qCTlD36oCTaGNIcF3JZ372+Yje3VJCJKXW2bXEqPsduxrlxs8dZ7Iia3on6UwWAwmck0s1hLcBluaKYbbvFc8YqHRftcGnZbcu2jZqU6BYoKJqIFDKIFQVFAUKB5SI9g9URJPpgxaVLNSGILcjOU7cmNUydCB5Gm6fn4JzrWcwDk7jM2JSdmqpEIzmljMxGiBFKSO45OGWhm1EZrnf2RqmDJwfWC84amMKhNqbUbXkxg304plUixLRqMZXGZM1wdMT00oT03IT03I9wrSdUG6TsgzIbkJIgK0NVQFqzLLFJToviUBZQVlcTi4AkU7ozfPAM0MTJYnxYW88u5GHhtzea+oj2t4tNFtd8mjTRd+ZyhG6uOl5zWF3jbOVWdE6NjpMwVzEEAUJgvQKa/2EnLfxoE8DOB+DcOiNwqYW8vFXpEdBdAoiUcBtPfOjP37vwLI2v75jYtMDNT9Pb9LsDyqcA+tN57XbVfOA1r8gHAuOR908sd42CFAu8uJ4Mu4La8Ch9GCO8IKSK6skeU7RPa9L3KbOyFmH4ZJBNfCAuFFCLtf7ZCGFmMdWHw9/NwHPJ2xwhvmwRbk0EhFN4EWc1iGlWODV2vvYsRJGRs/3PjMxoUr2rlxuunE4eZgNQFKnLpdWYgxQQx8IGyWjdeL0GbZ/EJmAVnek4CRQZrMShRy4e3Jtw5Tr/AaRKxIWXzBNpcV2ElPkSBi+TbVe8uhKqvl8qyNUBtwFMKqBFVBQsOcG65nRb0mtJqReEJOhPtTwvEALKeEihmaZ5TrCddvKLh6Q8b0BsZ0L2G6l1CuMnJJKEaQh6iiu6EGtfPeIbtikmDw++6KdFaHFHWDkld6ZeSSkHJGWhOqREG/LeU4ntWYaD4O0b1SiuH7cV2P40k8cYWhLz22ZxRMPq5jADY9RzZdcqGfLfwxN0JC7CZ9LEyXTDmc73omKMa/+/Pvj7Fv+7Vl1M4urUlxwy8Jy1fYXtcCCLgd69hrRHuP1qu1bEYACbAtbnc9s2hhSOiYvDC6t+4SNA/67kIbF9hRW1JYNncXlgQEKaGSxQ/glSjhJZYNUzt0RNm0f3eXgcxwSrC6LtScmsSD8UQWVE8Ec0ORuzSgoLRNvADgJUcbkApWhcWQxGnqw6/AZgGF1EqshjTTjeYFej6fgU0YnXsVdRgvCi9U0a2ts+/VBaHnspAaLqpoRdaMrGpCCCHDTeQTNSBycxAnD8HKEBFnV1ZL3BVFbWrF+hqwws7ZwhoL3VwNcSZkNXOMcodM+CmgVVCbYqnAKopFHAVGiqSCmQT3SgOuTDMvKSNnwmFOWCbCsiSsMkPzAXw14/B0wdVTCdfXCYdrxnTFKAc2ODcRWAW8JDA3tM5Y4TGigp4e0xWbIc4FNoJcVWPlSMzInJBTArukMpD7Cn/6/dmOwijQqxjmwC6Of+t17B/H6OAucRW2euw0IzQqBGVBKEvqCtytCTgu6GftASvFKEDGAbzvMHDe+f334yK43/9BAk5xG2oYr/d1LJ5Ae10LoD3N+mg1PooC8EraJf/z3vI6b5trJxYyNDGoso/nAFK18SAPkmZ3nCM09y2bf7eXji/cTnD3iLpZpkOAePNl2xlY2QaMwhFCvs44CiqC8pYfQh2GS2FJ2c4w5mQ4C7IJtATLM1G2IFBrFs8oEAcfqAk8uDuRyMoZAJ6Fb0JRmgkhajhHDcF05+CEyxgrbKoLjmD5Rq9YG8+nu2h9UofQylBkFSQVZBAyWekF08jPR6JRuggaEVQaRCwnpnrgi5qC3KWZqqI1oAlhFdqsKoGzjZvVVMnclIYutE5qBbQ21KpYqmARxeoGCtyqOrCAkiLNAHvJiCkxbkrBUhjLKWOVGZWvQfMVyvUBh8OM68OEq7lgnjLKZLDvRARu7FaNF6pz2maCkdKqGHt088C+RGA/BRR7JNsxCy/WvKqMigRBRlA6xTwcBc/oVh/Xz3Et592+57MoEJUu5AXmYoa4h8CEvDrbe6QmGEx7aN3iUWzJPHHWR/SZ7K2duxrd8Tr6H5/f0sR9fsePep6Eb234fXQ/PnuCSZKfEQJoH1zcKw/7z16NABdsOWp3Kji92WqlgypigWLL/k8IjRodWtzG8Yq7JwphHF8mAOIaNxeDTyQaFkM2LbqXO+gFqIZOMBs0eLhxpOZeSqrOKUYb3Fttd1PubVGPhTvAd8aOHQLJdiBnvk4SAiBwb81hvAo0cUZhO1YXoqxncd4Gp/xngCq2jHZvI4pqs3jONeiuUe8FUDwONjRZVEvdNreWyOEeagIQZDxuWx0Zsgx3tSTWpM2+k4oohS5VQZXRWoI0QYsQSiNDlbkrR5TQxNkBmlHYtOaHWhSyCNZVcGqCtYmtHUSorFZao1jp80yEKTPaBIgkJBBWJCy5YJEZlQ7QyQAIc5kw54LipbrhwqbFrEpi4IHKhspz9gdTOkwQUee2S0DKaCkZDQ9T31aCCVVV1E7ftMUzt2e6jfe2+/ySsbDff1TszYVpz+lsPRGCNme5cKrCKC2yCYlhIsQIO99hONv+76tsIWH3ls7eldYvKKw4eHlfbO9jcau6JU1dkp311Xc72utaAC3YNKDRvQLcthgfVaF4WAsBNmbc373naAcPsE3z3g9swMMYxrnWdskIuj25zIKxCbqJrFjwwcP47F4EFzysQxcJvaqcLxomOniz3igAAob2is7EotqZ3v14vdoq7JA8TJYQAhbEt9+LNKzSzL3UHGmkOI/fAoCKufQcHq5xY4Be4j7RJkcDPRVzaVywQqEIeHfI47glIcWVIsdmyAXyuBZ7bZ/E4mCI5OVWTHCQU+tYrMdKeSchqFRoA1oV5NpQagNXRW5kXH2SDDzgNDdxLYbCcpojsZIHawPWVVGPDXURHBfBcRWrLKruOXL4tk5Am23BN6XHcnA4J/ChIKcJIjNAV9ByQJoP4HIFmg5AmUDFag+17MKVxONeBrkmLxWhDj6BsvPfJWgSs5SSaSPq5bkbR1VZ9wK5WzVpLFTa50Y8vxF88CDBM66f+9DN+VwO/j6fLJoMyhjl6rtZHQPfxuItAXSm6j7pVeiONt6IOE2/ULJriFhUps0lSt53MzdNq3mQBfR/BZC1UcBE/svezN4v6K/GAgphtxdCj3K8sEhMENnfwNoEKCZcr/CFcBvTNJzk8tm2Il/DOdnmjwmgyJIhR3R5zwPtxr7q9mYODvfabACD6I9fxyXh2F/r1n9TvGgohsBIomb9CCGJLdQiZIF1FVRop7aSAagXFkqComB7tuPzJ9oUk3M9VAfmk+06DAJtBwlB14FLYTy6YttToshiU8yClASFBYUJmRWFFTmdezMHbCCCJbz6Q1YPXhEs6XNFBaNYDAm2eJC74qgZpL2qoRq1mWCrK3BaFcel4nQSvHxsuH9sWBaBNCNzbaRAgZWBmBlSGC0RKmVUSWhIaJwhZQLpjMQWB8rTAalDsidj8M4FmtnmATVQEyNNzQlUM6gJHLIHRlhEBOqWhiV0JmdDYApLfvtuGiz7WNYTtjVwVP4vudfG+S4Xtsvzd1QcfRKNO3chJJvQ6Yk6o228b3eJyVfZRlTN2WGH62jb6yg335U2Q8OY+yWI9vYG2t0361W117UAivu+B5CcLcL+V+/4/rzd/nY/wEcBFOfex4W2M8Z0GDFaW0tujggpVnKtzolALR5Em+bSB8QoWs/Ptu94JyFmDBxbfH5hfZ4pNn4qU5fD/oHS5vpytFvyVTjorkahbP3R3i/LqyBfxBlZjS+OhZEaLP6h5ETCdu2VgJbMBQO35LqHMP7CwFWBlRgVtrCAWM+13JE/rPlNCCBJhnbPAyuQGjbvhEPSyaHWTEBmKx5mMHNDuBEzUrKk1cwGkmDa+PqC9zPKGaiKMd8QIQdUmQWNxFmmLV4oTcy1tZiElAavOGootyrAaQWOa8Onl4pP31S8dNPwJy9X3NxULEvrHHvIMObsOTujdgYKQUqxWAwlKGcQT0jZc4CuDpgOB8zzAfOUMU0ZqRRj6vanLakZxVBKoMxAY2gl58UbXVtewbabtmYhQrd9EzGKx4aUCbltC3rMw3EWxFCOtrmhhzGxex3It/MjXNowaIMSGhm2Ob5vtPu7FzyvgQV08bC7u9MpSagDKXouYLeAcPvG0vmVPCnvIfA6F0Bju4R6GQXOaAmdD7yxXdaFxm8j8Ll7Pne02/bXGWsy4AKINuFz5kf0lbcTo41XOo64C6NvUOBomEOAns+PED4bLtr+yjbJqC8UocXae4KDEeCZ8ERevsHP5H5Fc2uxF6rz8thCPa6hDg9ehbFq6kzABM8fIu3I8GCuIZjixoQthKWulLpiOiooY4A6PlMEgJthxePMTZdhrsEM7eWRI8Af/F8J7NVK7flYBU/nb9CIB4kV8JMGFmOktspidt8k3J9NjYi1uYDymtDSzH1Gq8HYoV4xtClaUlv8ybwmJ1GcquJmbbh/Erx0avjkzYo/vr/g0/cXHG8qWvNy0ARwTshzQZoL0mECHxh0EGBSkFP7lJTAU0E5FMzXBdNcMB0KptkEEKVs65i085E4mio+DoNCCK6IRGkDu57BUg7iVnEXpA/WTX3aFJt4ntFGRXHfFJvQivm/zd1RE9vP5vHKBiduaGRh9ej+OOPx/hQE0J3N71BMEMLGntBvnmtZjc79kYPwCbo/UZNhdyygj91e1wJor18wbj/ecdi8kke/v8+jOBnPfbnd/uZc+KAXCevBQcJwhmFCkG7qfG97QbT7mcdCTAC5xn02umxB1ZiSFFF+1/aJnNdLTEP1ovS2LBhY2ZiNLUBMfh3i57KkSBcQMFqbCHZRU6eaMzhxa4Ta2AvQDbEhgscBPC8GLoAUm4vPr1cxCKBBSxsF0PmYOVcMIpcG0NssCkpANZqhlLxmT7J7EudrYnxgwgJVAWlD0uqxJUJS5w4jtnpHFIF1hjpdTlityoCwYCVBUxNk2gjSCJJcACWBspWKWEVxbILjqrhZBTcnwadPFS8dF3zq/gkv36xYF4FKM+YEZqS5oEwTyhWQrjLyPUG+EpSDYvI8oyknpDkjHzLKIRn0ekpAMjJVMwpajzVQM4VlzAHroJMeOwtj28fzwApdPQ6h1ZCQuRnFkdGBWmnDeI6X5nt8Nxas2yuj2L3fEpIx7BEjhof3odkItqNHJ/ZzdrTJ/jQFznkL9cqET3bhkyz/rPdfB4uo//Csnd23/TL0KtrrWgABt62bcUCG6+UJWowPufHjEN/3clv6Nm18cM2F2hg0y/GzmKBnq+pexF7oRizKvJsbnWwqmH5tNbd9PADi2p2E9uPlBcjNeFXXQ9UIQMXdZ3BhE/fBKHcAq/JivwmhIV56gVzzUnEmZQWKWqwI1Ewb9kA2kwFxmcxSGAPJIxv+CEjfM2WEgZkG3TriDohjuQAab2fyK4KY1cMmISDunnSUdPCzgkmRuCGzW0qUnBWg335IY3c7mkW0JCuPkFx5rmEtBAS7EqQCmqymjmaCMtCIsCpwFMGxNpwW226ODS8fG/7kpuFPXl6xnlYr8gYAxEilIc+KaU0odcJkqae4IiAlV5WZTQuY2NkJzMXWOEPAZsEIgxqBq1kuMSTPjCCy/2ys0JknK+D7LApucOtPUZqVES/NgAF7ZTKe5/h6XDdHRV9xnpAcsXSB1bTasots3NrvZDiqH6lzRSk2iOTe9hoFz17sYffZa9fO7r/aamgKg8/FWIucAkvHiTLovjFvXwsD7nUtgEbBM3psx4H3qJD1UTN+1HY+jEbz/S4htP2NB29kYX4kpvMZpNi0LRnVk0fo2N4PsZ+ZANR9V9p53n1CDcmygQKzygAuiAQAhYVjAk1dCqiSoeFgrAsR/wiaRwmWA5/L1HxRFyB5QCl3exZbTg4DYOkQb+LIO7IFvFtfDKDRpmHr+Yw514jHHK1zle9csbGYhQIOW9+28ddRxMGQcnGPtef/hJUrJGgwV2MVQmum8asXGkUiVE+TEdqsK/H9kASSFVIJSMDK5oZbRHCsgtNq/G6nteF0ajgeLQ60HiukmkhWstLfaUk4SUNBw1UWIAnmrMBsVpvxgxJSIuRExlpNhuEUslqziuQC1tys9hz8oW0wQl/IaNv8jpml7nx5hB4vYsCsRsQWqsLGvRdDnbAxlOwtnlgLtilhVqMA2I6+WcQbnCd+ecEcCC3ibBXY+1rG3z0pm+HR26ZsWXdIxbXKZsqSK4XumL0ofPaX/qTb61oAxX26BMMeed0epT2u4NkG+J597EFH3H8Wlk04yodJqy4Jwvp51AE8SuFLQoiH18A20ULwDLPVUNgmASz/xRZWYrUFR93FIq6hemyIxeIfCRbDSepINziNvRK4wbjTGizJEoQiAfKwWFFnTejrWAJxA9isx6h8HIUpiRC11JxdOyyuICS6LYCAsEJjEUKflNV1xE5nRNoJxZljIfQFTI3SWiVBm0GKVzZfmgnIiGdZ31eQsXkroVEDGkNWgbIllzKby1FVIFVQPSfIGLAJktlKOjBQEyx3Rk0A3V8FL7eG+2vDcbFtPTa0o3jNH7WYdGbUJqjcjAX70JDXhurWqQkgAwPMxJg4Y6IMooJG2cY+Gfs2s+X4mEvSLJyAzMfIDa3bPa+9PEOgSioDjck2coBFL0pnZRkWMBq2mFMM6Ywghj1fB+L8GwjFSjtsScIb78U2w8bJAJzP272SOX4XwipWn3G75L147dpeCNugVlBol25Zi8dtO/nwpaVsbP/XAtpaCJ+xwFw8auDJPmoHMPZ/m/+ZhnN2YPUDxdFtO2ln+0YWNXBLg39g21s5d/3sUudGJa5r76bxa1JLwkvqVhMb+4AaWJaJUMkIQqERVXJKG4XHgAYlQV3wdAHk49+D7AleaE4Bzg7KJfuhLbraqXVCgNma6uKU7Lya7P5FiCLGhf22ZzfFkVyR2Ep6UyyWUBembo3RBkBnJaRmqK3EXtGUDb21el84xdEduk6WOFplWyCVFVIVyg01JVCq/TyigkYNohnSGGgJIk4AmwgtKVoCTlAcm+K+KO4LcAPg6II0ytJ05FPUwcgNaIIqgkUaVrXy6QY7TCDKKJwxc8FMBYUKiDIqmZMyiDv784FC1aQ/dcXJYmJRWt2UBhNULXxhzUNJos6JB1S3VCqsKuoKdjKec11qVD5HIaQ4L0J3rniMwz+EzyXhsrdk9t/Hd5dWndGM+NMTPtGLfTiH3Z1PIj0/r7OUhy90r7S+xl1+XQug0dgdDeV4/6QYI2ywh+DhXozK9KRtYIUQGjnExn6O/aazdwAGFw3UwQCq5/s8Skcv+R7OVKFh37Fzd8yPYGYuGUASLykgdj/UAAHi5ZYbs8dihglLt67UTu0LOQGdGWhUKDKM/JmTcYkFTT8KIGyLqpXytoVLmjoSDUaPr1tcJmLHcYkbCmrLOSFE0myAKAbNEcMCR1aWOryWMTYcn9GLYDYHXqiXXSAmUBIrgU2MqmYFNXh5aiFQU9QmwLpCWSDUIJy9emqBIMMksG+ZejC5EXAC4QjCDQNHJtwkwikzamHoRGYmZQz0Mm6G8gpwRWNxpgRCzYxWLB8IeQKzbYlNAAms2iq5tUPNY2BeXJCbgJt0aiFtgK4EWQi6MHBi6IlQF4IugKxkTBBNUVVQnQWhKrwcN3lhugRFO4vRybC14RkD53HCbYqM81PDvh1G6Dh5xskytgdMmlsj/k9P8IxtH/u2WBC8hpU44zttQigEUbTxEkcyxQcpt4/ZXvcCaAhXnP19XODBwwyGwIoZWxV3ARTuGjuf9v/3w/lS37cTuAncV+NYIt00cEtiLEy6nyL9om/Z3rsTRufGgRQH2oF7umx0l5ZV94S55Py33cfMYeVvJ7fcHe38jYDl7Wg45DlO4wuCo98yASkBqQB5srpoPMHqoBUPvAfnXFO0CtRqFkXk0jW13Jjm4L0W1wKcCZ2whIipJ+2yAwsU4U5iCIylLFiBoOrVW72+jRgfXAOjkX0GJrQc/baYDme7b6sAC6MzFNiRzCRqTdBqQ+MESRXKGaAGwmSIQDEuDYubDCgTYnSViBXKyW9k8K6NWq66qaBbWYQMoAAaSapzgs4FWgo0Fes8GXwjUpZQAawEqgRaCVoJwYpN1axDrvYeK0FWgi4ELPY3L4y6MtYV0GoCTHUoRdjXfnblz2zrsFn28zyG72jwbe436vPU/tLu96PFstfk9u0ube7PVht71L0G/rl2l7L2qrwXNWfZvX+McPTD2utaAAGbmf047dzxsn0W93oU/HS23yVzYUy53P7K2VMcNag7BqkC/al2k0DPDttzXe4+ynasM3MDd8+RvRDaH0e2fUzAuIEWVUEBBKYm4jWAJxSSInG4rYauCCE1YzLo9PZwJmtQhyFTMbLMaQLKTMiZkbJYUB8w+DYDVQWLWI7mqtsGIS8WpmfuGrOyBuAB+drNzlfG4UhNGwNEl6BOSunWUnhLR54ySyo1uDZ5cbVULJCfyALwFgMycVFhbNa1WcmM1dfrGkmh0owVXIz5e0JCETGAQGKkYki1xEbhUxTIa/P7xeBkbsEeTIst0VZjKBPKRFbf5wDwgcAHBmaGTBlSEiRzxzeTwDnDPK60wm56BaSaINLgsfOcLzjCTcUh+G6AqVgsrOtg6HAOBF1TBhDVngIRN87RaKHbxGfBKhP7Vmh4/NC6mIuJ0J1VwxEfhe/k0iT7syeMgM1Lc+Zx6e1MS9t+MEr1mEBPiI5n7/F7YHvf+96Hr/iKr8DTTz+NZ599Ft/0Td+Ej3/842f7vPWtb/X8kW37B//gH5zt83u/93t45zvfievrazz77LP4vu/7PtT6BAmGHtDiHhYAs29XAA6+zTAXSzAa79ftzcaJISyQjiO5NOj25vsFc35bubAlo9LZQAjG7ErdZb7Ji1GijvUixqDiOIAe9H7snn+vviCGdbEqsATFv1g5AHWG7yQWLwmG6aJWLC5rfKbIPbE0SjS4G4DZkyv9PTwjPjGumHEvMZ5ixtPJtnuJcc2EQ2LMZEXhcgNyI2RhFGFMwpjBmEGYzYZAAQ05knbPDdHl+ThkvGjJa9NYfZqEVHxBz2wUNImxEuNEjBsw7oNxnxj3mXGTGDc545QL1lywpoKaMtaUsXJCpYRKjJWAkyqO0vByrXhprfjkacX/e1rxR8cFf3Sz4P+5WfD/3F/xxzcVnzo1fLo2HEVQyWJzKJarUw4Z8yH3RNFSstfUSVZzJwIkwQ+Uubs2c2ZMJXWWg3nKOJSEuSTk7Bxx2XOV2OJSKg2t2Sa1QldL5JHa0LwcRLUQk7vn4CFNN4ODmSGsfIxhCFdwSDtz+YjZCnfb6Hqrw3vdfbcCWGDJxivUX8vgQt9PgksT4q62t7se5Tf/B1vc6ORmLI1+6kHD3ZuXj3NLHrE9lgX0kY98BC+88AK+4iu+ArVW/OAP/iDe/va343d+53dw7969vt93fMd34Ed+5Ef6++vr6/66tYZ3vvOdeO655/Crv/qr+P3f/338nb/zd1BKwT/9p//0sTofyvvYRol6SdknbOvzJfCCOTHOLc3REhp/q8NvbhsQj6kBEXYaib8Oy0h1S+HZ/24UIrz7i913+99g95sLVpBq8DHSdir35kDNIZJUQdQc2mkMAhmweBFtpScyCFkZRcz1FWgn8ODSJIBgLjaIUeJEvZ3iFyAwoQgWNIbl5rCAmwm2CIyzC7pypu3a8cOdSvGJQ4aZaLDc3ALy0RbIwNDGQ1gyWbBc1ATYIWVMOYNyBucEzWws0MSwPAxnx25GqnsSwVGAI4Aji9XxWQk1A1IIWBtKE1TYopGLYhJ14KSRfEZ8aZoIZVVMRZByRSoVnBOaYarhlQqt2FpicEooOeGQEq5yxnUquBcbZcxImJCMEFVgaCptIKlAW6F1NSK6uoLWCnZuIFoVqMZVF37GjdHbhVE89UiA7n/U3IhkwBfVBoFdfx0G6QV9qSuOg/F+xqO5xYVClBE2B1X0aRNldDZurN2e668F9Ok1aLEAdkXVJf6YezgGz/fC6Alf3mMJoF/4hV84e/9TP/VTePbZZ/Gxj30MX/M1X9M/v76+xnPPPXfxGL/4i7+I3/md38Ev/dIv4Y1vfCO+7Mu+DD/6oz+K7//+78cP//APY5qmx+p8aDh7NNymU9lgHoX3GOge1+64zyNlx6gfjecAbj+TV/V8wtUTeRMEdObL8f2D2l7CjoLlDKvux+MYdGoxgFGlHH0cXn408gbYF2nWuI/i95Id6WTReEOOmaQyl5zfP2c4JgBKXiMGA00R2eKTyFBRnkMHSs4sTUOVVyLU1NAyIOJPzG9jJDgmQi8EaO4ye9JEhEStWwTqUsdKIpEXwbPnso0lGHwa5AmkVgHV7gejKYMoIyVjGeC5IM8ZZTZXGZOxGbQK6KKoi2JZBUcoXhbgpilu1F1HSdGyoOUGmhrqUkGtImlFSQ3TJCgF0AyAnCaJ2BG1lgGf1KqvalBiJA/WgSzIliZQLsh5wlRmHNKMqzTjHs+4hwnXmjFJQmmEQp63I2JCplVIrZC2gtoCSAXJCpYKK2ZkrjYWV1ZAvexM5AE1OICDrOyCbegUiHDGhyYCE0Hh3j6f0/thHs8q1ocFG8/mioH492x13a8Em2AZdbnLs/DPuOABbntIBqqkzdVD2zoTgd4R5fGEYj/RXlUM6FOf+hQA4Jlnnjn7/Gd+5mfw7/7dv8Nzzz2Hv/E3/gb+0T/6R90K+uhHP4q3vOUteOMb39j3f8c73oHv+q7vwm//9m/jr/7Vv3rrPKfTCafTqb9/6aWXANxeX8PDMCr7o1DYC6G99yn2j0G7NyDGZzdaP+NxQrt6vOZHJ4dRjQi4/voBA/ySj3bs2Chx+4Uz4CGB4Fjs0fu9f2PoZkCzGR7f0U4mY7aEkFkButUMIlUwjaBn80HbIuTuRRdE4tecvW8THEzgYIOuYJDHT9SKrVWCIbiS86UpGaAgSERdJd7kqucoJUOnYcirCeLToA6K2JQlUBrYIeI3nlJjGxuP2YoE4YyUJ8zzjKurjOkqIRXr09oAWQHOhnRbFHhZgJdEcVOBU1M0sZygxi5g1tV+o4bEtIqhGcwZRAnSCCgJK6uVZVgUbVWIu8SCa64XaWJ2gEIGpwlcJuQyoUwT5lIw5YwpJUzEmGHlMpJXp9UmkFahUgFd0bQCatEspQqmCnADpQZuzRKYUzNTNlngR51wddyEpCfuRm0MSmJb3ebEONTHYT7O/9gvFPoQPCF8tiPFBLpLAL0miv8jtLtF3Ss+HOP2TSNsL9yjsWnU+ppaP8CrEEAigu/5nu/BV3/1V+NLvuRL+ud/62/9LXzBF3wBPu/zPg+/+Zu/ie///u/Hxz/+cfyH//AfAAAvvvjimfAB0N+/+OKLF8/1vve9D+9973tvfT5S8e/dY3Z/dTeUbnuo9lusuSNaZP/coo2CKeNxhc9wVs+5MIkAnFPuPAKeby+FxwDWXuvJwIYKCDSbCx2WTQCNvooeHW7dcmKoabYQY0OAdxW2CKvT1EDdDUaeB6PmMlKywgwVigVifGbgjlbLPhmSCHJTpOrWhzu/hAUrFEeoV/zULQ7gQrLH2nHucYxbln0NRiHo5MmdnHr8SQE0EZOAIjZHPVepyVazJuoIcTICTdUEooKSZtybD7h3VXD1FIMOBEnA0gAsguW+3YGlAS9X4CUR3G9AXSxQr+q8cky2/2RxldVjK2slnE6K66OgzAWYEmoCblTx6dOKl29OOB1XrKeGtoTU9DHHJnyQi5dYmMFBTjplcLGYD7vRlGEoPyN8NYtEnM6CqRlk3GHdKW9YM5YG1hVcK5BXaK62pQrlFUIrlCqIGpjFACABsUteuj0ZuWvkSoaoiKE9zufRcB8h2KNieT6bRvXzT7uNAnD8bOzPayj6aP9mkDJ7t86fBRfc2F544QX81m/9Fn7lV37l7PPv/M7v7K/f8pa34HM/93Pxtre9DZ/4xCfwRV/0Ra/oXD/wAz+A97znPf39Sy+9hDe96U044HZYA7jtVotBG9/dUgCGv7HvjhTgbAGLzx/pmfBuh06349H9rp770XXslR/90glGSRozsQxbBm5JTsZtvyPc1xG07AT0JMVoBER+gIU8tJc66NBwhVPrKFDNLZWEAY1qp1auOsNq2tg9ZlRSSOTFiKLBkxpVsagik6A0SwKtagshqS1QlUwIbYFu3RjzxW+PL1pRsbXfhkTIiZE9TqM5Q0q2ctFkJeWaqlcTbZDKluMSjhsXQhZY9/MmoDVGE4aoQZ9TzjjME66vGXzFaNk4z9qp4YYauAn0xFgXwZFMeFSF586Ys1AZQAWomvBZqljhuUVwOjbcHCumuYDmjJotF+h+bXj5VHG8EayLm4gbUZ0LnwwqGSm27CW2HbhAiRw45wIAsrloRM3F5rIiJgNrkNIqlAXEJlyIVoCq/10htAC0ItJMEwSJBJkMXEFJQNygvPnwuKMZ9WzojwIIOAcfjMIqpsn42TbSNzfreJzXtu2trtf4VPsLGrXp7u4f2i1X/JPv1isSQO9+97vxwQ9+EL/8y7+Mz//8z3/gvl/5lV8JAPjd3/1dfNEXfRGee+45/Pqv//rZPn/wB38AAHfGjeZ5xjzPtz6/xjiIbNjo8D9w2402GgR36T4htAibRTPuO7pDzwgxsXtG4+yIg3AMOt1Q1h194v75S7VG9sfZX0xYPqMAuuRn7Igzt7x6xbXxJKZ9bl0wKcMIFJuh23remsBiLBUw7wsZH5sCDAMjFA/UJ6Id+WMIXmz9cGRUS4ZWunFrYBEgazMhR7CSBm7lavRBzFCDxx1Ca2aySyoASrIy1CVnJEd4UTaYsSSLK60gnHrgXNE87gRlr9ZqQq81mItRxRiq3UKJranFszgxSmGkyaybCsW0CvJE4ELgbKaaMNDMJ2mJo53ltUGTYD0K6k2zqqc3Dcf7C+7fnDAfJtBc0ApjYcZJCDerYDkp5MSwUqhqzzwlUMnIZcJUJlyVCfdywT0uuE4Z15wxM2NicleoP2RpIGEDGETlzIWAhUErI1UrOJfEqrVKa6DWwLKCZAXJApUKlmoIOm0gNCtmR2JxIFZwFnBuoFJB2d122dgVklcf3SDb54JoRMSFEb/3Ymwe6lgtosJv5PCFSLrkqnu89nDRsv/2NfJ1AdviNLp7QrkMT8i+W69x9x5LAKkqvvu7vxs/+7M/iw9/+MP4wi/8wof+5jd+4zcAAJ/7uZ8LAHj++efxYz/2Y/jDP/xDPPvsswCAD33oQ3jDG96AN7/5zY/V+SvYAjfmB4TxP8KixwE1uunuMoB1+M6X497G16NZf6uI4KiW7aWg901Bw4MmU6eBTRvp9a1x+29czN7tlnaf7/1Ou627Lnik3HQBKU4jQ77IQjGRoECRdTPmuhCqtnFVr3w5hJ6UnBXaz+iWngIeW9mehJJlaVvFUMXCClJBdZi3cX3apLGSEC7MB02c3IwdWX4NXOACiBOmxMgpWb5MIkg2Es0Gy7xnCJgVK7ss2B6dGQAuZAADRkAaamtItWGuFS+vFZ9eGw5NMGuUK/ebnghUGDQl8KzgBaDs0jKSkdWsyT4u/Ibqyji1ilYblnXFca0oVxPoUCAlo6WMlRhLI9RVoatbuZTd25swlYLDNOFqmnE9zbg3TXjDNOENueCpnHCvEK4yMLEgoyGLsQ9w5PFUhSyKugBygiWitqjlA9MGmgEV0Jqh5hw5p7pZPaxiDBYkSCxIqYGzxX00NWgWaBGg+SwXc/1eIoYfkW7naLcLbvg+L2zgaBdHAVJ59ets6IuXjvPKRdoTbNtU34TR+N0FPfhJt8cSQC+88AI+8IEP4Od+7ufw9NNP95jNZ33WZ+Hq6gqf+MQn8IEPfADf+I3fiM/5nM/Bb/7mb+J7v/d78TVf8zX40i/9UgDA29/+drz5zW/Gt37rt+LHf/zH8eKLL+KHfuiH8MILL1y0ch7UZthDNgFgiYWBotmangn+7dPb27g2j1ZQKAujUjAKnghs9vNeQpeMJ96/sVV4+/jS72j3+WgB7QMc46Ch3Wd+LgMNCCykvV2TMHVXCliNcBS2JiYAWalbQTT0S4dzmzcvuM+szk7wvwUCuCl6/avq8Zt4dupSg9WC8ZUtFqQNkOSIOgzKggsckU2QhfWDuhkRtv5bh3thOXX3IFtgXshobUxPcCg3A0oWr+K+8DlRqPdbVaEiqK2BWkVeKsppRTmu4JsEHG1RT57Eugib0uJuUS6wSqpEWON5GdWDr6Lh44KZXtosB6sKjg3Iq4IWhRaBFoWkjGa1GhzFaIzViQhTLjjkyQXPFe4drvDUfI03zAc8Nc24njIOmTElIJMiqyBrM6WjWSypVQFVQVoFzRNQqbvlLEZEItDVC+r5hipoTUDN4kPinEkkVj+p59e5283+uhWkYnWCdHvum9Cw13vhE9uoIAo23S7yoDsjdJ8s+/b4q/CDfvF/TPCM68CZi00fvEB2KU6uhT+ZK3gsAfSTP/mTAIC3vvWtZ5+///3vx7d/+7djmib80i/9Ev7Fv/gXePnll/GmN70J73rXu/BDP/RDfd+UEj74wQ/iu77ru/D888/j3r17+LZv+7azvKFHbQZCiPodil4UDRt2f7xN45o83tdLvuJLhsP+eVhym/3ta/6Zu2s4yCUswTh74rfjMcYOXEJN7IWca/1nn+1RE6ruMoKVyYYafNd/QO4GI8CSRGmQc2qWj0Gp/XBuzES6TCc2gD2bjaYomLABglUgjcRWgfYFIEhYRAXaLLcIor16qAgMPq1OCOvuOTgTNzRodoCtYl30yQkwYYt8goEQjEfOnoNZgnYPzHojv6W6CYWmgSX2Rc8EpTTBWhv0tAJTAu5n6J8sWDNjKYx7KpjXBE4JqwDHhVCruUETCBMxJhKsTB0r0C3mqEHjAtZueIVWhtYFy0Jmps2w2j2ZOpgCSEickJlQcsY8FVwdZlwfDrh3fY2nr6/x1NU17s0HHOYJpRRwYg/3CFQrIGyFCRuBAgZYBVwFUiuwVkAatDVoNQEjIpAVkFWhC0EWQE+KehS0RdCWhrZUtJNtsiyQuqK1Cm3NiEnVCvIJBKLNYn5mtJw5AmIajUnaMUf3n52tCaPmdNYurRyP1/6PWjd3tVi8gM3qScPrcd0Zb5bAFBlJ/vsnQxzw2C64B7U3velN+MhHPvLQ43zBF3wBfv7nf/5xTn25P/53w9xsBcjGNq7Fo4CJ9Vp3x9obG/Hb+D7OHQP+obG5S2iFS6btXgCFn6Ani+G2INpLy7Fz8Xo8tsICx2w5OsGKS0TOgeYM1oiFnI0myoPN2fNqwo0xCt4oVRAle617Zm2MY34r342+sI7+eYJlvoeLhj3IX/1amKLuENzN1sWLex+5H2drkfyZUBvB6L2NV64ykBxajiRmBanxzWlQM4+bE2y6+N7GQhOw1+Cx5M8FKAk1MSoD95aC63sFJZv79dSAtihoAXIFDqoRUkFjbAiP7qOP50rdkjurBNjheNvGzCgpYc4JJWfkqWCeZ1xfz3jq+gpPX1/j6atr3Dtc4Wo+4JAnTJyRie1+qCWBqqyQxs5gruCm5mKritQqINXzggz2bVh1gSxmBcki0JNAbgT1RtCOFsdqp4q2rGjLimVtWNeGVhtEBCoCEYWYB87h+G4A4vyWxDg8537boNeX9L+t7R1ifyZFx5NrIYljjVHslNndoqFw5c4n98PyER+jva654EIGx0AL8zsG536N3odGLiHZ9lbQ3hLF8PrioI6RL9hUs/0J9vvfsna850zu+6JzyNklMMKlKOt4/EHCJgBZDFlmbg4AzNshyARHouB0I6dCsUWJVR36hA20ZyGGfl+4AUnIiTNpwzqQdbyzIwCAo9e2y9IQFwgofaz94SnIUGdi2G6dPd9wLW6WXJRcttRMq1TUhKzGzJIwKYOb1yhKAKi5VSaGdGsKXdXNXXLhY0cOIU0wF5QugqYVCxJIF5AypJoVcHxZcLynmIsgpWT8nKqQtYFqM5AHi23ZINfd6mmKnpQc0j7KpI8KB+yZUlKkCZgLcJ0ZV3PBNE0o8wGHwwH3rg94w1PXeOqpKzz11BWur68wzzOmUnDFhEnV2KypOtJNgcrQCkM5rgJezQ0ntYHqCmkrIKuV/W4NusYmkFPrQqeeKvRY0U4r6rJiXSrqUrEsFctaUWuDuABTr44qDZ3Op+00vjMlHefz9eGpEfvJ9xkufMYW5ZKV0LVKBhDWPmi7PaO749Yi9srb61oALf53RL2EULpkMADDAonLBsheaN2lYV2ytHrbC5xLwocu/CUAEaTv1g+5dotzyXjJrDs3I3aDx7YRlpz9u5jPTsfWIcvGBmBLbK+H4xBtc7XFQbtcMbkJO05uxs/Gnhgaa6VBek17jzzbUSmzQ+nZrQxgmAA9eZYZHWwQ7RyJSH6LtlTZhs5/jSRGnSPKYGGwEJJrJ0rS3Ye1KWSFEWzK2Ls4+jZaVBtkJaxYjbXBq8XRCtSToJ4U8yxIU4Zmk2cnESzN4kfN60dYRdnOC4BtFA7g4RE62xURW0y4GLno1RXj3pTx1GHC4XDAfHWF68MBT11d4el7V7i+PuD6nrneppyRE2MCkESN7QB247nBXG/NhCmdFDg16CKQpQG1QtsKkdXYEWqFxrZU6FqhS0NbK9paIatZPdW3da1Ya8XaDMihrVmcqHk8z+gSLmrfdymIjy5KLq0EfzYE0X6ZePI22mjZ+AQdjz6yIYRQeoJnf10LoKP/jekZUxWwWxSY/9Eo4d3fvRXzIAtoBB7cQr1dapfQD6OUG62fMIfhf/u2c8PsBcu+03sWBL8Z8bNgXU+Iom8e8yCAksV9krKVRxYjCu21q5oJJajV/ZF+V3TrdrAlky3TRBG4d7BDv6Ha106B5Qft0YtmzaC79ShyRIdb1WW74Ox4YQONdUvtyHR2C1nhZrNpd9xg5KiwEgwW/yfUaqWz7V6aJRis2gErD0BC02blBirbQrsCbVUsi2A9CaZDQzlkYDKut5MoTrVhPQmqx0a0s0yrbRF3Ct9mPPdYlLsgMi2CUkYuGdNccDhMuLo+4PrKLJ+nrw546mrGvesDDlcz5kNBKQklmbuVQ9CwLTzUFFIFVBm6wmI8i4BODXIyAaR1AdoCkcWEUFuh6wo1UjvgtALrAl0rarVN6uqv429DrRZL0yYgaQaCEXuOwV8+iOCzMTC2S3P7ctvP/ge3cY9HWYb3yu/jLt3j/qPj49Gu7WE9GxaMSAHpa9ZOgw7BpA+/R4/TXvcCaIRJxwMe3S4jpJJwO0Y/yohxcI8tnkvdbQ+N/YwH2De6a9sLIbiqD1tlx9/v/45m3yhBow+uNAfZgYS1QtrLESQmQzu5hWGUOepuMgMHkNdrsaqXeoYa75cQ/UAoreaTJMCtiHgm2wJuTrftaSaoIdDcb0ppuCWx5g6GIle7EcESthc2djuk2yxGbskmZAJO7WaYPXPaUrTadt+i3+xXFLc7FB31YzdpqKfVEmxVUKvFOOZDxXTI4JnRsscpmiWXrougroK6NqsvsagJoh55J5easklkr0C6PWwGOIFSAaXJmA7mGekwoRwmTAcTSocpYy5m9RiNkEArQSrQSTpFzD248iaAVvsMJwMT1JORkqItUDUhpLIC64q2rpB1gS4nAxksi7vdVshillBdK1q1+JFWE77axAep9hwvFaNDGifU3toJJfEWMvWR2rZ6bMv87T0ep10SmI/6u3H/UTY88rpzZxu1Vd9GDri4D2eTR7e16REE9aO217UAOuE81WVbdwe/vD/6cy7krY1yfn97x0VlhHeOrx+7xRi/Zf1gCDoTeu0W9h36vJDbHb0khC6cVhU9paS5FSRsxKDqpbTH8vCsnolPcf+srDK5IAKw5czK0H1sl6HwgHqY+WDoUETN7r9ZR1kDNWedINhtkAQvCW5CMZJKaSDsYwKyMpJEMbnt6FuzRdXOYDlPUROmQV3rtt8JDGZtj8r+D+7kTQiNcjbOGJacCSFoRVtceK+Ktgrk2CCHijwTtFg586rw8gVmbVjFOjHenqi7E+aju9kA2N+oc9AHsykvxMZ0TSkBxbeJgcLQTJ50a2MhLCzWBkgIXgJaA1cCr15wLiygtQFLQ1sa6tqcG84LHugClRNQzc0m6wo9LZDTgnpa0E4r2nFBO5oQan6cthpgQVeBVGe4aDAgQrN4UB/LuK14xmfjHH28No7ecaK+urbHAz1KLy61V2/xjNrpzl1Csc/uuveL4RO4H2N7XQugiv0iYK+3YPQG0h71mRio8ffWPR4+D6tpTGqL8zy2ZjPOlLuE0LgF1Iz8THsraP+7/bnGCx4uIHJwqq9l1IUWdVlneS4WADbt0yBI5PQrGi4vgSWdBmt1HMr9yRb3cXwasTNlU18vySWjhZYEwYsNv3SEpeOXvxewcS4GzF0ocWtDh3e49s4UNJgBdUebAX29bzAAQmD3ApYtCOg99UJnY5RGz3o1cj0odDUBk2rDsjRgYbSZQYVQ2Tc4KNAD8Ab7cusnLCC4Zexkq8j+MMxXhuDGYVLjVksCZIEmhWSgZcWaFCcSJDSoNLAkSxRWteJxNQ6pllTcAF4UWABdFVrVBNBaIWszC6Y1iBrmTGkxYVQXyLJClhX1uEBOK9pxRbtZIDcr9GaFLAt0WaFrhdWgMAtIVkWtwNqsUN9ofeLsXl+2Fu6ek/sJt5+U42R6tJm9P9LYXom18mSX+P2Cst9CuR0tnktCiHCLqucJtNe1AAptNMBmcYutINqmmSrOQ7khXPaDONo4kC4NzzjfPjz8SI9ntFJuISVGS2cwg0crKI5x18n2UjZeD1K0TxYewBS+vokPMoExIUDU1UlbCJMRHwOhkDf0JNAgJd2Ety2UAmz5ay5Rwto3V5rtR56jZL9z1wA535gLRPMEbBLJeFXVYQX75em2LtktORcvW5EzcnEUGfFbaqKAXbMmnEBdAAXsfxNAW5XVEHwBf0hoFgtbLD+mNUPeUSFIcgqg5Fcgik40F66oUfsJbSthGHyhDTQwVSSqYGRP7qxQXdEkoQrjJAlJEqiy8esJkCiB3YJM3cQXUGugqi6AdCg726Dr6sXnDDggamnZXQC1E+RkVo4JoAo9rmg3K+To22mFLgu0uhCq1Yvaean1RqhCaGq5Y+LW6n5hH+dpPPnzaTIKlnFBvvRL4FFm9JmeeOEXofS+epfZq2l74XNBYz2LLw+WdL+g4W56XPBJtde1AAr2mZH2bDMsR3KNbTDEujxu8f34N17vBzTv3q+P0+E7FJDtbyyssrOAuqlxu3OjGRfbeKGxT0PnSAvZJuy5NWL0KkgCdiaADPE8GzV4sjHsd/9GF0LNC44FISehF3bb+koQBroDa1CsLLHVOMQivMFhByn3mLvxvznhEvtrT6hNChN+sk2e0VAKoWC3YxM+EQ8KURFA9KhNFFWHBIrqgucIxgkb3H9z4YXIteNseVQW48pwJKEqeBVAGNIIlBlaWi+LbSAQs3ik+jV1F9uwgJxZy34/SGA1gCpYFqAxpCbUhbGcslMRmUCnKqBc0bggpxOysySkxqBe/lYc+abgRUBHR78tAnUQgdSGWhtaqxCtULcRBQu0rWbdnCrqcYWcKnBjQkhuqllEy4p2WlDritYWyABGqF6CozVHK0Iuzl0Mr0NW3y0+9ovwOGH224Pb3lYaldRYJ/ZgpydvQzysjT6efY9pe9k7RrdfdwsINkFHd++rbK9rATSWzh6H1T7+vrdcxnV7P/TG/eNRhVAbBzeGYz2yQrC3ei4qJIoOfYykl84lo+cXANweWwx0OOVQzyMYTc4EUKxrgg40YEsCgsLZh/2iSYxFQPz3ouGm4Y5o6CwG2IrLmWHnVk+Y9xrgh7hERVInsoQJpLhBqmRsBy3IQNUEkJkKHSXF/mDGW2w2SdwuGham6GOAVMSFnvht3FSXsfxzg5Vzdj2/a+Nx/JF/w5a1DbUVn3WehaZWQE/U7yWZqytZgq16gq3K4O9kAf6/9r421tKrqv+393PunbbUmaGUdlppAW0tDnSqFilXo3+SDtRSFLUkBAltlEDAYngLgSqKkEgbSBQ0Wj4YgQ/WRghFA9RaC60C5a127AtSgaBtpNNBSDtD6dx7zrPX/8Naa++119nPfZs7c3vbs26ee855XvazX9dvrbXXXjt04kMfRPriMDUhTtBhwvNgfcDchBCXAqhj094SArq+x6jv0Y17dPNjdN0cKHZIsUOKgZeCpIAwjhLXT82ArAHFJUL3KK91SuMJJv0EKbFHW99PkMyG14l4gzqMJ8DihOd7Dk+AwxPQYg86LG7ZS2NMxmNMZB1Rmowx6ScYT9glnXrtLwziSjq/42UtVRSn52ftoIvmvOekwzBhWbe+259v7Uekb/b3+3RrM+5Gkk/VcUoSaTTzISMh2kcikO3hGxMIYWsD0HGodx2wQOK1Gw9OQN0sXqJqdSYvP6xJvW5ZAKyolDNkZKlUtIUptdiaYywYWTFMfquLMitSDE69glvPBaVEoBEQO2LvOGXmwtx5LzFxU05scuN5m5DD95RoFGRKoXHZ+BxrpvUgLtkP4tZMpp5lg7mJgJDsDZPkiaRmOSkjV431flO2by1ZChalQRK0b9TiSHmumIB0fVAvYFRme3TWSeaTwLH21MkiIsjSAHk/JaQU0PcSegdlDisQybYVRmrQ+UDdpKeLQJAhnEgXFXH4InDE6fFkAlrkuZa0bQ7p0XlMts1jMj+PpdEc5kOHUYwSuYfne5CdDYjNbZOETgBotAhebKtmtzTBJI1BNEFPS+gxRk9LSGGMQBPEcY8gC0/TIoMPFntgnEBjjpowHo8xSRN2ZOgT+r7nOaXUS/uS2d4q8tYNqOO8KfjYYVXGpgUfu6XkyuDT0h08UHg+on2mCD/tdHz6wDodm1ZNlgNWWyQjrwPKUpxnOFTMb9HX2/ppSwNQSwVO7jtQKx3KaLTDqju1XVwa5fvQjgZA/a41Z9ae8wCUAURSzi8RDSj5+0wmMievc0VgITqJlE0UkJKaHjgPJPubpw4lGCeEsSegmzAIBZ5mkDmgkPulxtFW+7zOn3hWryxAiy+sEuo0XQZv8TrT2ZZEEuIl2KKWSrWAU6pXwXG6j9SRA0MFJFZzKeXhWaLOwFREcVUws1xQdkiIEijXSvH8i/ccCsLjpewhgAJv45DU/ziUHOcjBWDSAXEEdOwKMSHeqTT1Y/STESaLS4hzS4jzi4iPzmFubg6Ht81h2/wc5ufnMN/NYb7reKvtIOArEc0xBpsAlwhhTBiNCZ0AEMYksdr0WAJoggmWMJZPCmyn7SY94lKPuDjh+a8lBp8w4e0aGGzGnA71LHOlBCR2kEAqemupOQ6I6zUMK4fpGO6b4KODznIJpelRbdNdiYb1p2nyLOHoaD/AtObn4dDZj9RyQqZ+VIJVU/cG0ZYGIK0e352sFKLntYMatjsVLbc394zMs950R6gBa01k29ya4SrBW6QQu+o7md+tkWDFLkuCrimjbDBGdIFkHa1SmdSZcsm9E5kLyiBEEKcA1lhsMNFaq6Gqi3vJkX3Nosi0MZ/TtMjcpTMurAxwmCAgVHiri1BrEKoBkFMN+X6dLSzz/Oo4YIWXlDU0C1ja/xQop6WD4k+neSN5pwJQ38uTKeQYeewSz3HYyp4Stk0C+7ePJywRCLNO/RhLaYQw6RAWebO92I2AuTl0cyM8Ojfi7bZHI8zHOd6OQhcbU+L5QHHx68f8PS5xtO3RGOiWgDghoE8g0VIo8aqbCY2xiDEmJBtDIaHre8RxQjfmTxLwCcTPMoCNkSBBR5X3IYlDSgnJpP3BmkV9jes413ZRjaIIjp7t6xOWQ1B+pmWs0Ds8VPmhtxJvWB6s/GhZK1mQ8aNPGYW3ERkYT5JDXbuhuw7atRwbQFsegGwjeuZmq9tLR3q+ZXoDSse1nVvvtcC15sxqJpZT31TSaD0H9137lY5GL1JZVW8McedFXSn2e+fSMWmnRBxeJgFIuswzmdtpqk1sNmrZ06NwCR/q09DgpFmTEksUOnmvAmKyYFTrQ5p6yMDBUbE55KmJYpClbWZ0Gk0j5bPFwaAT4AruuZAZJN+v5erlnQKbAkDI60hTCLwba1B9UvuBabDM/QjoO5YGJiKdhiQN3YGSrLeKEX3k3U/HXYelboRR12GuG2EujDCKEV0MsuU1A5A6QPQTII2B0AeMJgGjCTAaB8Se0E3YQw59z9GyMcGYJlhMPSbooV4qMfGur3MTDqvTjTnCQQB7zfWYsOYjjvG5BqPtylqnVPUxK2zatrbdmLuHjZivQo01H3iIqTX3+mqQPGjvLw7+VhC2n20aApjV6FmrSa/FICzQ2hHZBmDuf6kcCkBHBIw1bWkA8gqklYJaEpI+o+Sr0WOCx/na5XYd5LmrBQKfUZup5X5ruh4x/bUeEsV54B61h2lftO8ylZnEJKekGkWriEBd76xRFA0lSNxq1oB0dyINREoVExjJs9k9IAIUxbEhiqNCIFDiqN4k7txdPooBJiGIWazWuMqaHj7b57xwFUwQsyYDebqT+Z1RlRID0BgRExBUw5pIhfL6tRqseR2ouIHnhVly6H4XGv4hAGXHPTCzT+DG6TvepbSXZ0IAYgeMRkDXIXUdlmKHPnZYEs+3IAuuIvW8L08PXjQ7AdKENa3YB8ylgLk+IE4Ioz4h9nw/aAJCj3HqGYCIASjIouWQEkYT3tNpREkgfyKgM0GCOrQXwYSqnXrLwl6/WZw1TraMCl0WNLIhV7q5tX0rFZhpiVIlxK1eoeoOq221+YPnWN5WY2m1HKZlyGtJofaIjWt2s3I7ehV4krt/Y2jLA5A1k9hqsdrJkKrs7caW39rn7O/lAGhZpdlzZZuwFedsYsF9HxKOPIBVKl0wahu1+zpQtB6bVoXGAZBQKOQes6UeqgNNrtQht5pCUQQwCfw9yPYMuqBYgatDJxCAvC0PF08YM2QiHezCrXMuBYAoA6DGiGNNqOS+aC7BAJCJbIAokMPwNnL6s0raPVRfKqDFbFrfXAaz/s8zT2RZqSatGhBJh0/IW9KqK2NKwLgXhJMOEwLfNxd586OuA7qIPnboY8RYW4X4HUF2O+WQO+C9KqTtl1JA1/OW212fMFIPPbAW1Pc9JqnHWM5HEgMn8ZyWChed1AiJTqi9iHMs9ULWJYREOEhTGo+X5XVZBj8d0YuwUawWvN36JLcqRJ2WejQDwQuueYF07g/mIsrNdf+3gGMFC71mmcBambtnCj5tmy7cbws2ftD7Ee51zY2jLQ1AVqpValW1rdLg7rcKqrcXaxoWiKzV1CqtengcqV7k+58X45a737rv2Wdt/2oJKa2M6/lWX23lpwrD7gtQ13CrGEBhDkVgcMyXeVz2IA+J18MogDCDYQApUbQpe8GpdSCavLOAUrQfXSZa47qGKi0aVjG3KTviXFrn7GgYmN36oZQKmJdnyoLV9o69tdRgmZXpqREMJLoth0aVzdoQoWzKJ7nJmpNU7ihmAMqhz9XcKwep9WwMlggmok2lyJ6PE2CSEkaJN+EjJKgNkdIEfeolTFOSekogFEcOXlPFIK16rw3eXgyx7MShKU1AU927JfdrGh10DRYLIhNEdPKZ59+mnh6SENss23Si+kI1CKI7/ADUtt4oBm97t6ZnTRotjUnLakVyf73FTY+ctjQAlZmDQraahpwtgVKN3jMO7jk775PcofeuSJaftHg4UPebMhKnn9NnvMmuhbyAYUpSKxqgTbd4aOWlHnsuYx6+gaHBY5NX8Kn9kHRJKIfm0QcCeLO8jmpnAK2SBMiUR8ivDYk3zQOVtg3yjgIk9fxPMo1RIi1TVR06+xBEZ4tViqUO9NnijqFaG5Oa9sbC+FQqr6fKC+PNkniu9lA0ngxAgRFXr0VpG60XjXCsgIQOSJEBpdP0COzAIM/lDh+K08oklOcmxHv0EG8YR3mNmjrgl5Gicy/aobh0VI0du45P9+oqTj+cml3s7Xm8l88sL9CWZZ21E803Qpccl15rR7of4dNU9XQ7Vj2vrure5t7D2BCXWg0NcTeLiv68kmp71vwxBE7eLLIxtKUByJKtbgsoQ4KJbZqWEKNVbtO07Da551adwdYoad3jgcereT6zywkuOUKAu2k5gaiZWOmk1oCmRy8P2uy3im6jBDDx7E8kBp4R+OjkUOaUzWFRN7Pj/AQZ5Jq2zb5ObNf51HkBzmUJ9V+eLPZ9W0EFbMiAp4JPFKAqTuXIqagQMxIQighYxBCbc42gAGQ5bakUA0ACXlGARFf6AiJ4CADpmo8IZA+7zHcFvBSMCHxvH+Vg81tMxdzo/yzDIgNEvmvZ3wo+CkA2FS2qhelcLe7Tp1685nQujtuT05TF01TaqV46PM1wyaQ9qNhM8W07fpZFqjVS6xmV5JRaDMbea/PVut4yq2wcCG1pAFLpyHZC2yRDprngzrXmfFjtL+n4+aJWx/ddrHp5Qp1J27en2lMGP2g6QZtpf/iO3+o7+kUFn1yAqVzb3ECZCaArawrDLoxaJf+2xbA4MhdvstLtk8yv23kXDSgqbCMAHHJGHyKoUwECQJlxaFQG5PwARccpJbJwqCBSZobUJ0sXz+p8lFa/1o2aB1nGJslxDYm6aFXnswDtv2Rq0de6ZXKE7ICAgGKrRDHLKVAhlH5AMr+jkV2pE8ARQLMAtKwEzyH7g2yhXmpQnTS8pGz7TFvY8/JW7ShS10RL0PNike3mnBuBvhxVnlPjZQTBtEXIz9i31XJ/6V0qUJC9XdOfMl978dXnfj3AsxL5dFs17hmKZ0qtGrWfG0NbHoCAaYVhWhoq/cMDhv+0LtYt+cCm12rSweaxapk9WijpkdG+3I+4PEqU6VB9bShD+R2mBFU8NXK3lkzV/mnK+BWcVIos2kIZwgVedNFnbe7kyeqxbBPegy1MHYC5jr3cugiow0EAh60JAUjEjCaRX0Ok6VvvupDf20PBQ6X1HiOBC137w6YiG+C2butiLS2QarWgkgOWxDk2HA8+1oxKXqseFVRKMG2iwJGFDAGpHL5JHxdQyvM7wXXQaNIUEMr9Um7K52JOg7tIqf8inEwjV3FCb8vYAbUJ3XZZOw6t8WdIeLRVkoE+AOgIoUsIqjUTjHYXWJNLKn6UtGx+AA0zm/I7YyhL6qbIjssKfFrcSb978flIGb0vzRAIDQHR0QLHmrY0ALlp2iZY0DL3B/dp8R8omKHP2AGh9/v3L9tkaoexGbM9mOyXMN13fMarvmKYjBdEmyRSNCAgZD4rlLNkIVkH7PQA8ov9TFQ4A162HuU9EocuiKQfQkCIhDlAtkdS01tJV3ktIWASiqmrdnLQwKIKEklmAQrjH+UcMfgwGPG8zwjAnIBGMfersa0tnQNFK+DSJ3NA0g25DhKUzRX2netfBYvsMBALSIBKU2UpS8HIChMqZKB8qpatWlAWQBR45LOPcr6YpnpAvLw5LQoE0n06ZNPCYuSc3iVecpHZsZeZtB1tbDfPnm0vtUNFMaaLQIyE0BFil9htHyi75yYOdxTMeMlhq1D6EH+j7HEZVADKBQp1fdkM5h/2u585tjVwpIzfgoutbf97CIRsSyyX/sbQlgYgncC05Du1r0bbaT1gkXme4BezlbWclnrzjN432H0scvkR4wthl/e35oJaL7G2/MFMOCmoGdm2lakhsgPKAgunr55rdqaFJ4VVVxAZMxLHNe0SL8YU77asIQWddaH8VgKyY1iQ+9X9WY0/ytjVRUDNiFFAqEMSSEiYoMdYQILPcykYgKiaIIfJhy27nlW4UyDROaLyfLkvQBksmVohWaSaSl/IfaCvm0dVCcs/piQwAnurARxp1OyCqavb8wFkpxXdkqMnmT8yuQ9i3sr5k7ymBApUL1syh822PTwY6WFByFuX87OSMMViyhtFoIs8rxhkfyTEhBF3KI4xmLhasgdgCgh9kG3AVTMm8dCUNwepCs/D86ElaQ3EliTpIbhquDVQS+z2XM22gn6379Qa9x1sKP0joy0NQC0HMWCafer3HtNVaE1zXvbwmtRQtWu3WZVckFXzgQf8SLUKxnL3r0Z4yQ8MJaZkYXol8hmVgSm/e9kPqJOaVvfYqNb3ACDy1tuhAyhGUFDmz+/vAXTEu4YGUBH+BXwAXmtSbYgH3y9qj6wA9Yti8yGBMIeU53HGJg2zcbGB2rq2WkYoXUkE1A4ONl926CeTmt5HQGmGlqBqz9nR3BJUspSu8z4CKBX4kLE/i0DTp/Lb1m4ilG2aCZU/vH832nK/HnY9ny1iwnR9qcW5kqNCbYnWF1KUuT3dSp6SbDQs/TNKz0i8Oyz1rF1GCrxTsIArC0BFtIoomUo6p0YomSG9y89mefIg5D/XS7ZzWPOeGTwVac1aG49Na3qcbwRtaQDSJvamNaDm816usEKidSay0pY3AcDc69OBO7e6nMOJUJJCHlRUXupFRf+YFW6WzYCUWFfI67n8epsIYRqWPWt3smueLDf3yD5BPWnKfD4zlQAGn6ifLFVPJIuZ4RM4FBCZVCSricqYtztnarubAC9Qt+4ReowQ0WVmzwsd1etuzlStF3KsHNnCApj7dM7M7t5r5VHtY0NCU5OsANObTFopqJWZREDqC5fWxVd5AzzU6kXFi1oiljJaeYEJ02LHZSsEKMw1tWRYBwRbjOTS06wjlr6T15KGYuVOYA/ySIQuyZokSqxp61whBQ4AG8UzMsjTgTBKxBs0BqoFHzg5MaGsip7KuR07lhPZumzU67rAZ7XP+J62HPj4Z44EFKfJ8+1l6ZprrsGePXuwfft2bN++HQsLC7jhhhvy9cOHD+OKK67AU57yFJx44om49NJL8eCDD1Zp3Hfffbjkkktwwgkn4JRTTsHb3vY2TCbr21zCS6f+8NJUS2jU6rcBSccoe8pb8JlD2YPI70METHej4Vxb6DTfY8zzIIhhKmJ6s5+2km+eNIlUeKJgZIBkKq/2easLGOfZ0AknCLzGJC/8kd8d2OqjTgRmEzXeSK2Yn9S0k0JAiiVAJyIQIjsi5PWUki2NzZmPUNpTQQgort2c64QRCPNyHAfgeABPMscJcu54cJsP1YI9tJ9sAzCPkPvLnHvOM2Xtg9rvllVkW6hnm2pIpciaDbHG0/fMPP2sf5MX+VFUxLQodek3iGx1YdtzLPi06jO6w14bifASO+5+GHEf6ztgHDki0SKAwwAWE/EuEH3CZMJbzadEvI6JUILbdlH2WgroRwHjDphEwiRy8PFJlCOYxesZdywz9+Y3X2deTLK/N5LJtyRW+zmU3yHa2PytSQN62tOehquvvhpnn302iAgf/ehH8dKXvhR33HEHnv3sZ+PNb34zPv3pT+NjH/sYduzYgTe84Q34zd/8TXzhC18AAPR9j0suuQS7du3CF7/4RTzwwAO47LLLMDc3h/e+971rzrzt0F6+GJJIfVPYe61EaseiMoRWta+vOdwTAQI4JKvbqZxvoVvrhU0U9MBiLpL5Utkt/IsNWmW1I1g04fQJUPs4zwWE2mFAzBqymamE2yHDmHSJIBCozL7lWSXRfjoKiMFE8iIjvwWIJxxlgR8o+hbnlAxDCwJIIdcQA0WohA+thZZMy1MvxfMOkm4wjdEhAEhZWfH6o++7qyIvF8TGb824nzCZksCo5kOr5UUmKxE1M7HnWlio1+yh9yRzj4KOakH6iSRdUVQiWwTFWNtoJBpQDAExJoQQEUJEzOoT94EekTfpI9n5iUJVZctWQGYGa2HkfpxtpKbR0ts1XbWzrqfRNw6AAhEdUWonnXQS3v/+9+NlL3sZnvrUp+Laa6/Fy172MgDAN77xDfz0T/80brvtNjz/+c/HDTfcgJe85CX47ne/i1NPPRUA8KEPfQhvf/vb8b3vfQ/z8/OreufBgwexY8cOPAel41oGAUyb0Lyg6H/bZybu8KAEc/+RNYW8uRqpNG2ybZlVPPeyKlyvibbYnX2ezKBpvUR/SyYUUVQdIRuuAQhdArrEn6IMRUkjEKGjgPkUMEcBoyRaamDpEyEgdFG2jdY8EmJImEsJo77HiPo8T6PWn0RAP+H9dFIywSJlKkKhhzWTgG2AhPdhYJiTo7gLJPToMUHKG51pv7JOKAo+6lyhTVCaq/wPCBiDsAjCYUl3LMcigB/JUewAroe2Oqzl4FYlb3F8PxhsZ/adfB0SVTDZsK+djnzRfsZmW7Nr64h3dC2/cz0LOuna2mRf4hW1BEQKGKFDFzrE2CGEDilGUOgQQhQ5jKM89MS7vRKZN1aWA/8uUYlWvV31ShLlRpCXYC0/aGlfq00TAAgPP/wwtm/ffkQ5XJMJzlLf97juuuvwyCOPYGFhAbfffjvG4zH27t2b73nWs56FM888E7fddhsA4LbbbsO5556bwQcALrroIhw8eBD33HPP4LsWFxdx8ODB6gBKVaw0rrxwN0HNr4cAR3/bgeDXCR0ZSScI5mgoK1U/qdAwoA6iFgo4NOXshsGI3L26qn5I/crrSjRjyPdQ4MGcArOdGCJLnJpsJISYELuEriN0I0IcBTHRRVBX7CkhsK9cJONDJwDI5rnSRmPwxp1LCJhQREoRlAN6WpjQ6tSYZAnjfJA56ravcL2i4lDRyRFNXRatrgSA8XEX2n2Ipn+2mrBlYvPWHK8p+X6lz7QktVWSfZWCCpsfazz02fXapH56E501p9thMCHZMVz8J5qWLHOeesrmxiCH7vCLRLxdRM9zPyPdjj4FlN1CfcF1zAn6UQfe2dE67K9Ua0cLfOw7/Pv0WE+jb2x+1+yEcNddd2FhYQGHDx/GiSeeiOuvvx67d+/Gvn37MD8/j507d1b3n3rqqdi/fz8AYP/+/RX46HW9NkRXXXUV3v3udzev+Y7c6HdVlfkmtyY7C2QekI5c21mGfKYqu0ww1+SkSlyVIEOS0RZ4eBDSl8pPdaXV74DM5otdQ++tvKBchqNoSAiAbCQWSeZ4ACDIVmydvKqTxX0ByCFxIgNWR2oqKxEIRl3EiHRfIF7jrs5HkxAxCRKtjThidzGDIbN6XtvDeU9ynoGlmP8ANqV5B5S6mbicGlU7GjmueLuFqhkBjf/AW9rp1t6t90yRJuJByJvaPL8BaobcojV1atuv2jlWELLst4WRHh+92ARMWxf9GJ8qB5kbjUxXcisrx4iFtqzQk2zrAcotSyDZgVqeCRHZzdIG580LfHWc2kFp6+loAs1K5PNiz681X3WvPlJaMwCdc8452LdvHx5++GF8/OMfx+WXX45bb711QzIzRFdeeSXe8pa35N8HDx7EGWecUVkM1HPG4/qQ1mzJywRWO/JC1TEhHY26K1cl1YU6MznWFyHH/qoymq3mJZEpJUnBh4z5TzSdatjbWjTspQs8G6zgRcKISfSOIIAgGwmRXWiqf0GD9ITKhyGEyFGxiTDS7AkD4FiaQRasBsSeC0RBQUhzaV1JyrZmGp+sB2WTXMBQu5fUSo2UqA7TkG8D8SiYhqoGh0zEg+RvGpIx/DPJfHp+2FBy6xdYhuNfUGrHjzWLjfqUNY+roNfKgjXLeIXGvsP4srAir5+SoZhg9nYUDZ1k3ykFi6Slk7VbIihpZiiYMmdXOyAH9dUcZ/DJkiOmpYPNpMdCHqZpzQA0Pz+Ps846CwBw/vnn46tf/So++MEP4uUvfzmWlpbw0EMPVVrQgw8+iF27dgEAdu3aha985StVeuolp/e0aNu2bdi2bdvU+SUpgNdoVppW80OoZaJT88tR1XyAhmuPHAEscfXBgBBNj8ZKIVFxjxqakE7hKmChAE4Eivu03k585NA8SsJegkiFxX8aQEAgZFfmmAQcAu+6qdsdhEhm62k5HwpgKBiMgmgNsj9QSIqJnAfS6A+acTEd8lxQlDkgDRikuk/Zj8fu66KgpLXo+0TNeq35jK9w3jXAkAChkacnUNMeSf9KAj6606dpP0+t09bCaM1xXgDXwvj1BZ6jT5FHtRbwUHXG+jr4NVPRXGsJe1680ecSihnUa07aJ3KYOxjlpFE+opA3BexQ5KuyFxOy2EAhliFkX+QjUARNKJSXZzCynzr+WuQ1io3TMB6LoGNp3XNASiklLC4u4vzzz8fc3BxuvvnmfO3ee+/Ffffdh4WFBQDAwsIC7rrrLhw4cCDfc9NNN2H79u3YvXv3mt+93DyOn79ZQj2ROTTvYzv5MQOfocnkEYARFe84a5PwhwUwdWaYYqNqDBejeaUtyWhSz4Eomk2eoxEtp9NDtI7IIBNDQBc0xlnZCG6EiFGMiHp0bGrL6cWQcSw7JBnX7RAD359dssHu2TDRrMXjDhG8kDVGmVwuXNmGPbV8ZWh+YXpOkWRDOb2PTX684ZkySM2XXouYIGCMiCV0cowwRoeJrEQqzst+qesAWU5tVQ1fCF8AWzBNZ1C99w4sPgPTyOV7m03Fd1Nb2uCea41dHZ8eV/M7SbpzAkc1MOaL4g1X2l+3YLcR+Eqa0n6EMr+a51ntnZqcqmG+bixULqdmepCP7rPVBptFG5+fNWlAV155JS6++GKceeaZOHToEK699lrccsstuPHGG7Fjxw68+tWvxlve8hacdNJJ2L59O37v934PCwsLeP7znw8AeNGLXoTdu3fjVa96Fd73vvdh//79eOc734krrriiqeGsRHb1kAcNL/Rp3/HDyg8l3x2OGgBZDugXPpSAY/X9QC1EBXuBjMYvklqev9HhazhVkmc1DV2cmgcVP6vxMEnuD1DHAp5vCShjOwQtBmUMi4b7xKjYFvKSIStEZuYSkZ0M8poVbSkRMpMJPBog78laR0RIgWPHkWWn+Wq1+NgyQe07QM1GCmuKRoeyjJGym7XVgJIA1CKARQQsojg7TKC7pGrsbn3zCj0vg4aRuvV8gGiuko4dDN6kSuaefH5I67G08qiwqSm1pqusWQ7mnL1npXkyqxH5d/rc1qOgbKlR9trl8xEcC5CtEIQcQcLmLA+9IAho69KX0Odk6Jxvh+XuPRbka1XzNe2Ssx5aEwAdOHAAl112GR544AHs2LEDe/bswY033ogXvvCFAIA/+7M/Q4wRl156KRYXF3HRRRfhr/7qr/LzXdfhU5/6FF7/+tdjYWEBT3rSk3D55ZfjPe95z7oy75mFN3V7a4Pe571xgFr+6Ew6YxyDZrfzOgQY/+G6H5ZZcpdroMks1M06P6Slt+8NyO7UGRGYAYbIJrNcRxRkg02d09EJWlGcgsx1yGfQVeQaEDLIRnMB6HwaBIkIoAtPy26pnYR4Ydu87J4awavUieN2QaBB+anuLaQLTzvwYtcOdhMGyjVnV0UA09gf8zNlXYhuaGeBqG6XAkCshfMeQEuoNfI+m2ci6p7qchLMl1IJWvlTzVv3BU1LSqgb2XFl1ffqRnZTifnRUj+X532CCBHyGsW6dk/NWxKaeq3Hsh9/djjYNL0yqDnOWo20FY/xZObkuJdz7RdxoriKJCSNidfCZLJG2hbwrETLcRgPRMcShHyN2pr3UTHXR0e8DmgzSNcBnY46NE5r/sd2YK/YWrLDSSUuNd2tL07DMqQZ0UVMrXkgq/F4U0nFKaU0CmJ5VbtqDp7c1HCMHLVx1KFEYaB8Z0jgFeOJGbANKJq3pYs8lDsEdMEM9cjgEwMhRkIXCfMRmAtspotZg+PJYZJJ3pDng9iTrksJI5ogpB6gVEwuUjzdkTqkiECi/aSArifEPnEavMRQQEcDg+peNqW9rRl2uu8UCCJJUR0QCJCtpvnuMivE6SzK8SiARRCW5DPlBoX5bOlg0jZqIhXXdTWH8lycXqNa3egFASiVykpUlvNPgBx01GpWqkXlSobRAmrRbgTgOLD79Zx0qTzWUunmmp0JgDEVUFAo15TVQ9CPZT/PZFeiuZ5thgrfra4g7DZftopQKqXiWSFdD5akbYfpaALEZoFPG9LLcu5HN2Qd0JaOBWcnL5cDHk8tIHJDverg1q69PnL6VisDKkSRe8SPOptRuM8E5NheK/bVUNLvgbyxDsk1EbL5VmZshJA9ihKF7HjXgSQqNUmEA+Y4FJKE6S9yaEe8IHQuEEaiUQHJbtECNW+BzI6WJAodUfEOD8K0QkKXCF2I6EJEDLwipyNCTLo1AENHYS2FCtNbZlpEznd5AHI8bT5062jOa8ip8qFzGxbciknJ61pA0cFtLgxbzZxVVA2KQHTBp1SL1srKaN1L/xMAo1C4uGiUuRIqDToICEXwRIvCCYkspZomAw5yWyJvvmo1HC5/gBV/daaulJqaNaDDZ6WwW3XtUn5OZg4FsFTjKXeXnV1Vv12JjiYwbJZ+4GsSmOJjG0BbGoBaii8an0C747YkoIl73t+zdrLDRjNBKF5nKlmiWGHq8d3uC76AAhqVGGg3p8snG58k94Z+CoTKYgmTBnH0YAoMQiycGxCy5ULZRIFSWW+hi1M7hLwKvTd3q9AeEuXdAkgPC+QQVwCJmtBhhI507x7WvmwdMW/kyu1RZl5aTii5ueSb/lnpkMBBLNXDLWWZHjklP/+vORiOkV3XX76um9EpCHXqtSEg1GLDdssFTSeosCEgZF+vUge59+t7pzQh1SuoXnCayisUcDXb6kSSqC5vER7V8FW3ie21XjbX3Hp5ja8VAahQgIKnwo4XMrlKdMZv86Bg88iPBIXxI+OIlrY0ANlO0frUw1eZgpCfXrMdTBnSkVe1k9/UjFIxRmNysdItgKl1PUOjIMq/aNPo6gWlNJBI6gX8lFuEAkS60YpfAxH1tWx6U02I1+4Iowq8wyiFsuhykhjkIygDXNQ6ATFIyXtKMgl9n0CJZDfOVLzAlX3IvZEIo54wJ6vaY1KDSqiqwJtrfew3bbHiE6K7YqL6VeYXIOaaUPU9LkqovLp08Wt5i36uordpor32JwGh2JXrecLcPKBugipUQMFH53sU8fUFsX4+F6aeVLf+iDU0l0qw40udS1Q2SlDDm+7iVHZtslojUIOOr73c5c1hrxXfRM6xmnjzfj/SoknyxH1FRQ9uZQuQ7WFoc9aSGLcaaY3alt1Y2vIA5EHIH6pUWAuXByeYz+ju13SPjExDajtmRiBvrYRB82aVNFuFzGQ1rNAenVUCDUanZprc3wi5wwXznHmvul9HBIwCYU41GgTZNTJP4VZgnojy4s8UiqqXKLFnW17vxAsGSeYnUt8D1CPb/oQzBQqIpBuJBXQpIPS826XKv73koYdOL6eKWdVx3KbhQOW/Ik9r2ZihKaj0iNAttlXuVkcEdTyo5fEBrXRZktzpQpUY2SEhP6pgkqS9zCjR+g6hODEkcDybHqxq5lhTZoTlPlRrLZbp+26pd9p5Wm5aTk/NoLYNbDqtcFfBHC2n9eAOm1ft3KrZqMCkJUmSgralasu6FWLpqQqalN9R74271YHHkpd+B/jHOmlLA5D1GfLUGgy2e1ipyjMatcBbc92RzQFJjoLLLYUijVoJIy/nFjSwJpTKph/k3liAJ8/IU9GeprZmJkwNUSs2KtPSyWgFS417Jc/qGiBe/xNk11DRDSgCgTUWXojJFGR/oLzLpLgGE7GoEPK20KUoSAmp70GJjxBF41FPOoI4HrDXVZBdPRUGeqS8ALTHtEmsZbZpAVFhtmQWlNp1ZKFavFyEoCAOLSRM10qTLajzYpW/pu0jfUVjlVmpK2hbaV+RtLKAEQr4TIg1Kt31NLWYjHcFKIeGOLJ32PrTcUTyOabasacPfEwoFG/xxsi2aQ1FIrL3wlzjc6yLqguNnT8qwFI8HbWv2Kfbus9yQsTjAYxs7U5D+5HQ4wKA9FDWaE0tHkhWkpr0Od3XRQcU4Wh4w5GMKgGiWKlH/N2u3bD7uGRmI/cp+AQqvq9ZcrWFszVjgMhqOXpIzCy+pudQQIlCyXsGKTZwkGziZbOgzgQ9sS9SFwhJGWGIOXvqkKWb2aVkAk5Kg/C2Q+zSrZoSgw9JtXrYqPsKzFU0fttqA5TVFul4AjW72UWTHPXaCitWurcMir9pDG7k8zUTW455SVsFW6JgMq8AQ8jzQJVqYABII2fo9ynYrd9rjYwtPz6tce3JFiiAMo60+6YI9IG1xCqBZcpfYa0pvc35EDhRQeGcvwAVWEo8CwvD3PZ6vlwZzuHjTRMCSm1vnCnucQNAwHRH0+uq1fiIJfYZL7HpNf203kvrJo8v+TfJPkD2pmgyYABIWRolI7pLCXQrh6w+mMK1Cp3BR581YGO3Ws6u3vqcJkoIiUGIeRzxIJX7EsXsEd6D8jxNAk9a84bV4pMkmmACA1QvmlNKCloyaa3ed5JNXt1jykSlva2O0QIef77FcrXNlTFxdAM1t3F+xyhu1eNKRi5rhNTrC1zaDEFJ0m5LljaHHhpR+o46FVQmU3Ov3yJb5xez2ZVqQWeKpfM1jSseZWRZpdmORTv7ZMcWUEcm6UPAJALjKOCjjWft5obUJNeD21d9dey4thYNL4JUJQzl3uK1XtzmIZg9ASRmIZ8sU7K2lyzXfjnFxwnZFj5y2vIABEybPFpSrZ1K812HYCeby/lozmsnXzcA2ZFSoaBhIMHebIZSQAGfZkRqKUWugIh67ii4RxwSBoj2pVKyqBgIBnzkXWKKi2T2caFkIlgrAAWAogEBkpD54v6aTYTCjInNiMx3dCo/CX8sUasJ0eC1hvuxNaFRp3WCmRl8ZximHUJ2/kfJMk4vkJilifJbw+4oENXydWE/hUGxjhikVjzz8kysnvSvSGPh5bm7vrRXfiVhaqFpTiotwx/rdEbo0EHWThHB+/ppPaoXqfbgjHnyXcFnHAh9JKQYTZQb088GsmyjC1kTWku2C43ndN2WLadaLzkmIfhbKM9qH0qKTFNM2Iu1+qT9/XgCoY2jLQ1AnhUb/aCSeoC603rvt4SymRbMNa+oFFV9jRQxDTyez+R4Nqr9qF1fB6WK9/KgAkYlGAczNnRUW+BolCwDn5GWfd60pgV8QgiIFDFKkXcvJjlEqoxk13ewhsLOeBxji++RrRYI6MxcE9d1wCToXJIYRoIYq8h6otVmsXotD5k7Sont/J6NfmCr0Z+L5m0FsJQBR+gEtTJE5PwVc44HmVT1KlfPU7+9BjTFHWue6DsyANMgyP3GTuVUD5hY3hGyvlW2TafSXWyuVBvxc6q+5PmEmbbspC77nKDp1wNkhU77Xg9KqoNon+HqIbMXo5iBQ8jTm32Q+bzA81ITkrxVg9+6KrXm81oFeDyA0EwDymTnzFteNOR+a2e0w76lS9h+Zs+vC4C8eOZnTgGUOGxe6zHpZN1f7tV5n4hiUslcgcpAzi9qlMSPF8t1MyBZoOI8RooYUcSIAuYEeGwYu0jK73S/H/aN63VLbpR4cbw9N7JjWxDvO64inuvqAcRg140U1+ciebP2NIaChZr4ymJGrXavjI4wLbjo3I7+5uZg7YfEiKjfIZPacyihXtjzrQad6Y7QWkLp6r/qzYaqZFWICO5RgzKWsRNQbWToE8wRKbSr6WJgEqcRr7mVvHmBzZu9NdBHkj5VfNKMQJWs/W14tLUw1JvaSXJlN8zQnaF4aUBACiSBcAkUA3okLIWAJQQsUcA4BdkCxL5ZOUoxp9bzeTbvto7XLL4+xqjRF4+AtjQAKXmwsOTBJDWu+bkkuPstc1oTOWVj2vym50XM1AllUoYhDCJPFCtnF+cE0k9TevIvbpXKfqXyHpjK0OcpMkMKHYMPIjp0GFFk8IGawyT2m2RRvdsKg4mI6tSA4igQgOKLQZTdt2OI6NCjFxNdII45oI4JnEM/wBWQmIFqYNSiq9ReT/PwEa9rU9KSOSe5gq6n1wWo9py69k7nynYAzcHQGn773fdsmhZkgjQAgEqb1ba18zvGvb0IHJZpBm2IwkwDl55kj3MVFkhatRNdsuXo4zUiBQPu03Il1st7iUx+VzniarcIq5No+yB/6hM5DGmkvLU3Z0sXFpc5vnrxpeco9QqxaW7zeAAdTzMAAlAyr01sm9qb4eyhWhBQBkhvzqmmVIJIlsnTI1Y+p0BJbBFZZJNcpiTuQVRidfUGZJRxkO/g5F7gO4u9hsKM9HdSIBTwUTYSeYvtUegwB9Z+OnBAzxjYGSHHPEgJRIRAITvMBbmfqEiNygR6lKCnIbtlM9AG9OgQQeRX2BQ5vOgnxTOtxDMOORApx3+b3gaAML39djTMJ+T7mLWV1GKOMKdeUoZ1V8a/IPVIWQeojbpl19bydN2WCYhJZswTqmgavPq3tFvlnKJ9hpwkJfdGKn2p2lZAciTeaHkaSfqK6qgkNdShbCrheliuhySMfQkBY2LgJlJNNhnwWZ24Z99B0Pk4FHCRNpog5DyEfDeHiEoRCB3l+KvqXDKBxqjjtW6qsVVjxeSizq0FH68VzcjSlgYgq0z4SWUfVNIuNAyoBUmblnYbG4z0sElv1TTU78hcy5kh5dLIUmsKAj6B12mkhHZwUU3UH0PUmqq1mVWGVB8hhTwYFVBCLkMBOoKJZgAYTUfjT/O7NJBngjWZlHkbW41qJvMOwHqHMp8SlYDZYglUGVBmXQosWCeW6dq0e6baJrOGFgtI9gr/Uo+xICyany5wqKUuMRpKjG4uh9fXpYcGPXqjaogggzDdpLbfVN1DOqP1mIT9Xp8rcE9VLdjc+d5XBMIgeyMFLAkokGynUXmWrTE2MoMGCytc33Z79ZgXB7PQaQUCmVcMnLtcNVT2CtLtRTg6eyjYQz4Hvibs53L3zuhxAEAhf7dTK2qdtxPTSp7/6zP2Hr8p1pqJ3Kfn9TpbrR5nodFxrektZ265TuxfquktpwXZTAXziLJoldzVW60wmR4MRBw0VNdJlCl7Taws7avTI6hRSl18S7gUhRTNDlsGC+srehCLDAnFIcFqRICaiQp4WEZp5W2vLWuIGX0L8rv9LD+XqTQt5b5ZgLeY7TR6Qum9TgCodPFS+hz5IGsp0ilydiKKj7o8r7/tlErldWHBSZHAQ0mJUl2EtDKqNHnvFwbzNEfDCLIHEjBBNAqafFkH+HBxVKzQfhbE2SRkQaf0wJihPmt8oZSRD+l7osUH4t6ft+euANzWl+coKwmDW5U2rkxbGoB4qBb78TSgUBN8rMdM3kAUtURsx2mLhR8RTfF/AqLoaFZzzx5vUqIqqGQLbGjg/FAmDKPT+QON/aa7wuXIB2pysgNdzZlB5loirCmJEMS6EwHqRCdQqGGmGkEYIWWm3aFoLpw1YfqkrF/NdRydi3JqNSu3si5y2goKWd6umkGnv2wsai+gWE1bQTkYJmcXKc4paGfAjRgbXc8CXlty9t+1bYQJynxaDhUek2nH+hFG5mDAJ7iu4vuLvVjgXoPvBHNYgJoGca03deCw8z22jEOaxBDVkp3NUZ97YUSvwh0FBKq9EotDiQhUgbWpCQhEPUdez/fJXGgTJG1dBfi6W+cM8ipowznTMactDUC1TFv/ClNX64lR7wmV595RMxq9r2YW687u9Iszs5COmqVVkYQr7kiATAZPMw0d6va8H9ymdirPKfmtZpyAMkmsQS/RVbb8HhFjKIiTAQ6FBk6HgtkMjPSuKHDFBikCz+6MMvoycbWEKv865Wu92yy/1eoFit5ReHHI323txOq5UmOqi1jwUQZK1bOWUVm9TSVvBXDbM+2c4lCvGjifd0ENxb4MFAElyxVBCiDtayHVax/5pGX8RsuqRgdH1CuzXsgAFFDmUycmtcKGuYY6qUmFN1T3hoHST8eNsD075m/qGB9Za1G8Jn0mSJdn4C7WEsoApMGFiIIEwEWtMVXg6evM1mtLM4J7br1cZWuDD7DFAajsSFnmBoAiXyvz8FKxkh049pwFG6sntLrWiuTdgVpTMJo5zY1qPlWHFylX9ySoaAho4H57AFLGFJDXH+V3m+vGVVfrvIfK/kHAQ92xNQSPjHriLRg4vBsZWVCjIViQZ3mUp+hJ5M5aV/BMR6vUgk1nrlvAKSJJmUGyfcQfViix/QAoUn3JlzXSlf5Y8sC64gi6FJLzsTRVKtdsoCJ1B5T26iPUQy2H3BmhpGNNuup9qB5xeW2Z3m97s601K8HXJefwrlbfawNCXf/c6rqAuDNAY3fksdGmPbsutVu/T42gKtYQ2HEme5fq+jaZd0pB7COUoMFy2d8nicdfMoJgQt4rCSqjSd6pnhWMsLzI18ZyHMPX8xODtjQAqfeRDolkuqRlGK1JZn/Og5C9z4PNquSWojhMb9voD8v1CMjmlBhLv40JeVOcKfI58chmWaxqOfaIyO5qgAGP5QrGJiUGEJ04Lxuy8Zv4vUHmiNilucQdLqtokhmwxY1Af8d8jZ8vpRPTXzBGQbPvjaZvD2uy9TVla9NrxEAtmWvTJah+F006fjuzMkcUoCZLDuDKnmGaoqtmfVswPZHMkW+h6WcilXZNpj39s1Uv9zVja06pcqWbgi6ffS2ZBQvdR0r7COUd7IqwooFAfU49VHvhIm+8HkZADAgdR2aPRGyhlIXNyJpRytHZJ/IbSK7/axtAth1hACpVWmu9xchrqdXTWrRq0XYdJLXns9JC+2NEWxqAdMK5eL6RTHSWMPlWmqoGgXy2dIngrlsrx4CsOp2IiuJ+cYT1wG1pRbpDpV34FlJZJk6o0bL58lZnl3Ma9NROVHshOCO0SM/LDpyQ/wcqGoZ9yjIgnScoVvoiAReNgQdxiRbAb1AtQtlaEG2iC5S38WYeXVYfsYMEoLJpiXdc/NaslK5FV5mhr65NG3m1JEVQSRXL5juSQKWyJ8h6ITYRaclyPDRtiOydRtOdzv7W/uDnfXK4o76Az1TcN8/wrE5oxS87MzotBFVTl3JnH2rxhwBQSALakZcn5y3cS77zHF1joPk3223WdZ4NiKDIGlCO4yY78+qOvTy/o20q4o7tBPaQqtCQiQGQ9Wo6TClbxuter79XAp6jATpWkHDCDSSzJRzEptGWBiALEgw+RXJSjcgyNsAMBBjTOaZ0hOodXgpbllrgMwQ69rs+rADRoSGpmg6zJm3dgZIFGL2uHlZkB07LXliz7CjWdnulmMO4Vq2ptGz0p4yXJBQLzwVx1SW5Qw0afCc7IKQck6wTtt4REIJcJ81dkOkQ76RSoiwU+Kj7h61xuN8q2CizUy28aEe15K7NVfz+tN4CRoLvIbC3PTs9BgMQDdEpZ6rB2Kx2lLfvSMi7wPV63huZvdZja8J2uJUn021qGojbloAdOgmgxPMzVC/HLWWZFgaH3hUz/Blxk5C3Bge43aIYENStuqdQQjjZOTIfCE6zRCzc5t3r9QBKdNTKtGnr0OYa7rxtk40i7nXlMOd1XnUTgUdpSwNQbz5ZsqZKdedjuAvbJreSmv0NDJvymtTybvBitu2DVvTz/TSKyKVuWbpIdNUZ8lKQGTXB2AWn1v0sN2FVClLOlpq0gUBZlmZ532oRWlSFFtYb1JesbGpHiJIOCRSVmGtzQAEiIkTREMtQKy1YfPY4/5RznaBmw7xjK2qt168nU8GmN6VWUFNvqWJkBIrOI6uCgtwdQo68pNJ0H5hBc8JG2KjaRxmLAYoI5IWpUTkvmYKQKUgL3OysmX+XHQkrc6ypJ6l+uqRAU9cAnQdcGzsu824Z5vK2HFE82XJeEldnHwL6ENlaEnS6R3KYQxSJZ2qVcVlsrc0wWANroaOlhjwGEGYF2tIApOxDwUd/FypzEpb0t58WLBK8kdjMvcAqeP5Qmw+elw6bxUYgTxT7h+wWCStmwsKnB5CIHGKnseh0GoCiSQvQzOo8jf3vAQhQDzc9Ul5lXpgP1zSDQMIEZQ2QLigFdPqaGTi7z1PG+mDen00qkteyQFW3A1ftOEIjW+uupQo8lhHWzi71olNm3yyBF6AqIFsAiCVr3kWWf8bIiyFJ3hchsfMCGYcBz5y0X1Bpko5KEL5IKCGdYABI0hzsLy1Jyd8zTB54hp6sZa8CcH6uzo69ISLU21wEFANoQOKdcvuQxzRQlJQUgIlsF0JQNcYgFMmNzdlhKYnWZ3NYLqf9LAfqy+l8a6VWLR4NbWv9tKUBqI8EiiR7tEm8KlOxlnVa9qq/vRzoZX7fTKuSa3yilnwmaqwsh246l8xA0FAqPa3Qf4osWSTlpqgGO2E//TnEhEL1W5knZ0mdCZJJTU1n3Nk06riu1dBC60qSlAFoulqKRtXKbea2OV8KAD1KLAR1BVDnlT6DE+UUSkqU70O+T01uBe60nLn5xCjkQ/9H4nkI1uREVDIAo6FpGHzU4aTW52sWLWCT4wiG0qY59I72l+XAR9MN5lNp9czK9jz7u9XNy1AoFgu/jmh1VOblqDqjfahod0XGC+hTRB9KH2Ef7YS8lUkqs5NtKKTm1+Gcr8Q9NhJ4LNm+A6y1do82DXCmNl1zzTXYs2cPtm/fju3bt2NhYQE33HBDvv6CF7yAJ/3M8brXva5K47777sMll1yCE044Aaeccgre9ra3YTJZ316jYUQSTJAQOh6MFkh0CmZOjpE5/BSNPz81PYM1NNtKqOX7gjIKnSRWBpR6gHr+tBERVsyIZcZDsqVnbC0ItunRVLrW9bmstyHzp3ppL3M3PebQY2Q+ix9jLzqQakK65TUNMqaQ36vzQmVBa9FiOS0OAQPZOA5YRMBhRCwi4jAiltBhCSOMzTHBCBN06NFhjChHyLHFCuMseZ2Y37qmZILEpQtJ3H97pCC6Ho3RpzH6NEFKE6CflHbHCofOiAPI3m594AklXlVZRP5l+4z2h3qD8RoSliffO2zP8z0O7l5+a12nKxH3ULvOqvRZMv+LgFOLphzgNpR6S4Fd2xOQ50PXTS1hwebc3zt0baPI5uexAz7AGjWgpz3tabj66qtx9tlng4jw0Y9+FC996Utxxx134NnPfjYA4DWveQ3e85735GdOOOGE/L3ve1xyySXYtWsXvvjFL+KBBx7AZZddhrm5Obz3ve9dc+ajCDc5NJbVnO19qJWOFiPz14HhwTNI2cIVpq1admITZJQJ0+msO61VNrx1bNX9yEq2XjMi991qQ0ODJMuL2cymZjCNZqDrgBR+1PSlZq1iHrOBIxV2CszYelfdYmQgTe8oIUH7LE2XkqtbLkfx1oWoDBrBtGvRaGpTWtHwyv11DABrplPWreFmkuQkIGAE0X5iDxIzXAJhjIQxCGMK6PMeUEDd6xwD0T0sYpKmde2Vb1dhZrk+4h/y2rD9VWLjbQRpCWtajkHXd+lcoZpTrRjUmVGfUGb+rCZU6dI6LvNYaXGKtVDrueC+E9o6wFrBwguLrXw8toBHKRCtMQCTo5NOOgnvf//78epXvxoveMEL8DM/8zP4wAc+0Lz3hhtuwEte8hJ897vfxamnngoA+NCHPoS3v/3t+N73vof5+flVvfPgwYPYsWMHTj+RJRiaAGnCO24W90opIGpw8bqALbzvdlZKW57kLSp6d+BVmSPYhQOcYl4AISClYYZzyHzz8qG9AoYKMJg37xnhEc3qi173q00DqvV0sPM6BYz4ac5cKUbERI4xOBBlj+JNxmRZOTPtosEmzIOwDYQTQDgewHHosQ0TzImeou/UoJdlnb6uwWFpWQ0yuupd5xBSlR+d7yl/9j6gREzWcvQIWX/g83UA3FGMGEVg1AWMIs/19JQwpoTFxBufkW5TkLQ+Gj0yJAEeAaGqqQm8K6qY79Trbc0j3I6akGuxQCry59FjawXyLOkvFnrUuKtxziNI9lbQWO09FT9K7QlakoTeLKe13GFijo0ooY4vC30toc/XrN+rt0VD1oqjTw8//DC2b99+RGmsyQRnqe97XHfddXjkkUewsLCQz//t3/4tTj75ZDznOc/BlVdeiR/96Ef52m233YZzzz03gw8AXHTRRTh48CDuueeeNeehi4QuEEZEGCXelbMEe2kftbLOpE3tt19QiXb1FArvzvzddQbf13sU85tHPnvos0CNG0NzxjZPg53UZ8T7fNnObB0MVPNIGCFhhF4MVT26DDUl7GTKB7P8MvDbOqZqHZN8d+1mX75rm8V8THLO1BlbY1ErSyqfGqynl0NzrvqU1XrqeAx13U0zZBubQwUMXmHPMcYmSBgjYSI1YUvUiqjmms6ajCZ6qMktSHOGI7S4qE6oa6WoMllbE/ZGGY5qcYgFG2s6b83nlugXhNjJMeIjdJSdPW1prC4UBnPvAWJ6sUF7bLVK5TUfe94O5FaMrrXSY1PTGaI1OyHcddddWFhYwOHDh3HiiSfi+uuvx+7duwEAv/Vbv4WnP/3pOP3003HnnXfi7W9/O+6991584hOfAADs37+/Ah8A+ff+/fsH37m4uIjFxcX8++DBgwCALgIhUd4QVPm0l9998yu71e/WSHVkVlKqgSfSdB/NHm76IqolWcuTh/hRS3DSZyzl/UtgHrKfNoGph+FrTwd8Gfj1dHwxaKVsNiOp5eKUbX2SIlaC+MLmQ55bGYNkWSeb0kZZvylhboL5xqCj4fpLWVQ7UzNO8agqRkTNhQopSqVJQpVPG9esvItdxXldCslSHOL5INJ6kCesLXlImiWA12tpG8rJpBdlIt1eq7578tdKGexi3dZ8aHKf6xk7LVbcYr9WFithbTmPKYhpVtzQ8/6KWasMiCQacAKsv2xdy3Zw2eiALaDxKUwbFJevEVty2wa+dlciP7a3Dq0ZgM455xzs27cPDz/8MD7+8Y/j8ssvx6233ordu3fjta99bb7v3HPPxWmnnYYLL7wQ3/72t/GTP/mT687kVVddhXe/+91T57uAHBpLAwO3hmxtUCid3Fq0Jubc2puRSuL5e0AVy81mxoKQeQRArfV4HwKvla8oesr7MzOyar7v8ArHflDw/YUx1NK9TvITkqzuL+f5mu5qUzuIlHe35Fp9gjIwjKEsIWR46EVCVhu/SsLWeMTvsxsj6JuLNqQgpKVTICnRrm08DVtrZQMJjcDRmzs0H3mlPhFSTyCJijkJHP6lz2ayhLzLbfUm204tKUQ+my71K4HP8PlWz1guJy3yevdy1/V36wDq3WxZGy9zeiA1mibxIeDxx1OyHCmjS0BMJKHwtIVLP83u60CuS9WV6igYtjQWeOz4suQlRkvehGHTaEG+r/GtBzqW1qzjzc/P46yzzsL555+Pq666Cueddx4++MEPNu+94IILAADf+ta3AAC7du3Cgw8+WN2jv3ft2jX4ziuvvBIPP/xwPu6//37OCwFzoWwIaWkIiJYzzR0ZUc04vEltKietU4KoQyPQj/qWma6VrybT8oPBJ1g0Gz/0CvjoBD3Jvknq9aVmMnUYYDRV45bunqnTxrWOZcHPgkKUDc2AJZB4slmTafE2K6Y9a2IpgVrUTKtmOTbJFeNcMTix8Ufv6hDNryjzCbrPT3GJqOeTYMogm7JRwFIKGPcBvXqr5WpvNXLLm7E1m7mc6LV+RqVyz6RxLOcnt5oxZUtpS5CnUuWYB3AcAo4HcAKA4wFsg5oDCXMgzBFhRGKui4RRBOY7wrYR4biOcFwkzEfCfEgY5YP4MyZ0MWHUEeYiYVsgeV/MxzZEzKNo3G3jvqeWua6l+fiaszXgNzpfD7da7n2bR0e8DiilVJnHLO3btw8AcNpppwEAFhYW8Cd/8ic4cOAATjnlFADATTfdhO3bt2czXou2bduGbdu2TZ3vKAAJSES1Rypqk4DK2V4T8r/t5/pIpNA8qoJJ2EiiGWzICKhyL8l5jSmjZjgtjR2tK1G+Z6jje4nNl76scrEhZixU2Rh5PWo3BusLx3pIcWCwV+r5lVYxAjRSwbh6PzP1kRzssECYF4BQLyk11/igPP63DZaTJetsOiQUA5011ZUYhCVPtgFsFAbAGupUcp9uI30W7ncLTMhdUyr617CBrDUCLJWOtqyM41Ly51cLfRZ87KyItlZnxImipeozIVsuE9jHJ0ZCjAmBIjokhBBAPdDLWqwkWlMMJTxuF8rQi4nDPGk761EcTnTrulbpl5Mil2tj/7wXRoC11aoHntXqrseG1gRAV155JS6++GKceeaZOHToEK699lrccsstuPHGG/Htb38b1157LV784hfjKU95Cu688068+c1vxi//8i9jz549AIAXvehF2L17N171qlfhfe97H/bv3493vvOduOKKK5oAsxJFYc6hZ8cgreZ6Srstp7SaQIeqHbJroswZAx8xON5gAAmpHvuEcmO2SgWTLiFHQwTW6h3RoBb0DmlGlqkmMSkV7aXoAQwq1hW7OFQXSAI0YA3lNI0xxbLn/L836almpQA4BxIpWR0OogBhAZ8um9lKLyApd90POJ9luMreRlIPtVGkeMAVTcB6VSl4t+od5p7lTDS2twJtxjHEkKY6mLtmGZM396jYtjof0OW+27evxPJ8Dywst47pqO3PrcDt0okdPkSOfh0EdGJIiCEi9GJ+S6KXU5mp1L6ooIQofZpIYrpGkwPKsiYi98csHFqcmAKbVhv4GhqCcn9/GS9tAFPyWpOd8d58IFoTAB04cACXXXYZHnjgAezYsQN79uzBjTfeiBe+8IW4//778S//8i/4wAc+gEceeQRnnHEGLr30Urzzne/Mz3ddh0996lN4/etfj4WFBTzpSU/C5ZdfXq0bWgtxcMGAmOoYxdo0rbl737k9WB0RqdlNg0tVEa0DOPgX+G1qb9aIxZD7YX6j3M4HrbO/DANLuW7Pl6neFvMqE8+lI9tANaMMMOpBpqtw6lA2xd+i/PetVVgDs/aJmPA0bM8cyqognROYy++1O5LWcKkaC8swdqtsrY9UQQmgQfaDgKBuLx1kcSoEJIFSX8tNSrek4KF28m1TcbmBez1Ts2LVkElIaX0uBdqjWgaplgblU/cQa8evigytXGrLajCDYMIYBUoIsURM7/O1xFO0ZHqhnE+U0FFCiHqP9GcKSBQkXjChi0DKYY8ScvQJSGaqXLZK3AKalpnNA5UFkFZf8WK1b2crFB6J+8iR0xGvA9oM0nVAP3t8BCVgPCEs9TTlPm07/dAw0zn9ta/9HqAQgK4DRlHCLwQx4QbwjqNwb5SOm/dtMQCkQDYhLti6YpUETK/x8VqPv3/aADJNlk30+TMIAKnEypJqmWPRvOhcSZ2eTdcPNH1Xkncw+MyBsA0J8+B5gm3guYJt6DCHiDmZrYlmYBOieNMFiYwQsISAMaLI+9ZEaA2FxaGAn+VICovQhad+Qs5rLraOPbBb368hCdjWd0uCHZoP8kxwOfAp9byy4a0uEaH0Gi9zD6VkzwVwG+r8YGhctyKRHhEBI0R06BBCYPfYEX92o4guBoxkW4Y+AWMSx3cijFPK84dJXOU7Iswj8fwyaTkCiHhd0QRACgGTwHOOE1CpNttEVc61bleqxda4a7XRSvCt5AHIw/v6RfCNWAe0pWPBAUYaCbwOCCiGAz9Fy09MD92h4by+LIVyQBMzkkoGIJTrAUZ7Qi1FtfrHqvqz125azHAIgFoSlmdWVooKsI7t/CSZogT01QS/deq1efEsys86KaSpBkQSKLyUwbtNlKeKQ3FxaAgitCgA1Vvh8bNRcqfzQJwDBSB9bjpCgK9v/W4ZgjejLDeZrfeQec7Xjdd6lKw7sV7zbWk/9fvqDdFD7M+/Ee7T5syzXq2RVq5LzstG61XJCbwJHfE8zihI3iKfJ9kJNYayrWVAAkIqYlJgKzrjCyFRj5543VkijeDhCmArojLFrYbsmNIQ+K2+0AKkVlu2atFmNmG4rx0b2tIApNpvBHcWVRy0I7d8hAjTbA2YZslrByF5MsTSazVlG9U4A5JRZ7KISNOZ86Kj7+Qr5gkugZY6b/I/CEjBnQPqQaIAojZxmP+qOyxnXiBzRiHMt1CpHB+t2gKN9URTbU63arbBe1QLYq1ZNzLUNxQwiq40PSBx5YJZK+9ZcAvs9dPPRi7XBr6RLXBpnVijs6/blrDR6uX++/rEMFt6XxrrcG9Lotf89SFIL+4jxcGePRGLq33ead6+LxT/xqRiijCRSPqdeUkHcWQIpWZ7AsYJWKJktHeazrSXctdMti1bNenHaAtg/P0+M+tr342mrQ1ACYBstdsJn1Jc9/M71lDkAUnJDtW1NY8BHxuQLjlGRIKWFTNF4Wo+g0OWENsvBzNq3221Cy9Tmvxn+XPIvbTFTvS7goZ9t83DEPDo/cpSij7TV4X1+S1LRUtUBGZJY2jstygxwToBnw46J6XzPurazWYY2esl/y/La/mNZUsH1XzqMioY2DrwddcCYctkbDm9BOzT89zOgpN9xte3T0O/+z7iBKlVjgrf83yO9LyHYs9GW1CeDOiUTc750P+Els4n/UpAJSZ+PkYGJF0LrqOgC2WdIaFENSqj1pSoVS3rl2Qbpfc1FNy5IQ3H9inLCVvC0eYA0tYGICSAgJCo6uTLyQze8nnkllBDRHX0YSL2WkvE8zllu05+k+UzLbCxmWrxoVVnth7CbVNPiyX4F6Jxv01fz9uObgvg05jOo5X7pqmkUcxwDAj8TInPwGa2iJH4xJVN5HTxaInfpvOGExhvKKg2Zd9ZzvVVWayWZjmPZ8WZvTXuGQKg6Tpqg8EQ+Nj0lxO7YO6x81H+na35rZoS6nkcX5qV4BHuuh8apafW4BMhey1BzGzQfsLPlfkcFO1IhiUCgxBv7V7AymY+//So2CrUmhmJb3u4Eg+Bj59xg7vu0/Kmt7ULGBtJWxqAvLwNTHdWZX92IZ2Vmv0Sv/XmJA9yAqB7ugDIDgY6rjMIyWDPGhPK/UDdF1q8f82ZbTEin/jQyBpiD3rea1VaWMs+/HX7jlrir1u1zWzLExp0FJXpTc1sGvfNRq+2TKne8qE45E47pNTBSi0wTWssoXqy3GMB3mpKydzjP4c6gtflfT5a9RdQZseH2qBVJju6Ws/WFN3RGp8W5myPDO7Q2tEwSTrTyGxUd3iiHCGDvdbA3nCTIEJgEB+fkDcEVvt9CLwOCGKCq0DTDJfslhN4PmkCGaq+qS1Or3qMrkb48Pcq+LQi8tna9c/aTM3mgI6ItK176WceVDy4rHR9Y3IEzkw1fsnxAwEejXpgSTebz79Nziw/KqNwlYLLcnJo67c/15KwvGTmnyV3j97nR6uO2GCeWQ2pSUzZEA+6MiktnlEo0QqE7VSA5OcKtW9oZOtpTyJrRrM9h9w9vlf5Z+395h7tF1WTkOF4vo6W0x9a+kYL1P25ofyhUa42eZZog7rb616W98BV57rMEOrMnrZ2ABBJlmUkkfH6AMrAI99jACJkujbI9hhFEMwjxTRvUBCikteJrSLflVc1JrX0ywl4VmCxtWTBZ8hzcjVgZjWiVWd6w2hrA1AAxxlMbKO1Go4yEcI0APmdDVrD8YjJCzT2DSqBtcCnmZBjOGvynG9N/br8TMmdntl6sPEyrh9EdjQOSfF+xNpnkZ8rT1P1bNF+Q/6s1xmpOU4978piWhvNTt/l15jUtFx9W3C1PlzWjtpKL7jvThMZVDKmtcE2oNuePwQ8Kwkdy51fuQ/anFjhr/WkAo66tQzXHteXmmBtNGsFKAWRIGAUgdwsIQIxgmO5yhEEnBA65Mj0ORGUPevkPX4XDGj662IiQ4lpuVoANDRWV8qU7x9HhfOtibY0AAGlc49Rlsr4oWeFEgtERzzns1ymKj4q0pUEoZzSfHMmaTqzeZM6qvvTqiatvORuX9jKrNIQCFkwGwKgGkCmZVgPqP6ekpbCiG71TS7fujKdoEMzmDhzlO8pf/XuMmVDBttngrmLz9qY3yX/1uxhG833uCHG7c1ZJh1q3b8Ss2i9eyUA8ufsd2siVFp5/kfvsstgbI6G+LQ1lfsVa9rb7Kosm25v+oDODFnRJYBYM5JsqzNBkBBeJCY6BTbo4lRioEoBZW+/Ft8+Yp6+HAhZwInu074c7rxN1/YLr/Pbdx17LWhrA1DC1PIZC0CtoeWH6BBZlpryGU1pBar6QGiDDjDtMJX7BU0jqHdMWnVH9wBE7tNmoNUhbedfzWSnf7evbc8+POMuh7J/mnpOny3lKoErKYfiKcNJnW5VOyqslM/YTRxKvfDwtzv1aFgezYeFrqFB7uvD0mrAxfdiTWelxh/ikivd3wJIn4eVTXB2HCqtlGt9i++x9tOnoXN6pXfyijPVeMuwkdaVXWeJkCPoB40iHngeiFCARldQ2BCPVYZ95o/YpGLrObjP1jV9aURdez4Dq0HJYws+wFYHIBWzUt1pW9OzloZNLYW0KZla0uAy5EeOTdSOStuPPN/yQorOvtq01kQtZmeRzYOP97Cx4OMl/9XUqJItfGsGps5zAZ9afCjLSlmL0Z1Z5+RQiZllZs47S88dNLq2Vn5XlYnfp7HqynAODbdwL+74nmfTbAF4q2xeQ9R7PNl8+DRX0nqHqNUGq1K1p2j986rB9L5a57Q59LxfWyKCBQXVbEvuTQioBNlOKebuH0AIsksxgw5vm6EODUBxaK2qxOPAhkwmr6Yvkfv0IGXTatVY69pMA1obOeDxh2e1tmpXU9XMWltMdxnyY97zBi8S2szZkAytTK65b9hRYqV1Je8cMKTxDJnZetSSVyvTev+wplPnwebF+1CVUR4EOCIidDtw3p0V2e2A3xgEglqaW70jZjHRKcgF6K5AnVzjaNytnuXL0X5fm2P5Rtd0W0BiaYg1+07T0kDtu4Z+H3tSE6puQuBrQ0vTCpFqnUd8T+5dy7JlWzTfAHFIoPwQqZaUKK8BgoKRfqeSt/rLRlALHOw1Cz7++koCc0tMb4HX0aetDUBoA4+SHeaeBa42Zcrf7dtWSiGUDOQv5lmdgPIqmxc0N6Q/rKaDtRim0pA7p0XNlrGklVYrLy0pvcV0p8ugLKUE37Eby5W0rU7hZ7MUTjIzyvdb76AilUfopnPrYei2DNYNxkslfq6tJVJZavXwFoPx+R3Kp7+2sZLxkF5mp9kLAAW5L7j53TRYE9ZVuxadjAcdqdu2zgOy+S0E3jhQTfu9vFDXlXOw02UKdFTIwq9+V7NbMr8tRC/XX2y669NwN4q2NADpMO1QZHHrwgnUQ9Gv+6mpxUSHpM8WSpB5zDyTd7vUT9HxvcIw2FdWqXmtSMuBj163HXJIG9JnhuYIhsDMv39IU2od00ZVu+9OhI18Xbebnd3Rd5SVQ/WWDOVJMufrcDx2+Je5QVsWb5IcAgG/GEDTshql/T4E3r7dNA/2XIvBtPr7cgxrQ2xLFXkRxPcc7nVWoOBnRlInE9BUjq1INK7eE/N/FSQiAR0RugQOw5MYXYgS0FMGHPnJGo+Zd9bhvCKfPyLSEgElvoPtE3YsDtVkK72V/BKPDW1JALIBvFveMp79eSWjPZS8LDYk9bfkNyqPRSBvNEdwvdXcu+o2P5qdw6thwV1rMa0hQPZS/Er3tUDGMktvnvL2SSYWPDgO9UScDzgHOoeT5A6d0VHTWswsqd7Mg0yuFIYYvjoDRnYPIC3PNDuEK1dr/ssyAJ2QiMiBDmWLgOk6U7IMyLZZ670t8gDq+/fGaj+a6kq/fRsoqYYEyZlGvrfP1r+LcBJNO4YEDlTaQfYO4npOSAwyifEoCS714EjaUwLsMePdtlR1f61N6S0wsmPIL8dffwE2YiOFLQlA3//+9wEAtx+V1H0XXgPlnrl5EsXaiFA65NYkArCEhCUAh7C02dnZGDqqEvVjl1Qer1txfZVRNhK2Ao4j7f5bhqrtkTedDh06hB07dhxRGlsSgE466SQAwH333XfEFfB4ooMHD+KMM87A/ffff8T7dDxeaFYnbZrVyzTN6qRNvl6ICIcOHcLpp59+xGlvSQCKkVXOHTt2zDpKg7Zv3z6rF0ezOmnTrF6maVYnbbL1slGC/9AKwhnNaEYzmtGMjirNAGhGM5rRjGa0KbQlAWjbtm1417vehW3btm12Vh5TNKuXaZrVSZtm9TJNszpp09Gsl0Ab4Us3oxnNaEYzmtEaaUtqQDOa0YxmNKOtTzMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptCWBKC//Mu/xDOe8Qwcd9xxuOCCC/CVr3xls7N01Ohf//Vf8au/+qs4/fTTEULAJz/5yeo6EeGP/uiPcNppp+H444/H3r178c1vfrO65wc/+AFe+cpXYvv27di5cyde/epX44c//OExLMXG0lVXXYWf//mfx4/92I/hlFNOwa//+q/j3nvvre45fPgwrrjiCjzlKU/BiSeeiEsvvRQPPvhgdc99992HSy65BCeccAJOOeUUvO1tb8NksqVis1R0zTXXYM+ePXnB4MLCAm644YZ8/YlYJ56uvvpqhBDwpje9KZ97ItbLH//xHyOEUB3Petaz8vVjVie0xei6666j+fl5+pu/+Ru655576DWveQ3t3LmTHnzwwc3O2lGhz3zmM/QHf/AH9IlPfIIA0PXXX19dv/rqq2nHjh30yU9+kv7jP/6Dfu3Xfo2e+cxn0qOPPprv+ZVf+RU677zz6Etf+hL927/9G5111ln0ile84hiXZOPooosuog9/+MN099130759++jFL34xnXnmmfTDH/4w3/O6172OzjjjDLr55pvpa1/7Gj3/+c+nX/iFX8jXJ5MJPec5z6G9e/fSHXfcQZ/5zGfo5JNPpiuvvHIzirQh9I//+I/06U9/mv7rv/6L7r33Xvr93/99mpubo7vvvpuInph1YukrX/kKPeMZz6A9e/bQG9/4xnz+iVgv73rXu+jZz342PfDAA/n43ve+l68fqzrZcgD0vOc9j6644or8u+97Ov300+mqq67axFwdG/IAlFKiXbt20fvf//587qGHHqJt27bR3/3d3xER0de//nUCQF/96lfzPTfccAOFEOh///d/j1nejyYdOHCAANCtt95KRFwHc3Nz9LGPfSzf85//+Z8EgG677TYiYmCPMdL+/fvzPddccw1t376dFhcXj20BjiI9+clPpr/+679+wtfJoUOH6Oyzz6abbrqJ/t//+38ZgJ6o9fKud72LzjvvvOa1Y1knW8oEt7S0hNtvvx179+7N52KM2Lt3L2677bZNzNnm0He+8x3s37+/qo8dO3bgggsuyPVx2223YefOnXjuc5+b79m7dy9ijPjyl798zPN8NOjhhx8GUILU3n777RiPx1W9POtZz8KZZ55Z1cu5556LU089Nd9z0UUX4eDBg7jnnnuOYe6PDvV9j+uuuw6PPPIIFhYWnvB1csUVV+CSSy6pyg88sfvKN7/5TZx++un4iZ/4Cbzyla/EfffdB+DY1smWCkb6f//3f+j7vio0AJx66qn4xje+sUm52jzav38/ADTrQ6/t378fp5xySnV9NBrhpJNOyvdsZUop4U1vehN+8Rd/Ec95znMAcJnn5+exc+fO6l5fL61602tble666y4sLCzg8OHDOPHEE3H99ddj9+7d2Ldv3xO2Tq677jr8+7//O7761a9OXXui9pULLrgAH/nIR3DOOefggQcewLvf/W780i/9Eu6+++5jWidbCoBmNCNPV1xxBe6++258/vOf3+ysPCbonHPOwb59+/Dwww/j4x//OC6//HLceuutm52tTaP7778fb3zjG3HTTTfhuOOO2+zsPGbo4osvzt/37NmDCy64AE9/+tPx93//9zj++OOPWT62lAnu5JNPRtd1U94YDz74IHbt2rVJudo80jIvVx+7du3CgQMHquuTyQQ/+MEPtnydveENb8CnPvUpfO5zn8PTnva0fH7Xrl1YWlrCQw89VN3v66VVb3ptq9L8/DzOOussnH/++bjqqqtw3nnn4YMf/OATtk5uv/12HDhwAD/3cz+H0WiE0WiEW2+9FX/+53+O0WiEU0899QlZL5527tyJn/qpn8K3vvWtY9pXthQAzc/P4/zzz8fNN9+cz6WUcPPNN2NhYWETc7Y59MxnPhO7du2q6uPgwYP48pe/nOtjYWEBDz30EG6/vewf+9nPfhYpJVxwwQXHPM8bQUSEN7zhDbj++uvx2c9+Fs985jOr6+effz7m5uaqern33ntx3333VfVy1113VeB80003Yfv27di9e/exKcgxoJQSFhcXn7B1cuGFF+Kuu+7Cvn378vHc5z4Xr3zlK/P3J2K9ePrhD3+Ib3/72zjttNOObV9ZlwvFJtJ1111H27Zto4985CP09a9/nV772tfSzp07K2+MxxMdOnSI7rjjDrrjjjsIAP3pn/4p3XHHHfQ///M/RMRu2Dt37qR/+Id/oDvvvJNe+tKXNt2wf/Znf5a+/OUv0+c//3k6++yzt7Qb9utf/3rasWMH3XLLLZUb6Y9+9KN8z+te9zo688wz6bOf/Sx97Wtfo4WFBVpYWMjX1Y30RS96Ee3bt4/+6Z/+iZ761Kduadfad7zjHXTrrbfSd77zHbrzzjvpHe94B4UQ6J//+Z+J6IlZJy2yXnBET8x6eetb30q33HILfec736EvfOELtHfvXjr55JPpwIEDRHTs6mTLARAR0V/8xV/QmWeeSfPz8/S85z2PvvSlL212lo4afe5zn9NN7avj8ssvJyJ2xf7DP/xDOvXUU2nbtm104YUX0r333lul8f3vf59e8YpX0Iknnkjbt2+n3/7t36ZDhw5tQmk2hlr1AYA+/OEP53seffRR+t3f/V168pOfTCeccAL9xm/8Bj3wwANVOv/93/9NF198MR1//PF08skn01vf+lYaj8fHuDQbR7/zO79DT3/602l+fp6e+tSn0oUXXpjBh+iJWSct8gD0RKyXl7/85XTaaafR/Pw8/fiP/zi9/OUvp29961v5+rGqk9l2DDOa0YxmNKNNoS01BzSjGc1oRjN6/NAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCk0A6AZzWhGM5rRptAMgGY0oxnNaEabQjMAmtGMZjSjGW0KzQBoRjOa0YxmtCn0/wFALepbmQIwgwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from PIL import Image\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "\n", - "\n", - "# idx = 1 (leaves)\n", - "recon_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-13-26/digicam_recon.png\"\n", - "lensed_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-13-26/digicam_lensed.png\"\n", - "\n", - "# idx = 2 (cake)\n", - "recon_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-38-07/digicam_recon.png\"\n", - "lensed_fp = \"/home/bezzam/LenslessPiCam/outputs/2024-02-27/16-38-07/digicam_lensed.png\"\n", - "\n", - "\n", - "recon = np.array(Image.open(recon_fp))\n", - "lensed = np.array(Image.open(lensed_fp))\n", - "\n", - "# plot the images\n", - "plt.figure(figsize=(10, 10))\n", - "plt.subplot(1, 2, 1)\n", - "plt.imshow(recon)\n", - "plt.title('Reconstructed Image')\n", - "# plt.axis('off')\n" - ] - }, - { - "cell_type": "code", - "execution_count": 33, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "1.3333333333333333\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAADTCAYAAABZRFVOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5hlV3XnjX/W3ufcWLm6uruqc5Rare5WzlkEgUgGS2AMBmMwnjHghNP7OBtsnMf4HRtjkww4wBBskxGSkJBQQjl3q3Os6srhhnP2Xr8/9j63ugH/LHk0r2eY3jyiq27de+4Je6Xv+q61RFWVU+vUOrV+YJb5zz6BU+vUOrWe33VKqE+tU+sHbJ0S6lPr1PoBW6eE+tQ6tX7A1imhPrVOrR+wdUqoT61T6wdsnRLqU+vU+gFbp4T61Dq1fsDWKaE+tU6tH7B1Sqh/wNdVV13FVVdd9Z99GqfW/4frlFADH/3oRxER7rvvvv/sU/lPW2vXruVlL3vZf/ZpnFrPwzol1KfWqfUDtk4J9al1av2ArVNC/RzWoUOHeMtb3sKyZcsol8ts3bqVD3/4wye959Zbb0VE+NSnPsV73/teVq5cSaVS4dprr2XXrl0nvXfnzp285jWvYfny5VQqFVauXMnrXvc6pqenT3rfJz7xCc4991yq1SoDAwO87nWv48CBA99zfh/84AfZsGED1WqVCy64gNtvv/0/fK179+5FRPjjP/5j/vt//++sX7+eWq3Gi170Ig4cOICq8ru/+7usXLmSarXKK1/5SiYmJk46xj//8z9z/fXXMzIyQrlcZsOGDfzu7/4uzrnv+b7iO0489++HB7RaLX7zN3+TjRs3Ui6XWbVqFb/0S79Eq9X6D1/rD9pK/rNP4P+UdezYMS666CJEhHe84x0MDQ3x5S9/mZ/4iZ9gZmaGn/3Znz3p/e973/swxvDud7+b6elp/vAP/5Af/dEf5e677wag3W7z4he/mFarxTvf+U6WL1/OoUOH+MIXvsDU1BS9vb0AvPe97+XXf/3XufHGG3nrW9/K2NgYf/EXf8EVV1zBAw88QF9fHwAf+tCHePvb384ll1zCz/7sz7J7925e8YpXMDAwwKpVq/7D1/3JT36SdrvNO9/5TiYmJvjDP/xDbrzxRq655hpuvfVWfvmXf5ldu3bxF3/xF7z73e8+Scl99KMfpauri5//+Z+nq6uLm2++md/4jd9gZmaGP/qjP+q876/+6q94xzveweWXX87P/dzPsXfvXl71qlfR39/PypUrO+/z3vOKV7yCb33rW/zkT/4kW7Zs4ZFHHuHP/uzPePrpp/n85z//H77OH6ilp5Z+5CMfUUDvvffef/M9P/ETP6HDw8N6/Pjxk15/3etep729vbqwsKCqqrfccosCumXLFm21Wp33/fmf/7kC+sgjj6iq6gMPPKCAfvrTn/43v3Pv3r1qrdX3vve9J73+yCOPaJIkndfb7bYuXbpUzzrrrJO+84Mf/KACeuWVV/6792DNmjV6/fXXd37fs2ePAjo0NKRTU1Od13/1V39VAd2xY4dmWdZ5/Ud+5Ee0VCpps9nsvFbckxPX29/+dq3Vap33tVotHRwc1PPPP/+k4330ox/9nnP/+Mc/rsYYvf3220865gc+8AEF9I477vh3r/P/hnXK/X4WS1X5zGc+w8tf/nJUlePHj3f+e/GLX8z09DT333//SZ/58R//cUqlUuf3yy+/HIDdu3cDdCzxV7/6VRYWFr7v9372s5/Fe8+NN9540ncuX76cTZs2ccsttwBw3333MTo6yk/91E+d9J1vfvObO9/zH1033HDDSce48MILAXjDG95AkiQnvd5utzl06FDntWq12vl5dnaW48ePc/nll7OwsMCTTz7ZOffx8XHe9ra3nXS8H/3RH6W/v/+kc/n0pz/Nli1bOP3000+6H9dccw1A5378375Oud/PYo2NjTE1NcUHP/hBPvjBD37f94yOjp70++rVq0/6vdigk5OTAKxbt46f//mf50//9E/55Cc/yeWXX84rXvEK3vCGN3SEaOfOnagqmzZt+r7fmaYpAPv27QP4nvelacr69eufy6V+z/ru6yjO7btd+uL14voAHnvsMX7t136Nm2++mZmZmZPeX+AGxblv3LjxpL8nScLatWtPem3nzp088cQTDA0Nfd9z/e5n8H/rOiXUz2J574Fgnd70pjd93/ds3779pN+ttd/3fXpC96g/+ZM/4c1vfjP//M//zNe+9jXe9a538fu///vcddddrFy5Eu89IsKXv/zl73u8rq6u/+glPev1b13Hv3d9U1NTXHnllfT09PA7v/M7bNiwgUqlwv33388v//Ivd+7pc1nee7Zt28af/umfft+//89gBz9I65RQP4s1NDREd3c3zjle8IIXPK/H3rZtG9u2bePXfu3XuPPOO7n00kv5wAc+wHve8x42bNiAqrJu3To2b978bx5jzZo1QLBkhSsKkGUZe/bsYceOHc/rOT+bdeuttzI+Ps5nP/tZrrjiis7re/bsOel9xbnv2rWLq6++uvN6nufs3bv3JGW5YcMGHnroIa699lpE5H/xFfyfu07F1M9iWWt5zWtew2c+8xkeffTR7/n72NjYcz7mzMwMeZ6f9Nq2bdswxnTSM69+9aux1vLbv/3bJ1l4CBZxfHwcgPPOO4+hoSE+8IEP0G63O+/56Ec/ytTU1HM+t+djFZb8xPNut9v85V/+5UnvO++88xgcHORv/uZvTrofn/zkJ09y5QFuvPFGDh06xN/8zd98z/c1Gg3m5+efz0v4P3adstQnrA9/+MN85Stf+Z7Xf+Znfob3ve993HLLLVx44YW87W1v44wzzmBiYoL777+fm2666XtytP/euvnmm3nHO97BDTfcwObNm8nznI9//OMdBQLBMr3nPe/hV3/1Vztpnu7ubvbs2cPnPvc5fvInf5J3v/vdpGnKe97zHt7+9rdzzTXX8NrXvpY9e/bwkY985H86pv6PrksuuYT+/n7e9KY38a53vQsR4eMf//j3KKdSqcRv/dZv8c53vpNrrrmGG2+8kb179/LRj36UDRs2nGSR3/jGN/KpT32Kn/qpn+KWW27h0ksvxTnHk08+yac+9Sm++tWvct555/1/fan/+63/LNj9f6dVpLT+rf8OHDigqqrHjh3Tn/7pn9ZVq1Zpmqa6fPlyvfbaa/WDH/xg51hFSuu7U1VFiugjH/mIqqru3r1b3/KWt+iGDRu0UqnowMCAXn311XrTTTd9z/l95jOf0csuu0zr9brW63U9/fTT9ad/+qf1qaeeOul9f/mXf6nr1q3Tcrms5513nt5222165ZVX/k+ltP7oj/7opPf9W9f3/dKCd9xxh1500UVarVZ1ZGREf+mXfkm/+tWvKqC33HLLSZ9///vfr2vWrNFyuawXXHCB3nHHHXruuefqddddd9L72u22/sEf/IFu3bpVy+Wy9vf367nnnqu//du/rdPT0//udf7fsET1VN/vU+t/v+W9Z2hoiFe/+tXf190+tf7tdSqmPrX+01ez2fwet/zv/u7vmJiYOFU2+h9Ypyz1qfWfvm699VZ+7ud+jhtuuIHBwUHuv/9+PvShD7Flyxa+853vnESoObX+/XUKKDu1/tPX2rVrWbVqFe9///uZmJhgYGCAH/uxH+N973vfKYH+D6xTlvrUOrV+wNapmPrUOrV+wNYpoT61Tq0fsHVKqE+tU+sHbD1roOyHllQxoqRGSQQsHiOCQzBACohRMAZrBHBI/J8iqAICDkCUkhGMGNqqeFVKAkYEI2BEUSV8ThRjBNHABBEURbAqiEAugsEgxmFEUB+Ob0VIRPCEY4VeG4KE00BV8Wq+62+eVAxGQKyiKEaFRAwiYA2IKIrBiUEAg8fG8/VOyLCoeBJVDAGucCrkPvycCCQ26lKjiIKNPxPviYgl94ogWAupCgjkKJlTHAY0vj9cTfgVwViD9w7U4hC8KhbBGo81ikr8rAipiVet4b5aIBC4DIl4DIIDcoHcebwXjDEYVRJRVBSV+JRVUMCL4DnhOSKoWhBPYsI99wpWJDwvic9ZDSrh/ogIGLBiECmRe0sbxYggBqxJMdaApDgMXsAaITVCmgqJFYyxQIJaC4nFGsGIRQWMTRBr4zEMai3GWERSRAzGhHNwavG2hElL2KSEScuQlBCbYspVTJJAmqK2RGItaSmhVC6TliqYtARpSpKUsJ3jG1TCszQ2hXj9Xkz83ign0Hmmxa8Fr27z6SPPn1AnJhxZJTx5UcGiWAGP4AibwKB4r1gbBEEQUPCAR/EaTi8IuSIoRhSJQhIuJ2wQ1fB59eAVjBgQjzFBEMLeDDcJYwDFJGFTeudRwAioEcSH4zqJwoXgFLwGNaE4QHDxcDYe2xiw4lEknLsakKCIRASRcL3hXIPge4IAWggCRThW2OyKeCXIZRD7tvMIhlQgTQwa7yHFvTMKGu6RFfCqeEC8xHsYnomiqM+jIg3nhCrxlgeBAqwKRoOyjI813AshnnNUUgRdk8Q7FPSHB1EMQqbgREk0CGPRpEiiBvdRoRvjER+UnusogcXNqqqIeKwJiloV1IefxXjUgPPBgCQqiIa9JnHfdIyFCppL2EtRMTgUq0qiimBwIiEn7pXQTSA+Dyn2d9wDYnBiw14HPB5Rh6iG/SQmXIdYvAT1rhKObyTsX6Pg1WPUhH9NkAlEUA3PvDh+IcTxjpwsfPEZPltE+1kLtTVK2Npx0xqz+Ng0aBxBMAoSNY4XCVYWEB9uniFYCw/gHYrBmvgQwjbChx3buRCDxUjQ7tL53lCWaDQ8ODRo8bDvfLDEhTUSHxSPD1aLaB2Q8IDQ8BC18CpEcCaca3hAPmhYDRYoqLHwmQ6ZNB5PJEcUpHivCGqCF1IICoWVi/fWiyDeBovvgweU2sV76iUoKPUnWGRTbIywBI9quD/e6aLGL4QkKiXnHGKCskqihQ7qMAhidBjIFXKNr8oJClI9DiUjWFbjw4bPADEmbGQI98wZxFhM9OpyDUrdGokeQhAmIwZvggJEFS8GxaBeMOKD5yQJWbxaIwYfzxo0KCkRMAY1JnhgBD2fFnsrClqUkY4yA4jfhgh4Aw6DwYJJEJMEa44JCl0F0eDteIKyNYAxCYrFI+QsXovxio97STXsp3ASwdgsngUn/Bz+LewVInj1PFuxfg55ah+EirDZHGAwJFHlihjERFfZBLdNJFiC4obZxEIhhIVbptEKR0sUNo+AmI7rDD5uxOCSqoIxYSMYJzhVvJdgvSS8B2PICcKVig9CgpJrUEI++r2pelAhVyGP98x7jbYOvChq4nnFTSQCVuPPyAlFBwZD0OZGbceydcQmPqTgAscNi+CibnBA20FqBIwN/kq0xD6eoxJcdhPvu/Ph+wWHkUCvVA3/eonfq5B7MJqTeAuq2EIhoeTqw4n5oNCiCgnX7oNyKu6HU0G9x9lo2uP5KSaEKihOgsse9r7rKD3BoBoULsYE1agaXOpwpogqgicpPo/tXG8S3XzvIV4sRlxQrsZgJYaG8d4U4VUJE68ran2J+1MVMVGZa1BoiQpiC6UQwo24o4LeLryesOuxqlgUMeE6nMY/OocRgxrtKNaiPj4IdrhWLQ4cn4WicT8VFluiHC0qpX9vPWuhdtG1NiZaUoJGdUKMnzwStW4QgHDTTIyvVBa1VKHNnYAtNroqXoJYRM88aLvoHYRnEQTB+3hTVRAJboyJblXhagYXJ8SyRmKoYMCpiRtMsD54Gj66cUaDQHuCuy4iQZtKEKRw+kEpoCa+Fm51sOQgGLwIarWjBCwS9n88Tjz16P6Gm6EGUMX58D6jLrqRQTFZE+JwVXAueCZh+/vO9XTCFS3ch6CwgrsbrLqTnFQsGI9TEO/xIlghKCRseBZxrxkB68O1F8rYigkWKNzoELxo+L5EZHEfpCXEK15zfPQWYpRE7qPnV9y/qOCDZ7B4r8M1JHEP+aAaTKFgQ6BhROk8VYnHVAs+CLOL+0lMOHhHacU9akXw3mOiRbUo2nGrJcbyMf4+8fykQIziqRYmrHCTTLyBce8uKv/CqJ0QN0tUaCIE9W47iqTz+ZOs+r+9nrVQGxPiBu8LwDxsflXtbDgnvnOBneuRcEJJtPDFg/OdCyguMULxHcsfNHNwp6LV9ESHHyQCKybG5aoOlcKKx3/jTfdBBrAilERwKCbeeFc8oXBSnbuoGhRRsNrhs+GbLEUIZgSsNZ2YuriWwoZrdPVFJV5PcAmdeny0OBLvj2q0eArOOYwubtvghvl4v4JFwEgIaUwIK9Dg5sfwLoQ6Mba00WNKKikrNqzD9g1y6L4HyLNGuE4NCi+xilFP5iHz4I0liZYjif6GCY51FMig8PCKx0dgDiQRrLHBdQW8U7yGkCkxNigIDcFcYgJA6WIIJPH5BnwmQfDRowlxqTVCYgKYFbwmvxjmaNgrBoMVj5F80cuK1lwxUc4sohYKKy0W5z3qPRjTMTQh1JMTXHgFdfG7C88mhBSeGB5KjJVlUQgXFVXxgEwIUztKOIarLBq5wnONR3i2ovrshbrAjYV4ThSay3cuEBM2qhHbiYl9YRU7Fo1OLKxFXEJElqO1KmINr4ULZzrxpBQgRBFwSLSIKqgLLjUd0M1H1NyTI6QaQC+DD2GAFC4g0cqGm+pVcSjqlVQK5RHhJ43HNhKP77HGoM7HGEsw6gGLESWPVjogxuG9RiF3dNzxzn1BI5odtbKLLoktNhUBJIrCFBCIePqqqAOx4bq9NVRLhjXbttNu5Mwc3c8L3/BCVp6/DVZdzUOf+SJ3/NUf4TQL1rRAxQiudPBYHHkE01BiViPE2k4DeCqFNxX1YS7hMOJyjDRRkrBpRePG9h2PRQhofwDiosCYBC/hPxEhJcPisZ27YzqhGD4All7DPY3aLjx5UcS4wgSgGKwq3kbpiu8Vjfs4KsoMMEWMHjZ+sJLqg+FQC+rx3pN4DzaN3lyhfKPXVVhiCk+ksLbxZhbWXxeBzvgXCgCt43U+x/XsY+qoeWyMZ8Omyikeq6GQp8X4w0dN42LcZSRYLNXCBTJYBfAUWR7ExhguurbBTyXAp8F6FtdqpbiZivEhNkUJAK0JmwgXBNv58ClrAyqtYmKIIBFpDq5/sEBE6x5caSF6FgSLGeJIi6LRi3AnaNTCwuaoSpAyAbwPG63YzMagFJsuIqkEN9upJ4sbuUCSrRaejHSArSAGPuxPLPjgBnsCgHXRyy7h/J9+L+1WnYPf/CSrV04hh26G3hJbX/5KDt17E8d27mR+bBzVhMwFTMQhGBuuzamQRS8nlZiq8kH1WB99kuhBhJibGEJ4bJ6j4uLOMEEhRQvkZFF5GQGL7cTQxqSohCxA1PQYDaGaE0PuTdgz6jrhnoiC5AilALCKCYohfneuwXuzMfXpC+UZ0VVf7OJozTWCvCrBm0vELIKPGlxs9S4q+sKyRtkM8D3qNBqlIhNR7N/CZdVFL7E4tMa040lr0YN8NutZk0+MNVhrSExIyySipIYYQ4XYMzhSSi4eL3TSPEV8Ha5DYqwmweUzwVULrpNdzBlLxGHEFFui40YZA2I9iMOipEBqg/sI4KOFEw2giSE8kAzFeY1ucXB0or4OqZyYLgtKO4YbBAH3Svysourx3uG9kHlLyy2GBSG9FzeJBEAt9XmwatF987rooofYtcjrFhsnIMW5D4k2r0X+0i9q9iKlZoJVMV6LQA+VFLXCwPISSbWH6uBSNr70RkzfJpzvRibHqLSf4OW/+mYueOMbKFdLmMTgbYKzFpOkWGuxNig+p5DFcxWgYgwlGwAkJ+A6oYEEj0njnVVBfQJqsWi4xhizlvFUCpxciQBn9Px8G+vbWJ9DRMyJnzXqwbsABBIUvjFFRE0EcQVHgsfGvHlILeUSPRIf3x/BLTHREzIm4CUnegVi8NjoLwSPkbhzFAHvYlzoY+S4GL55LYDLIMAFUBZN1qIsRyt9srv+HzTTPJc8dYFkG98BMUzcuJ6AJp8IdGkRLxJvt0gAkGKsa2OuNx4i/Ex4j49qrUgfFa6Lie6fid+fFACZBKDOesVFIC8YEQ2xVwR3Q17aRMJEkaAL1qlAHYPwmI5W1QgCeA1a3XntuE2Fc+WJ5BSIqYsTr8nFXHcnqIqgmAmkAwhejxIBuGLThA0a8CePirJs/WrS7gGO793H3NQs3kNubRANCXFpQLo9beeYbxCsiQHKfeTLdpBPLWCaij7yPzBrz6A1cxRJy4gPysrahCStBGJQ3sa7PGQ6nCPzDith0wicQAqSDn8hPEZBbFCKQTl6bPTNMhVKFKlCoQPRRKEM7wvkGZESHoMXH8CwaAwyCuMQlEiIuJP4c3hWNj5/GxVNQMuVPIaJxd5EFvGTwnoKEgg8HpIkJTemQ6UyIqB5ePYdb0NjxiMaMBM9rxhGds612BsmhHQdEO0EK9zBmfQ/LuTPXqjjiXsjJAQrGk1G1G6LrkXxewBBtBMHQ8w1Ey1vfF2BJEIEuYD4yLSJxkc0KhOisEJMb3TwUQpAKTExbSUhDSAaDmAQxBdpLiJpho6gBc0Zc93RTVYFG9lQIhanJ+SJowNc+E7egbGKkRybWLwzkWyjwQJEwTYGVCzOG5okWByVNCHPHU4difVk3iA+x0eSiFMlt57+lV1c+SvvobUwz7FH7uOuT32ZQ48/g/c5We7IsWTOMd/OGZ9t8czYLNvJsUZoToxy18f+muqS7awfmmFg2enMTMD+Bx7HeSH3HqNC5pVcczCGcrXMNW9+G93rd3Dsyce495/+jnx2hoyQpiolJXyeYcWQ5Rm5c9GNtVFhKwkuhE5qyBW8D9KUJjYAeR3cIyiH4I2GfD3WY6VQIcGjK0DQQqAUA96iJoBeAZE2OB/TfqIB1fYBlMtVyfEknZSjRoxIg8UVA+QYSSLJJHyOwhs1SfhW7zoxvRQCHvecEYOYBGNt9CJONErBNRdMTGkVoej3AmtaeGOFN9zx//89WX3WyxeKkbaaEO9FASnQRzDk8cGk6klIws2IZ1lgearFTQgS2XmgMXbqmCmJ1k4lCLq6iJpHIKFADWMcaU1w1RFH0N8F9GUAF+V3MS1hFPIollKkfkQ7cZpKyKsWML74cO65RgFFI4ATI0oNVj8xgYAQrLZ09o7Eh5oQ9s6Oc7ay4/Wvp3v56TTmFnjqlq/y8Gc+Du2c3EdmWURIm224+44nOO3rf8aKl/8B619wFiMXvprdN3+Wb/zlXzMxGR+4s+QeFlyLf/q7b3L+Rf+N1Vf9PEm5yvI1K0jtHP3nXoxPLHf+4R8zuvswkqQYZ/B5jtPgSmYuZ3DLEOte/AKS+mks3Xoptqx8828+SDYfcAmnDislklqdelrGe09jfgbXbqHR4mrkARgTQrZcbBBw50mj0tfCO4tp0cIo4DM0MrGwIY41KGWTBJBTglD7qOAxgtGIv4h0vDUiuq8d4ShelqhUYsJWoj32wZoaTEzVOayxOJMiNiEgkgVHUkASMDayEcOeMDbQPk9OZRX/avS+iowK8X0nR8PFx55rdfSzT2khIEGbg5AIEJlGNlrtIm8ZtriJijNS3HxwVY1ZvJDw9oJMIR3bR4EBxzhKTMjHiphIuogEhM5miP96T2KEko0PGYOLN8UX8Z4N31mQaVQCXVQjTzkRE2O4gs5Z+BKwiPSHCN9Kwb0OYJWxtqPgrC1ixCIlpxF0Cxt58zkbueIX30pl5XJkZie95TGWvOF8lqxfz01/9Lu0sxxr4ZzLtrHxyvOwQyMc3Ge58xuf41J9NyMvfCuV3gs47fo38NS3vsnsHQ/j8jwwjzRcy8RYg//3Fz/Iy37oXk5/6StYvSYncZM0DtzJIzc9yMT+6WDV8hbOeXzuGBoeZNkZp1EZXkW9p4Y0pqGrjSl1cdpL38jue+/lmTvvCnG281jxZAtQKiu1rh66KnWyZhN1jYD4p8rAcD9529GcnmZ6Zo52K8dKgkqh0ReVfQE4FHfKa07uBCtpDJsKwDCk63zMwrgCaZbFz4Ywz9DhYsW/BRJhIZCWE7LcMbYvwK0QD4vzJMZhEfLwoIPRMAZf8MejpS4srxE6Ql3sT4l71cWTKXBgOt8XQy8pPEA54fdnv55TSktFSCW4D9Ej6bC4CmCMeIuwBjWLm7twU4wNNtm56CJrTPkEWDjmb4toNV6U8TFWozDrnb3gVLBJoXQWH2rMKoT4WhTUdICqGBGiCFYNRjx5IcjE3LcUyiCc52Kcr6AukhFi2EGI3W2R2sB0+OxeT8Spw7WnxnPGZVuoDY9AcxTGdqFTj2HTb3P65T/J3m9fymM33cRVL9/GjsvXY9uPIwt3M3LJy1l3wR/zld98G+cf/h3Wv+SNHHzmKHP7n2FJfy/Hjk+Q40nF05UKvQk0Zx1f+Md7ue2WpyhJxkDdUu4aoGS6qVR6mLfC0MoRRnZsY/iM7Sw9/QzqS1dAZUkRXeHdBAujD7Pz9ps5/ORjBOKnxxgbQSBPu90km3bYJMUaS7lUZcXm1Zz9pjfSMzyM5m2yZpuF0VGOPv4ou277FsefeSZYVy8YW6hOASXyCHzEL6KH5BzGSnTnowsb89gqiwpcWQQ7A6U2eF6Bcl+EixpDvIjJRBe/oDwXCHbHXPocY9rhO6WESojhDYtGquOxxr1RZDk6CiimAgtXvNin30tK8fHzizLwXNazFmq1ClgwDhM3aiFjLsa+SLwPJmg8ilPSGCsp4YRPuPnB2vlOfFPgjoUld/EhF9cXs5CdUEC8DW6w4YRzCjFBiO4WY+UT8+I+usURN8GyiKgFwItA8dPoZImPbmI4H1cE9ybSOKPQWrEhPSOLtNBElTymaESEWr1M76p+SJei2QSSCzI/A/kE0n8rZ7/uVVTz/ey4+kxMY5bs8Ch2fifp/BGWXnM5W1/9kzxy0z8y4+9GpcS2l7+Ecq2XXCuYcor3ltnZWfL5SRqHj9BsTpNpQp5bumspS1cOMjAyQvfwCqS8hO6VKyj31MFaDDmYDJpPQzaJVlaw9/Zbue1DH6V1fJJ2K5qXuFHF2g7pxztHy3kwMC8lrn7pZQycdgmGNjp5L7a9m9q6zSzZ/kbWXfvDPPSpj/DkF/+VkIpyJDFL4ZETcvgBmPTRunkXwx0J3pF2vLfwLJ1XxBaZiEVvj4Lb7xVNTIznA3AjkcqJBhJNRIIC8BWlVdXgfY7FIRLy0yeyxRZTmYLBYgqCiUR0XoLx0njfimzWd1tjkUW/sOP16nOz1s/e/ZaYjFBHATwFLRfOQiJjSOPruLCRvRNEXEff5DkdAS8E0IpGN/VEjdXxygIIFYkpBS2vSEsZG+NgFjVLEcOLFKV/wRpbCRnlAKwVtI0I7cQwwEssQSTEYOo7UQ+YAPQoMX+sBqt5jIUU52LG2USwJ1r24AYKJknIxeC8x2gDpQdTWQYDG9Dxp2F+DDM7Sv+ybs65Zivl3tVk7jgLzafQ0QY9HCOZe4pzX/lazn7pJVFhOoyfhNY06jJ8axwjKVpejamvgnQ5XqcRuhASxNhipwfUwVtEG/jpx8ln9pNUBzBDF+B1GjNzFJ19gqEBuOhVL+HAowd46lvfip5UsScKMiyIKk6UdubRco1qT4boDAtH72fn17/A+CO3MbzMsPLCC6md/04uetsvkDcbPP31r2B9RJhPQH+Jz4EivNNgQNQrTlyn7kC9x1qJpZpESnL4oIsevfEglg442wmspQAwC9JK+JvRGKVFDMebBCkwm8L6mqLAJ5bPRk+VE4p1wllEUNiEMmETi0wKMkpHXKN1/76rk9b899dzoomGvJzpQE/FdVhbIN6GnBCLOLVEvkewpNFdt2ICz1Yiq8wqmdeYghAWOTgnedt07HDUclYETBJEVEO+lGJTaNTIhiITGjUkJHh8zPdqdLmJthYCm6io9vIu8IhtPBuvkMZQw3dUUnTbKFwsYhlq8AxcTGf0Lxngyp/7VagsYeLpe8Hvg8YzaHUVdE9A9xrUNRHKlCtQ3XweuBRqlsx205wWSrUy3aVu8A3M+NNkjSnc3Azzk8doTE0wP3WchclRtDHLys0jlLq66VpzNunwmdB3PoIFzdF8Gskm8M05mtNjHNmzl0fvuI+ju55hx4XbuPjtW/C+Spb1ULKGLr2bzeePsPTct3Hg8UeYH5vGGkulVKKZ5R3vLClV8XiylqOhNe788Id4ya/0sfOOvex+ap5nnkyYufkoG2/6HC9+d52hF/w/bHv1G9h/z/3MT03FfWKi2+w7FODcu8BWRMhUowGJ7qkQWV4htLNioncX90FBBY0YTyduFOlQR4l5bo2ucwCuompXYgGQDV6BLioer4pVj2iOaJmiXvq74+Qi7LIQa6el4yEuFssU+7BzZeF4Bd7As7fWzx791gi8a+EaCaoZIiUSSRDNcBpz2D42JwgBbietFPgnWtwrjIl5aaLWLARaJBbhSHSJlAKEFkLjADGRxRW4qLiCRBA873g4G13sKHpFXlwLsKW4tpj2sLZDLkCUYrCjSNAOhdsUHXUgEE1CnJ3EmMoFZUFgLs97ZaHpOPMVF7HyildhmGHVeevQtgN3CKQXqZ2N31hG5rdCq4GZOAKmEhRoWiEdGKE5uJLSpnVQGeDoE7ey946bGD82xtzEBFPj0zTmWvhWi0xhYGiYVu8KNq2/ElmxA7qWgzZws0+QjY8yOzHL5NgkB545wKP33MvRPeNkLY/VjKX9/ejsUzz5pW8z/sR+zrn+aupZArqHZPAMSinMBjNPo9Gg0t0DpkKrMYtJLD2VXnxrnIWZI9x71wzLP/mPnPVjv8m2V/0MjdkFvv0Pf8PNn/gsS+8d47prU7qWj7D9xjex+557mXjqEUxrrvO8gsD6Dr7hCPn8xBOEzxuSwnU+wRVWDE6Dgg6ElSL8M6haAuYRudcmgG0qBpIEFRvBXYtPzEnsMxONhfUuhB3GUPDlKIgsUfAKTsUJkWN0yQtDEkICOqAYsQDKdkhXxfUUeNSzXc++SsuDERfd7ujiWIl2L8aVMVAwiSnITyHCiIUeBZkjVMUQC8pDQwV1vri2Du9W0OjydkDRWJGjqKYdZSAx0SkuWEhrC08iAF6d9BtBc0q0xohDvaDGRhe+oyM6mlwkEBE6994Y8KZjJWJLgYjSh/BE8eQCbW/I0jLLVw+zYesShCawH+MPoaUlYM8CqiA1tH4Z1I7D/HfQ0SPQmAp8ctemPjhE/aKrqazfjhPP41+5lce+ehNZW8myLFgmD6Vahev/y1vY8tI3QG0Ai0WYxDV3M7NvF/sefIi9O3cxNz7PeS+8jPNe8xaGN17OLR/7Ww7u3ctcS7nv0T1c8vAXWXfJJeD6aJuE+spzoV7h8D1PM3tsCkjiKFqhsTBHpctibEp7fpb2whxWDN2VMs2kn2/f22D1hV9l2QVLqPWt4KLXv51GZQc91YeDZWxm1Pv6Oef1v8Ds3qd4+iufZPbwTvI8CxZZBKs2KMpOxicQbAs+PpKj3sbcdfGWE9BwI6HRAkFYfHSnO5x+W9BDYywtBmMXO5V4KWBVwQSLEoqYxKK2FI1UENSCh1EIZGFMJO5TMYXRMBTAQbDCepK3d5JbDs8prfUc8tTS0ZoxuxhRSU+uWSxtjFolAmXBImrM7cZ67E4XD9uxeqraaVZwciwVfokErkj6kPhQgxIw8W0mEl+K1FQungRIipx22AuxBC/kk4O7H+M0FhUVviDNRCUgUZA7YECAxXznFAXEheovC/0jq9lwyfks3bKR4bXDJPkEC0cegsYBqG8D24U0dkJ1N2K7USpYyckaE0w9fZD5sVmymSeol1rUurswWZtSuY0ffQSGr+aCN/0yu++5n+bhUXymqDi6+/p50c/8FBuv+3FMUsXoYXzjOON7n+aJ226n5D1rT1/LprNeSTo4SDKwFElWUu1bw7e/dhtzjzzO+GyLXfta/PG7/on/+ta7OP2Gd2N6z0XGH8X3bqY2aEm7e8lmmoGI5IHMMD89HeqfJYn3R0m9p62eowdH+cf3fIhrb9zNiu0XMJdsYcu5I6zetA1MTqm3jzUXXklSH4RtG9h05VYWRvex/6FHuefvPor1TbzRWCKpoD4y+Hyo1PNxjxnXwTswhVcXyjZFLCYy7wqgtCO8mMg3oIO/+Oi628AhJYR1IZWFKYX/SMJ+NwpRAQRrTCc+h5Nd5vB3jXXuner8sKNVF/e7LJJNip4ERaXh8yrUgbIoHTfYUbDHbADOoiK1IuAciQQBK+JkR0hTWA2xbkGtc3kQdoiEfQRXVCTEmCK40JFkopEdJAHcKgrjBSErIpOIWPoIhnQK6TUeKPLBkkgPLUjNajrOAkWuF0LJHwUxwQTk3PiC7RVCiMRazrz8Ana84uX0j/Tg5w/SnDzE5MMPMn7kMO3ZSfpW3EJyxnowG6DaiO7lDEiZ9vwRbv/w7/DE3Qc587q3QTMl3/9FNm9tUbae1oE99Gy5kKSyloo4Kt11nMvwovSMjHDD7/wWy8+8FmwD39jD0V0PsOvu7zD6+JOctmUFa05fjrojyOG9SLYUKV2A9A7gMkPr8C7SREhMQj1pc/RYiz/7w12ce9t7OP91LyHNppma+BKHn54lzwL/uaga0+hyOiWQOBQkCSJSt5ZqVbB2iG/fDwtf/Dte8vafYtPVN5CWauG2J0LaPYtr7Kc5OU6z4ZBkhN51ZQbW3Mf0ngcjDhIUefDOPFY9RUcVEYdIGp5rdLmD4tYTCkoCI81LrCnwkJuwb1ONoZl6vPFIFAvVwsuLpsSAikfJYtFF6IumNkEjNfREy1TkqBeFiCLrekLcDYXSKKq6bETmizIhUxShP8v1rIV6sSDexzMqcr5xs2tAFqUwtVEYVXygdEb77pVgCWPQFIAsDc39CGV5JrrMLgplkdEr4irxoZLFJB4rtpMSMxqQd9GiPU1x5xZrbotUVvA8FnncLgQypAXsKbHck1DaF7wLj42ElsBEk5D2wnDFm2/k7Jdejps7zty++9nz+GM88dhRntw9xYFDU5Q0Y3jlrawZOQv6LwK7IcZaPSjK3PGj3POl25iZK2Pu+gbLN2/FtQZxWDKXYSmRrrsGxOFdTrMxj1eHpCVe+ou/xbLt1+PdOKMP38Tuu+9g9PHdjO4+yFmXrmXZEk977AlkYYKs1SDbOU/5iVtJz/thSmtezhVvfiuTv/eblGQO3yMkZCTqGT8+zxc/8BXUNejv7sVomXa7gXrXwZuKxgGBDSZ0upEglEtdKJ71F1zDqsteQr06wepzLiUtd4XH4lpM73uQsd17sL3roWsFmtQQKVFZtZFL3rWCRz791xy972a03QwxqVl8hqIu2FixUVc7UjEgCd7YQFoy4TlrDBeMTQIXQjzeJ4iE+DvxirE5BRGlUAR0UlLh9SIVJrEkF6LrHJmIUOBGGvE4WbS8UZbC5wqSS9iXhcHxGkp0hcIghmWM6aSD/731nFJazhd1qgTaZjypUNqqsUEeHcurXjs9yky02sUDUfXxIUU6ZGEXtZO7j8opusO+gBxiaKWhesfFVjxBiCN9NVITO5zZQtPGeDk4PyF2SWJIYAqyOTHGV2IDgkWwI5FQI62EssicaLXLFZZv20JjZppdT+/k7lu+w3e+/TRHR2dCfbmF3Cl/+7d38K6+XoaumEf7zsIkVZQWQpXa0jVc8JKXcev/+CJHn7iPfHQXF12xkYGRtTQmj1Dq2oCUSqBHyOZa5K0M5xMGlvUzvHkTrekjPP3NT/Lk177O1KGjZM2MekUYWV7CkKFZjm+08POz+GwWNzdPZf7DlF80yGlXXsS2u1/Mw1/8FzQx1Etlqoml1tPD+EwLl5dYmG5QKTuMCi7WxhotOApREaqgYlGXQjmlVO9h85VXc9bLf5juFSOYpIyS4DUnmz/Crtu+xMKUoW/bi0h7lpI5Hxv0JbRVqC9dx9lv/lkerfex97bPI3kroM0ieDU4NYEWqtLp1imiGOMxkSlWhF2BagzYmO5SAvirGqu5IC28D4FOhVb0BotcdLjwhKLPnodO59hg6kKIVoRlIbQsUmBhYxdqQwger4pgIgXZmwJVL0Cy2KDwOaxnzyjTUJYYSg+JqGBMGWnsvhn58DGTG2POQMIIpt7HC5VFKy4m3qBgsxMTUmZegpZMFJzxHbKKqGKJHTJ80LjhuZnODS1IBsaYDhTutaANxhJKLYo6YnscDaVxhfa1UY12Ug4SO4Mg4IjNAA2zbchwfP6TX6I1P8b44VHGJxZot3KqZcNCyzHfcMzlns88knPsPV/gTW+cZPtlO+je8QoonYEA5cogV/zkr7HliotZGD1Ed63MwGAdcTmtiV2BRNPKIG9S6evnhj/+EAvTc8yP7qc5vZ/7v/g59tzxHWaOjuIcqIcLX7KWel8X1qTkjQXyXKCVo3kGWUZr7Djy8KcoX7uZ066+nCdv/go+a+OckJmEqak2mudYW0KzDC+tUBFl0lDFZGzovqKgJFTrXSzdvJVabzfD289i6fpNDG4+k3KlHvO/c2Rz04w99R0OPbGTtH8HSy+6EClVA8XVhc4j3maILdNuO+oDyzn7xrdQqpXZ980vk88dx3jFqceJjQraICSIJEFMCndaNCphF72qyBuL4VlhHNAAdmpMNSlwQqI6SkCwvLEeJaDqJ5CRisaHFJ1PYthZWGk61p6Oex6+L4p4/O4COIs8zIAHdYC451moUYdhsezOSWRnRa1XkEKkoAJJhPUjttSJM0zID3uEJIJpIgHAUA03U4kaX8F3ytygaE8nhdnVSFphEZCQ+LMWNwoo6JqIYE2Mg2PsFdLIhWtv6DDQhVjkAVY9TiIhITrNgjDvhemFNq2swSO33k5fXz2S7nLy+QatZk4zg5lMafpQIfSNJ2Z58Le+zm//1BGu23A1pt8EDrQ4TCVjeMtG/KZV0M7wBx5i9vBjTO55gt6VW+gqLUHSjaQkLFlXQX0b5Bzmp2cx3ML0kWPkWej9VkstI6u7qdT7cZnD+4Q8A2k7jHOYxOByT75vJ5WZPQxtHKF3ZISp/fvxCu1mZNdZQV2Ow9B0kIhiTWiO4UyKaovevj4GN65j0+XXsuaCy6kMrkKSEpBB3sK1jjM//jQT+3Zz+JE9NGQpw2e9mtqyEXJ16MIs7VaLxswUs8f2Uq3XWbL5fLq6DLVyBRlextmvfytdwyt45gv/QOPYoU7e2sc913aKFRfCJySSAyON0xichnDOFmEhFBwcitqAXE9A1CmENwSJAqGnehE7xzppEcFhOkU6Rbq3U+anGg1MAfKFfakoVov9RqcU02hBgpFOGJo/ayF9jkJduK1EtyNXH4kZoX9VPNeTcIGOoAUiLl59RNBDbJ1HBWCL/JeaeBdDt2xPMP2G6OMnBudi3zAJaKeTMDzARG1pRGP+W8lD9V5kGwVXyCvBDfKCwwUOeoyyFcDFjWKjW0nBAw99u6wBZyzTDqaaGcYauvGYBFyjRbPZJmt71AUGm5GgvIxAGuP8ysAyjh+bZvbWv6C29THs0FmYrmFMWkZLWzBpFZc/xd67vsLhPXuYGYPThpczNHh2YHG17oaJR5HmBNSGqfddxsU//m6mjxzm6Vu+CTgGl3RTH+jGlrpxvo2XFOfBtRyJOmxiEd/GNVro3DG6l2+ma2CAyf0HFmnA8ZkUeVrvlbZ4ErGkiTAwPMjq7ds48/rX0LdhOybtAl0Af5zm1Cizex9mcmyehbEx9j+8m6wtbHjhm+hdvQWvjrnxYyzMTJFnC+SNBs2jR5je8xBLN56GX3MGJT9Kkp4BhM44m1/4CupLhnniC//I7DOPo1lOJnF3ipKrI4kVYYIPnIOYbaFja4qwrNjPYQ95Be8MibEkZjFuFrEYbMeKh95rptOLTGLc7ZXYWbSwc4Xx0VCi6VynxTUx3pfiPUT+gy7KkSqdgREBe/tfAZRFq+U0CE0amCShPU1sb/Tdq+hzrAXAHGmFosEq5z7kucsUcUMQPGNCqyRPEMagNGJKzRb9s0IUYwoWWoG2R+clERs6XQAmNuhTIuU0alEVOlrQSmhQFPSPgBqcy2MKLxRsOB9SKDNOmWx4jEK1XKJW6WbJ0m66+1OSrj52PzXK4UNH8QsNaj7cs7IqOZCKYePpm7hzrMGSL93Hlv0H6Vl5O9VVmyiNnI5Ul+CxHNu/nw98fD8HnjlC90Af/89bz0FtA/wMzDwDs8dh9giM7Uan9lJZ9TIu/+lf4+AjD9OYmKRUsZTLFcSW0cTgkjLtDPJcybMM8Tm2nELZwcI0iXGUyyklCa2XxaT4PPBzS6US7VaGw6OaYDBsuPhsLnvHb1EfKCM2UGWzxjNM7b6Pw488xoEHH2f+6BT1DReS1mokQ2fTt3oDWbmL6acfw83P4JsLuFaDpFTBe082M4W2c2ZHj3Js91PMffsf2XrjL2CSJRx77NtU117KqnMuY8majTz86Y9w6K6bsS4HY0PVIILHRr525Od7IAk0UBO52IUal2iDRYq2w4WXeILLbJPowUWMiIC1iLGRchsbdXRaCUvHey262xbp3SIcLYpHIt4cQkmNDEcWFVAUsfBSNErPq1AXjQtUQidOIeBKPmr0eE8Biug2IIAmdLsM7nYRaRdsPR/G54QcV7DeLgAhKmBiTbFaRbwJvb07vFrppNFEA4gXyiE1ut1KYkIXEB8JJx1nJ8bTGt14r8SQIPQuxwjOu05fMksoJJAkoVmuMj05T+INp525kevf+VoGN62j1pVCawKp9dPKetl1x+38/R98jH17DtBdK9Fq5yy48HD33ncncyocrnh+6OgMIz1PUaveTNq1hEaphyPTys6JModGGxiEFSuXsvL0ZbEwfxy8QzQNXofLMRN7UL7EkrWv4Yo3vZE7PvMl0ClEswBUJmVIKjhbouWEtBWuqZSGFJDPcvzcKHljIXozgnUBgc1cTtZSjEk6DQ7Ouf4KLvvpXyGtDqHZ/cjUk+Qlw9zkau7+h39heO06Vpyxg50Lz7Bw+BCV5RuR7oSZQ/uZ2vMkebtJmqQklRKnnb2avY8dx7U8SblMfWAEl7dYGD1Au3QFT37t61R6h8hkOf1umtQfoTzcx1k/8kaklHL427fRylthL0loh+UlIbESke2wv0QBK6FGPgqfjdG4wwUBJSjtGGGFvSUGTRKwYTBBx9JHi4u1sVFmLEZRH/kZEtNXPnrhEsb/2II3sVjFAHS8h8KyC3Yx7YV+P5v5Py/UhWbxxM4RETTQiH4aKVBtTihl0wg2LaaRwv/CTQwpMKJNDsrBqyHPWQQqYrxbkAkSMWgSW/j4RQphuHGBmBDKLSGVYHVzD6FPlusQ8EN6QDr9tZ2PI2G8Inke0yCKkxB4OLXUlgwzOjsLXrj+J3+IK970Cqq93dCYwo3uYfLRW6hUDNVzX8WZLzift/b289c/+7vMLUyzIIY0C33HjFcWWsqeCccHv6n0lDy9SRsxCxi19HQb6v29lPJZbMkwvHQp1oQuYSoeKXVBJUdaM9Bug2vB5EGk617WX30p9/zrl5k6Nktzboru/gxja6ECK62itkbmpkJlmKZUKhUkqTF/7DizY8dC6sR7vHGdDIIi5C5DS10sXbecS3/ql0iry0FKaHoBUi6TTN5Bb/c01/7cf6FcBz/3MKuvejG3/PlHmTr4NGm5iqmUQC0mKdEsV1m7opuRs8/k0K7baC4s0N23hO4Nq2g1c9oOyv1DMHAWUquxwu2m6/BfIDsfQatlutf+EOe8/o1gLXtu+0YH6yissYhQsoYWllxNHNMUy2yikncmCifB2zRiI8Fo0U0P+FYCphTq5a1FivdhQZLQIimGWJ7AMYzbPQqsiW51oKguwm/BOi+GrJHTUdQfRDNti/eeENo+L0LtcaGiJ+bSshh3GI0srgBNdwL/om40GMZoyb2L7kjkdhdX7WMHUVFcjHFCLW0sw4xVUEZCzbJCIPYbOp1AJXwi5I9VsK6o5Q4+jvMaOeOBQKOFmon5Q6VoAOE6c6y8gnpDZg1YODw+yeTUPC//0VdyzdtfS6lWx7cXcGMzPHHP/Xzrc/eyot5g03ceYt31r2PN1ss47fxzuf8b36JsFLGOtnXghYpzlIE0avJmDpXU011P6empkOcZFRHEJMG1zFoIJTBVfKWKcRZaM9BaAJ8hzsDsOLWRnPrSHnY/Osn4wUm6V7Ywpoc0qZDWK6T1Lny7H7UNpFKl1DeIKZeY2L2HxugkSmBJGaeISVAbmjVmHiZnZrj4opdQqg9Q3EERD7Vz0dIw0niMysAAjD6BPXYvfevPpGvJAFP79yG9veE8SsL6s05n1fkX0rNiJVYS8sY8K1bW2HTtxZR7V+F9zsL0LHsf38Xk7qfI0iZrln8HmdmNzu7CJBnM7ad6Tg/bX/k6Jg8dY+GZx2Mca+IgwyCYYYCDJ4/tjIy6GIqFvdbpjqMSWw8bJEkIRfopkTFBkbkxEdBSMbHqS+n059aC3w2YiN0U+e0Tyi87OWulY5ROZJ6Fv2mncrAD6j1La/2sE2CmCNqh00amSI57DZ06M9VO8zvVyNn2IfHfKWFUQb0N7aBOUD0FsyYA5ZGf7UH8Yg+rgqgSKfuRUBCjaCXmLouul+ETYexLqBzzfpFf7jVMwyhG7Fg0Prxw3kXazpgE0YSGlploKhs2n8Y1b3oFaWUQZQkLx+f54mf+mU98+CbufHSKXXOrKG//YeyKF5H0ns6m8y+ikhhKVimlhrJNKYkwlBqWVBOW1SxDVUt/1dJXT+nuClMWm81m5KgL83OzsDCH+jlUliCVfqSrH6pLoNILpT40raF5C0OTrS+4nDwpMzGZo2KwSRlJDKZaodTXS2loCemSYUr9fVSXDONck933PYR4x+qNy3nx21/PS3/z9xjYdDrOGfLcM597vG+x6ozl4A7g3fHIc98P2uLIIw/y4D9+gYWd+yAdQrvOwksv7YXxYOmznHLZc/HrX8WOH/oRhjZtp1xZQtZYoJLMs/mypdSHlpCYh0ibX6Cnei+btw9g5kbpmruXpN6HT5bQGof2zDxMHcHu/zw9y3o497U/Tnn5SjASwcmiF3xoVZRK8CxFQ+o10IclMuAcxdwzaww2ia2JjMV1Gi9EoxtzzcaYsC8iydRI7EUmwf0uBBZOcKsDTEPRdRbhZEE+6f0x5iZwIop44NlRT55T5xMQEw7bmT7YQb0L5lXBuFm0niHoX6S5KWGQW2KDu+00FrurxGkZseBGg38fQ53FG+sjJVWL/F1sJeNPvJnBW/C+CAMiU00JvZjR2L41UFbDRMQ499IXDKDIz7UJHmHSlZlvtrji9a+kZ8V6xC5jbmofX//EZ3j6rqeoSYmtpw1z/StWs3woI9UZJJtFKimJKcpAg0qqJYJPQkVYOQnflyQWW0pRAwvzbVw7aDIxMHpkjKkjY/QPHMTYc4DVaHkC7W2Aa2FMJbjgYpHGNGecv5nqL9xIf2kUbBd51gQ8Jk1J6xWcrdPbW6e7r0xathzZs5vDD+/n7ItHOOuSXqrblsHa65ibmeXY+5/EoTTznEpFWNKf4sZ3wfgzuC1vwbAaxXD06ad49JZvk9puTn/h+UjXMLOH9jJ18AgAs80mfbWc4dPXkFRr4Rn5WY7vfoSRZVCrVkHa0D4G04cxjeOUB0fZdMkW/JN7kPoAOjvH/ILFTMzSPVgimTmE6jT1FatZf9XLeepfPgZZIxb/xIIMDRkL2+kIGhKjeRHdFRtOTGjMb0uhAYIYvFiMKax2jLm/W8CjS150tfXEfcbJiHVojbTYPbbjm38/WYvgsouNVwyKV8dJqaX/P+s5MMoUCmCL4KZK8Ton0+Y6JPUTSugKqy6EYXd03PXFz0okihRVWr6DFBaCHo7vCR02Q81rLIw3gteQ5hKFzAR7HaZKxCox1U5MExDLosVMsOC5D6hm6LmWEPJalvLwCjb3DXF8bJQtF50JphfvhZ23fZ2xR58iyR3LVqxicmKapi5jaqGL/bd8mVY6xOPfvD2mA8PMZwyx3NQgNngTXkCNIW/n5CgiCc4RLI0Ik6MTPHT7g1y1eilUNoEdDPe47gKcn5ah3YQsQ8aPUqp2sfHMtbiFAdq5p7EwRrs5G1I8CZRqZfp2XBmKMNwUT33+fjYuzzltbQP/zDO4deeSSoPepYPxfntcnoHXoMz7tuAVjj3yryzd9AKS2lK2vuzNLN+4kvpAL3bpBlQcXbUuNlx1mO/88+eZmF6gdf8BRm/7K/rPvIYssxx49EmevncX5251qLkM6EfKK6A6j8xPY8b2sWS4H1/eipZLmF4w3StpTR6lPG9JKKGuSatpWHnOhYw+9SCTj90dGIjWduqljTGYJDmpb50nVH8ZDVTSgGQTO6nEDLcYxKZgkmAlI84SgLCQxw/edTGcx3YaIHT2byTBBAjHB90QPdaT5XpR0IMyCAcPc1IWqdjPZj17oT4hh5ZoGPauGquy5EQwrEgJRZUWkb9CydiIIGp0JwoGj0BIdXk6BR+Goo5aO4n9POL8AZAISsKfAJQFeqwhc4o1wY3Hh66cgTKx2D8awozlPD5cIxKmihjpzM5YNryUV/7CWxlc1sPE7BT9yweBLiYOPcmTt93G5OEjbL1wOy/41T+C1iTp7H0wfAWjt9/Lzf/9T5gdmw55eULcJAQeb6I+MNtizOVzwTuPT0xM9yneKSZT2tbzzZse4KKXn0el+hC253JgCLUe05Oi5T5oTiPz8zA3hZ84SrMxw/xcxkIjo9WaR1sL4JpIW+mpWNIVp0Haw/zkNMnCXaxeNU/z8BjS00fX8Lbg6TQanVjKYJicbTJ3+Bm6Tn8LLNvI4zd9gLHRT7HtipdQrvUxcs6LyReOMvnwP1Kp12npEqaO7KTdmMc15jg62eTLn32azUeXU64NkZbXsfLcNSRyL9o6GigcyVZMfxc6PwWtKcz8DNLdh+QpklSordqKsoDtFnTJ2eTzDSrto9RK+7ng9T/MPX87xdT+PYGRaOKYZBva9aYITkMb6ggIdOJX9Q51giQO0SSyzQrcBfK4H6wPYVxR81W4y0ExxPg8gmyFISlQdIi12idI82Knl++W2OjZFt6E8PwLNZEX0pmgEWNbH5E/0WJQ3iLy14kZin803qjYhURj3GOC3C2y0SKiLkAeiweS2LJV46jWwiswJqDgeV4crygwCEN0RKNPEQs2wo1cvNlWlAyJXS8SrIQuGt6DWmHduWeSVpSjzzxM2j+MKdcAw/6H7uXIzn0szMxz9pUbKZeO03YVjj7wIIPSx7YrL6Ix9qN89b/9RRw/5GIosshJC3GFR4wl9w7nPVkrw7ngeuVFfJbDw4/u4fYv3MELrpvEpXWkuhVkAG/70OogUh5Fk0lo58yNHuKZx3dzaPcUzYWUtFQjLUNXLaeWtLFpi9bueymtOYek1WT9aRUaO6eweU593RrEduHooTU3H8oT48Ydn8nZdffdLL3iECZZzYUvu4HP/9Zb0d1fZ+0Z68nKp/PQvc9w36f+npFlJSpdSxifrZKKZ+WGray86FpOv+RKBlf10lNfQM0szEziH1f82F3YJS9E06VouhFdPos0jyKmDO0Mzdthn9XqlIdWYQe7Yfn52KP30rPvHzCMk1z2IXb86Fv41vt/H222EB+41R0vL6aeXGebBqpvsKgRSPE5KikSyym910iRDph27j3GF+ODwt72EfHqxMOFTZPCagud8UCe0NGWkwX5u3t7F38qctXPhf393AbkRRDKGKEUCRwOIuoXc78ayvAK7nRB+jiJtRWtVogZTSB9aGyhKwUhxMSeYWEcrcsNqYl8bQ1EEB8524UrH3zbkNs2kUZYMMHEhAcUBhEE4Ezi9MSShvnNThVMjolspJm0h8998U727buHA3snue4tP8fI+SPk7TmOPPEIE2NT5EmN7o1ngXRx8MGbefSb02yev4vTrpjl/B/+UfY88CAPfOUmTBKqvorBgArY1JC7AIXkzuGdxqIGIfNCm3CeJq3St2SYj//DfejcQa59rSdddgitrATbD+lyRAbRxDEz+zR3fP0uDu+bx/iEFTteSF7pxtoKszPjTIzdT6t8EP3Wt+h68gE0c8wfHaXVNpQoUV57NqopIEwdPohYpZSWqdsuynkX37ptF+e9+H1Uzv5DenqHuOotv8pH/+sPg7+Nsi3RJkXaOWPHDP3tBqVqH6svuobTXvFjDK3sp6svwyYGcSnt0X1M3vE5Zh+8hcEdG+kd/gpm8JWI6UFq5+Frc5DtRttHyKYn8TNj+GwBYyvo3AL+ka/hdn4N2zwI/b2IbzCw6nR6Vqxj8pknQmEPFh+tMBqQ/egR4yUQPGOZ9mIb31jiaYptlXtMGoCwgMcUk+AMxRS0goRibCHcZlFypEMGDa94jaj5yTFyx+1mkcUYBD0WPT27kPo5dD45AdKT2CwhlIPFJgIa6JtGFpuxdZLsuijIhXB7XwySJ4YYtlMc4hDU+9hYLrj4PrYULhshTRTjXJi+6MLDSIIoBlaQhig290HJLLr/0YdRD2IJrW185HhrKFJAQtSVVhg47zru+Orn2fu1KeYajqtmdgUARdtMj48yMTlNY1749qc+zjX/dYCV57yEkqQs2Xga2t7F3MFvc/zQHowEpN3G5KN4Db3cfEDwi26lQc8FjriXoGR6B5fyX3/7tzj32pfQaDbZ/cAtPHXPbWy+oJtUDuNbR5EVV+D7d+CaOQ/cfCf7d45zbM4wfvQAR/L7GV63iZVnnkv3qnVMPGloTEyxgEWaFtGEXOooFUxvD0mtAj0DaL7AkScfwpIgUmL5xtNYffol3PKR9/HEl25je8/fYja+k+VnnM1Z172GXV/6e/qHRxi5+Ab2fvtmyOeQWjfDZ13Pxutfy7KlCT39DjVVsslHmX7gyzx+663svecpLnzTD9F1zU/h86NIthdKO1BJUK3Rmpznma98Be9r5JmnZo8yvKyMtd00x47RPDhOOVWqg92YUh/WGoY2bmVq3zMYl3cAK+M8Du203ArGJHZUgeA0EYgqqqHEWDSPac7ifUXsXSRKA5Zd9N/rjOEpaqM71jbmxo2AFvWIsCgoxfru3wu8SmKK7tmt58T9FgSrcSaC2k6sLwSQKwwAW3Q5TnS/i64hhQY0UcBDHjoUtdvIZko0on4Git4uTgNxQ1SpJhqmO8SmDUU3z3AsH0syY2/xGIujRUslwWsS501rRMgLN0hjrbelb+MO0q1n033TPzM7p7Rzz6H7b6e99/OkI2ey6fxzuPtLd3K0Mc+HP3An+DaX3fBKhlcpZrDK4Se6+MZHPsjo7v0d+p/38RwMAa3PBauhGF5sgnMucuIh8462E664/jouedUNJEmNGpMMLHsRk0e2cfdX/561Q236/V5quUe71rLv3jvY9dBDzM618Hk33UOrac7OML5/H+XeJSzd0E3bK6bSQ3lJN0mljGYZLGRIrY++VUswtS5ISkzueZrZvbtYtm4DMwttvCRUUkM6sJ6P/ctTvLPrw6x77QqS4Zdx7bt+g+XLh3jy5q+x545baTcyJK1RGzqdVde+knJXja4eA1Jn4ukvcM/HPsgze2bo3vQCul7zdpZsmSDp6wO7PbILQ2Ykm5/j9r/+M5685yGWrjuHNee/hKlDcwwOKd3Lt+A5TLN9D62Go7rqSiSxzExP0zWyiVJPPzo5iqiQWTmhCWbB5DKB021C00qNKLjG3a6adEBciWEfgFiDWAvGUjDCjAkC6zsudBRyr6FUObIcA1ArHcbkSeKrwZKfPNHjxFWgcv/+evbud1Hk7F3HpS5yy0XNtHamD0oHVOtcSHFinXYLYblI9CCmlZAAyngieiixsVu0drkIuYNKYoA89uZOyOMoF4lF8Uhg6xQpLbzBRaQhAdTF/s6x/LPA7FWhidCzbjtlAdvOsWoZ6qmz55Ay8dQDLFuxmh0vu552XuETv/3fmJ+e4bMf+w5337Gfc3YM0DVyJ098Z4yDjz5G1tI4uCD2zIpeSzFLLHS+NGBSnF+gaI3h1ON8wqp1/WHmtLQxHAXbYHBFnR2v/C/M7rwTqa6HtWfhmrPsvOdujh85ztSMx2mLau9STCqgOfPjYxxxDzHzzP2s2tZNuX+AUlrHtZqkCy0qSUZ19VrM8Fn4Vov7P/1xXDvD5+1Q5DI/xcKex1i3dgX33fYoH/zHI7y5/resu3wXtY1v4uw3/BzVFZu45xMfpj3nsJUy/Zu2knT3052OY5J1NGZG+caHPsbEaInTb/g1+tbv4PbPfYKj2VcZWN4HS1+AmOUITZQyXj1jh46Rt9scP3qA0jOPUM8nqXYtBwuloZWUN51BvaeEXbodn82xMNuPlLooVWvMTxXOcdH7yy/WNmMjMm5RkyA2RUwpPBkNu8GLxHG2Ie4LvIWQ5lSbhkpCQm13wN3i95lQ3w0mpl07uFwHUTkxPXVyM386XsEiKSWmaJ9voCy4IwleQg9tE0XTRxAil1CrvFgq3rmU0BI4Ju/CwHRZJKvLYixhRBD1aHSDXbTiifGhhXDMO7Y8GPWUzGLnFK+hz3iHhx7TV+HH0N1CiAG5CTcpAYzaMLEzQuqZQt/qVaxe1cPpZw+x5TdeT9eypazYvJZK3xDd3TVMaihJzoWvfhHLN23ink9+glpvP6WBfvY+spejt95Na2FhkcAvnp7ebgZXLWdyssXEwQPRBS/OHXyrFR+2xxjp9HM7+vhdmMbjaH07QiXcW4GeJVV6B18ZnotY8ulnWJg8jmtnZFmOczn5pKdUb+HVoaMp2b4n6DbjDK2+mJ7eIayUyJN50v4pbMtSGliLNzV2fvN29t52J7mt0pybw7UDSt882KS3VOX0jZvY9cwu3vcn9/O6naNc9kPHqK65mDOuuZThrWex586b2Hff3ZQqKTN7H2LteQOoWA4/9SAzExnbb/xF+jfvYGZ6nkOP3MMD5QNsXP0pShfVYeCaODjiAOX6Ul74C7/DI5/7O8YOHMA293LahRupjqwCW8NYx+CmjajPcbqUucnltDMLKpQrNRq2hHOOJG5F0xEP0wG0MEJii7E5sYNKTFHlGqr/rAUfhVlsMR6x+DeyxJA4lnkxfx1Cx5hsPgHl7nDCI1J+onB3rHzscrLYvafzf8+fUIcviKhf1GQFbO+kiFXiZtTOB0KfJVlkj3SGlHXYYEV8EuqWhRhTU1SxCEWrXxu7jng1oX4WEws0PZBEJlEgpjgpUmayWC2DdGJsFcgFjPdxnn1IotnEcN55g5x/iaXcd4zTVp8JXSOYeh1sLaD9pKg6rC2xdvNy1v3KWxA8uAWyH3kZD97yEr7253/CzMwRcoHu7l7e8PvvYPX5FzE9bvjU//Nenrrn24h41IGJM6UEJRHBeyHBUBHPQ7c9xsKdH6N21S9BMoxKA1GLyDwqE0AJtE5a7mJoeJid9mF6uy3zDUM7a6KtadrimGzOUJMWl91wEUuHh0nyWcRklOwcTg6TDC3F9mzimXt3c+vf/gNkbUQTWrMz2MRipITxAUQcHhygykbGmjkf+qf97Nr7BV54+Z2sOudWeja8iPNe/Uq2v/wGpkanOXT/P2KrNwZRSrvZ/JK3s+S0HfgkNFoody/hjkc859z9FJu7/gXO60K6LgDqGHEs3XQJV717O25+HJMdxDQOITNH0dTjSivRhUNMtFbAinPI3QCqTZwqtZGVpMtXM3t4L9nEcfKsFWy2TQPHHx+roEN8Fpp+KGosRoqhB7FyUCKj0hRFHUE5aCwpjpzQkxBwifRR0ThyKoafYXJLUZvPCW64nBSDc8LefS7x9HMSakuA9m10VXMpdJXEPCYUwHtwMzX20I5NEWLtdeFSqJzQ1qUD7QeAAiGAVxElzqLNDYPqw+t4xZnAFiI2PEjiPS7GwCAnKoaYHhCJ/ci041p5LYgEiklLPPb4Ecb2/jU9fd0MDPQwsGYNXcsHKKcpppZS6uol7R3Clpah0wcx1TJM7ETGHiGlwTkX/hgTN76GWz7wl+TeMbBqKWu2rscYoW+4l42XncsTd98RurAoi+egMYfpF1Mi+441+c5nv8T5ZUv14l+HdEncbDnCFDAHLCAlz7brX86h3QfYu3MXic0wJsGYNq41weBgL1e99ELOvOBc5vd9m+njT9Hd3UuSClJKmDcb2X+ozkN3PEp73pOqkLs8INWmHO5lnuPaDRJx9HfVWLpmmD1pidsf2M+jT09z6X1TnH3+w6w6cyv1M17J0MiZDK36cUwyCCKMnH4W2u9px5xkqV7h7Fe+jr/7xuf5wGebvDm7k01aoftcg3afhXce9AkkPZ2kqx/xFj+9G50fhdoWzOClPLT7azxy5+Nc8DMLdA1F97pSJunto3fdmQyeeT7TR/YzuesJWscOIa4V+pa5OC2zgH3Ex/9KgXBiY920DU38QylmGDyfiOkIdtHMoECrO+knLUJQOUkgteNHa9QZJnRk+a50a+hNXsT4i0L+vAp14SYHwGHRzY2NYArxxMW8c1F+GXSiX3SzO1h95F2bINShsmpRy5nYSKGDHCJRGQY3Hx9YZcUEDOLnFGLbmnCHRUKttI/H8T6k5Iphls7YeBUhHrfVbp46bni8sh5/3HHx+uW8+LrXUls2xPTOuzj4uX9i/vhjDPRV2fzil9C943pIwBxPyGfn0JldiPsw2y7/We74hyqzU/McPzbK2N1fpnvVVtpaZ98T94MEUBAhlqYGAXdEkMx7Wl5oqeczd0yzdsnnWVqqUz77nVAeBk0RyVE/jUiCSJnezZu44b2/xeQzT/PU3fdxfN8hFMfI6hWcduZ66oPd2MEVNB6dZ2z/FAt9Di33sucwPPnElxBzB2VrSUpKlsd7SgAJ8WFeUihYaGApk48fYcVAD12VtewdneDTXzvCV28f49Jzj3Dhufex5rTl9F/9K9C7FKxSqtXprk8yOqE0XcbU6Cj7H34Qac+y64jjtz9ylLO/+T944ct3sumaa6g0xunqXkBWXoLp2oSUa8jIhejKVyJJL3mjxf6Dnrljx1jY9ww9Q5sDIalcI2+2mFtoMDC8jmVDK+ldezqTe3Yy88QDNKdHaWneCcE6BJtibxsbSy2lU4BErMcOlj2msmLZrpeQ2QjJsNiBtJOfXgS+vHq8c4gL7aSlEOhSegIJJQrbdwNpRYug51OoxQfCSEhURyEx2unZFFaR34sAQ2SgWyMRdfaYooWKuqAOvOl0LHERkTZAakFcmEZZaMPQEdSH6QsEi2skTOIsmUIoQtxs8UHgNdRyF85+7mNL4djiSH2cmZzUsfUukiUrWBjdx9zEGK9+zTW85h3vIi2D+CP0LjuPvjMu5a9/+RdZMnaUswZGoHspWItP9jLXVsxMk1JlnJ4tFUbWrmP6oYfYvXec//d9n2Vo+DaabWHqyEwMO0KHSCMhhFGFtnM0nSPzYQB8wym37W6x7g7h5a2/ZdnkEarXvAeTLgFGECmjkqE6gDBBUksZOucalpx1NZJPoa15dH4SZsZRN4+UhPKG87jni0+yc9cRsuwQJXHUSwnV8ji2q5dqpc5c1sZnjiwOogpKMA/pQ2tDC6a8jbqM/nKZgfVrmRro4cjoUb7y7Uluuvc4F249yCsO/jxrr3sD5bU3YkrLGBzsw/pxjk4qY3nOnru+RNXmGA8tl3H7kxm3PHEXfe+/nwvO6uctNyynd9cukpENpCNnwNJtmIpB27OMPvM0B+67jVpawtCOqSpQb0mNZXr0CKZnmK6eHqr9w5TqPXT1L+H40w8xvX8vvt0ESQNOpJF9GOKg8GxMaF9krUVsCPVElGI0D0awLApjCO8CFdjE8S5F6aqa0LUHHwI9BVRCMzlxtpO3PrFiS4vPawE/P89CnZg4wFR9SC0ViaCYmipS61YWG7pZY8gjul1w0IgggCrBnVGiKxxy18V5h3rYEJ+3VeOMKukU6osJee2Wi4h2Z1o9HQTdFV2SVBEfNGcOtB0hT2wTKFVJewep9Cyj0jOAKUF2dC9nrBng1W+8jrS2BM3uQyafgbkZugY3cv3P/gr7vvynmGoZSUtgunH1QZx0084SKn0bqC8b5rqf/QmmfuV9VOUIrWnDvulxyhZKiaGUWLJ2wCFamaPtPLkGemgewcCWU9oO2uL45HeaTM9VeMn4v7JyWlhy8cuxS7Yh1bVYlRDf5aPosafxXeOYvsvQUgJpF1R6oNKDNGZQl9K/6Xxe976zOT5a4e7Pf5rHv/Yvnaomn82jlRJpuYTP2gFLMoKkKflCE5sqaZrQztokgDUJiGI1Z9mypSwdGSbLlMOjY3zr4Wd46Knd/NBDf87F193O0nOuIV35EvqXraba3WTmwAS1qQP010K/tCw3ND00vcGVDd/Z7dj333Zx6Y5eztsBy9Y16BoaozywlnbPch7+/JcpeShVyti0HFOUDq+epFQjdTmtxixJvYuMlFJap2vtaaT9/VSXPMnkzifJFmZAbWBXK6jPEFfGGI+KBZsgthwEqtAaNjTLLJDuYt8V6apQ+KGx20pgk+UiJDYMFih4HkXNvvEBHA6TYuR7DHIh7Iup1+dJqJ3Rxdg35hJRDUCPDZBDiCmKXFtg3tDRZLEdq1mkvJnOCfuQMjCmUxieq4aWrUYQHxL2OWGWgkTAwSDkkTZqk/g9fhFwMuLJJaHtw8CbzENbwdkU0hLlWh+Vnn56l43QVe+jq97NzOxh8DkrBxxpqYr1Sj5/GB19Gpk/irgFTt94Ppt++HqkawCcg0SQ+iBS6iUdOR1ZeR6SKmvOPpsbf/3d3Pe5z7Pz7ieYmZ+ElqeZO9QpOS70FGcxdgp5ahPd79gM0SvN3PPVJxb49m44685PsXboX1m+bgkrL76Q5RtX0rdlO9VyDWm2ydvjuIP/APkcSbUb0zWAqS2B7iVo2gPJELX+CquGYerobnbf9hUkz7DWYo0h8W2Wj6zg2KQyN3EEk2eQh/Ak84prtSLuYUAzSIKSTNsJUknoGVjCstPPYctlcNfNX+XjX36Sux//Fi+6+Am2X/Bllpz3YkqrXsC5l59D8svv5mv/7feZGT8e6LGi+KTM8EXXcWQ854GbPsvugwt87dZjXHJWHxdctoXeVXPs23Mbhx/YRalUwVZq2K7+0OhCIwlJLDafg+Yckuf4JGUhd6RGKPcMs+S0KqbWxcTOx2lOTYZsiQQXW9WDxv4BHbgn9BJPTBLwnuiSq4RJHsUM7MKIBCwpdiiFkObq0KBNzPCAWAmuvhT2+3ut8b/ND//+6zm434F5hZVQQA8RDJBO2WPhKoShNEVcvdhCyIS3dmI1jZxaIyHlVJStFT3CHQZjIZHAhQ5xcVFiqZ0OK7kq6kItLRB6PieW3JZpSYWmreBMibbzWGOo1uuUylW6uvqo9vTS2z9IKSmhPse7jFQSUufQxlH8gEWqQ2Cr6PxRTGsBnZ9FaiNQqqDteWjOIM1pyr39sHQZdmQ7evwR8gMPsWLuQVa++8d54O6cf/ndX6LtwWd5oIdqgfUHBVeMVvG6iIQaQnOHslWMGqYanpv3OWTfHPa+BWqfO0hXTVi9qpurrt7CtqXz5PMzSO5IyjXK9TpJV51STx+Vrj7Seh9J1xCu3s+Tjz7DA5/+EiVySEIaRiWla6Cfzddcwfrupcwcm2bP3bcxvnNPsDBK6PBqbGw6HyczmlD1Zq0N/Om8zcDIOq778XdxdOfDPHHn17l7n2H7W97C1NQsjfvezbJzr+Osl76KNdt2cO8n3s8z374f07OcgTMvZsl513LT33+cgZJBJMeq8uDD4+zZcx8DQ0+xbNkIy3dcxvzRUWw+hyZlXGRrmaLqrzmDUY+4DCmlKIaWczigVO1lcOOZVLt6GXvmaZpjo0iehR2bGEya4k1seuk92JghsSbMiktspwmCRmlOkpBZcbElV5IsoudyAtrtne8Iurcxb96x0P+2i63fbcL/Z4W6aAeDBhfb4TtcbYioX9Q2qgQ2TdQ8Rfttq8GCB5mMsYbXTqdGVHEm8mdjWipUhxkKL0ddBM6swUqRe4zsMFFKpTK2dznJ4CrS/mWYVk7dW9LuHly7gWvMUS5XSUtlrLEklQqm1o1TpTU3T5416O7upqm9NPbfR23kZZh0E7pkHA49hLYXEJNCUg/aHPCzU+TTR2m5BvXqMnxzgdZj32ThsZuo9g5SGbyEoTUHKCclPPOhUsjHGKwoVYtTGWJRZqeSLCW05a0KlHAYI+RR4EUUR06rLRydWOBTn3uAh+s5V2yx9HclJNUmWd2TLEDaSsgzoeQrJNpk96NPcMdnv0F7YozUWpy1GGNZcdoqLv+JH6avL4VsGrb3svWFP8NDX3+Q+z7xEZwPDf2Nj1x9PElauI0J1iRhymSWoY0GLleWDI1w8ZUv4sKLYena5bjkMpKuLkzXEvzeLzOw6gpe8It/xOpv3cH4rMX2LaWVe0aWjzDeXSLxQrWUkKZQ6yrTVatSqdaprT0DO7gF5g5jyl0gAfA0BvKFSaQ9GRRR1iKp1UnShLYIPvO0c08lKdM9soZSdw8zhw8ye+gAfn4eVTA2CQQSAW8BUVR8CHOs6bjWITwpWq1Epcaiy8wJ1tXHEbxFQwXTyVUtuu8nhp/fXeTxbNdzIJ8YMAWRPZiUsAWLaDnGJHqCE1Eg3cQJCgqqeSfd5GJqo7isMJdYsAreCM57vA8JfUzsVFJU2MRUVZB1xaYlBjadSde6bdSGVtGzYh1aqjEzdhjXbJKkZRoT4yxMHg8hgLFk7VZoBlepkGft0BdaoN7TSz58AccOH2btwiNhqF3fFnTFOWhqMNVhsHVcDnO7nqI9c4xs8jCBi7aX8sxx5seOkPkeui57F6a6iu6BOUrVMu3ZRsQa8zBbzNBpS5yLkGApGR/SbqFgjLIxVKynpJBCZ8YS0atJjOJ9zug87DzsuPeI49oNnu2rHUNLCAX2aQmflhmbH+fpp3fxxANPUbIprdxQAsqJZWBZH1f+xA30DC9BDt4J07vRbJpq/1LOf9lP0p6d45HPfBxJStS7Sqw7Zx3dq1Yyfjhl/4MPY8tlkq4eJKlAUqIxN0NjZj+NhRkuf8EIq658DbMHn2JhdBddy3owS9YyPT2PfPM36LnkF9hy7UuYnpjiwN5x3OQ8K08/k8lNO2gefYqEjHLJUqvVqZTqVPtHMNUBqr01unu2U+ldHvZh0I+4+Sny+XnSdoPWzHgASpMUhyHLMhQhS1LSJKFSG6BvVUq5p4fmxBjtmVnwHudiitEs5qCLYq7CM+00IZTQGy945SdY1JivDunVaJEXtz02UklPtMKd7ylGGT3H9exjarGBMKLQqZ/2iznnIt6OslaAiBRFHGJCvTAUs6vD34sWLSHnXRTDEVsZhSMqivNBooumCc4TelDHh7X2BT/Exhf/CKVqD2lqqdS6ac0vUE08czMztObmURy2XMKKIXd5GJeaJrisQd5ukbk2iCfPFF/p5fanjtEz/HmWXLgUk2yG094C4lE/Tz65m7u//HmevO0A21/0w8weHGdp/SjdfT3Yei/lwfXUNl1Kae05iByjb+UqVmzfzu5v3U6Oizn3EJJLopg89ChPTYHUCykePCQG6lZCeWDRDbNQlgBJGM/abIWGiUdmcv7Hw55bdqZsH5mhr7dJuTZHZsocOjgJmaPeU6XSV8GLoZ23SVPLqk1D9KzdhNgcfAZuHmlNYA8cw1Q+zdaX/RgH7/06vbWMC64ZZmhoGlMT3Kt/nbs/eyf77rsH0z1I6EZjaMxMMXH8CNMT49Sas6TS5OBYwqE77mf56StZv3KY4+NNvvLX9/HqiV9j+LpfpX/JlZTSGnt3HkDby9l8zasYu/dmspnDpJJRr3XRtWw1tQ3n4UyJSq2LSv8SbLkWMi5G8ZmnXC4zNyqk7TZNP01jYZ4sb9FsZDTbDTKv2GqdpFKlLGBcg7J3pFmLpCKk3Uso1XrwuaexsEBzfiG4zaIdpdpJdy3u/CgfMeaOhjr0z5SOt8kJBrzozbcoEYsjlZ+tu/3d6zlY6uBeqeY4FVKCy5xL0VckNk/XoKlcdMOTKOEud0EJRJTMRJgeFq17IIeGYXUS42WHxnlWChI6XDrvySUCD0mJgQ1nsfayH2JkwzaSNKGcBNBiIj8CJqE5v8DC9CQ+D6XuTh3e59jEgnrmJ8dpzc3hXRsyx3xjDnFNxhfKPHj3Ea7Z+hjSuwzMCCB4neDB2/6ez3/ki6RmiO49ByGrsqR7kHrPMijVqPU0SLp7cNO70fo0aXkD57361ey+9y4Sp3jjwQtqPKhHk2K2daCHCnEwnwnWvGogSUxMu4S0nYsaXqzQCGR5KjbE4yWrtPKM+w60cXuaVJJZusvQV0mod6XB08ozTJrSbmSkOfR1gZb7Mfk8mvSg3iDZPJopevQJ+s8+xvYXncXKroNUFvaiew9DLcUuvZltL7uRyePTLMzM4dSgLsNlTbIso1Hp4itffJLXbfoiq7ZeS7XnenRhP1T7GT59E+1Vr+LDH/0ir134XTa+skV96IWsOW0l7azFwtqNpALN4wcwrkmp3kW5ZzlSHcQYS7neRaXWBSaJBtWHFsTlEtpu0548RqPcjW9nNFpzzM1MM7Mwx/xCA5IEWymFdJZ3pFlGV6lEtV5ncIWyfOlKuroH8HnGwsw0s9OTtOfmCy5IiN/jDC/EIIVbHkfZRrkO3q2GCZ2OwkqHP/qicxCFgghz3bwUoLPp0Kg7X/x8CTURydNY2F+4/4ttVwvhpgOi5QT+dkJovU9MyCedLIB0emtH0BshEliKCQi+qC2NaTAVciOxjWqJ6vpt2HVbqfQNUKmWqNUqWLHMzc4wPTHK8WPHmJ2cCFMTjUBiaS3MkTWbYAwua9JsNPBZhnqPEUNKziXnrGXbtf8VWzKImQdtIjRAExamjnPPP3+Z5kyTpLfF/oe/zYrBnDXXXoZ4xR19EJ8kjDWFBz/9Va667hwq5w6y+pyL6O3rZ6p9NBSf5UGZ4SObONbieg316nmkCFqjlMRTsgFTMATFmQuQCnM5zM/nlAykUnCGA/20LIZKWUkToVYSkpIhlRRjLW3N6erpZpaUtm+TtZuoz/BpH1Lup52XoKlI7pD5NsnsTs7Y2k17b5v2xDQJk9ikip98nPoKpWv5chqtQ/i5ObLGHIjS27+Mtk34xhfv45l3fpB3vftx1rzkv+DMVbQO3s3xsR62Xn4Fj1e7+NuPfoIfm/sdtvyIUl92HZvO3Ex7dgY/sAzjPHl7AWeUZqOJJtN0jQwztKRGbz80MsFrFlDlvMXUsXHy9gIyfpgJl9BqLQBC22UhzCon4CHNfcxDp2TOMJsrzdkmzQP7qS1fS6l3mFK1m65qL9X+JcxPjLEwPYV3cQyEFDFy0Zr4hMSThAaFMbiMTUKCt4VEqnQRV0tsuoCNjT3jgItYNvy/ZEKHqotwf7DGAaUtBC42H4okEa8uFlosssrCQPogvgV6XaT+0BOOhYAYnO9MyYoibzpEEhQSmzCwbgvJyq3kuSe1CeW0hIih2WoyduwIB/fsZmF2mvmZSTTPAiJpDVmrSd5u0m41cVkbtWHk3kJjntS02bZtLduvOou02hWQfT2MtveCpGDL1HqEHS++mnYz9KQ7bUuNCy/eTK27F1/poXX4Ab7z5Dz/+sW7mJ7zbBnOWHXeK6j1LmNk+zambx4NHDZXjO4V1AY3W53Be09iDLl3UTgDiy61AiYMKRAjWGtoOaHVyHC5oyRCyQiJFxKjSMwclK2hnBhSa0gMkIbNt3LDWq5868/TveIM9j/yIO2n/xVpH4GuS5Gepait0W7mpKUSKiXMwaextgevJVqTDTCepFsxueLyCbxrIi7Dt+fBtalWyhjKDPmcHZdfzb7HH+DPf+9WXnnQMnzuq1lodTF9fIpm0zI4tIyjA1v52D89xpt4H2e8QekefDGnn30Gj0xPcvTQAq45F8pXfc6SfstpW0YYXL0e7AIylTM96SHLyTIXBMek5AvzeGq4VhtjDWVrqaUpUq6hkpKIYMtl8tzRaC7QaMzTardpjS0wM36crqVrIY3utK1QXzJMUq2zMDWBa7fC65EBWYSTooTJqSySSYoKMYlysgigFaVPcfa6hMwRkcossRnJ/xKhNmIx6kLNM6EbSSqL9alBb2lEuMP8KEuIu03R4zfmsUMJWUS2oZPLU0JMHa+DWOKOjW1lMlUyNZSqXaw972pqG89iauoY1WqVUq2KE8haTWYnpxg7coip42P4vIlaS5618FlOM2/jFuZx7Yy83YwKKWwCTRKOHD3I6f2zzN/9t/Rc+BqkthlDEzd5DHwL6R1BKhUuec1LOf9lL0SzDNOcR+1Skv4zIOnlO/dO808few95lpMuXc3hY3OscSnQZuOll7Hz1lvxzoVeZUXtkPpO9xiniqoh0dj8XVwU6pgktAlt72i2c5pth6ihmpjAi0BIvYYe17FlbmqhnIZcfpIECmR3X4mX//Iv0rvhxYg06F9xHf6aazGJB9OFLr2K0pmOtKsbXI73CV7LGCmB7WNuPqfZUGyX0qUp2cJhjArt+QUka3e6htQtVCpVyqtXM7B0GTP7drJndJiedCOkKQtHH6VxdC9+ocmq9ZsZHRzig5+8jTfO/hZnv2mSnpWvY+ulFzKxbw+1oaW052bYcdUWVu+4kqTcHcRC65TTBi5r4XJPe24S1xzH1ntR16JvsI+joxmJLVHqqmEqFUxaIrEljE1ISiVy5yjlvfQGs0KWZZTqXbH+QGl5FyjGCkmlm/pgQjY7hWu3o3zGZv4nCJ+JrMUTsd2w4fWEfmMxdI1hVVHxtVjoEYqYihz48yrUbfVY8SQm9n2iSJYX8hpodiqLaa8CLdMisKDoZCyoN3jjQpEHMS2g2hlbIsSicyWwhIK9pza4hPUXv5SlZ19Gu92m1Rxn7dp1dA8MYEqW9lyT+bkZ5man0XaLvLVAWqog6smljVOPNwLekRgL5Trt9gKZh1KlwtiBI9w+X6VqbubKY8dYdu7VJOsugqGrEZ+EESyz3wnTLUkxjSmk2ov0DoHMMTc3xoNf+goVA3k1odrbxaGJEtBCrLB0/RpMSTDNwLjTiIBL7N3m1ZMkKc55kgJlgTANUQxeBe/yABxqEOJENIBlsX2yTUKutmSFxPgo4LYj0CCcdtoIPQPdGHJgH4gjKa9E6QtPyAxill4YFPCxffj2AqhgkxqmZylS6iGbnUWrS5ByNxMHJxnbtwfNGxh1EBsLqMkwaqnalGpXF8u2nUPS08v+R+6nNT5Ol5li3ZrlHD/kYQHc4DJmVm/lw5++j7eW3s/Zb1tO3/BVnPXS63jwm/dR6W2w5uwLsWl3R1CcCHkWmk5mrTYTj99FfvhJyivPpzmdYZIU09VPUi6RdHWRlCtYMZTKKUmlSpImsQeZoVQugwpJklAbWEpa7wlpstzhyMkzT+aV1JYpdfWRzc/is+ZiFkdAjIk1EI5iRpaIgRhKhg4/sVLLaGziESdcF1RV6MTSRR78eaeJWj2xD1mIjwtXWCB246TjIuc+uIkqxQzfAP4YEy4wjxbex8qkYsKkj4i3iRBhLqHwI6lUWb7pLFZf8mL6N26l2Zxn4egeVgwvY8nIEJV6CZtA1m7TWmjgshyTphhfwtiUUj2lnTRp5HmY10yDUq2OrdfRyTbWGA4fOcjU7Dxt5/jX7xjueOw2LjhnlO3b76K2dhNJ1yCZT2nt+RZ9fj+aJyxdv53q0BpkbppmUudf//s/cWTXY1QqhtwY0lLK2ALgGpB6agNdJOWUrJWRJDZkAvIwYM7jQ1MDUoxpI76oyQ0puDw2dkhtIDw4HGlicXiMerwE4C+1oRuHFQWjeGNRsTghfk/wTnR2Lwycj9CDsg/V3Yhsi+nKCWYP7+TI3Xto5xVKOk3/YJvuHk+SJvRtPxM7O0B1xTJ8vc6hx+aQvERocODDqBokFDBkLcjzYJOMpZ23UJsyvGk9F77kZVS6N+HaOU8/cD93/8uXWTG0gt1zTf7m7x/i5+u/x8Y31Flx+vkcOTLGk3c+yczxp+lb3kcogfXMjx9mvlUJfe6mjzL/zLfQhTHKG1Io1zCi9C0dplQpU+uqkyQlEmuRxFKu1ihXykGoNXC2bVKiXKtT6a7hVGi1Qkcf8GSxIWQ7U8q2QloHaQg+c6FPtw3yUbTMM7FUc3EqR7TMxY+x9ZYvIKegGjru9snNCZ+drD6HbqLaQaSTGEeDdPLGgXvjw8YpuNrxhBbnCIe+0VB0GynAtbhxY1ydR5dHonVKB5ezYsdFbLjohSxZs55Ws8nRpx6iMTHK8IpzMNaStzxqc9rNJj4PxSJpuYpN0kCkR0nKUO3KMWkgFaRphYJ3jk1YcI45Vbp8Tr4wz65ZeOJz91P9p9uQUoIzCRlCT9nx8rOqnHXWRrp7DqLZAnl1hK99/WEev+V2KiVL7mK8hpJrCVyO+AomqWBtgkFoOUdaraALOR5DimCsAS+sO/dy2mI4/NB9qGvhfFSC3oEP43mFBOMMaeJJVXF52FXlRNGYNhMRxIIXHxpC+PAc9u6fxB17mmRkKjQuVIfKKDAPUqc1fYzb/+YvmD+asezsF5LNVxg/eojTz6hTKleo9PZS3Xx2KE2srWXlpg3MT1hGd+9BfTsoc0ILJ8083gdMxgO2UsOZCmoydO5BTN9SbLWHcllojD5FJeliePkIe6Zm+Ju/e5JfXvmnDL7sr1izeT1P3jvI/3jvH3DOVedS61/B3NQc/St3UB85F/IZZh69g9bMPElSxiQV0p4axiQMLVtOqVajVKmEGDXIDqVSiXK5EsK9OEOtVC5T765hS5bMOdQZLAbvHJq6UJzRcizkjnpSJqkqXubxLoxuEtVO7lpOKKukkIPYISjE0L4TmgaR0H/TzX7eaaI5iveh+6aowUtAowv2Uywmi6B2cMHDRgyiGxr9SeiRFbqhY8UineOE2MNBTOUIpXofvWtOY2jrBSzddAbdy5aRO8fEkf0cO7CHSnc3c40FStOG3maDNCmBCJKkJGmKTVISGzpjZi7D5wZjE3KZIsnqiFiy5nzoN1UqM99skyQllg12kSYwM9lgdqFJ5jxp1ibTNok1jDUNf33zFCvufYzNI3sY7O9mrqXMH5+iVitTrqRIy+HU4rIW1tdQl6BUA/CZ2kgOVfJWCxGo1rowxuLzNi9+88s468afwKdLuO/zX+Ab7/89fN7GmEAV9T7UtaeAT0CchsYKadLhHQtF6WAcEK8ScuIo4nOe2jvD3if3s3njY9B/MTAC1FHqoML43ifZ83BoxzTTVJZtOp+ZmYw1K+ZIl5Uhb6C+BfNT0NzH8o0jaHoxM6NjNBZm0DzDa4b3OaiNzQEiiQNH1pjmO9/Yzd6vPcjWS75J36qz2XfAQSujd9kQpgmNdRlPPzTBP/7tXbxt2+ep9ryUMy64kLHDa9l/6DC9C5al6y6gb9UOWs02Y08/wsSuB5ibmaLeN0B7dobq0rU4Y7DlFJMkJGkZgKzZQLwL3WoTg5iEPM87xJHQkkixaqHkMVaoUoIsxxqHKDRaoYqukpRJSg5tNVDocOgL0oqaotIqAL8a074+NuwI8mE6wmxNeH5e9YQYfZGN+bwJtcTZex6P1dD4zxURssY+YjHOFvWoBDqjqgnzjQhxcy6xBlpB1EWrH5SGLRo6lapUlq1h6KxLWbHlbOq9A6BtGrMzNKbGOPjEQ7SmZ6gOLsW15slaJbJWC1POws0rUEaniLWk1RKiJbKFBaymVBVSU6bdbpItzEFSotLdQ6lWJ3c55VJCapVqaoEwH6wqUE0EUzFhNrWHmekWh7KcufEWxmTUu6okqaVsE8rVKofHZ8n8DKuGLD6bwbACYxw2KQVE1Ds8np7+EV7zu7+HpGUae29j62WbsY378fNTnPOSK3ji1rM5/MB9Id0noYhGnSON2YJMQrvksEliVgEbufJJTJ+AWsgyyIxBM8M/f+EJ3rr1EXp7hjF2A0YHOgBN99JhkmoPrcY0c5Nj2P1P0d2T0T2wlmq5i4W5o8w/+K+UZI5SYqBnC4Mrz6d3+VKyyXEy56G5AJohpoQXgzMOk5bQLCcRS7dRGpzBvbdPUq3eQ1LtIe0ZpJRUqJU9gz09DA6PcNv9D/Oimz7KipdvQ12T1WedS7lyBfVaHZuEho2NmUnG77uJ2VZOZhNyU6E5dZzqyo1gS5En0cClpeBduLhPnSPLcoxRNMuRJI3tgjs9LwP24aFcDiNtW+0MRckctFpKyxmSUi30FsjbYE7oa49BY8+vAICFGJuIHZsw/wljJZRiFsUbnNwgIea9nl+hNhGRK3p9hXRoiJ9djLclomKeRVAHsZ06aMHE4owApECooS7AcWcrpAND9G86m751W+lZNkytfwBjYWFyjubkOFP7n2by8H5Mpc58Y57atKdWq4Sh3wI+d/gswxhDuasGCFnWit6A6QBPmXdkeRY2caVKrW+Q5StXsfuR+0MtrLbpqpfoWSjTnvMkRqlUEhpxHM5grcarXv8izr54Fd193YzuP870kUmOPLEb32wyfnSSxkLOQnOOpLwcPzuH9Hdj0kaczxWEMPeGVeecx8aLX0iSHMedtQzDFDo7gRzbR73rGKdfdhHzo0eZGT0arKMNDHGjGktbFYxgfIcK0JnJHXqkhwo155S2d/hyGSlXue3hMVq/9zHe/GtVRrY2ETuANylGltO1/Fxe8avv4duf+Ctmjo6xbMSw45It9KzfiDbnYWwfs2MT1Cstkv5u6NqAwZKkJUy5CnkWUVtFcGHWV9thbC9JuRuXzVIrJZi0juDRrEk2P0VJLNnUUVRTamIY6h+kWRvgW597hte96Cjl2gi9XT3RC7MkxpK3W8zu34u25/EmwaYJ6pu0xvdh8u3Q3Y+xJVy7RXNhnqRUwrsM5x2pNZDnqGZo7smcI2sukDUqoGUkjpoM6eXIyTcSUqiJw7nYEJOEarUrdFbJc5xznXlvRdrXSyGiEgdGEnvYRQUgSmEefcfjilTVk/Hz50uoQ1M+T2A6JUUPJgwWF7SemtC/Wz2iJg6yU5LipNR3eoWFogSLeCURi+nrpb5uB/3rzmTJ+jPo7utnbN/TTExN40qWqckx8uNHycaPBpQ3rZJlGVPTDlOaZK2EQnZvlHbWxPucpFrG5Tn5Qo7PHalNyH3OwsI0s1MTsfQLkq4KlXoX5VIFPLTbOSXrabdaVEoGTcMDaWaeaqXOWduWcvHZA1x+w/l0b1iNKVXYeFkVkRqthtCYnmfvdx7gzi9/m7tvvZdjhw7hJvfg1oTCh9zH7qea4ZxSriaosXjz/6Ptv4N1u87zTvC30g5fOvnmAFzkRIAASDBnUqQYRIoSZbVs0ZJluyXZJZW7p9szNe52d095xm7PuNzB7ayxZSubokhRYo4ACRIACRA5XNwcT/7SDivNH2ufC7ZruoquQt8q1AVwDy7u+fZea73rfZ/n9yyhyh4hHkHwIqh7iYu38tafX+b+D9zPyR+M+dTf/zu48TYipLQIlbqUhBDwIiGcU9h60hSnRr8gBGiCoCbF0LTzKZONLf78wiUefeK/4S998n4++osfRB94F+QrSAoO3fUBPvo/HCPMz6J8mzhdRQ9mlvDyc2xdrol9x+C+96BWX8d4Y4vJeBfVG8J0jOpcWzG0LKwMKYc517/xXYwOHwc3TaYJZdLidw2TaY2bVKyfu8TmmYvs7EyIaj/Ndcd48pknef9LT0K5Sj1Zp798GKElMTgmW+vsfPcLECKZ0jRGEMKUWFvseIfy0E2JJuMcbjZHty0QMVJBiMTGpVGqkljXEHY2iDjywSKm6CGESpWl4tr9VwlJnmX4GLA2Ca0cmjxTaO3Bt0Qf9r4c9hZ0J5uWneMwdKESUaYvShyAjgW/d15H0YVTvsqL2khP9BpPMkQngH7EEK5ZJ6OIXTMkLWKJABFoiciuBPEixcuGaEAK8qxgcPw2lu94A4ND1yNCADvD6GWIge3L52m9Y9Y2+PEOoa6QQiGCRcZ04voQUFkBkNxhwVNXFc10hvcOEcHkhhhhPpngmhraRNwUIRJ9THSW6BJOiBQWMJtZWgtGGfAW5wVL+xY4cGSR9a2G73/mzzl82NBfWqS/to9yZT/mwA0sLC9xzwffxh3veSNvffxFPvvP/x3NpWcoXjNJ/w8fsbZNQAQiF08+C3aaED3BMD35OeLkKsN9PdRyQZxcpHf2C9zxtr9Oa/9bPv3f/5cI6RK6JwbwnVuog0MIpUg528nrLoUgOk+CNkbsdMa8rlDeUcXIqfPbfOaPHuUd+9cZ3vYI2e0/BUtvR8gROjuINw3C7iZLpdBQKsrDtzC44bUMDiwjb3w/MGPz3FVyZSgP7WNpTXLg4PWs3X4n+fA6ikGPlA4XkaGGMCDEFmJAdEygZTFAyJwbXnc7MWjq+YzJZMI3PvswZ7+9jye/+EP2f/idBEc3eoo0s4rN73+bdrqJjRIV08YWZCRmBc18zDA3zCZVkgELnWg6IRCVSA1HKVBKU/SGlAi8bWmbmtZtovMalZVI1S0VIboQCU8ikXZOrhBpYyQ6yJRGG4U0HrxPDbbgr1XSeyd0TGwtgkqLVYnOzBT3cmI7Rfg1Z+OrfKdWQVBKSxNNR2GQyXBAKuk8qW2/F6Hj4147LyY6aNxji6XTnKjorR7mhnd8hKWbbsc7n+7h411ml68wn0wZ726lMrma09gq7Wh5D+UDWikUgfl0xliq1JgJOmlplUZnOU5UNE2LUgrT79PUFW01x84rvG1TkiMCI6BtG5qmZt5YahsoMkmRRXqlYXficdYhheK5ly7w7MmL9PuGlWHB9QdLVhY1qyPDwYU+C6PIwlLByi03s3LzPdx54won/se/hYpJnmN6gd7aQS6cOkVr0yJ74amTvPSdz3Pr299OPY585R//Uw7dfi833bPA8iFB1Auwej8i67Ny9AhZJpM3XCmC7+pt2YELg+gSRwRGvkJfLbQkuLQBuqZCOce+o0eoqjmu2mW2O+UH37vAXSGy7Htkt3nE6muI6jiSZaLZwdenEFe/DSLHmBnH7r0Z2T9MDDC5MkfInDvf/lp6K2sUCxqlAiLWRDuG6bOIeg6NxTdzfNsQXYsPDt+6FN5Hk1BTOqLzgkEh6S8e5/0//36ev+v1yGbGwRN3IbOSGAN+Pmf9xafZ+uG3ENqQO0Hl5gjbpF6Dj/imIisMZdDIMqc3HFIOh90BIDFGUvZztBYYnWi487ljd32byfYW1jpUbsmKfrpSdj2g2AmE9jLZZEfUdVJ0bi2B0TlGRJT0BNeAb68JsLpLbOp3dBqOPS3HtUi6SIf42tu0f7y1+mMvaotAIwgi4AOJud3N3vyPlPuBgBR7N6lX5G2igxuEmP6v+268hVt/4uc5cNtr8TFw8eSz1NvbeGuTY2p6kco3NFXdSUkDwmTIPEeFgNSa0FaMd3dQUpE6iJHoPaojMSJT2HlTVwQpme1sUU22cdambGqfLInK5N04I9AGz6yxLGQ65Ri3LbUTNE4yzKHsJH9ubtmoLfPJDBlSM0VoMEZy874ef+nXX8sou5G4+RRlcQ6x/zUIPFnmuPVt7+DFhx/F+YY6RHJK8oXDBLGE6Vl6x2/m8ukz3PT69yBEhugdJ7gxrq546gt/BG3oiDA+EVABvEyft0xxqVKItIHG9DVRSjIhU0noEhnGz8b0M0nUknL1GJ97fIebj19l1nscVfSQfo5Yq0HtJ8SCjZcu8Oy/+V85uGpYOjikd+A6qp2W+pJn5e5jXHfnjeisTHdosQ0xh+YyYWedenOLyXiHra0x6+vbjHembK1foZ7s4ptANZ3Ty2Bx0Gc0UKweOcDigYMsXC/ZjJuM9h1gMFpF6gwtBG3Tsn3lMhe+/XkiEo3GRodvdlGhJrSKmAVC65jvTli76XZ00YcQMJmhtRbXtNTzCttUCCLBeUSMNPOK2XiXajpBKk1/YQktFDrvXWOPxciPUGgFRIn1qV+UEF0SbNJpaKEQKkuiquiSsMonbzx782vRORSTpYvokvZAIfGdvetVX9ReRELQ3Zgk0ARoASPS3Dqk7QtIyKLYdWJD6FRm0JFOMo7e8Xru/qlPcui2e2lCw876VarphPGVi6mhVebpA/YeET1Sa3JTIrIckRtwLSG02NbiGtsBBBNcIHhP2zZUsxnT8S5SStrW0s4mNNMdvG0wJse3LT4KMpMTY6RpW1AaLyTjectaIbqguoCNsNMkr/VCBlrJFBKok7ZaSInXGR/55M9z/evexYL7Pte/5jDSn6TZdx9nP/ePWFz8JoPXfgh99AHu/cD7eeJbD/ODr32Zxkb6iyOWj9+CwGD0Gd71N34TO4nk8ixx/AyxdwNXL8MX/sX/jc0XTxOkxIiCO9/7Tp5/+FFmG1fTqCxA1IboHFqksk4IhQ9pjh11+h50YZKyLszxFQRtmMx32diZ8U8/DX/lJy25nJHvnkSt/pBtenz7e+v84b/9GqdeuEhPSV7/2v38zM/fyLHXnmDx+jcj3SmUOQBigYCFOCKGljPPnuGZb32LU888x3x3TtNAEBrrHNV4C2trfN3grEU4h/KOteVFrr/Ns3LdAHPlKocfeC0Lw0VUljrX3jvmO5tcfPAz1Beew/RX0nvmWoSbMVrdj0UR1CIhCJq6YvPqRYKDpqm6RlYgujZpsq1Dad0FOgRCa/He42O6QtZ1Rb+qKIYr5MNRoo1277qSMlknRUet9V2lGjw2RryUtCi0kBiZpVFXR2aNUnSTCl5xKkaPFJHumEqCmhiujQNf1UW954lWMglGrEunsE6bFHRdcIQk+q7LLFJ57kPKK8pMnzve/yFuePNHuOG2O8gXVzn14nOsX7zIdHcn3TVp6esRIpdUG1c6sJ0ArYgKvLMEaxHBYds2iTFimjuWC6P0cIKjrmbU1Yz+cIFSDght1TW+JVordHS4YHHeYl1LmS3THwwRQmCtg2jS/JqI9S0zD7IFQ6BfCAwaHVMSp5CCg2tDPvyL72Rw/D5ojyMvPkY8/wRyf8tjFxbpP/ci92z8FivvdSwd+Qg/93f+DhcvXua5x3/A7NwZXvrOv+feD/wqUR4hLw1ZAcFamJ1C6IJGHufsD1/CVTPaEOllIx545xon7v8lPveP/iXNeCPBFAVEle6uipiaPEKkE1pIlInkmaa3tIhRmu3dHXabhp2tbWwdeOxl2Pmdltff0bJ//w6b7fM8eXKHF0/t0ljP/qU+7/3w/Xz4Vz7MvmOHENkS9cmX8e0G/cV3k8SOBusCz3z9szz8h7+LryOjw7ewcKCPyUuapsFVDfXuOq1radsKaWuOnDjADa+5kyN33Mva9bfiyPn6v/7n9MoSqXJkdLja4l3N5jOPMnn2e/gY0SGCjng7J+v3OfrAe9h46TkmtkhThiC4euoUvqO3um46QrchEyOy7ebKISC7Btde3vR8OqVtG4YxIIzGFD2k7ppnXbNYiIhUiXwUCUThO7xSuoC2oatwtUxxyV0gohT/EUFU0I2KO6WmECmp9f+M7ncSj6QOtiTlRYfYdVk7jVuCDXZfIwQxdqqxmPp6933453jXr//XRJlR6Jw2RrY3kjWyrue0bUWU4IIloKibiqzopQ/NpNGF79RiSTyfJKeZMTRV1eFrDUok7W7wntl0TKYUrq7wzoEPWNsSuweMt0AkL3L6wxFaKWyXHpLE+B4tk+10FjxXG8kaEZ17DCJlSAvJ8rIm1y1S5JDfiFhsCdu7SDHkrW/cj+zdwjNff5wbvvy77HvPgMPXfZCP/Rf/Bf/g1/4G9fY2//T/+vf5xMvnuPODv0i5uArzpxgsLaD7+7AtrJ99gXo2wzrPvAnc/q53sXLzmznINpd/6qM8/G9/C6l8ktbSmWm0QhcldV2jo0+brM742b/5MW54w1vRg5LxxhWqzSs8/fQZnvvu81w9c4HpxpQv/cCxYHYphjNGKwM++JMPcP19t3L9/fdx/DU3J04XJcznnP7ypznwE7+EZIEkDQ28+O2v8sP/8DssLRwjv/1mxHCJel7hphPCfArBk/UWKWTGvmNLvObtr+HIzfcjy2XS8FGgvOXuD/4CMRuCgHpWI4Nj68Ipdh//NvMqEKVDl54MiLRAQIVdskM30Nf7CW2F1IamHSM6zzUIlDbphBRgsqQbUEon8CJ719vU+I0h+Z4HZY/caMqiwBQmaexJoh6l0vtfN4HQEWFD6JqizuG8xzqPawOZlklZ6V3X1EzrdQ98QUx6BBW7PwOJFvuqZ2m5kO7FksSATppuaHyqH4zqximkjl63zxCxeCTHb3sN7/trv8nx6w8wbiPjsWfnykW21i+zs3GF2WRCcDVFNsA6h3cNpuyhykGSgXpHbJLVLZDK7eg9EKnbBqEVSiQlT14U5EWJEpK2qiBLajahDdHu0jbzzpcsUVIRvWc82cUHR54ZGtcmCGBXQuVSooTHZJp5G9iyMZkojEv+CBk5c2FM20ZyVgnecem5M8RJzmp/H/bqQwxXt6mP3sc/+ZeP8MnpP+X4T854wzs+wa/9vb/Hp//J/4y7ep7f/X//M8p/8XusXneAtplx1+tu4+DhQ2xs7vLCNx+hdVC1lte+8+18/P/+39EfZYTtb3LPT76BR/7od/FVjVASHR1Fr+Cdv/xLDI7fwTd+65+zdeZlppM5tch45pEnue2uwywdfwMrR/ZDNeX2191O+KWPUs3XmY014411FgeS4sAxdO8wWW8xQSVkIOKRfoafrXPu2w+yqUtOHL+L0PXrNs69xNOf/i3a8ZzBscP01g4zn1eYGLFtg5ABIQym12Pp6AHe/pE7Ge2/HlhCdGmSMQo2r14gyBylFLZpIDpmO1tc+PofU69fxjY1uswIPuC9xwVPM5+x+fIpTjdr+HiV/bfciydS9vqgVGcfhrwoO/2EwJjkL5dKkRmTSt8YEqNbqk7fIBguLpENBuT9AmMkWqWmlu0inI2MuKhxAVoXIWgiMK8C8zrQNA3z+Zy2dRSCrtFM0qHHDo5AZ2JKk6x00ndC8lfd0BFjIpv4zrQRo+9YTZ065hqzO6mX/N6lH0FRltz2rp9GDJaQCLJM4EPNeHuLajKhbWuyvKRRMTUzhEJoQQwKokcIg7MNTgQyo8F345kQsc5iZ7N0t1EdeC4zZGWJ7pcECdV8TpYZTG+AaxvCdAdXj5EqS3woZ6lmSdpojGE2nxODTM2PxkGUXfCZIjMwd5GNNtBGRSbT9znegvUqZxAtbTXnO//u37C0dj2IknzfrWSHh5z/yoM89MNN6pnlF2f/gls+KnnvT3+ct33gDbz8g+/z1Be+zJVnH8PZirNXxzz0J98mU4LCGFxoaV0kZH1+4m/8VYqFIpV5/f30RjXZqEdbVbg2yULv//DbeODjb0Qvv4Ob7r+FzVPP8fDXnuEr/+53+cyfPM7FC1f5hV+5yOH730W+vIrUi0gh6OfHGewvOXDrvQShEVF3U4wekRoZrkA9o96d8vTXv80XPv1V3vzhd5FlOYLkSX76839ItblOuf9WhsdvwRmNb3dwTY2UElMMiConX13mNQ/cyHDfcYRYAwx7ALDp7jrrp08zOHI3bl4TfYOrHWce+jzz8y8j1ABhNFLlECF4DzLDCUE+WMO/9Czn13fplwPWbr2JYrCI1AqtkgNOaYVUCY4lOzx1jKCUSbx636aYX5GaWSYr0EWBzgxdkm2qRkX394BEpevYHpGGmAAXJmkoiBHvLE3rqIIgyAx8i5IKRZcas9dgZo91n9aQ9L5bT6/iolZ4HFCHmNr0pA5qFF0CRuzIKIGui9xxyULk9vvfxeF734itGmZdlMxsOmE+m5JlJQvLa4y3N8nMAkFlONuSZyaVz7NtlDEdZjUSnEWhsJ3ZPHa7ZLSdo7tjyGitOx1vQCrduWDCNdG8b2uCaBGZQZV9lM5QRtIfDBhvbneOqECWaYQN5ArmzpN3DrVpFNjGkRuVPNDTMV/9oz/mL/9X95H1DnHnxz7JS1/4N/T2v5nF2/8Kpx79HI9++SEKCQ89N+bSv5zxi5f/Ia/7yNMs3Pcx7nzLLdz5lrtp5zXblyacfuK7vPithzn3zEtUu5sQJNNoCfQplkfIuAvCg9nHxZOPMtmaEEKgDnDi1mO87a/+JjKrCfV5Cr/L0ZUx+//mX8HbyJ/+q3/CI49d4uTzv81b7/sT7n3TrRx7zX0sHjqMXj6STgalk9JvNkMUg5Tuoffh7JArP3yMh//sq5z84SmO3v8hbrj7TSCW8Q5efOiLnP3ON4gss3TTnUQlCNWMUM+RPkJeQtEHk1Ou7ePwLUeQchkIhLBFbLaYj2ecevoMC4fuoZ5MUV2u9+lHv8rmDx/CqBJpFEol55SPluDTpi4yyfLBEeXTFm89xk4YjZaxIc2VM50TQpo1a6VSTrmICJ0ccSBS9ebSNUKKFPqQFzmyg/HLzt/v9yBAXbSzE52HIZJMDDKV50ZDmUVaLSgKgyAyqyx1N46UWDCmS439EUR0d4DKPahC9K/uohYk3pgNERtAqa4kiK94RG1IFkzRKZlaHxksH+LO9/8s5WiJyXiXza0hqijxLmmYvZA0TYVvZuhiQAiOSMC6NgkEQkApSWsbpLNJbZMVqVPYVQatc1T1nK7zkD5wH3Bti2st2hjaaoarK+Jsh1BNCG2LyHK0kEidoZQmiMBw1Oes91QhUHTVjvOB0ghmtWce0wxSRhBCUTUhRQQJ+O1/9inuW9nltp/9NU68/jZuOPYzyOUF5uNLPPLgozRbM/JcknnPS1db/pffv8pHz3+WN77tCY7edTfFdbdglq5j9fg+1k68n/s++mGqHcXOpRf54de+zSOf/SIvnDnLk5//D7zxox9B5SPOPXuRr/zL/w3bWOo24ILgwIkRZc9BcR/f/zf/HwY9zb7lDZb338HK/pzlvkQrg3Mtn//umG889l1uP/YEb3rdCq/70PsobnsbqpkTZleI8wkiG8C5zxIO38ys/3O8+OAj3HDnPUzGA/bfcT9X12csbJzmuYe+xvNf/gpNAys33Eg56BN9xXR3E+oZMitRZR9hDN7kRNEQ7FVaOcdNx2y+fIoLz52iFmus3vZeJlWLllDNx1x57OvMzz1PUzv0oCZKjck9kQo7W0eXK9gICkuvWOgw0BXZ8hrzK+fIVw8SQlLTKaOJ3qdkD5mcWCbPMMake62PhGCwXYJMFBCSAoNAch+KKIgudlfPpN32MRXImiT23HM1Wp+gFYXRGJkux7V11E0AqaGtEUKQ6w6JRHrHRMfT9/yoseNVXNQhJlROG8E70cEBYzr9SOOfNqS5WtalHEhd8K6/9Gtcd++buLJ1mXNPP86xrTs4csedeCGRWYYg0DazNBIwppPfFbh6RiYkNeBbR7AO6tT0iCpcAxuiNEEmc7vJkzMrdB0FKQVtNScvS5xznR5dE6NG5QNkliJLTV5gMk3d1ORlD4tg3DoGfYNySfKaiTS+mgSQBLIQCSptLLWDTML5sedv/ndf5o7feZzDN95ENt4guoZ64mnsHCE8fSWJOUyEZNwEfvsrG3z58Ql333KB++97ghtvW2VpbUQ+2oce7KO3ehODGw9x9PZP8o5P/nWeeew5vv57/5rv/uFvMFhdYffKFtON9VTSWZi1Nd/+6vP8xC8+zOi2VXrHbubq499m7cbXQHE9t75B863/7++QiU2sl0RhOHH/zdzxjvdx4z2HKVcF9cvfp924SnHre8mP3gbzLShvQMQFBr0N3vqxe4jTM9zy7r/K975+gYf+/e/yzIImjGtmE4dZPMDt77ufG17/LqTus3nhIo989nOIYoQeLUBe0l9Y5PzJp/nT//W3yforLB64EfoHMYdvppePaBuLsA3bV85w4Rt/xnzzPJUwML1MUewjhhIpbVJmtTOCKYjRIWPA4xFln8W1jFz3qF58BLPvpxgtL6d3Tqo0kswNxqThke4IMXvhBIoC5we4EAgR5nOLMhqdCYQI6WrmAkIJ2gAmgtFpMuRETIRYkQzJUqYSXRlAKTJfULYO2wasF0ip0daRa9NF8MSkMydRjfYCcfgx1/V/GniQxNEKXc6QJFE1bIh7+piufFC4KHjN297D7e/6ENV8h+9/7XOsnz9P9IEDN99EVuaUvR4LawfZuXqRejJOck8jEEoRoqOu5zjnkswuJn1zZjJCx++SQqJMiTY5eaEpSsV8opJcUgqyvEx3PaVRpqC2Y3zwCCnQZdFtVinHqG1qXNOSZ0Uyp0iNVhotLFqn700piQmJfBGkpAmBgVHgPa0XiBjYrjzfe+oy5bPrLGlBbmC5p1gYFQQiWsHAQL/MmVvL6vEbOHbnnTz851/iB48/yeKC4ei+HkevG3LrbWscPr7IcLFHue8YvX13cd8DN3Dra/8uLzz4GN/6nX/D9Mo61geiTAELcxv44Zkxf/yp7/Pxj1lufdP7ad/wVvTW12h3n2W+tUO+sEZs5tx042He9J/9Aife9Ab6I2DzHLMXH+Xcs8+wdPwog2PvRSpLKCL0DhLNCqLZwm8+THzhC+SLhzlxx7v54e/tMN4KtA6szhCTLQ7uqzG5AKFZOniYwYF9CLNAsbxCPhhRjpYoBitsn1xm8fqb0LrAtR4ZPc5XzCcT5hdPc+7BP8VPprQR6voSRexgBC4hkxK5o4dThlDPMDrZWYPMKEY9ZpMJi/v2cfzEMXr9vNNSp1dainQ9S51n+cq8uFtESkkKJJFIv3jFh7gH2A+dxNRGoLuSpi3/FUEJUaQ1EyNadwMIneAZqrbYGIjK4IPHdQkyMXSBFXsZuSTRtXy159TgcVEigVxEbAhdDG2AKK6B6UOIzKNj6cgN3PH+T6CLkpe/90UuPvUYrhhy/uzL3LW9zejgAbIypxgN6S0u451D6jzdo+ukngoxhbGFDkLYtg1NBLIceqlxgdaQFcym0zS015o9YV0Ikrw3xNqatqmSw8xkCNsSvMM1TSKTjnfRvk9TTfGuRRtJax2giUSyTGJ82nlzGVKyh4zUnZDfdDlewUfaILpeAyAjUis8kmnlwUtkiCyOFjh0143sbu3QbI/5i7/wej75Nz/BD77xfR784y/w7FNP8+QLm3zp62dZXSq5/vCAm258hhM3PcLKwQVGRw5z753HWfm//BK/87f/AZPNJKzIFGitkNbzB//qM1SnHuMTv+bIjr2F7339OZ771r9gOjYcOlhy91/+VW59x3voL/aI0/O4M+c59/TzfPur3+P8S2f41b99A0pCdBeI+hZsO8JtnKFYPYw88gbczmni8Dg6WKTIse0MZy1107B9+Qp/8vf/AW/9+HMs33w/s7DA4qHryAdrmF6fKDUxQNnvo269i7ZusXVNcC3W1sRmxvjcac4/+AX8dANExLYVufAorfChRftkhAgiI1s+hG8alK5RBuq6QbmImG6jB7dz7IG3MOxn19xSnpQuGmJy9VnrcK5DD4VIU1tCsOQ6jcC0MZT9PsZotEpS0mSXToSTNAIT7MH1UhxUUlrazhMdhcBkARUE3iuIPWwbGc9rPIDOsaFNwEidFvZeAs4e2FP8mEf1fwL5ZC9GJGCkSmVBp+JKlsx4LUo2X1jmgZ/+JY7cdgfj2RYXn30K39Q402Nr/QpXz5ymt7pCJOKcReclg8VVnPc08ylFXjB3LdQ1ziZHjZTJgOaaKt1neyVSq9TIUprZZJwaZJlG6PQXROaTXZSWaf8U0FhLmE6QJCi78B7bNniTcfXSRaZbm2ihmNdtEjyoBCModUTFkKJNRfcQiVQuMCg0mfBUCJrQkS8IzLopQAwRZQMiprLvL/7nP8Nbfvq9vHRynb/31/8uv///+sf8+v/jb/CxX/kQb//pj/Pdz3yOr//BH3HmuRe4sj7j8qUJjzx6mf0rJYcPlRw/sczq/hIO34t1DToqohZkAlb6kBuNlZEvfOU8W7u/z3D051w6t8OBg0Ne+457edMvfIh8YT80O3D1ebZPn+ORBx/nOw8+zdXzVyhCRPqKGGuEWGR29Tzf/Zf/gMn5M9z30U9w+O6j6OveiOgd4OK3v4/qLJ5Ei3GO0bDPE883nPmHv8dt9z7DHR/7DRaO3AAxBdk38zntvKJtLc5ZZHTEYInB4aa7XPje17jw6DeREg7tL3Gqh70yJpo03SDURKfxxpAt7Gcul9m4/DyZb1kcaGzrIDrEbEZveYkqGDY2x8zmM5qqpmkd8yq9W955bOuuWXO9SzJlQqTQhigC+aDP0toBysGQotejVxZInVSFquOySwFKJHOTiJCJFMboiDgfcR6kljgfUVqggqQschofaNuAlSm8wcbQzby7Bl5aeqkCDq/ySR1Cyk1izyNKuDarBkAEfJBk/SFv+fgvc+fb30NeLvDy8w9y6cwpbN3gdE0LXDxzkgO33oLOMrRJtBLbWtp6TjOfIEyeYm3bJgECix7ON6kLHkKyWPqAzhUizwnOsbO9CTEitEj37uDx3tHWU4r+IloqptubtNWM6BoypcnKHmQFTkrmsymXz59jvL2bAsQjCTukJE3ryQX0M8HWLHYPVHaQxSS+6UkIWlBbSRUjrfW4IBiSSnytIjE6brz5Ot70znvIJdxy22HueNtdfOl3v4z9r/4nPvmbGxy4/wHe/0s/w33vewPf++LX+eHXHuL0U8/STMeM5w3t6ZrdrZqyl9M2Z/AuffZKKUqRMMC9rJMYjjS0sHzgAG/56Ie49e1vpVw+AGECuy8zOX+Bs8+e5uLlHZ5/eYcrp68wn7ZsxcjFrRk3uw2iuQnXnmd7Y8zG5W1efPCrrB14K/nSKpg78OoSxeIqvqqQruXQ0YMcfs8vcOniJlce+RrbuxkhG9BaRz2d0TYNtq4IbZPyykWkdS2xnbN15gXOPfRFts4+B66l6A0YzzRCzEEJvJMoYYk+EESgt2+VO+6+ia/+6ec5e/I8+5dXMFlJb7DIfHeXaFvyasz5ly9i/Vna+RwXW2JwJC5YEnnIrEBrQ4wSbx22rhE+4I0mEHAxYPJ+ykDzkdaCzAx0G7zsGsNKCbQS3fUPkpYskXyci+AiTRPStCikQIeiyAg4HJIgBSEJXEEkHmAq+NMhkWRfr+KitiHB5EOn7VYh0nR5WpJAJhTkBfe+7+Pc+4GPs7h8gPNnn+Xlp5+htQlGJ6NnPh9z7sUnueft7yUrM/J+D5PnaaESkUrT1nPsZIKbjpHa4ITCR4eRBu+bNP/rAHEOQRCSjctXaOs0ClN5hnWJhR2dpZ2N0+IbjwnNLM0cTZZmm21NlILJeMzG+lWqyuIF5FnC3xhtaJsUaD7KBXoaaV1Eaa5RQlofqaWiJZFKvY/UUSSxiA9MHfR0YoVN25Z66xxlJhm3gasXLlPFyGcevszjv/q/8HPv/xPe8LMf5eBr38ZP/sLb+Yn/7L1cPrPDD7/5PZ791iNMr17A+Io88/QWDbOpTdpEZVCFoT9cY+X4GoduvJnjr7mdfTffRLGwAKJGhhlifpJmfcwLP3yar/7xVzl+6+28/9d/jTeLkn/1t/+ffOszn2KnDnz7oQvc8M7TmAXJwqE+H/xv/ge2Tj1DWURoLsBggbau6C0d5vi7P865r30Oea4C65iePUe9voOupzSTs1x+9Ess3PE+6rpGCoFzNbaumGxcZvvMC2y89DR25zz1dAufTPsoEt+raQ2LQ0vt+0TvU1yS9eR5yfET15Flkltf+xourTfoTHPrO97LYGmBjQtnkBjsxmXCkTZZXTtJsKtn+GZOkWWocojO+8lnoFI4IyrlZTtrkVqiRJIW7yGIrLMo2ZmKogT/SnNLqeS8QyS3nERcS6URSqSJj/e4EPDBIQQUucIFQeMUUmmM9BBSFEYa5YqUNPpqWy8lqRGkRLKsIZKxI4bUlDJGc+ub38N9H/k5hksrzKpdnvvh99m+fCkBE7TBxyR639m+hLU1RW+ANoaiLNm0lhB9+iB9Gr8LH/Fa4tsaHaENLsn+ZA/hWry3IDRZbpjsbjPe2GD/8SPkZZGSEaLAVRVVvYtQGcFaQlMlzJJzhBAIWuMj7O7ssDurCc6lB5RlyQzhHUJJ2ujRLtLTktYlBRNBkCmJlpJZSItbC5mSNkLSwtcRnItMQiRH8uhzV/nDP/gqN952goe+/gzPP/I0Rabw1vHydsM/+N2Xue7P/2fe864v8cb3PcAND7yOw0cPcOSXP8RPfPJjOFvgw4TgHPV4jG8CvX6O6vWQJifLRshMJZpn2AY/J7bnidWUejLj0qVtvv25b/Lsw4+xuV7zzl/6FfLBCOKM177vTXzlU5+isp4vfeU0H/0v97O4sAz2NL2F2ynvOQFXvkS4NKe6fInHH/oWK/f9NIMj1yGWD+I3zjAe12x852vEkMwZJlvm6qnzmLXzZFJSbV5g68lHOf3c82xPt1CZoGorQlulcMBMgUladVGMaInszjWtylIlJiQ6ExSDHstri0ih2X/jXXzk8M0cOHwArXOqy6fZ3d6lb/pYk6MCOG9BQG5yDJI2OExRUPSHDFZWcM5RlD1CELRVjWttut6VGf3hiP7CEspkGFMkO6RMkuTowQabGH0hJj9BTNFOxM4z0Y2plFRpgxCCPc2lI0XgahStjLQBtJBkSiFiMpykq41CiVd5Tn2NmiNDmhXHpC92gI2CG+57G2/+i7/B2tHrmdYzLp49w4WXT7I928WiIViMJMEMastk8wqj1WXKXi91orXCTZPjymPx1RyvJMG1BN8gTIEnaZuVzjq6Y8C7No2sfMvm5YscOH6Uolegix6m18NGD8HjpEse7xCJszFW6tRwy7LE2W5aGmvxPmCESEb3PCMr81TuxSTpKzPNTlt3qYTJpROCw0bxCjlSCJRNhoEY0/iNAD4G6rrhH//bh9mXf49SpE5qIQIqU7Qx0LjAyXHDS//hcf7tZ57ixNFP8/533cpbfu69HDy0Sr54HaJfIigYLi1CTEaVIBqEqxB+TJxMCXUDbUPbtGxsTnj+B0/z4mM/ZP38FtOdCdXMYrMh+44d6/C1gqa2XePTc/HsJT713/4tfvYX3kz/xtcRFlaYTeC5L36Nk998kNlc0D/8WjZm32Hz5VOMzzxFaOeoKAnRopSmf+wGjr7l3eSr+7j88IPo848x3NdnvrPB6ZefYdZYsoUB5dKIQE1vmNHPe9i2JkSDLPsQI3NbEbzA1xWDfh+lDYur+5GiIOqMTGT0+j16RR8hAn64wtqJW7DOMbj+NlwG+cJ+Mp11/RCJa+aUvT4Cx3B5HzYE8qJHiJJqNiPEgNKavCgoipyy30cogc72BFZpRi2EwLkMazuAppS0rae1DutjureHlhg9xIQLTi4/lQ7EmCrYTEq0jLRR0iDxEgIS5RoEtmvE/Z/g0rJBkJMIlTYalFQIFThy2z286ed/naWDBwnBMt7Z5uyzjzPbvoJrWnzTQIwYlUreeVtz/uXnOHrH3eS9nLwoGS4sJktc3hLajGpnNyUptE1qJMQmSe1Ex1jOQgIjKE3rPG1juXTuHDfdey9lf4DOMqTWZMMV5tXFRIHUEvIS4d21EknS6XxJ5dKeGWZaW7TKUUqnl74LHu9lCf0bus8l+oSDDSHQ2Wo7yGJigkmZWNyis9iFEKhaz26IoFM8jpJ0Kr2umR8jrRS0wfPs6au88FtX+bd/8Ah3nFjkLfcd4M7Xn2BhZZlssNixujKCzJFoosqZTCsuXtrkxade4NxzJ5le3SbWVQIUBIlH0ATJ0pGjFKNliJ6m0jz34DcpC0PpPITAH//xD/jBt57m6OE/oGHAvIXZxmUGCvLegOF2hn76Sdp6TAwBXQ6Qo30MBgvoQY99t9xNEIaTX/kM5srznHjNdahMc/3+ZS5P5zz68NPMNqdEIr1RL01WtICQEbMSGT2+qRDRoVRKJ/VVxBdDFlb2EdPgFyUVWTFIKjgkgwMj3vTxX+B7X/sGgUAxGrG0egBlMvI8nfjetyz0FdBisjXakKSmTqT5tRASqSQ6y8gyRZ6J7t7MK4yAbozrNbR5FxUlBVmm8E7ggqCukvU1Bo/1JBuw8+neTBrTCuE6bDDJ+onCKo3suvvJ+eaQ4sdbrj++9luC9AKL7ALoU1TIdXfcw7v+87/L2k23sbt1iY2rl7hyeZ2tjQ0IEi11wgAXJUEr2qqmmu5w4fln0B+VlEVJlhfkRQ+lNbauqOazjtedcjCDc8TYpqSFTgHkmzrdO3oDvHNkmWFrfZ26mlOWPQajIXmRM1hcox3vQmuJZQ8VBc61mE7aF71HWkdmTLozuYhBsjOfs729jQgWoSVKJ0H9QChyqZh7j5IyESRjKpl8p38XIpIrqH2K4E264M7k3pldZj7Seo+RgoxI3tlatRIYKSlkxAWRnHAEqqrhsacu89SzVxl9+mlWFnosLfdTjIxQ1K0D21L0S6rtLZrdihgDRkgyEq4pdLpiT2LEveUD72C4CCFUPPRHf8aL33qQUkUWc8ncRXSAC1stV3fW6edbFJlEx4hzCknNrjsFAWRokcqwvHaY3vU3snnmFPMXnuTK49/i4MH9WOu5+d4bGS71EAqa2nHPfbeysz3hxRfOsrs9w0SJXelD1iMTDpln6OQcIpiSSI5rJISa3CyzuH8/mFRFqSxLoWYhSYeTUtgjpWK0tsKJ19yJKXKUkCjVUT0jHSYohdGVCCCJoULMuulGJ+PsNuR0UMZrHoe9H4l8QmLgE9JpbtJ8OzOahLEIWA/OlTjr8TbgbHJveR/w3nWeioDHEv1evypxfDWxszK/mota7H2be6xiWNh3mDf9xd/gwO33Mh+vc+XKJS6ffJHLp05iY4C2xtd1AuSFkATyIWDblpeef45qe4NyZelaadPMK+a7O9STbaJLzR9RqET48IkY4X1SDdl2hgoZUWcY10MWmu3xDvPJjOXRkGI4IC9KFldXGW9epnbbqKCQWqGCxhOIwaWH0Saet9GaedOAlDTWY/KS6AXtvErdbg+GmEgiISmLFkvDrLa4qGiDT4tbgJMpazo95/RW7I0mWu9xQuKExEaoEGQuGUNyC7oLwdNCkMmO+CYBlXTEtIGN9V3GWzOIqcGoVGRkBNn+/SxlfWo3QcUkiPARnExC5SACdYgcue4Eb/7A6wne8vBnv8xX/tk/h7rG4FNTLwqiEmRIlEwjGhnShhRFxDaO1mt0b0T0FWEyoX35BZqXTjEfb+GtIzeS0b5V9h2/nuHaAN9YZKFROmNhRfPWd9zN4sqI73//Bba2pxhvkX1DlAqcRBU9sr7C+8i8icm2SMPqsespBqPuruqJUqGk7rrEIkXGuholI6uHD9HrlR2N55WpTafW7paA6+KdLoC9iszvJIpeSuXo7I/XMK0/spiv/RAJZrCXnS7FHhhEQBY7dp/AJOMXYHA24qzpTEmRprEJjOg8wba44NKI2KfnF2XHNHs1F3WGxKt06rggWFjdz7t/6W9z/A3vxNqGKxfPcvrpp9i6dBFft9iYuF54Bz4SqVGZIaUWGLZ2trj44rPceuTdDJcWGS6MGC4tUs/H5K6Pc22SujtLNlxITLGqYi9wPVQVqp+sbVVd03pLax2bV6+wevQQZb+k7PVo6gFZb4BtauzuTnp4RhN9wLkmqdW8T+gYo/CxI5zHyLxpKPCYLAMfaeuW1nfJFySKSImnKBWhghbZ+clhbj0DLSlUxzoPe4ojCELQxoCN4toDcEKhQsCS9POZD+RddpkmdVUNiac2kql4a0NECYdUAiMV0VvsxhabeEJjcULg1V61kK4MDkHlIx//2JvYOf8CX/7tT/HYZ76Mm24R/F6V0VlVfUJEGVNQ9PsURZ9mNsHOdonB4XOFEA2hmpMNRoxbw+bVq8hoKbWgt7zKrMpYWTUoY9CZJojUTTbes7x/ldf1SzKj+N5Dz1DN5vh6G5MvMK4bpEzZZd47nMhT9G5RsnLsBnxIi0WpvaZguh5FqZFa431AakFdtWyPxwTn0pixrjh4cIgpBntLEGJFZAMRJ8TmLGQHmU4skzmYoqBXZJjOuNO1TLpNIi3c1AxLuoVI0n2nvSA9r70A+aTGTCe7VhDzdIIHr2i9xJPTNJHptKGtW2LwRGtx1tL62DH1XsVFvZfEGBCowvC2X/wN7vzARwhacfLpRzj11JNsnD/DbDohywva+TiZKJxNBg+ZE6UixjQj9M2M737189zy5rcxWBwyXF5mYWeLna0rqdPe1rjxNtlggdhMycyIKkZcgNjMU8mjUke9bRqEC8TouHz+DLfcfTf90QizsIDc3UKXJXFX4ZVg1M8ZjRTbmzMm3mB9op8YnaGVSd1GYTAiMJ9M0VlEakM1rwlBEUKLkqIrlZJgIZOR1RLaCgjJrdPGSBtiAt3j0CJ0flnIugu27aJ0POmetpf2qQTkAhrA+DQL1SGSuYC1SYjjQySYSNZ5vW3sPuf5NPnNO6yt7PJIJTIJeJRiXrX89v/4eymVs7XkfU3eHzKvxkipUP0hvWyArxqyoiDvD9DBU8/HzGc1uEDrI7OmQQlPOeoj1o5w+cVTNNGyUJQY4egPF1ha0iwtFATXoPKc2NQIrVJgfFmi84zXvuk+Gnq89MijXN6xLO5TtDJjZ2eLpYX9mNE+qsqSlyMO3nIby/v3pV5F8ESdo5AoETp6alpmzXiCVIpnH3uSyfefBJURQ8AQeP29+zhy55tA9ojtJu3V00h/BXPwIHL0OqIYMNvd5uKlht7CImVvIW1KSqKNQOuEsjIqVUhK/scSzk423W0AIb0W14QkifVKpzxLAARj0p261ZEyK5lVGW0bmE+n4D2uTeiLV3VRu73iQmvu+/Bf4t4P/izFYsnpF09y/uRLXDj5Au1kjg+Wal4humAZowxaS+RogZa95IJUIr343FNsXrjA4tFD9BYWKcoeo8Eiu3abnjZU1iK0pp5GVKlTs6SdE1yLUDoN64NLMroQsKLi/KmXaeYVC6MB+44dY767w8HVBVbUlHnRcuv+mn37Ii9urPLQo1eJwoBtE33JO4hQeU8pUmwQXUiAjRHb+o5U4VLXM0aaEMmVICewL1dsVaGjwEDtPb5OOl4pJaZDwEax99jTtUazFzxIt3FC02WBt93dLxOpnzH3nrEPmCjQIZDJ5ACKIRWfRnSZZh1IP933RJqrAkIGfBTsbo2JAnIkMx+ggtg6TKlY7q+ALnDNFvPJmNn2eiJ4BI9zSVnovE9QCR3w9Ng4+RJSeAaLi/TLHnK6Ra/ocf2JNXSukFoSkGS9fpfvlSFjhsgydOl50xsEBxYznn7qNC+9vMlwaYGVlWXqAAKNdxYRNMduuwOl0xVQRIHK+xCTmy+qEqkzfJRM1y8jtWR3Z8JuM8H7mACUPjK98Czvl461W99IaK+k2X/RRzNKG6uYsbp/P+s7F3E+0liH8C5xyq1Odkg6L4CRZCagdUSriDEkT3UHNUiE3b2bO7gocN3JLSOvsMi6v5ROxpDYBdhblye3obBY/yrPqV0QaCl4zTs+zDv/8t9i6dgKF85f5uQTT7C1vkkzGRNdQBclzs8pF9ew1ZSmTjxr38XcKgRKpQ9kPBnzzCPf4Y0HfoZyOGSwvMriZMbV9UvYadppm62rqXveNri2AtsgkERTEpAYnagR1byhqTynX36JS2fPcNOdt7O0ukRzYJGDk5dZXNqhuWGEnE2Q9TbH913PE7ljOou0Tc2smhNcjSJQW5+IFjHQRkk7mSXwQwjkeUkITUeSFF2ZrciFQOmAN5ENl3jQ1nlsZ3gXIeK6BdwVbChB4ohJhXch7egixfsSoZGJv5VufUkAJAVIkbTne1JEjUxsrORISLt/jEil0In7hPSpsggd9C4dIRGPS2YGWaGlJPcV9amXkqY5OorRiGhKGjvHOU+m0khHofEiIESkmW6nNJaiTGxtq8hzw+LKIv1B4rtLpRNvLoaUKy0MzcYFpBTYyRbGCo4d24fICx76zpNsb22g8wH0c0RdEYNnZd9+1vatdHnlAaGzJBhJmYEp+kYlqOF0dwc1WGNnUnHp3Cma6RjvLHMReX7uuPTwn/MzP3c/Rx94HSt3vJWojoD04M8gxD5cMCwsrWG9RGuD0OmqF4NI5osYcCHQWOjM06n6MJJeISkLMKYLsuhk4apTh/muGgvdBWBvMtKF2SJjJDOC0II3GT7LsNbS+vZVXtQxsv+6m3jbJ/8WB2/YT916Lp8+x7lTL7B59QouBEQIaK0QmaG2LbrsJ1aTkMTxLiLLgYjREpdJWhd5+rHvcvfb3kuvP8AMB6gsY3FtH5d2djqZKJiiRCidOu5dkqBzFuk80TuCCwQfaOqKrUtXeOqR73LTbbewvNCnXTD4sE27cZ5s+RgsHkaGZdZ6Q+55reDPv3Ka1jmkMgyHy2zPWmqXpHzWB4RQ10ipRkFw4dqMMiKwUeBDxMhIJiRLBYyngdanh+i7Ml2I7vdMrUYMe2J9cC7svRYoOiysCOgoOtNMF8aSrm1A4kHbEK75x5HpihRi6AgakMUkgglhLy8cfHfv94SULhoBAiZATkyqJyFQwXW7hMTWM4RwFLlJTSibLLdSdiOdmOAoMjpkFCjbMlpdZnk0JO8VtJUly0eYrACVMd84TbQt3rbEoofQOUJEjBLsWxxy/fVHeOzSFba21lk+eh21dSjm3PnAGzAGWuuQMmW07aWkCzNI1zsErrHJM1AMef6Hj9DMdpBpKETlGmY7Wzy6eYFLL5zkLQ98kTd8+B0U1z1A6J0gzxcYXTfC5JoDh5Zwe6ejSB3z1oF3BucC1gass7RtSvUU0mJbaGrBNMu7UZikyBXZHslV7CXWQBBdUf4jDfX0iafMcaEEeaZos5yqbYiv9kmdLazwnl/+rzlx5y0YI3jx+Rc4+9KLVFWNdw1CZ0gF1jb4psJkObHskxd98J6qXQfnUEWB1jlaeZp2wtkXnuf00z/klje9heFoxO7ikHKrz+LyWhrlzKapo+wduBZpm5Ty5mzKk8oN0TtMnlO3NdPZlGd+8H1e84Y3su+GEzRtS7m4Ri1yvv/ELmtLJaujTXbnlzlzsYfuLdIvh3gPB/I+yuRsb21QzyumjWUtGOjA+XjPvK4SDqe7rdroaWOy6IUIKkbWCkEz87TdKhTdTg3dFCGAV2l05ruAFQ1IkRpaMu6lb6S9XYqY0htISqa98DZP2vFNCgJPySchBSnsRQVD3AvG6Gga4hVnkYQ2JGCOVgohBUVuWFxZo56PEVVFM58QtUkpLDKm8Deb0ll0noirNkSqpkE6n2B8UrKwskyvkJgso1hIyq8QPM3OKcJeKD2S6D1Ca3IlCJUnU3Dk0DKPm5zxZJerVy+xtP8Yg17JytH9xLZJzbA8eeGFzAjaILISJVRavM6BUtiguHr2BcqyQGU5UmYUUiEHIyrfcHm6zR8/Ynnw5He57rY5t7xjgeWDPW4YzFjdX5B11VCKykltsNJ09kwEPmqqVjGfZ9jGpQ3FWayzNLMaMY9oLcmyjMwo8lzRLySZTmBO1Wm591pue0AGCeQSQiGoYkCrpDCr5avcKHvTB36WW97wNkxfsT2tuHDqDJfPvUzbVJRFD6dy2vk4WeNcoJlN00jLeZRSSKHSiVo1CJXhxQxQzOs5Vy+c5g79NpZWVplPxkw2twh1w3w2p55NqatJAhz4kCJylEZpgWtrwjSNdKy22Lamnc84c+YFvv7lL3H96Ru5MTvHcPkQG+ubqLjNwsoiZ89u8sRJw5ZZpFjok/V7KJOxWE3Jen36oxFXr1xmNt7GB6BbJD56lBIYBdalD7+UMg1HOlyyBHrdeGmj3fPevqITjzFZ6pToXmshkvNNpMA7IVOXtJCSIk9ihiQtTAtYKM20cUxqj+9mmenqLzBRsidoIHaEjq7bKkjYHRFiB28EREzPJaaNIHRHRRRJ6RQFBK1wISBDJJNpcSNl6ozH1H0OIr2kkogOgV45INMZg5Ul2q0d2s0rRByqHCX1Bkm0o4ROWeJK4q0H4Rgt9xH9nJUDq5x6+Tw7G5fYf/RmVo/uY3F1mfn6BVxbJ8GPydO1Q3eOJimISjKr5tRVTU8rpIu4OpFFdK7Jij7lcIneYIFqd52y0CzvO4ZaPc68jZRVy6nnT6KNYml56doocg/8J2MKoI/dhqoLQS+X+JBjPdSNxjY586rBtg2t9TTtHCmTfnxS5gyKjEEZybS/du/eG7J5knQ03dlBZyIt6ixDNq/yor7r3R+h6PeoG0+9OaHs9TBZQXCWrBwQtCNXgt5wka3W4mcVSiiC6ZxUShHmc7QEFVpaoXFZhvORx77zTe59x0+wcGg/vcGQcjhgur2Nn7ZkucE3itY6RJson0EZZF4Q/ARcixOSEAO+TUD4envMI1//Mt/70md5+01D7r5thcnl84TxJb7+2ed5bl1RL9/OYBToFSmgryyX0PmAwbSiqmvE1iZz66gbRyY1+OQfNzGyWmqsTwtSCoGM3XkrUoODEFnIYMemxZ6ur/HahFMKQRFFEhOE1GfQMpXwPRVYKhUFyawvRdosQOCjRxjFsDAs9w3r44Zp42lDJDcdSE+l3V+EtP97RCJwiL0ExmQF9ddUUaScs7S3pIZYNQepCEan0VH0KKnT7+XTnbztTmzpayJ0TZ+ICYG8n9HvZbj1k4ylJRsNkVlBiC3ZoASpqMc7DFbXgNCZdloKlWF6Q0ITWF5e4NSLZ2imc9rtdXonDhKix/R72God1woQBplFtEmRQiIvkEZz9dIl/GSKaCcIEbCtRQiF0SUipg0w7/XJeyXLa2scPHaCbDTCFAXWB+rZnBefeZ6j191Ab9hPJ71JAp69Zyi6saakG1XqFHXcMwLX0/RKyWSuqStLa5sUd1Q72tZSV4bpTDLo5QxKTWb2wvASKSWI5NOPEYQCYSSi2WOyvYqLerC2SgyBukov0WQ2oRwuMlxuaCa7RB/QpkzB3lmWaKLWoV2SwJnMYK1BDQao4GjVHDtTtNMdzjz/JM898h3e9rM/w+LKKsOlJTYvXUaKlIoYAGk0sSxQWfrmfT2DkBDBquhjXepchyhwNrBz+Qq70zn//vRZPv+Ninpzk5255WoVCLrPYb+BUAa0wFrLeHdM8l+PqauK+WSX2gecj2Ra4eumkwcKcpnmj3sXXO/TAtoTNWgJPWApF1ytOxlq7BSo3b3YkZIcMiHIlaCvBaUSZDqxqdCyux+n49+G1EF3TUuuJMMyI1s0XJkqtmcO4QKlUtfg0GLviL42n+Yaepa9P3oHaYxdZzyIpGBD58TgiK5FC0luFIsLQ5ZXegz7BTov2NqdcvrMFXa3ZvT7PbQO4CxZphkMF1lcXGCw4pJxRhuCyq6d/koqesuLxEynHoyUyMGAWFmquma6sU1b1ykaaV4hptvY7YvMxzNESKENpr9ANa6o6ophr9fJOhXSGM49+xzTnS3aqxs01SyxAKhTuotNoAOZ9zG9HtlwCbOwTG8wQOsUjeNCZLI15UI8g84MedlDFz3KXsFwNKDs5xidgCFCyFeUZqS0Gq0iWV9QFjmz2jCfG2wbaJoW6y1N09A2gnnjmc1zhv2MshDkOh0AMkLTCZGlFCiT2GpGvcoy0awskLmirivOnHqJ888/x/rF8+isx3h3i+gc/dEyTS0pR8vML7yMbx1Spbhaj4A8T0kDQiN7ffx0do128b0v/zkPvO+9DFdGrOw/yNblK+xcuYJ3HjefEaRCCInJM5pqTj3eQbgWoSTS5GkhdC+v9S3TnSnzqqZ1lvPOM556qjZpsBdkoGpmjMe7+OCRUtI0bVK72Zb5dIxtWnyMzKynlyVUkKBrOHXbdehGGynQU1xbKIHUFV7KFLutZx665d+V56pbaoUSDKQg1zDMoWdSU8t6QClyKcAHtEkh6TH45N6REL0jE5GVXOCcYKcKRGHJlUJcA+qIa84mH1KpFwUYrVK5i0So1FjTpJjdynrY3qFUkGvoGcPBIwc5cXyZ5YWSGDxaKg4t91hb6PONh1/g6u6c1YWSflFQ5JKsXGC4NAQ9ReX9ROyMMVUSQiPzRLjx1QyzsJgUiiHdr5WXyOioZjNa58lLDdMrMF0jz3MUkeHKGkplLK0IZrMWJSDLM1RmCFJy/plnkQsrnL+0Tt1WCKXS6GguQCgMYKRBekNrU3yT9R7lk93SR0lsLbPJNrbxTLY2kJmhHA5Y3H+Upf0HWBgNGQwK8jzJe+Vel7tTkkmgUJGsD4Myo2qgbTOq2tE4R1031G0SlswbTVmksrwoBdJIbEgTpwgoIyh6GufLV3dRF8MhQUsunjvHlQtnqSZj7GxGpnK0llS7U6oQEGPQukec10iZYaNjMExwgxAi0XpilqFCJO+VzCcK5yLPPPUDHv7iF3nXX/gE+w8eZP3KZbYuX8K7FuGTwSBkBfPpLu10nLzQ3qXA8HEirsjuPR6Px0x3J9Rtm2ySMdniUgJh6ihX8ykRQd02aJ0WdewiR+sm/VqIMHchqeAQSCmSu8b6Djksrq1WH0RirMm0wF1IR3NfCxoruyklqCgwRIrudO6rzsQQE/fNKBBSYoOjzDJQqcOd5QZCxFYtoaNO5lqSR8tSLrBeMrWJGVd0p4eUEudDurt36edBgHe+K/cCQgi8FzgihYoMeiOKQY+s2SETkiPXXc+dN65R5gKVSYRQaJmRlQVZ2ect9wb+7FtPs7Uzo1zqI8ocZYqUL+YjzndiHZOjpKZtWrx1KCJWKEQbyZdW8JXHuim+nuO8YF5bRAAVPT0ahosrCCMo9QCjJM7bdHqWAlSeOO8mYzqbMplss3bTnVx58jmsD+legUgcAJXhEXipQSnq2YT57k7qffQDzpj0XJ1FK0+xuETVDNm9epGNKxdYv3KVlcNHWT1wmKW1Q/SGA8pMkeeQG65dyUj7e2KQykjWk4RSU/UEdZsxnxnmVY1tW+qq6X7OKaqCojRII6l9GqNKJclKTe9a8f8qLWrdH7A7HrO1OUboHNNfoFhsU+pBViIHfZCa+fZlFBNi2SN4C22Lm04QQhKiJytKfAQZA73hgOluD1FVtG3Ltz73Ge5561tYPHyY/ccOc/6lF5A7hqLfZ7qzmVr6bUNs6rRJxGRpFLZFqYxMaXbblvFkzKypaBubwIJRJAkkIs2EY2A2n1K3DWo6vhYenhZ1IHhLZgzLZY7UAkELWuK8R0UBr3i0EvUxpABBG5Pm55pqKAYy+SMzyZhO+lwJMpWaYUalX/dedEmKydmVqTRSS4q0RNXo9wxVSHGpprPqBSXQRrDck7hZpLaBzKSNxSePYDolRWrIdHsO6btIG0/wkJMgEMdvPMa8stir26wcOsztNx5gYcGg8xSi4KoZKg/Y+Ywwn3JoOWf/6gJnL24xGU9Z6g0weYlrakKeShSZZ2RFiTYKUeY08xZhFGFqaaYVqBmyrdDGIMQAP26QJks8MJ/AGcvXn0B4RxschRghsagyx7ZzsiJDFhlI2NnYRLSOgGR382rXgCPB+WMkxAlFFERpkDpnPq/Y3dkiKpVGeaIroYUglIZb77qNYrjAeHfC+sUrbG6sU9c1mxvreCQjt8I8LzHakGeKslD0CoHpENoIlai7pFO8NILMQJll9Hqa2bRlXjU456jbBusdTZtR5jk6y9IBYQMxEym/69Vc1C7CtK5ofPI8C6URmSE3ORDw9Yy2dri6IcYG0z9EcA6tNEI4pC7QtcdNJgit8M6TFQWDwYC6muJby5mXnufBz/4JH/zVX2P/ocOsHDqIm1e0dcWsrgmt60zjjhg9Hp/uNQF8bFDBY6uK2aymaly3S8dr4npFElw4l5wxonUgaoxUCfYWk/tMEDFCMhoMMARi9AgVcW3beY+7rnKIXRZ0+hFiKpf2XD1SJLWX6MQnWkhyCYVK0tK+AmIikSqRoouET2otbZJkNf1+kvnUMcg0JgPhfdKEG40xmihqpIksBcHWPDJrPGWR5vpKdo2yH71Ls6dVTtWTkGlEpxXMLp0hBsnaygFuOLyG373C9jSQFUWXWBHSayPSVSHYlpVRj9MXNmk9BNeQlQN0rsh6BVoZsmGPZl4jGku5sEho03MrF/pIJcHNsfUk7TZZQdbro01GKyJNZogrh1k8uA+CxUXPfLyFMiWqqcnLDJkXSJm8yhdePgN4tscV4+lO54WPeBewztP6kAIckQht0HnGbLqDzgwhWFRMz6df9EAM6PdKemXBoJdz+MAKIYK1nq3tCdO5xXpB2zS0bUtVSeazjKqX0ysVvcKjteyK8aQq0yI5+5SB3Aj6RcFkZphMGlqXmmrzak7btBRFSZ5naCGxje9C8vJXb1HHCFpnDBYXsPMxRVkw2YbJ7g7D0SgZPVyFn8/Jen18WxG7mBWdD/FEtA7Y2hNdi21rssIwGAyZTnaZtUkx84PvPsSbf+pjLB8+yPW33MZsa5edrU1UnmPbhugcsnMmaZXj3TQ9NCHBzmi6MYILybTeTaTSbtkNA4WL3ewxDW+9EIimO3/37stG41pHMAl3rJTu5qCplO6Mm92m0fmtSfp4IUgWy5BYVUaKLtMb+jo1Unoy8bEyJEYKlIo0daDIBEoL6tZSFgZrPaOhxoXA7qyllxvaugGRCK4ARWYwHkRpiQTWp47KOnpGY1SKDPLWEgKpm43ABY8ljVC6WoStecS3E1YXRhy5bj89vYM0/STscSlpVOuksHLOYUOyDA57Jl1PSFVBXvbJy4jI0+JvqyaNxIY90DlqKGm3t8mMQOcFzoLMPOCReYGYTchzTZ4bBIb+oRvRRQ98gzZ5QgSLiG9bzGCAUhq6amj93DlMucDWdI5tfXKmxcQKiwFsqHFO0BJx2kCWJ1um2cG5hkJpVJZhtSZKyc7uGBcFWip6/RwpJXmuOXhgkRAjjYXJzNLYyGxaUzUVNrTUtqBuDL0iUhapBE+ZXOnz1l3DVJuAHkqM7jGZtkghUiqo81TVnLZtKfIcbQzx1S6/vQOtDSo3mH4fd8kiQ6StayZEQlMjrUeWA0TZI0qBNpoYwc6nRGVSbrWOUDcUpHA64TyZzqmUomoazp46xTf+w+/z8V//TY5cd4zx7jbbV6+yU/QQ03H6ULQh2DSzjsrgVQ6uwdumC5T3Kd2DV2bEyTwVu+Dv9D0J/LWSV8VXiup0VY60TYORBZaEcVJK41zqQovQeb07V5boRAq2i0HtpFrJkSPTfVyL0IXtwcJAYW1IGB2lriU/ZCIlinrfDThEoJpbFnoG2znFAh2eWUqaOoUUeMBkioEPOCPYbiONc2ipMEIRpCJ4l/zUMTUubfezFgkqqYVk2Cs4fuIgo6whBJX46gqUzlNwugjIskecT8lFgROWovBYAUYbTG+ELEqkqtMzkJFyOKKpKhwabEVsAvloAUTEzsbIcoidt6hMoQuNDAHXNOCTfbO/tEhvuIivN5AdqSZ94Gn6kbwrAe8jF198hmw4Yn1zhnUWJN0cnmvAP+eqNJFICFC0TvAN71O/x0hFUIKqsjzyrUdQmaDIexy78QRlr8eBA6tkmUEiKDNBaSQ+wnyYM55aJtM5VVXRto6qluRG0y81/T7XOuZ7L5pAoiWM+qnyKuoBk7HGti1Nm5Bdzntyk2EyA2Sv3qLeWr9Cb3mR0eICrqkoR0u08xn1fJqaR1IjrEOXPchLhkuLtB0KlgguOiQZWTmgIaJNgc5yaMZkxmB00ux64JFvfIu73vgW7nnjAxy76WYunjrD5vpFXD0HqbHb24lhFSJRpMA1P2nwISmdQrc84zX9XWeF2yuE0qrrTnEBJHPGXmBB6mIGWusp8ogXaSEInainmUxNORtTbFBMszQi6eGm1Ry7rm76e4VA0/GqZAIF6JTdQ4gRG5KMkJhENkoKrPMYJWmsI2+h0Aork/xf+IBtbJKI6kjbJM14oSVGBYQMVF6gbEQJj9aJte2c674fcU17LENEK8Ew1xw8sp8DqzmZiEhjUnaZTPQXHxOOqmltUnMJUEGkRmJIV7T0YSdXkRAN2WCAlBkm1B1iWlyjCrSzOb6qMEGgBwXRBdo6hfy1VYMise8KmVhxSpn07FQHvPfgXIOKCwglqKZTts9fpVw7wGSymfK6O3xxiBEbk6xDCEdoBExmoAxaZyhtyJVMZgspKIcLlEurXL5whenuJlIENjevsLC8nwtnljh89ABr+9coiixx0ySMeoJenlH2FONdS123zJ2lqRqqWjFvMxZHBbl+RXqa/N/pDO5ngswIhCyo5oYw6Z6X99S+xjlLGpa+Sov6O5/+Hd76s59kOFrG1jVrh49R5mUyIviIzAyzLE+2wphojCGEpKoBysEglRtlQRs9oujR2tQZLYsS2x/hfXKRb+1u8al/8U/Zd+QYo337uPHuu9i5cokLdUvTNEnypyXtzg42OsJ0m2CbayeduOZUitfmw3tLO4gf0doiXiE0/uhPEYgCbQx5mYOtkTikCjQCgg/daS860mNMc2B+VMMrCSJ2ZXLS8uZKkmc6YXpiAipo3anIYtJPt94zzBRRSWrrKZEURTKHFDo1XiCipcR2SrJMSbI8GfraALYvsCKyVQkqH8isSzA7nU5eG2KSasaUA51FGBjF/gP7OHRokV6RMZtsUZaD9D2iaKZzopL0ygLnLaFpkHmOGQ6IVxIlNFhHmO0y31zH7F/DiKQSa9qK0LTkxiRHXRTY6Zwwr0BLvA2oXCB63QurZkznU7SUaB+wO5vEZo4ps8Todp69lAwpZJcxLthd32S2u0F2+CgsDvB5D9dUyfkWI230ST8RQTpJ27So6RST5eR5RmMUeVmg8pyVQwe4/y2vxznP1aubnDtzlivnz3P2xRc4JwKXzu5ndf8+Ttx8EwcOHUgpLkKipWClrxkVkvFMszNuqOuapnLUNtC0gsWhZtCT6c9+7a1JUmApAot9mfQKscdsXl9b2K19lRVll65e4Ptf+hwP/NTPkg8G5MMJkx3BvJ4ifECqJCyJrSM0Na6ZI1wq0b1InmeJwCuBaprE+fYeHSzChw7GBq6ZYUXk3MULfPvzn+ddn/gLHDx8jP03nOD8yZMYk2GlROmSedyG4KCdJeRqhDIvKLShsfWebel/933sLeI9mMX/EXZVKEl/OKAoC0KYE61NCi8tcG1IKRx7ml2SlS7pvOPe4Qx70ssQETGN07RW4FKpKztNMT79c3pRQwogTGcKtY8sS4lSEq8lVZ041CIEos7w0aFCxMUU86uDZ5jrrmyL7NaRxge09yl7WSti6zvVUsQQyZRgcWHIcDQkz1RibZm8m7mq1L/qGnfBWaSUWOeJKrHD0tiw28C0gnYK6jCuTgAHaR2yLDHLy3gbme+OiW2DyRMDTOucKNK9XxUFDZHKJkOJ0oZyNCJGh22SpiA4S5ZlBGeJtiHoCknO1XMXiMJx309/lLdedwdf+bM/57f/8d/HN8lll2SYqadgCYRgEdaS1TVN1eCGAWkysl4fGQJGK0YLA5ZXFrn5lhvY2dnlpRde5vknfsjF02dZP/sys/GY9u57OXj4AEWRQiOiSBvt8khQ5orNHcl4WmNdy3jiaZuMsFQy6CfH4jWZaEw7u5aRQQlKGhCdys9a2vbHW9Q/nu4MOHjiBN/96p9x8aUX6BV9FpeXGCwvs3b4OEVviMkL7GRC8A7rLcVgIRXB0aWu9GyKikBTJ+7yfIKczwhtjRGpNNXdovM+zea++eU/5eWnnkKZnFvuvpulfSuI4InRU88nCeMrTRKmeI8K0Ct6HFhZvrZIfmSZ/kc///9f0Hv7Zln2KHq99Htogwue4BOLrOuPdQs6NeQEXDu9934t/V4xBSEI0eGMxDX/bAISdprf2DGeUTQ+sc5yJdA64oMgiuRHTmFrGoemaVq0lKlRplMUjM5UdwfMGOWCTCtmIdK6xMSS3RRAIjEIcmCYZywsLbHQ10gZsMEjZQZCYq1lVtVpXCc1wQdch5oyRUldtYync9qQ4maE1tj5NipTiUpiXUJIGY0mEUqUlmS9HCEl0QcockKwmF6RZuttSztPVwtVlmSjRYzqPncBMbrEzJYkE4tvcdZx8eRJ+kXJ8uFjrB7Yzx0PvIXVw9cjpcYisVHho8KL9M9BJG+zI4EtUIrh8jKHjh6h3b7MYw9+hxdfOEk1m6MErKws8roH7uGDn/gp7nvr2yj6S2xevcLF8xc4f2mb8dRfc3VFkYRJvVywf7XgwP4hvbJPBKq2ZX17xpXthmmdRqFVCNQx0sbEFpcIeplgeckwGGYMBj0WFkc/1lr9sU/q3sKIy1vrfOn3/z0//dd/nWJUMFpaYry6iq3mFGXB9vmXUHmekjZsg29qVHAEBNJb2ukOxqQ7iCoKorf4kOSJ2mjKvEfrp1Rtxe7WFm3d8OVP/QF/4egxllcPct+738vOpYu44FBTQ9YfMh1v01qL0KZrejlGvZyFQcbmtMGJFLcbXzma//eLuCvj9n5GCHq9HgcPHabXHyFcg8o8YbZLjMlumBour5z0MXZha6JzTpFO5r2yKgiBCHvwQUHTEVASDDCAEp0HGrRJBa8LkegCeaFBJ8hA1XhcSA2+PFP0sjxBInwgl93dMSikCgTvyLVkoQhcnSaEkRa+g9JLCMnaWerIwnDIwnDI4siQ6xRO6Kwly3vkPU3TWEASpOz83BCUwLUOnRe0KUM2NeBsnZpTdZ1yzXwgOk9UpICF2YxoW0Qvx00seS/D1jWxtuSDtHHhAyKmcWCvyMl6JbosCc4jCQTnUHnSugcfUxSsFlx+6Xn6ays898MnaV8+y/mXTnN0ZYGDh9/Msz/4IZPJOPUPSBnU0uTIrreT9QaY0YgD+5a45e47uXj2AidPn+el06c4dvx6jl93jLX9awxHC6wuLbP8lvu5+Y6beP7ZF3FeMJ3OkVIx75UsLeTkmbwmTsqUYHkgKI3m6qZkOp9Rd1RRbyOjhZzQBU2WZQrNNSg0gdKAkIJGR1518olSBmcbnnviIb756VXe/NGPU/b7rB06RGzTnWbfTbezu7UOu4mKKHRiTEkfKXp9mrrC2RZV5IisQMgRbj7GzacorSnygmlTY+uatt0FrXjqiUf4/te/yht/8kMcv+VO7nn3e3n0y59n224S2qo7STXWJ3+wFBlawMpgSO0Ck8YmvbPoYHr/B+U4pHnw4uISt95+O6vLK0wnY/CGaDPC+Aq+dSAiUglqG9FiTxrYXcM7l1XXygK6MUZXkqUvltc2gD1RSOgww3ubQehK+DzTSCFonUWrZMDHpbwm7ywBQWZU8lR7EvFUQC/TuFbQNjqRaDKY2IBBUvhUhypCgiIoQX80pF8a+j2DdQ0QUVmiuSoZyXW6dhAceEGQElNk1I3DtY59q8sc2z/Fbm7RtI6iHGGkI0aFGPRop3OKMiMoidCa3v41hHfko0W8bYjzeWK/R/AuaaOTUMaT5wVGJSgCspP7K53IrT4glSdGgW9bNi9d4ea3vZ6f+LlPIEzBN//8S8y//ce84Zd+gwdvfJSv/cnvMZsns4pWmszk5L0ew30rHLr+Rg4sKG6+fonrb7qREzfdxG2buzz5xDNcOXuerQtXGPZzTtx5K8duvJGiKFheXuR1b7iPrd2KyazF2cBsWhE8LIwyemXimtHB/Ht54OBayeVNwWSSUF+TWYUPgYVRiVFJmWg9iKwLLohJfaikfKUR+Wot6gvPP44m0lZTvvvlz7F88Ch3vfnNjJaXaeqGSy89z3w6hsaRFSX1fJbUSh3zWMgclWUoUxBEujvng4xsNGA+3cXNqjT2kWn+Wrc1890xvtfj63/2aQ4cO8bN993Pba9/I5vr61Tf+x7TC2PK/ghZ9pjsbGN3twnVBIuizBTveO11FJngiRcu8/LVWfqzRIn7j6iMQgh6/T43nLiB+9/yNnrDARvnL2KdR8p0j5xvZNh6ihI6jZyi25uo0InFUlnbJRRG+aOurNhRJNNMW4o9WN0eebIbq3UdZolIohEl8cGlhkr3/5EyQ2DJC4VzJKqIUdjgEDGgM010ikznGCVARmywzG3SsQtJSpcAMiLDcsDCwgIDI9EETJYlj7WAajpFlzlFURJEClmPSmGDxLeRZt7Q6/U5fqDk2KG7mW5tkSs4eqRMjG4pKLxCDnvpeLcemWfJzlpZzKhA2EBeFiBS+J1rGqq6wYVArkDnmqLIO829RGqNFArfmXm8TyO9yXTMfHeT1mV859Enubq+xeaLj3PwuoO88Ni3uO7GG/nQu+7nwssvUNctwRTopYMs79/P8dc8QDOe8tH3H+Lo7R9EiwBCs7a2yDve+Ua2dsY888QzbF28xOmXzlK3kaPXHWFxaRGjFfuWe6ws9dnatWxvz5lXFuci7SBjONQY1V24hKLIYN9qhpCC8XiO847ZPMmTR8M+MUp8TIq0qNJ7okkN4Fc9yvbs009RqAwbBdV0wne/+GmOHj3O8vEj9IaJ2NkbLbMzniD2TBLBp3FBLwPbEuoK29YUo1ViiLTW0tp5oiZGi86H9EWKkfVuB9e25KNFJpMZ3/zcZ1g5eIjVI0e4561vZ3f9Ki9ubjCrZngfyRfXaOqK+eYmUQhed9ch3vn6NfLgeftr9/PZb54ll4bhSPPQC+tc3JjRdCEDx6+7jr/yN3+TA0eOYUNkPJ4SosZ7kHhisLSmh4/bXYplV4Z3e0OM1wxR7P2UtNWpO6ujSMyx7leFydPnEUMyO0AnCEna7YQVjuDTQtfdCMcDTnhymaAISimiiLStJVMJcaSVIgiPdpoYHL1MULeSYa7YqAKNiGQhYoQiAwblgKzXQ5uUcS21xNiIbRuyrMD6NNvPlYJCJ22BjwTv6fV6aC3YN+hhjMEcGKC1RhqN9R7tA43zZL0+ajRK1wyRJ6pmSMioWCZnlFTpJI8RmrrBtYG8rzEmZ7QwRHbiC0m6tiQLadLax+jZvLJBqCsuXr7KZ//xP8R5x5HjR1kZHOfJJ59n6fwmd95wnLX9q9idHYLK6B+6kf7yftZufi1LvR6Hj1xBZQUxNoAmuAaUYXVlkTe9/Q1sbOxw9swlnNBsbFUEmbO0UCKlwsjA6qLBqAHrm3PmTU0IjrYtGAw1/TJRYqOA0ij2raRo2p3daTIOVQ0hCkYLJTrTNG2kMJGgO2uOAPNjrtUfe1FPN9dRzqC1wlvLhZee58EvfIb3/cVfptcfcODYdYyWVwi2wl20qLzsWFZAF1YXlE6CighNU6FDQMZA29quJFUUhWE4aHHWMq5rZpNdhM544cWX+Pqf/CEf+eVfZd/+w5y4626uXLhANp2ztb1B1bQEaVhdMiwMBty0Kpmde5n13S30cIV33raAihZNRKrjPHHJs7O7xXh3wpEjRzh64lbWDqwxnU5om5qiyCj6fWxT46qaKBVBK6JLfi2jJHPvOshBvIaBjSSOWOhGJ4pk1WxdEkAIITB5Bn4KMVGpRPffaJ1m3p6EBQ7epwZY14AL3tEGRV7KzqOQYohEAGkEmUqOIRcFCo8yiSfWzyWDNrBRC2YhLYpcRHqFphyU9PsFmdyGYGhdQvTkQuFFwCjVSS0dOjPYvc8iBGQnysm1IO/n+LpJaZCetFFnJvUzpCS0CdwXRUgbZnQI0p1W2NRR30tBsT7iQ2KxySzD5AJrHVqnDnzb1mTGJFACDrzk6vnTLN95G+/7lV/h54+fQOqMssiIPrIxqThz5gpPfPOrXHj5YUzl6ReBrKxotGX34nnKhSHi2AxiV8NEz+all5jPYO3IMfr9dN9eWhyxNXXMZpadqSUIxfIgS4EPMrI4UqhswPp6ldRl3lI3BrdYMBpm1/DBhRYcXC1RUrCxPSb4QFXXEDyjhT6mTDP5pJZM0xT54x3U/wkBec4jOl2sJSFzH3/oq1x/653c8553E1cidT3rtAE6mTlCQOQZra3wbUpxEEVqeIgIVTVLUjUBUSXumACwDX0NLjfM52OqaPFuxmPfrrnzta/jpje9iVtfex+T8S4vPvF0wvGuX+KNdx7ira+5HScC84tnqHZg10nUzpysiMym28mtpW5gZXUNZZL08/zps3z2t/81n/iVX2O0upSUSDFi8oKNi+e4evkkbZVMKTGm0ZkIyRvsu/HTtZEWne4bASLNg9NoOeJIiYnSaIRIC1d0/0WIAueT4SN2KiipkphFuNRMlFKwkI4mnBMoEzFaEawligwXYpeeEtEdplKSTCOFlmQqMHMR33XRNYGiV17LcQJQQtNGS9M25EWJlDopAQHrHa1t6I8Waauasl8mVpjRICRBpCjYfDiAGGm2xxQH1hBG07Y1uUn51FlviMlyhEqRwyE6lCnBOkQAWyedc5Fn9BcWEtWk+3xbn64jiUiapLhROPZff4S3v+7d6KUDXN2pmFc7DAY9pJBUs4aNc+e58IPv4zYu0ssLpJAMQsAiqZqW8XxOaAUhWtzOWYQwLB84QL+9xM7GFayFxaU08tu/rNjONJvjhvGkJdjAwjCjLFIPZFQAaz3W1wO2rWjawM4uSKUYlPqVsHoZWV3KsG7A7u68W9gtEFgUfYajHCkiTYS8a/jyY5TgP75LqxwhnUXlPeZNy7xumIy3+fpn/pBjN93C4pFD9EcDhksrtNMKt7OF1gpnG0LriEqSlX0CYENLUAqCwzuL0jmqyJDO4W1L2V8kKwa080nKA24awtY220rz1T/9NMduvZXF1WVues09bGxssrOzTRY8J5YdplqH2QQVHc4ssOkc450ZR9c0OitpvOTCZsVmvcl8Omc6n+Kd5ZEHv8lwYcjP/fVfZ2VtH5IIStDOtnl55yrTqqK3JxeLaetUPinRAsnYEaBLNEwQ/D2Ri+gWe4iJD5b+fSohhYgktsFeCnEXFCBlWuACRHRIcoRIGKd51eCFpjQpXrXoZzibyKLShy49JIlilBIEC0oLBpmkdSneRYhkAR0uLiGjI8tzogTXVojoUXme5KfeYUxB7EwmRUwMsOC7vOQu+SJ0oqAQ0v2QACLThNaR5wUyz5FIgkjVDsYQfIIo4GIKepeSIAKT6QSpkkovL4YIlXeTjS5YIXRSXJLHPKjAwsICM2c5f+oUVTBkRYkkEWoe/tyf8PzXP0OcT8m0ITM5dVBsTSqk2CCs7/DMbJcju1e4+acXmV7YoN25ytoDP0WvN6QZDjl79grz2rNvbQGtBcsDjZawudsyqS3WepaXSvplMouMSoHe12dzUzKvKprGsr09I4Yeo77uGqwpcWVlqcB7mM9qbLBU1sLunNxoej2FJIEiEeLHWrA/fve77CGtw5R9GrcNMRDxXDjzIl/79O/z0b/2N1hYXuHYrbcTrKepakxZsHPhDLZtUf0edTVDS02wlmZ3h2JQEETKjghCQWixbYV3DSYf0MtK5qoiWof3NbOtTZ564vt8/g/+PR/9a7/GocNHuOXuu9lav8z4csbu7oQJNfPxFnXtWA8LPP78DmA4cbjPvtURJ7cqXjp/mc1ZvAaJi85hdc3XvvBnHDx2gvve+S6Kss+gnJBnhtl0QuNCghuETjAS90ZYAYHs1nAkiE44ImL30qev0yJRR1N6aLqMhy7TGFITJPmxFYmNEHHBk+c6NddCQHYa8RhTlO6kgqgU/X6JVp6qafCd4EZIjVAO4QVapaSPUifzSCYjhZIU/RHFcAh+jNSpw+rbthtDJgSwyjTj3V1GSwuEPbNKjJi8C26TCjoZp+gSRmMUqCIn1BW+qmA0SCwyQYp7FS1KKbTWiKJP0+6QqSxVIzqjcZEsCvAeHRzOphdaaYUQKk0llSB4i4ie6ARlUTC7usuVnZrvfOMb7Fy5yGg4YGVtH2effBy7daWzdkLtWkrvaFpLnEzYHY95/unHaR98kb9q1rnup34DdcMq0QyBPnlhCXLG2fMb1G3D0UOrGGNY6GuElGzutlRNw5WtOWuLSVQiEfQKiVorubIhmM3nNHXLlvcQ+4yGeadtEJQZrK2VrBOZTBw+ROZ1zdUNwcpqj2EvuzZh+XF+/PiQhIUl6s0tVAioGCgKTRQZ87riO1/7AvuPHOedf+HnCWuwdOgg3jVsXr2KKkoyH5BFSes8wTq0gFZEkAalIsFb/HSXWM9S6SoUoa+QXlGYzhFkPXY2Yexavvgffp+VA0d5w3vfz/U33EhbVWxfOMcLFy6z0uuzsO8wPSRu5hgUmxw9MGJQCKKrsDawO54yq1MQgA9JY1Q7i9ve4VO/81tY2/L6t7+bhaUlev0S2yS0jgNESCdvjJHWx+5kTT/2pN6+G2sl15fouJndiR090dl0WstXlG0JtC+6HC2ZKgCRpIRSJmxvVEmimnVy3Cgiwnnms5ZeL0N1X++FT9p4ksJdKTBSYvApWxkJUVMurqV5u3eokDYlrTVRp2TRPM/xLkEHr0VMKEVsLVJCVpaENqCkBJXhQxr5he4kz3JDsbSckFTBoU0inkidNgJCMrOVC4vorMTGiHANjfdomaSdtp6nnkO3+cU9IGJM2n9BSps0RuKahunODtXONrvnTjFu5lxRpLm2UOmuJCVBzYhSE0yBioLYzOlLz5Obhn/0j37AB17+J9x6162MbtnFrNzJcPU4x47v48yZdba352Rmyr79IzIlGJUSKTOubAbqqubKZuqTDPsKKQS5EayspJO4aSpa59nYnqO1pF8mCrwSMMggLhdY66ibOgE6mgaxFVFSMSjVq9/9NmVJHI6IIlDGRbyUyPmEurXMZmO++YU/5a4H3sLS0UOsHjoIQjCdjhmuHaC15wne4pxN90iTUa7sw/QHhPVLSTEVPUEbjDLYpka5FIiXFz0a2xD+f7T9d7R2aXrWB/6etPd+00lfzl/lXNVdnZNasZXotiQjMGhYxgGMZ7xsL3v+mPHYa80MwxjZHgzGZmGSMVhGYgxYSCABDSh0DtWVc305n3zesMOT5o97v6dKciot15xe3dVd31f9nbPf/TzP/dz3df2uLrHoOrK2LLznl/7Kf8mps+e48MzTrB87ye7OJtdfu836+AI/+cQjdIuGHO7wB37ySYiB2cGMrXnHt16+xd6iJSaxb+ZeRZIzLBYNd+7c4df+3i+iFXz0+79fuqzBQ4KsOQwkkLFThNDD+rVhCWpXfXqERsptsxxZZVnYPsVDlrdO0gERK6lsBl2SrnhpZdXHmNEOQAAKy3CAYnmBT5G69ZSuIOVIXibxobDGErPHmISx0tDbD4mBSXi/kJNZJyyGqIUcqqJ4sK3ShNAwWhkLsscmNDKSUiR0UZJ8TU4B37O4i8EQ33Z0vmP96BHpo2iLHVZSmViFrUZkMsY5Qj3HDcbUdUNRVWhTcPrsce68NWZCZrjuWF0dAklkkyjxmfdNypQlH90Zx3h1wpq3PPz0MxTJs3flddpmSiIRQifXhM6QtUGxIKo9XJRs8IsPXMDcf5qtg4Z/+LVd7rYzTjQ1o9EbPPHxAcdOncA9cJKrN3bZnXmUWXDiyBBjFZMyk9dL7nSB1i+4txlRqmIyFFXeqIBjxyo2NzNt0xB8x9b2DHd8haLokzxQTAaKeGzM7bsR33WklFnUHfsHLcNygDUf8KJebO9SaEPdzMh1x2i8il/MKIzB55bb197mV3/hr/Ev/pv/LkdOnMG6Cr+Yc+X1VxlPVkRhNpuKsD5EdPBQlDJ3TAllBmSl6VpPG1uK6S6uGuK0orSOQIaYqNuG3LS0Xcdf+i/+E/7t/+g/5u6d61x/5xL7i8i3X7nOo+fX2Dhi0APH3izw4hu32F94Xr+6w1t3OnxfAh/KOXvSZybTtoF7t+/x67/8d5g3c/BTbFGgrBcjB4LgNSicUnQ591AEuQdLaf4ulndpdVyKT0KKaOUQoBAiiunvznk5i1QC5+sH2T2wP1JkK008K5QznxJFocHIixFixGhk5JRjT6MUCqUzisJqHIkFiUjEZjGEpBjIWaYSzpWk3NLGhqgzrhCnVkSTfEAXsgGVhaOeL3BKnp/EKye8bynLimo0BG0ErOAKYo7omHDVUK4pWQw/phoJ4cNAW89IXceHnnmYj33oEdrpAQ9/6COU40oqlX78l2LCZIHdxxBRyqK0YzCoWF8bEs7fT727x971d3BGhDkpZjxBmnE6kBHNOK6krMaMNs4yGE04ai1V4SiPnSDgaBY1N69c58jJ44wHjtOn1tnaWTCvI5t7NcfWB1hjGQ8SG+tDtneh6TrubYI7pakKaYqOSwNHh9y56wk+0jQtO7sLjh4ZCkihF0eNh4aNtRW2t/dFgZczs+mc+VCzMql+l/T5f+ei7g728cMRNkMyBuMcK+vH6GKiaWt8s+Dbv/GPGa+u8KU/9m8yHAxZOX4Cd/US2jmanR1CEE60GBscSiuCLtE6MZ9uY8sRWmmK0SqhnopcsGspypLWOrSSE2C2vYUbjrj8xmv8pf/0T1H7BXu7e8xCx/duNFz/hW/w+KkJusq8fnPBnT0BBKTfaco8lIId3lVypvUtplPcuX6d3/7Vv8+jzzzBo5/8PPeuvs3dN94U4Upv5Yr9ADGpTCSjYqR0EjLu30NE6R0f5JwICVZsgVORol/2xvSttD6P2RoxcGT6LKaiIHYtXVZoazHGiDstJmzSh2M1bQ0hBWm69RtEirFXhlm0ktNN5YyKGWss1hjIYu5IviFGxfbBHmurq4TWY8uKmDtySgycQfUM6uA9sWsZHFkX0qUVOWlhJFLWFo6kNBhLVhZjHaSWpIVzZiyCuIqBpl5gi1IaYVZx4vgGk9U1ynKEKsZCG+0ltgn551DCdGuDkLIBqvGEkVYczBZMjh4javnZui7iY8ISxM2nJJpXdRbrWyomGFswnGyglWZYDTCmJMaET4nde5t0bcegsqxPDEaP2NxrmNURa1qOrldopdhYdWg74s6dRO0D97YbTh0bSDSUgmGlWV0bs7l1QI4de9MFxsDRIyNAeOJOKVZXDG03ZDqtidHT+ci9zQXOWUbDD9BPbXLEtzVRKZxW+LbDugErR4/Tes/e9iZdO+MbX/41nvrYJ3n8059jI3ace+ARNqsxbdey71tpjGnxIYedO4S6RZcjSVLUHsgYJ0FnKXpMNaYqHLODfXG0JPA+kOY1Pnhe+PbXCHVD1wWIAqu7N0tsv7krgv3c+5SR5Ai9HEulHnr/u75ySiwdGrt7u7zz9jtcuHgfbiQvlwKiKD9lIfbz6WU4fEZB1r+Dqy1bwJJTJpJGnQOqEJmYsLNyj4vnUIlH311OIfTkCznhVJA7Olrym5yRE1ybAm0UxpVM9/YkbjXHQw+30xK6rpVsRqGvOqwrsZWjnk2ZH8wx2ZKV6xNDoCwqUvToYSUjrhAxzuIGJdpIOWusZegqQHjlMUdMFrQtWmOcvIy5544b44gpSEKH1oQYKMshxI7BoBKHW/RoAtFnrC2JKfU6/QzWCOghikgn5owpKqxJFNZRFUPaLuJnDa2PxJSIKWH7Zy0bn8EWA2Lb4uuadnaAsY5CgReFDBloF8iiHkj87WSomXcF85nnYNZRWs3KpEAjd+zpeMj+bMZ07ikKzbGNQT8VgfUVS/ATdnb3CDFyMPOMRoHhwPXvi8hyNzbkujKdJ3JM1F3i3vac+z7IRc1oyHi8QgxRZrB9XIsLjtX1oyIW2ZtysL/DL/5Xf4Z/bf0IZx95CH//BWazKW44YrC2ASnTdcIKD40ntg2uHKKripz6dMT5FB8XZOMoXMQVQ4qipHKi2d1rPT56VJtBG9quFRdVv5hyFq52pudm9y+x7rWWWYkIQhw/v3thK1TIZCdVRdM03L5+FR1rguqzp/Lhb+1Xbe+0UoY2SI60QUD+QhnpLZl9vZ9iIKtIErYwS2cXOZMMkpcdNdqIWy2FIEIMRDEWfERrGVehFMF7tDEE7ymdXU7TMK4k5q7fWOROYA29FDETQ9tnHkdSlymsZXLuDM18Tk4dmFJC4jHY7EhKuu+2kJFMURakEHBVRe57AxLJqyUQzzmK4QRlCrlmWIM2VqYjixnWObQxOOfQriLWM1RoBHlVFBjjsNrifcCYfkGj5OS2Dt8FOi+tyjopmiBoZqu0YIeGI8KioK2n5JRRKRGygpCxCYKygjGuhpiiwNmCYjigIaFTIFhDMoZqaMna4lOUJBWVWRtb6jYSW8XO1FMWjrKUJufGmqWpS7quZmevYVBqVkcDef7A+qrlYOZo20DrPTvbC4qTE5zA5DFKMyoS3UpJCJnFYkHMkYPp//QQ+p/7et/Wy9C2xKYjdZ4QIhhDIuOsZVhUrG0cYTh0pOi5cfUyf/sv/jkONndYO3KC8w/ez8lz9zGYrGBLAf4XozFuvIoqKrqpPHT8gtjWxBRJSRPqBSplFlt3UTFgXUVROEqd+v5QIDYtMaYeQZz6wrp3OufDZSoLJos8UbKQ/ucHBBppzMppHlEp0dS1JG9qS5cVES0vhxL74rtJS/Jn1DkSeuOH1ksHlpTWCrkDG2OlA967w5bxtikL8XSJYFJpmQwhs3DQFJUhE9HG9D+dqGB0FupLThGtrIxskhhVrLGgerQRSoLaY59ekSMxespBSc5SLYXOi4hFKUn/sAZrDMZYUkiYHDHGoq0hxdxr/AOurLBliS0HJCTwfnkPzBnppjsjp2Cmt3J2dLN9QjsFlbBlibYVyhh8V7NsEFpTyMI2BmxJwIo+vyzJbkiIUoH5lHBlyXjjCLZ0JBRNgjZA3SVan2i7SN21LNqapl4wm005mO7T1HPatqFp5hL51LXoqsQYTQgQUgRg4BQrY8EqtV1kZ78+NAeNS83G2kAmETGxvdcSYuwdgtIRX18ZyIYVPLO65WDavkuG6XWG1UB4aMtkji7ED3ZRa1PQNQ2xqwnzA9HiZkRQT2ZUDpmsrlM6S0odb770HX7tv/2rTLd2WT9xivuffpILDz/GZGMdayzhYJfsA3a8hspy+rvhCnjBEiVl0bYgJw8xinIoCZxu4Axl30eKQRZ0FyPv1YZkBVkL5zqQ5d9ZAAMhht7c8T9d2ErL6ZdyIqe+zCUTUiYoS50Vs5BokM5rXoIQ0O8CGJDGTO5100oLelbpDCodjqlkI5AGFUlK7pgiqY/xSVoaUDqrPqEnkpInhUhZSYKo0sKzTjn3Lw6EzmO1SFmdldlsylJKm766kAUWSTFKNJBxzOc1oe0oipLBZJXSOpr9GV3XoawE6CXv0X0PQGkDxqCcJTuLGQzFAquUjL4ShGaf0M379oWiPZiJpr8q+1GV6NpT12CMwQ0mMm2InSCLshhfYozUTS1zQGNJyhD6zVUZRbm6RjlZkymCM6wePcKxcxehGJKLIW3KLJJnETq6EAgx4jtP27TUszmzgykH+3vM9veZTw9ELty1YBTVeBUw5KyYTrv+QFCsDy2F1eTgmdcdjZdFp8isrljKQUXKmUXt2Zu28mu9r35lUjKsCoySgMGd/ZbWp+VxhFaKgYHJwFIVBYVz/4tAj9/99f5por6TnCNjyPMD2vmM5CO5rQmhoRyMWD1ynKZuacMuoYt89cu/TFFYfuBf+jmOnjyFbz3ed4JliZ6D23cxztEWA8xgyGBtg2g1qvV0831M8Mz3t0nZkLtWsqmtwynDyGbmIdGEcHhxXf7IOdNji/K7QhHetV3+rz2cougBb0loLIaESoEY5P6ntVjj5HSVkjbmSED3AeLLha0I/exX9Z1vAxSIHjuqfGi1zFm43qBw1pD78IGUMtECWvcvg2Bwcx9yp7TBOHNIMjXO0fmINbb3TENW4oHOwYt6rb+05/weY0qIPRlEpJ5aa5yWq1DIPVzBBEnYIPen/hL8YMkhop3tpbGiVVdkbCEyR2OEGa6MolodkVLsxSQKbUUfnrIAHkKMqOhBgfcdxg77K5vIjI110vRMHt92vQMwsX78BGO70kMKJ7Q+YIZDrly6RL67RYzQKVk0QSlSJ8+zsx3zbkE3i8SulWTWBMoHCqUwhWW4uiY0WAOzRWAwclTOYnViPC5oFy0xwPSgY3DUopQgoFfGBfVCUlL3DlpWVyqKfsUVVrG6OqJuI13wNJ1n/6Dh2JEBPZ1dIAtDw3Th5Ll80HNqTSaGgDJWNNOuQGs5TeKBkCeMdaxM1ui6hrb1LJoFv/nr/yOrx4/zid/3JY6dPEXXzFjs7wszWxnqxQylEs18hjIGbUrRB2tL27RS0mqRK0qDppTzLWWcSgRr8J2UuDGLouu9Laq8/A/17t/7X/wZtWI4HLA6GbOYzVBK4Zsao4QZHZcPVokwQqB2UiForVG5P/37TSMoKRlMhpylURdyom5bcLLAtJEXPPWbiFqyzJWRbn1WhByxSZOTxjiNtbLwks+ELmCMvHxlUdK2LSnG3sHVY4tR/dQhsbR1y1UhCkaq/3u2N9wInVRKwLIcyNUmCBTfGEPX+f4ebMih31A0hLYmzue4qiR1nWwsuoCUaecHJA3VYCRN/hjkjm0LYrvAVUJCIQayLclaTuAlGdYVokCTaWSiaxpCXWNUQNuSpEoGTnH+6ITTGxO6lHj00Yu0vuG/+g/+ffL+jByluuqyCHKLKKPVZj6F6AWk7zRd4bB44rhgvHGE4doxuhCZmEzUhmkdqJwIRyZDy/6gomtaZnPP+lrAOek5rE0s+wcFi0VN0wUOpi1H1qrD03o0Em67D4GcMrNZw/pKgStkIKpUn8vlDI2W9+f9rdX3+WUn63KK+BZXDjHDMVgL1jEYjanGK+iuw1nLqCyw1pBCZDGf8o//7i/y8le+ynh1hdPnL3Lm4kVcWVKtb5DQKFdBCBzcucH0znVCfQC+O0zN8M0MH0WzrPsdP2uJkV0bj0U+2As45L68/HoXLbQklKSUf9dJLQtdKc1gUJFCYH93jxij6Ju9R3e1BABkTe7v0p5MR58RpnrELBrp12o8yPdLXzmQ6HKiy0Ih7bKmiwkfEjEnYh/GF3sxjFGJ0hnQ4ljKKQuWVsufF7wA/RWZ1IMPYooYK53olLOAE6uSqiopqwrTG0mWvcGUROQgCyVLiW0L2aC0MKrpdeoY1S+6d08MnXtll9EQArYscaWDFKj39plvb9N1jQhFdEFZlKCMRBD7DmNLUBZjpGRX2mALGQ/FqPBdoF3M8V2L1paMJSa5Xiym94jtDip6mjZz4/YtWh/JOWFVZGBgpTR84cd+iM//1M+Btb3EVsupHSLz0NE0LbP5nMV0TpcECNlGgf6P11Y5/cBjuHJC6onCtrS0rVRRAM7AaCQhjj4GDmb+UPhTmMx4WB5u2rsHdR+N3PukNQwHhcQSkWi6loNZh08cTma0UpSFxul+/PhBLmpljDRggHqxIMymhNCS6gW+bzxp53BFwXA0ZrK6ijUaHwLb927za3/jv+Ht515iuLrKifvv48ip06ysHWEwHGGKivGJE1SjMXY0JJPoQo0iE0JA54wRgjshBpRPWF1QDoaEtsUkT9kv7GVzWhbxu4v3d//vfs0dLuuqLBgMhohAJAkILycpp2M+3DQSidSbGGLOfSBfEjHF8u7O0pghu21SPSghK7kWkEhK0+U+srTfGGJMoq5DEbJM1ZeqNG0UmMSi6YhdJ9QVlk1Aaeyl7CHLFUFpib7NJJztJ+Ix9qWdOpSmkkXooq3tm2xBVn1OGFfghgNM4XDWiRHDCGW1GgwheIzK6BBQRSnd/cKSc6YclgzXVxhOVjBliasckLGupFxZxwxXZINMHaFrICZifUBXz4h9CkwMEZWVpFFqR1IWnzK+awjNgtQc0OzeZXvrHq985wVeeeUNrt3bZW8uzadpLQrEj33mc9x3/gwrkwpjJUstZtksE4qcBCWUQWKZtGGwtsJHfvCHOHH+ETIyEiRrBoWl84lOpINopVkZWKx2xJSYzbs+tliuIsOheNAz0HaRtg1khEGntWY8duKXV6Jh2Jt27NWp1/BHWdSlpqhK2RTfx9f7F5/4luw7jHXEtialiBmN8dpiUiA2HaOjx4k7Wwz9ED00pOTZ2d5h0bTcuP42f+cv/ln+5X/3/8qxh+/nsY9Zrrz+Cvu7d5kd7PYSQideWxOXrzMayaTqR8ISfBE9SlmiUhTWMrKWmCUkb9F28sDfx9fyxa5Kx2Q8xmcYjMZ0vsUosRRmq+i6Zpn4jpz+EZ2hY8kd06J26qsEoxUqqUMs0XL0pZJIRTNIOas1mohOS0FFT47MQiiJXaQs+sWmLIFe6xyzLNgsG1BZyHxaq14WGmUWvex4h+TJiIZYHFqymqXZqgk5CHoqeqmCSIQuknNNOSix1srVK0ZUKUaEmD3JZ1LToYxhNB5hUETfoQoJn0sxU+9PMa5FG7BFRU6+r2+UVEIpY4oBS69oRDY/FRK2VHLNsxUB8VvnDL6r0XiREIfE1u4Bz7/1Nlu7c1bGI4rC8Mj5gvOPP8yoOs1TDw54/JEzPPr0Q1y+dIM3X3uTeZdlepI0RVGiS4d1jqIqOHXhJD/8Uz/Dkx/9DJvbHdpmytKCyhRGZv/vTcsoTMI5RYiK1mdCSGgn5pfKCcx/XgdizhxMG4aDYf/mZAZlf23yHRlF3QXKOtGUurfmZqyF4ciwqN/fWn3/CR1kRmvrdJ1gVbOyEAI+dISUKZylm80xUUogly2TyRqh8+zs7bPwHVcuv8l/91/+p/yh/9O/y6lHHkE/YQgJ4SIv5rTzKS5EGI7oZnugjWjO6wXJCFeZIAaMYuBYtA0xahIGo6X5kGIk59DHgL63EF+Gu/Y628px3zHHbNbR5gGpl14u6jnOWGIMxJwIpSP6hLMZazRJieMqK0Wf3oNVy+QF+ZNSXvLFBYBgENtlzL3SrO9Gqyw68qVXWHyZgr1JWc76EDWFgy4kunnDeFjJ4ukitujRSkFGSSiFTwGtrTSfkqiUYvCQdV++9+aSLJulsooQIqltUIArK1zpCDbLlCAEMjDf2WZQlZSjAUobQttiS4spLTFnppvbVKMBOvUVRtvhyoJShT7LzEDwhK4WpBUyFVD97JvYSmsoxZ49JqaPrAVZnLy4vFKQhmlZDggYTFFx5/oe165eohiNaWdDPvXYCvefGWL0JdT8Mhce/jB//N/8EjhFe6D4K//Jf8Frl3aZdpFkLeWopBoMWB2NeeZDD/OFP/gnWD91kb2DQNd1uMIwLB3LYVPMmaYNorBTgp1yFhb9CM/7SNHfuZ2FsrTMa/nMZ7WoG7WWUZ8xWWSyc4NSSSYcMRCiIVrxxzudKZzCuf9t4cnvaVEXrqL1EWMLiskaoashdKgoA30dI4aEGw4JXYPJkUExIExW6GJkejCjbTouvf0af+PP/Gl++k/8W1x8/CnO3H8fi/19br79NvV0Sn3vLviWnBIxiApoWVMrp6Fy0LbUTUNIiaQskcigdCQPJIdSGh8jXczE/u6TpaFIVpmNYcG/88VH+NjHHqReLPjNr77G3rxjZ5557s2Wpk+l6GIQEX305EajyxJpvWZ8loWqlXiAU8597rR8+X4+u8QeHwpUsqbSsrFEFF1WlBkp2JeXIbXkQC/vzAgSN0usTyQzMLZfFFICphjQ2YrzjIQxSnjsgMqS/Ryjl4hZpBIwSsQ8OUHwAWetvLYZVIoUwwF0kqxRTUaorARLbA1FUQjwcVFLqR86VC7Exx08VeHQhSXHPt5XZZnPW4ctKnyI4KzkjSX/ro+8D1ZXStRoISe5/vQvvNUJ4xxlOaaZT0mp5O7mPkYbjhaeH/2Jpzl57iRGXYUYyTd/A3Mx8cgDQ5IO5GM/wh+LgW/9zb/EvAn4ssKdOsP6sVOsG7j/2Y9z5NhJUjC8/drLHD97nmFR9WaKjPdisOliouf6yMbeHwqZfIgJBlm8g0oSTjJJopNCZlD0fQkFVSnxwCG2KAW+afFdQec0pZIKrLBQVe8PaPT+ZaLOEOpOoAZKfhivFLoo0d4To8eYESElBuMxi+kMYyzVYMiKbyB65vMW39TcuvImv/LX/wp/6N/69zjz2EMsrUxdCMT5jLzXoIxFp17BpZaLR2OHY5JStIsFISaKYUFhE6YaMNvbRVlLpTVDVVIMLDsHM+omHSZRro8H/L5PnOJznzpNGwPznV0+/dRZZnfvMDp5jKZp+cabB+TUgLFooxgYQTjZouhPxj6CXvXVA6m3V8vOIY2xvkl2qDiTsY3vI25UyrjeZZSQmJ2YpXSPKUqUak5k2UOwWmMK3TuTErXvqIZjcgqEmGTB5YaycPjYnwJKYZQooTRJwgXJGJ0x1so4KEPTttR1QI9H+LamqApUVeAXU6wtaZuOYljhjEwkwmyOWVsRIKH1Qo7NcnWwVUVlrYz/uoAu++aeLVGukOlFVhId61vxkLtKOguhQ2mwtpJ5rbKyKedMig1KZVyhcNqiUiaFhgUldlhx/yP38fjjZzn7wMNyhVCPkqNBTW5D25C2rpE2v4P6yDHW73+Cox/7PPcNYDSxVMfuYzA5hTOOYrRBBm5fvcaV732TI2dPMhhYdB/A1vWS0xCENrOcteh+hJBzxoflJBvImaKQaUXMkmvedJFBYfvJjGJQKVzh6JoGkgh/dE5oLEnJdme0wDQ+0EUdFgtyVhTW0XkR+CcfsEVJzi0KaOsGoyCEDkIH1pJDoFCW0WCI7zxN61m0iStvvMLf/vP/H37/v/FvceapJ6jKAaPBiBdDy0FRoruW/RuX5f6ZFK4UhVEKmZwNKUswe5zPyArCooGcmayu0NQN9UzE8pVzeN8yHgw5urLCH/jcfXzxJx4hmcyv/63f4PrlPe6/uMLpQcu5ow+yOiowSGxNDJ7d/UAsDSMr0lhTOFQIqNBryLI01VJKfZkpJJRDjTl9eZ6XAXyq76CLmERcX5mQRdzgdKQwBmUUJLlnayMlHzmhk4xDlNV9E0yTskb3UOIYRE2mtBGlnQ+9EEeLEgswOZO0Et918lLWGWhjxGVL07Ri3LAO7UR5xnKKQMZORijrpOtNFujgaEzOQjBxhZXPxHcijEngigHKCAVU6x6amApUIQYQTcQU5WEmmTQqBRwRUkdGU9iMocQOSmJbU9sxanWdZz92gum9e6Tbb5Kap9FlIvsF3R6oA0uZ9mB0GnVXkxeXefNVw7ff2OZTP/qTrJ85xdqxU9TTKaEcYQYT7t3c4eWvfJmu2YPYMhiIMSSTaRt/OBFYagnh3auXfK7q8CqllJGcbSMgiQw0TYBx2b8NUBSaolTUC0lgDSlgdMRgWYqaFBnnPmDxSaqF1+3bhcgojMwUQbA3RhtClIham0USp53DZkSlVJaMxiN8nFF3AdoFb7/xEr/wF/5zvviv/AkeeOZpHv7oR1k7eZKXv/EVbr1zib27NyTdwpWHEPu2behSb91DEaMHpVGFwShLyhIsl3JiZ7oQEmY54PjJ06wPLA9eWGHlyBHubu5ysLcgJct0umDj4hGmDVzdbFFGYZLMnUNK7NYZSs2kDHS5AG3JKvSTi17CuSyvyYdOqESmjRplejqKWopTZEaftHQ3jcqE/B5deY8U1lryuJZRuapvdBljSBlCzDhbHmZPG6PQhaOpO2Inz0WrXmASRRoaY5Dvo2/OqdBiKisBAEIzxHcNZVmQnYynbM8Aj1qhUhTjhTP4pobOE2IgtnJlUjmSS4crK/RoiC0G5BiIzRRdDcWTnrXwYsoBKXXYFND9z5Z7EwqmkM/Sd/iYKIqKnBJVNZbn4ioOph1vvX2J6Y1L3Ln0KieGgad+5ClWL/4o7b0X+M5//eeZHD3HI597kPL8eZT5IVh7GpPf4mM/9rMcv/gQp86dIaO5s3mVkoJ7dzZ56Td+g707b3Py8YdYGRVUVpZuCFl06EBh7Xv0D30YIkDWgqnqF7bw4mRRq0BP0Q2H/R3xiYMrLCpryJGAYj6XA7Mo5MM1SlGVH7D4xGrFYDKhnh2gqyHed2hbsgTxpbZG+UbugZMxptRohU3KNQAAVd9JREFU5+TUqGtsEm5TakU73sVE7gLX33qNv/Vn/t/85L/8J3j2+z/PsbOnefxjn6Kr52zfHDPf2iW6EuqG6FuiSvj+4WYlJ5jWhtW1DbZ3dmgO9umCl00HudPdf/99OKeZ7R3w8uV9nvpYJs73+b5PXOD2nRnhYJONM2d58fUb3N1psEYaIEEFdBAjxl4X0QHKQhGtw2a5r+eUJIFDKbokJ3Rcrk61vEcvVVbiGguI8MQmcUoZIyaBd4mkcvcnZ3JvjhB1pJg3QCB0MXH4Z6msyBFcP0dnSQs5lKfKi2eMQ6mWzify0ECO5KwpyoqitBADRWGBhG9rhmtHSNpAXZN812u2E6QoHmUfMDFTDof4CGhRP8k4M6LyvOe9l+TQkLIhOYUxK+ScxReNgixdfmULyMIy860gh5TR5OQx1uCMRPREbdi6s8lb3/hNDjZvkLNmZzfzxref56Pnv4/i6DMcf+Yput3bqBPHIUQ4cj+xfIZj50rSbs2ZM6fZ3txl+9ZtVFbceuMtLn/nmyzmd1i/eJ7VEyfYOHpEXiUSXSfTPm00VSlcUKkqeiMLvQz0cFCsDicNS903KhKClumRMYf7QuE02ogOQMZf4V16Dku13/tcq+93UfvUsFIMKI9VLBYtoW1YO3qc6cEOrrD4+R7GgCmGKFfRzaey08codsAMFCVr62uEFNib14QYWcREd+cef+ev/QUOdvb41I//CPc99gQbx49w8uGH+NYv/z3u3rhOkyWBI6eMjwnfK8ciikJb9jY3IQs9M8S+0FWayWSCMzDd3aeta/7OP3sNfM33fewMw8LwkY88xL2bBYvseO7l21iVhVWeMzZqvIq4mPA5Mpu3DAYFpdEQNTl25L6/kOjxQkiZHJSc2FZJo8xnka4uO96ieVZ4+rTDXpGm6GNzs8L0ZX3beQZlCSqz6AK6jQwrTQqa0HqUFYrnYDigXTT4IGOQFCM+yLOQKNsl4gh8EOMHOUJSxBAIOgu8wiicMqA0XS2luDaWnDVBReYHU4rSgTbo3tq5mE5F4RY8KxsrFIMxTb0gypveN98C2knyRO478lnp3sWle7yTJsRI087xXQAt3uvcHyJRS5U4PVjw+gsvcvPKm4Qk/R1C4hf/8j/k7BOPc+KRn+TBn/r3SNxD11cImzdIszFbs5dZ+DFFqbn66iW279xAtw13rl7m8nPfQheJ+z/7WSanLvDIk88wqIaQpa9xMGvFXOGUpKWgZONF+gnSW1A9yne5XFWfJS4VuQJC0gTos1vktHYWtJXnmTMSaBASzsn7pYHCHJYGH8yiLodjDnbvobuO5ApS17JImmplhcXuDtoWUDpUMYYcKYwmdpHcLkjtHJUUxXBIomDiDNFZFl2mTZkmdoStbX7lF/8Kl95+ld//r/0brJ84zpNPfxxnS37rl/8eN15/Fe1FTw0Z00MPlJF41pAyWNM3WTWp/+v66grz2T7tYk7TRUJKPP/aTZ44N2RtxaA2TnP3rbs89803ef56AjNkIO1aUo59tzOgYkeMkfnCszosMAPHIgZ8vwMvY2Eg9z7m/s5N7g0JYvzQvabbGiOgvuVu3+uARJy2RDlw2AWv25bKKSpjCElLTI0GbS1BRZHIhiiWR6OIMVAaQ9fWcj+NEe8lvICsBReRkpgorJBRQttgFcSU0ClRDAYyhls0mGJAN2+xNjGYjPqZuiRZKFdAaLDaU05KzGBAW8+wVUkxmpCAED0FFVoZjBaBStYiGLJFwTIn3PtA17Qs5lOJJi6GFLlg9cgRSldgtCWgufH2G7z8rW+wv5gDipgsbWjZ2fP8/L/98/zhP/oyj372S6hqjctf/ke8/ev/lGMPf5ryMz+DLqRfEXKkHIz57pf/MTs3X8NNRlz8+Ee5+OynGY/WOH7qDKa/2zRtpukiupARlVlCuGU2iPdR3keMXCVYZrOJ8MgaLdNKFGhL7JM4cv/JV85QFCVdj13KWeN9pKre1YfppVjjg1rUo43j1Pu7zBcz7HiCtg5TOZy2GFdiVtYxhcU3HV3X4JQVS5/vyF2LrsZQluSmpnAFoyJgTeKgDbQp47uO2UHme1/7DXZuXOGn/pU/wTPf9zkG44rR6gpf+cf/kDe++jWRGE4X0Bv4QdjYy0Wcexmj4IXE+riYCaI1JnF0fffGAZt/+3nuOzJhr3mFZtai3AhwIjJw5vCO13kxDmivabJo3GOwWKUoqoLQ+EPrpOlv10uD3NJhRMqH+CIBKrwH0JCh7RLDSvdurITTGaVFxqn6FySESCocpevbM71P26eIcxJqJ4QQyG1D23ZEI9rikDNdyqAdqCjlozFkpXDDNXScktsWSOAsOWSStdjhUDzPWtRuOXbyskaFKS3VykB0ASnh+qrMkqBt8W0UBVQGlJByEgpCQJlI7q84prePog1d01LXM5p6QdM00tU3jtXBKuVoXU4ta1ksPC889zy3NzeFtKoNKXe0Xsiw3375Fi/8n/8yR9d/QYQlXWR9dcSnHlnjdDBY1ZL7d9M6w3hjAvYsD3/m+1k7ez+FHbBxZIPJRKAIMWVmC7BOs7HhKKyVd63vHqbcV1e9CMnaHmu1XPdK3k2UTDic7gGVhxIWjbGZsjDUdW/QyXLlNQpyf02z71P/+f4bZV3EDUfEzeukKZhqQrItBM9otMJ06w5Za4nw1JZoLWoxF5OGtSgyXd1IuVdVDLTDhY6sZqgm0/hEip5mkbh86TJ/48/9PD+1t8uHf+iHeOjhJxkNJ6yurfO93/5tMPu0swXRe1E66T4BMYldsiwKmrZFa03TtjRNKyjgLK4orTS3DhJ3p3syq7WOMkvZrUqHqcoevyMiCpQwxEKOdDFQ+8BqZSmVIZhICBGlM4VS2Jxpe1fJUsj5u01hS8xQzonlzSz14w6VFVZL6avUMuq2F6j0s3rTvwxaK2KMEgVs9OECE5eV7rvaWRZX61FNw6gybPhI0yRyMnSLGcOxRduMMhqTDKmTLHG/t0eqCuygEhFEYdClIxolvO69qchMhyVlWRG8J4VGPg9lSX0XOxsjUkD5SQnRY0wpGCZtRAPftLSzbdrgaX2mqTty6NCjAa4YsLN5lxMnz+B1xea8441rd6nbFq0MWcmcWyQE8qyUMcyioirGrJ44wfrDj5FOP0zTBUoaNIrQeZRWPPiJT6IqWD16lpw0o/EKaxsbFE6wGotGehfjcUFhDHrZx2CZgwbEjDUFutBYp3/niSpHr+jrtTS9il64tKzSQ+YwvEFUC1LxCcJpyYT/gBd1NpB9YrR6hHq6wA4s9WxOJFNEoV/U0xlKyV025xYVI4RGEhWsiEJyCmhTUa4Pafa2GFUVKgmCt80RcqLrEpv37vG3/uKf56XvfZef/Lk/wokzF/n+n/xpzlx8kO9+5be59c4l9nd2SMETgjCqTFEQ+m6sUQYy+M4TovyenOWBWt1bF5UCp1HGoYtCzPBFSVEN+1MmY11NBGIIWCPwgmp1lZg8YxtRJBaLHpXTC/dFtbskrciHp96dCYGSjOiQIanMwGp0kpM9ITLJzgu7TJHQ9HE8MRCUQjvbm1NERhlUEo5ZzuKQaj1JQxcChXWsjFdII8h+i6pIjIeW7Z0WfGS2fZPT62dFJpoz2WRsWZCVou0aBqUjtEHm6mWBqSrhf+selhgiqe2TMq3DDgaYoiJ1nZTnsxmuqkjWkk2JcUOMXlo3NSFE2v0dZpu3Ga2OUFrGVbGuMSbLnF6VTBd7TGJif555/s2r3Nm8x8Kn3qfeq/T68rS0lrKomKyus3byNKvHzrB27IyceL7D9GiYGAIqZwYr6+iyoGthPCw5ceoko9EQyCw6aGNmOFEYo5h3mcr0p2Z/d/ad2FMDChuXRB0RBoFMGrrOQwqSStL3Tky/eOnps6k/CBLyfrZdYpiWJbyMRT/Q8tuMh9R37pJcyWBjSNYalCzYMJ+CK9H9HDeHIF7XZg45YE2BLQfUIZAwpLam9Z7Q1DilKTSMCkX2Qq3IORN85mBvl29/+dfYuXObz//MH+CpT36Mh5/8EOO1NV577ru88cILBO+5e+MmOgoE3UdJ+VBAjgkfAj5EfOyLYiULxBiRKDplenGEw9oBzjmsE7ifkD0VbfD4ZoFuFaPxhAcff4rFdIc428QWDeQ580VDjJmQRRwSEyTdh+qoPhNZqmbaGPFkUL2ENApvm74Dfsi3iKk/teXF1Uakh6k/+g1SGaUeI2StBmfRWZNDwhWOGAP1fMaxk6exrqCeH0BOnFhpMTFxZGOIc56QHNFHjEqoBG406EtkeXtD8DJn7iLWSfWhB8KpTgcHOOfIWkuXO0XarsVaQ9dGlCvR1qC0Q2kHWjzRbZD0lsXBNqGd0vgBi3ZBV9fUiznOKVbWjhC9Z2XjBHM1ZJEsDz7+GKvHT3H17bdpVMAkEXcYo9AY4as5i7YlypRYVxJJNE1DM5+j8lAWW9dBjpS+wDoDheXIyZMcWZ+gdWa2yMzbyGBkcQ7ImcW0ZbRRvneaJbnhOaKU6Sk18gsiLkm9wKjX3hvX23elajR9BXYIj0T1VwpFDO+y67R+X+v597aoC1cyXF1j795tilJ2WWstSWlSV+Oyx1Va7o6hxQRPMJqUSjHm94QLihFWTWlnU0iJZA2TIyex9QI3r5n7VlxPZLoU8FHzxkvPc/PWDX7gnS/x0S98gZNnL1CUjtWN47z96otkMnubW8wODtCAR3S2QuSU+07qS6CkBeBt+q5lzoL70f09XLpamaDE57y8hy8rpeFwwrFT5zAXL9LM9ti/cw1d3oJ7OzSLBqJwqIWesrwx0RNMkAC4nMkxUmhF0oomZXIIOKPp1YhEZHapjRGonlmWsrpndjlcIYkVkIUYmjNRRRk7KWkkFsahMuzvbIq+eVDJxlY5SqOoipKEpRqPaRpP6FqmO7ushEg5HJLLXnjRQw7l3UuQFe10LqYU5/AxoOZT6FqM7b/vmNFFQVSGjMFqR04iKTW5QRuFG4wxR0+wGwP1bMGibshJsbI6YeXIUWJWAgKsVrlxcwuVFSfOXsQUIzoCPmnIAa0VgywkEpQha0fMCt95urYhtA1ds2Axs73aT/VAhEioKgYrK6ysrnL82DoYWNQwrxNurDDSLmAxjxQuY/VSry9agemsz0nXifFoSNFXDlKcyRUpRqlgjXWINGzZBn23+WWdXFFSjmT6zPXYKxCXV7gP8qS+8Oij3Lz0NikH5ttbDFZW8PM5PnbgZHEbMyS0C1FRVSsUlSQzhOkOpq0xOdH5hpTMoVKKcoVkxNqXBgGvInSBGCW9MeRA7SPd1l1++b//a7zyve/whX/p5zh+4Tz3PV6wsr7GpVde5K3XXyfmxHw2F8VXH6qWenZZ6kvfmERgkbUIA1Iv3EpIjjPRkbNkPMUYSd7T1Ava4Ikpcvv2Dbqv/jZPfezjXHz4ac7c/zBbN69w/c2Xmd+6zfbmDhGFReglfbWNDLtyX4oryBLD06p+s0FKcasQHjdKGkX9y2MQJVrq43fI4L1wyozRkgaZEqbfgLQx5JzF4QbkLjBvdllbWUFbi49tDweseptjoCwL9KAiB8EMK63xfbDAYDwhxkiIUFYjSAFILKY1pTXEWS3Y36IipkwxHJC1hWpAtiUhJEKYYbqAMVAOKgo3oq4buvqA4D2+naN8YrRxjPHqGsoNccMVWpW5vbXg9ZffoNu7y/FzN9nf2SZnRRckt0wj2CetDSYmugDWB8quo2kbFvMpzpUYTK/TVxA7bBBt9omTj3H6wnlsYTiYZRYhUU6UWHqzdPrrmef0iapPylh2xSW1tXAVUUfWJ9XhulvevH3sgYlWQA9V5eTkVe+u0NTrHpbhfylEUpQmmbxDS7b6BzjSOvfoY4zW1rl9+Srbd2+wefkKKFg/foLZ9jaxrenqBWYwJHYd2Rly22FLRx6soocDbNNg25ZOa/RwgE4KT6RbLMB3KFdQWoe1BfO6wYYkZoZM33UOvP7S97h96wY/8MWf4dnv+zzDByd0sUFZiykct65cE9VO24mEs7frLZG9OdODC/JhFzrGTAxZ3F1hLhGpOcr9vOvwviPGQBcSdddw5a03uHP9Oo8+9QxPfPRjFIM1Ljz4DHtrx0mvvszW3U18XsIGYQk6FE96b37vN5nU/1qXZGNxCYZWymq//NBz7mN0tLh/tMJpeTm99wiIXzYA5wqiD4SuYTQaittruWnFgPcdhbZUZYm1jrqtKQsn3SAk/2ywuiZRPEUpGdDOElIkow8PmZA168eOY4oZ9f6OeLJdQXYyc+4C2NIJWKLt5EqkFTYlktbMU6bJRiKXQkM/8OPY2TNoN2JxsEuxognZsxfGfOOrX2frxmXW19dR25vkLPZcnyM5KWknW0k8USmhvMf0TdKinjObHogAKHpS12DJED1lURDSmMnaEG0de9PEdNGytlYwcAafwZGZzTqGlepprLLIUoZ6IUmtohwzuEO7Xs9Wy5mmTX2bSzSzKkoAwe/4ypkUl6e3dNFdKaPHmHobZlYf7Ek9mKxy1BiSBjsome8dMN/aYjo9oF00aKVYO3OWuqmxaFTKzBY72BrcaIIrR+QQKcqK2DYYN8ai6A52RfyQNDoJsdIqBaMK13psB21MtDGREsTYsX33Nn/3v/1LfOs3/ik/+6//cZ759A9x9MwZXGlxxnDn5i2iT0xn+zQHfQRtv7OKXnvJHJUduO1aMkoC25EZcwwe71u6GKBnhAvIX+4+XVvzyve+w7XXX+XUufM4C6M4g64BZaSkN5lEEDUtSmgZSR12NNXyvtSPOlofMWjQiQKIXSYacFo+0KAzMUm7Vel4OCsuihJtnJgBQqBrPSmLHzsR8VZROkc1GYG1NL6hyBZjK7QVckrI4KyBEMVdpST9oiydnOw+klJk9fgRynJIPZ+xd+e2GF2cw1RCiQ0xk2Inz6ptUYiDzLkSUxYEn6jGK2KMiQGVEzFEnC1ZOXOKtq5pd6/i1iSDa2FX+OrXXufq229Sqki1MubImROcfPBBnn/pu/gceyqJpo0ZpbMglrTHti12scDOSoyxxLalqWeMRxMKa0Vjn0fSpPWZu1stXYocWa8YlaJWLJSibTM+Zk5sOLkX94s4hExdt/2oKrM6dFh9SG8HoPWpd6DJdCaGBDmieBd4kHuHX47vJrm4wjAYFjijhLKRl+OUD/CkfuGf/zbPfOZTHDtzHqU1O/fuYY3lYOuO2OJCpJ7VaCunUetbrHMQA2Exo44J37WExQzjLNYN6Lq5yP/cgFwWqJwwxZg03Uaj5M6ewmEZ0/WqnRATxMS1d97gL/2p/yef/X0/xfd/8Uv88O//Qxz7xle5dfUqV998m61bd9juyaEhikAl9zLOmJLMTK3cv2NOaG0x/T3ae8n+Cn2jYzl+SSmzMqr49LPnuXBqyO3bNe/c3Odzj6/w2Y8+QMDy1/6H53jr8lSSPJWU+F0Se6bWvTOrl4OScy/bl124CQkXNMYuS3Qld2SjsE7hlSbLLoFzRualWcY5hXPCTOulhj4GjJX7eVaKHBJdloC6bKyADWMi6SxBhDHjuznUNUVV0iwCKo9xw4G8WCkx3d6lsXM5dLQhWYUyToL3MuSmk9GazqgU8R00izmjySo6gisLipRBGaKPEDtiF1FRWGShXlCOj4B2dNWYt65tsbN3nfMPnuHCfffz2R/6YU6fOcvnf+SHeOG113njhefowciEnPAxoVXEaI3tPGaxwLkSqy3apx4gmRgVFZQVvigZrIzR1QZNyozGBYNCKKWGTNclfBc5sj7A2sPxBajMfB6EL6YMqlBMxlV/IpvlaoWkCK3ckzEGWxYMBr0PmH6RKvHMoCTUQBRojrZNDAqLtb2u/322yt73ov61v/4XuPbC8/zwH/o5Tpw6y+BzI668+grmLThIiW6+IHQtJkJc7EkpESVV0lYVvmvI3uOqAaoo8amlXcyxpiDGDp0KSJ6UG4n1EcET4/GqIGrnc3Tu0a5ZsL+xy+xOt/kHv/Df8PI3v8bnf/pnue/xx7jviafZOPEtbl2+yr3bN7l79TrXr19jNquldEReuJyzdJoVqBhQfXMs96eHT0EwwCiGzrA6GrA/n/Ef/PEf5A/+xOPs7W0ynSteevEq5yYdR05vUG9d5//4f/goP/8Xv87WXqA0A3JMzGOgiTKLT8r0HWwtozDz7jjDWWiDSC/LrAipp5ikjDIJbT3kJA2XnLBofMrQ87Or0lKUJbP5AqUzk3KAD57CCJJJW0OOmWQSPnm5j5OJykjelVJMxhIaHzP4BM28wZiCqDLBe0xREWIAn6Tj3XugUw6HQAajLdpaOu/RZUXQBoOhKgY9tilIRzwpZjv73Lx6E+Wug1KUK+u4lTV0PWZj4xTf/wNfYD494NzF+xgOjvLO69e5deMGlRJMU+pVfTEnuhQgggkKYzTKt+SDfTIRQscwj9E5o4YRpRVjNebo+fsohhUDKwsiJulltU1iuvBsrBYULkHuwwmBrlVMp00/BtQMymWT7t01k5VQUILv0EZjyoKislTlcnnK973k5xlNT1bNwpzvtYbvfn3Ai3ox3+Xlb/9z9nfu8Okv/jTnn3maB555htF4zFVXsH3rFoVx1Hs7WFOAjcznDVZpMKW4b3wA40jG0uzcwWZDtXGMHBpmuzsEU6CW5W5O5Ai5UWidsU4LEle8WcT+5CMoAoF33nqFW3/+Co9/6ON86Y/+G3z88z/CvfuvcPPyJa6efotzjzzAc1//DvfubgJK0pdSRucofG3Vc7tVL5JIklUV+125S5HN6RwDnDl1isF4jf0br2P3Zzz18AbZd4xOnmfv6uusnFpjfVIxW9QYDFknbI5UqqBGoWJcksLkXo0Sv26/sLUWFpdAFhImS4ke2kBUCMXVul6lpHt8kYy6gk8CCMwC72uaiCusnNYZuc9lTdYSqJd7HnjnAyrJ29x0AWcs2sjC9E1HLjSqcOSYeiijXGVUyqSuI8R46FlPOdM1HhsiIQSsK6QjrQwxKSorz3p/Z85rL73B3Rt36BKMxmtMNk4wjgMmep2RHWKaBc1iyt7du2zf2eS5b32P2e4um3dvUuhI4QoWqUH3V6qUUx+rI/FJKiZS8rT1HKeEmmSMprGGwnVsHN/gwiOPYgwydkSmJr5NTKcRW1m00YfACokxThwctLSdB2NwhWV9UsnIkmW0gxiPZrPYh0wYtJOxm1FLcah8KAJWEA2FAnKKGG2EKtqPutT7nFH/nhZ11pq6a7j62ovsbt3l2R/4MZ783Oc4/8hjrK5vcPX117hz5RJxZsFajHK4SgwNMUR8PSOHGpcDydforgNX0k73BDJfDfq5YRaiZQRtPFECoXEYhisT6sUM2zTokOlIfQdbTpVmMef5b/wm1955i2c/93ke+chHOXHfgxw7e4ate3epqgHf/K3f5u6dLUHkIN5iSaLIRCFk9R9K7umTfV50ShBhZaXk9tVr5M8/wdEHP8G8PuD62zfYv3UX9CXWH3iMb710l9l+R1WWonjKsui6ELG6YNo2tD0ZRfcy16UJX2aUWXC+uX+NFBL5o4SB5XSi1R3eaypnJdmRgDWaLshrJaF4RjroHgIJa8WQoZylaQOVFY64yoJ6JkZC1ig6ilFF8B0xN5RliUd0BEY7Ut+YO5ytB98TQDO96J2QEvWi42BRU9iCogq4ssXqTGs1L770Di++8Crz+QKrNYPJKm4l8/jHHuDc4x9if2vKuQsTVk6dZOte5JXvKDbv3OXufJMr129y6c2XQMMDjz/EW2+8LZlsWT67kCIhiycg5khBkoUUJefc+A7TGczRdR7/7GcpygH0G6fSmrpONE1gMDE4o95D58y9Dh9mi05ssVozKDSjoqegHP5WRdNk2r5ha6yjLB1VuRQ/9b9Pye/1IbOoG5TOaCzO9co4JeAMrd57Yn9Ai7owmdCJ73e2dYuv/fLf5vqbr/LZn/4DrJ89xf1FJZGvxhGamumtm+I6ckOU8ZhkcZNjxOCxpsAP5igK7HhF2GY9Kzpm8RLHFFAqYcsVrM1Mw5SmboSooYTeUSjVL06Z40VEL7117yb/5H/47/n2V/4Zz3zy+/gD/9of48SFBzh55izHz5zmO1/9Cm++8iaLqYzfVC8OSL3yawkzSNLmlPc0w/0nRvzJf/9f4JMffYhueo/R2jnubS/4p7/2AvXePp96ds6xi+d45NyEhx4+zpvXvPC8fJD4mhgpQyLkiA9iLln69Kx6z2wzI91RHUV1lKViCLlv9JEhR7GF9kmbWksvwPVs7Bgz2eWexJHQRlRJISly41GFJiQheVgkOM5Yh1GyyQg9xWDLkmgdQUHqWqw2jJwQP3zoDp1oy/fTJ8gpUbcd0yawvTfDkjhx7ChGJ3xb8MLLV/j2915F0jQsg1ICGs6dW+WH//DPUqydJHcNavEWef8NJo//IPc2W9rGM59P+ewPfY4f/xd/giPrG5w5d55/9E++zJ/9k/8v9qe7gNxoU+obgKRe5qsJuifE+oRbczz+7LOcvf8xUQJq8Qo0TaTtJF20KDSF6Zlu/aJOWbF/0IoOwlmUNayOi99xSoNMbOo6iMY8STa4Akrd909+V+kdg2CSMqLcW1mt5HTOeTnN/uAX9epgSJ0ayZEKHaE+4K0XvsnW5jYf+b4f4KGPf5QLTz/NeGODq6++Ij/g9iYhRHTWlLrAtweoIIHhrhoSPShXihSzPgCjyF5S/iw9qtfX1LUXHK0xJDTOVmACnY9oMl1KvZBSTA4gg/757g7f+PI/ZPPmDR559pOcf+ghnvrUD/Dosx/j+a//Fi996zvcvHKdg/19YWb3c87OC6KHfq4sVbniD/7ER/mJH/ss1HfYuvIWsZvx+svXeOnVu5w6cxo1Wmd2+yr3f+gpLjxwkeu7W8ScKFIi5yGhaVFdywSBCcwbj8/SOe2yoSCJsIF8OGe3KKLWGK0Jh44wBUGcVUpruiyryRmNtbIJhD7/WTlDAGLbUBRDspIxko6KGMUfbYChgzYFhkYiaKetlzxrbWSU4j3eB+pO/OarkxEhe9EzQ9+cM/gI87qh6TxdFD3zsCzFQtq2XLp5md/+zuvSBS+sZHOhaCKUR9coV46SCShbkkePgq8xes7RowNmB6fpFlOeeewJHvzwR6RKi4Ef/P4fZ+udF/iHf//XuLe1L6pElotM4xMUaKqeEHvs6JgPf+QxLj74GDlJ2YuCehGY14HB2FE4jdOixUfL/1PKcDDtmE3nwkh3lmHlGBdGPq/l0s+ZzmfarpN+kXEMxhW23yR+dx0twkXVT2Y01jnqOrE20u+ZZb//Zf2+F3VVVGTvSdnQZN/Hg0ZuXH6TnZtXeevF7/HZn/79nLjwIKvHT3D1tZe49YZE3tb7BygTyI3BFJbgW3JSQuVQSNMFg63GdG0LNqExpK73/Aa5H+mYpRGnsviRs1A8CiXlpe5n0bHndgcfUCHy+ve+xWvPf4eNM+d4/COf5COf/RxPf+oHOXv/o1x99SXu3LzOO6+9QV03GOOYHRwwn/ciGmMw2uB9pJ0FYtPHsGZNaqacvXCSi+cKHji24MjGmMnJc+yas1y6ehU7GFEaadiQYX5wQJwf4EJg3SpG1YL9WcsiCLtMa8XEGciBoRarnu7Lb3GcCTW1jpmuj/5JKuOM6tlm4PvhXUQwR9VgyEHdULcRbT3DoSOGKBUKcqpaK+BIjWPhRZlmlJhsojZsTEYcXR+xcv44B3tzdq/dY76Qs2YwHGGslUC9JLSb+d5MrJRKvi9tNCpG9vc7vv7im2wtWkptSKEHIRoHqZEmly6IoeDW1/8eVTHk6IeeRbvAw086htUZ/PyAV7/6HZ777hvc3N7k3t3bHOzf5f77zvKln/l93HnrJa5ducG9aYv1GasjpYKVgeXU0RGPPnyaD3/qcxRHHiKrghgSgUw9SzR1hy4MhREKKPRqwF44tFhEdnfm/cRZyuO1kekrlXcXXSZRLzIhCAF1MByinaUqeNey2Z/Wqi/pc0rE2Irmu+1IKbMxGb9bpv//Y1EXKPJwQFcnCivkjTbKPXTRzXn7ha9z79ZVPvmTP82Tn/o0H/r093Hq7DluXHqHW29dolvMcCGgtCVMO1Ivm6tnU2IETcTP97DVhNA1+G6OSQk7WCHkmtwFUEm8xikSk0SW0sf3QCapfvHz7jw6ZvG4+Ji4dfkt7ly7yuvPfYsHHn+K8w/cz4c/98NMdzd59LEneev1V7h39w4hytJIUaJSfRcxBv7Bb73M933yBT752Q9RHnmM9uA6J46M+NKPPoTfusFsts0r3+34+ndfYJpWWVlbwxUOVwwIwRN9IPtA13R4lalKjbWOwaJhWifRJ3ce4wwtSkLp+4VROEtVQQiRtdUh87qlaUQ0ozDkPr6n7mTc5WOiSJL9XFiLGmg6HwnTOSYndD9fjiFSYFi0kUFVMBmWFFZieDWG1VFJrOc888VnuPj5Hyeq8zz39/8mL37567StZ2e/I+llWKCM0VLMhCQdbkUSoYdzvHFpkxtbNZ1K+JRJWRqfhkCjppRDQ06G0NS89uV/xNAOWDl/kuLEUbQdcfzsMVZfewe/p3nl+a/xnddepWlbstFcfuMNnvnQE3zyk8/w6U88Cm7IwXNfY+fGPSbHx5x76lk2LpxkePwxYnEarwcM3IDQBOYHCR8bAesPrOCHyO82rpArzP5+JxFApSgoj4wLKmt5z8qDnPFeUTetUGaMxZRS7tl0yB99z8oSleBSB6CtQ2tLaS26P72XmNn3m6Wl8vuM0vupx++jqgYEq6nrBbHtqLsg8+eU8H36w3Aw4vSDT/J9v+9f4OxjD7Jo59x75xKXXnmJ3Rs3CF2gne+iXcVsusBUijBfyClUVBxs3SUbI+qftiaXFbFtSaEjYqhGQ9pmIT5m6HXdcnKnFPBJTiGfxdcckbzkNgTRYudeu2QNG2tHufjw45y5eIHz918gGGjqA2688SY3r1/l2qUrKGWZTWeURpFTZlhZ7jt1hA+d0vyrP/cJjp1/mNTtE0ziT//8r3D5ekANV1g5epojJ88yWlsHo5kd7LF59TLzvX3msxnT+ZydZh+lNMMCXE7UXUdspWzWWlFo0TF3KZCV5lhh+dJnj/LFn/0st8NR/vJ//ivMF5EcW2Jo0Fm81VrrPkI3YUxBG6JEsKZMYR1HJiWK2OOFDdqI/TTFyOkTxxlYS1EYPvOlz3D8kQ8xfes3uf+x82LWGIzZah/m7/7pP0VXdxzU8vKOhmOCj8zrA4zqRRllQR6uUlUlqhrzP/6DL3Nvew8VZXzjjGJUVFIdhcBHHjvOn/vr/zlrF38Ef3CDxY1vsnr/SXRMRF/xzpXE1effpguRy5eu8OVvfY1ZW7Nz6zbdfJ/1Uyf56Cc+ycbRDR46d5wj3EY1M7rqJI0+iY+aY+cuMF49ChHazrN6ZIVTFx+kHBeMSt1vZorisEEm8bhb2x3T2UK860ZTFgXH18RXTX9qy/04sbnraRqPUoZytWJQCsnGmsxAK94NxpFTetFlNu/OWMynUBSsH1khZcP6WKgvVkm44gcekOcmY7ClQNpNgSkQmmTr0cLqoY2B2eKAS698i3s33uajP/DjfORHvsDZRx/n+H0XuPnOO9y+dImbr7xEjAk3cLhyyGC0RreY0U7nTI4dZ39nk65ucNphswJjycmjE3RtIymNakneUILPtZroxWjSpaUDdfn4IrnvDC//1fnM1uZtdne3efH5b3Lq9DkefPwxzl68yCMf+hgXHn2U9ee+w/bWNvdu3aLZn9F0HbtNy729BbduOh687zKfX7nA6OhFfvEXfpWXXtuiGhxhVK2giyHZGnThUCnhZzWxiwQfaLuO5D0pKuoQmAmNmHE54PgYlG85qAMHbSKkyKn1EU88dJQizPjcx47hbj7HZ//F/5A3vvcK3/7qFWYLQ84lXTvvu+AKo4UwAgpnNYTMovMczOe0XcfG6pBhJbNurbX81cDm7i5GJX7sS5/myR/+AczKE5y4735UugXXXoX5dcZrx/jxP/gj7Mwa/tnf+zJdndmd7kGG0gm1dLh+hM2FAAPL9TVeenuTrZ05Pigg4ZKWO2+I6JSIEb79wnX+/P/t/8Ef/ff3OfXoJ1l/9ONkNWD/9javfPkfsVh9kK4a4+sFk6MbBO85uHuH1ZWSs099FKOMCFgo+O7LVyF2uMZj2zcoRzc5++TTtLOWsH+Tg3t3yC5w5PM/wMqa7ZeY6MedkYYpiFd6sQjMFzXGalxlGY8rBlamFMsFvVykIWbquiN0HcVoSOlkeqLJOGQS8u7aXEpNRcSijGZQVYwrQxeNYK7g9zTOgt/DSf2z3//9FDYxvXmZshiiqwoznrC/eZd6MaPzkXkX8DEK21rLN3j07IN84oe+wKOf+iSoxO7mHW5ducx8b4cb77xDDrC7eQfVNNTTfRmxWEcMnhQC2mlikO507FpK58RcEeVmc5hEqUXVlrOA1pMShO7yx/MZuigUi5jzoRY8ZXFNWW0oqpKjx49z7sJ9PPz4E0wmE5TV3L13k9/89V9n69adQy03KFbLgmMbY2liTRdoo5mMVzh230MMVzaoxmOq4YR2dsDO5h1mu9ssDg6Yz+cs2paduqYJ8bDMKgrDxZPrrAwtd+7usD31HJuM+As//wf52I/+KLee/wq7b72Iv/4mD3zuh/G55Up9mr/8Z/4+Cy9MsibUqFBD7KiqARhFCIkUE20ING2SkPgc0EoxrBzrqyMqK1ZTbSUe99/5k3+MR57+EGqxST7ycTDHSDvfBH8P0oR49bfQ9z3LKy9u8df/7C+w7cEMhpiyZDIacfHMcVJS3N5ZcHPzgLfeeofLb7/BMsTQKk2hFYUz/c+fKJWlKDXnNoZ89uNP8Oyzj1McfYCbt2eo7ChPnie1oZ+LN1y5dZ3NnS2sMSwWc+bTA0ajFZqDOTp5nIIqR06fPk2hC4rxKptXr2IIDE6d4KM//qM8+OwnWVlZFQeV0jjz7ngxpcTBQWB/ukArMM6xulZRWS14oqW6rO9jpBTZ209M554YA5OjI4wTy+3Y6j6N5d01lXOiCZm7t2fMFwvQmsF4RIiK40dLSmdxRiCVyybc+zmt3z9NdDQhTncZrx6haRZ0XcdwEZhMViTxUHVYq5ktGnIKxJRompobl15n995dLr/6Kp/8iZ/k5H0PsHL0BPs7W6wcO8mdy5dpmikHswOUVjhTUK6usZhNCfUcMxyhfaD1AdsjZHLwYgPMAmtrfdfLLDWJSGEtPmfpEsuTQGRG0GU5zXV/39bQCxWExbV58wb3bt/mtZde4sSpszz9kWd58KkneOuNt9i6efcw7RAy8y7Q3TvAWcNQawbIKCm0HTEHUvBM93dZHOxRT6e08zlNvRBEUkr46CWpohef+BB489o9RoOSHDNlOWBjteThh85RrBxl49QDzDZv0m4d4c2vfo37nnmYB579BCfOfpvtvRaVFL5esKh3qLsDfFymZot4MeWMsbqHDzg6n5jVmbqZ4kopzZ2z7M8Dm5uJB6uHxWueF9x75bcJOzc4emaCsZ7dy9/gyHrByYd+nMHaP4GFpjMGYyx7XvH67Zrt/RlbO3usjIbMZgfEnPuocCXS2d6CKpZT0corWzJNBd99c5fr22+wceyA0doGxy/cT7e7j/ZeQBeF5YGHnyRdeZv9zS18mwlBM93ZYxwlana4usbx0+eJTcu1b/5zkk7YtQnDM+fZuHgfKycuUJiK4BWlBedAL1GAWTGbRfYOajLid4hGs/CJwvXa/d81aurazGzaEInYwklUjtUUqr9L/64jNwOLWaJphcKb+v5NNbSYXgT1exll/Z4X9eraCts7t7DDCaNqSLO/Q/JzSJmycDhjqcgQBfvqUTRR5qh70z1e/MZvcu3SGzz2sU/x5Mc/ydEzpxlOVhhN1tk4fozrb77GjXfeJgdP0zaY0hEaMMpCYem6fVGaaQ1a4mJi00IvOCCKEEB4oqIO6t6zqxklEr+ke2Qv0thBKypM/8L1s80Q2GlbdnZ3uXblHc584xxF5VgC3WGZxdEb4BN4lSl6ckm9mGOnlSyy1FFPpzSzOc2ixgeJSm2iF/QQS71+7lnekbbzVEWF1obWi1f8WN1w69o9vv21G+zf2Obi6pwnfvRHuHNrh/HaefIokEKiW0zROwb2M8kvhNmGkEqJUYL7sjTVSqd7EESmMJaU4eZuw3Th+bP/8X9DOVjj2R/8PkJt+I2/+hc4evxh7n/6OOc+/Bij+z4Baw9w7dUtzt/3DO7ebS5v3uHOzi6zuhH9QAzkkJjtbLO7vyc20CynjYAgVO9P7LnoxvWd5IIuWxbJMlDSOd/b3MQ5i8mIqyxUPP/d59i6ewuLbNJDp6nGY44cWWdjdYPpwZzLL77EweY1dG7QkxU2zj/AxoOPs7J+XIAPxuCcpDJrlQ+Z6Afzlr39lqySmEFipqoMKwMpi3nP8sxZyu7N7YZAxJYV47HFWvHHm8Nm17tFsfwzAvYPwZMxwoy3iqoyGJBE0d/zlPr3sKjr6QHD8SrFcMhs61Yv0fS9gihhtUMpGJUFBui8RxFpUySExCJ0dLeusPUrN3nx61/lQ5/6HE996lOcOHeO9SNjTp6c8MxHHuWF515m584uIQVSDmTfgS2Ey6UVvo+MTUH8vGTpUsb8XpiB3LNDzIdoGLIop0yfGCGno+rh+0to4NLBJ5jXTKKtF1x9+3XZSXvjgGy4vfOGHsKg+lzqHqLYLBZijk+Bdj6nrWeErulVTomuvzZY3S/qJNFCRktypZwWkc6DrxtiM+fSy89z9Y0thidO8sgX7ieNznHpn73K6soarppI02VvU1xASpOaLZQJ+GREzVa25HpB1qWE6hnDUvGSFVzd6bg9bdFK89xrV/kP/p3/kF/6O3+K1Ye+yId+34/RbO+zduI4erHD6P7PMLfnuHf3TdbvfwQ3WSeGxLWrL7I3PcCVAxk3WjGdLGW4SiGwDN1vslnAPtpYUlKkCCEE6rplUS8odvfIMaNzpnQFhXXAgOQje9vbGGUojWK8Mma4ssqoqqjKMbevXufOa9+m6xbo9TEb5x6hOn6Ok+fP8+RTn2DgSo4dPcJoVKD18kTM5KQ4OGjZ25uTlKYYDgXuWFgm5dJamQ+3dZGmZvYPPF3wjFZXAA0mUy8y44FCmXeX5dLEA5m6FRFSillSQa0VvLOR+bTR9Eikd+ffH2j5jTIUow1caVk/eZ7bV96SkUtRERczsrOktqEoHFFl2Z0EPUebEz5rYsh41bF77xpf+Qd/mzef+w5PfPwpjp8Y8PknHfONT9G5I9y7e4s7167RLdZY3LxNOV5lPwi8P7QLXCeVTNTSkda962kp/QpKY3uYfU7qcLCPUqic5A6nTW93k4jRpcZH9+ys3G8GmX7vULLgZbH1zyRJBpa4rjQRTe5DCtqmEUdQFseXD5E2JeogMAOWf5YWXlnU8XB8EVOfZ50iezPPr//Kdzjy4LN8/uf+VSbDv8qjH/4I6898ka//3V/lla8/z8oDj1MdPUHKivFoDF0geAgqYsuIyaBCwoWOYmVCMJYYWsqyJEVDJnFn+4BbB3doYwYVMGgu3Tng7S//t3x4ZHjw018AM4DZFbrn/hru6R/n1s1IMmOqsfi9jx47yf0nb1H7lmxlk085SKZaWXFwcNBvpv0LrnrzF+92kFGKGBJ1s6CcFxRFKZRUBbEsyVWFswZbDrhw//10bUthNMWgotuZc/vaFQ7uXMG3+6hKo08cYXTqHBuPPMmJo2c4c/okVlkmayusH9sQ00e/0FKOzGeR/f2Z9GwcZOUpXcVkaITNvRwv8W51Na8T01kro6nO46yhqekFLOY9J606fM9iVngPzaIWPT0JZQpS53F61IuofueoLOX3Fyj/vhf1kYsPkdqa+cEWg9E6pqywK0fp5nOSWuCMI1SZ1LZYXRCHluFc4XKHIdKlTJuhWBkznIyoTOT2zSvc+XuX2Th2igtrz3Lu9Cr3P/kMZx54hO0HbnLp9dc5GK+we/sOqydOMW/m+Ls1bm2N+mCKCgq0PhQ/KCJGQVSqb6AtA+XevQfTP5i8jFFIsvksA+2WJ7jWootO9GV5zlg0BAmdX344ItmUk4QsHfnOd6TWEKJEyjZdh0+Jui+9vQJbOLLRkvIRo1gskeZMiqEHOESanPhP/+5z/JPv/Ef81Bc+wlF3k8HkNF//zT/Ht1+4RaMHTFyJG1akkAldCaYkaUdHyfbeHkVlsRqUG+CVZa/1tF6zmAUOZgvqxYK9vX0WQYL5VFIkEtPO8Kf/8mv86Nt/DVP9E05dOMVnPv9R9PoT7Gyv8dbr18hqIBVGMWCwcpRTG0e5u7/Pnu+wzgIVk6qiWZ+zvbd9aAsVEKM6VOtZrXDOytS6hxy09ZymKrFWUxYOYwzGB1LKjNaP8amPforNGze5/fY7vPbtr9DcuYoqNGZU4Y6dolg7ihmvsLJ+lNNrxzlz+gyTtXXWV9c4e985yuGATJ9AmBX7ex0H+3NxzjkjjDYM46GiLDjcjJYLGhQ+wMGBUHKsLcgqY4eGFGFSKczvWpxLL38bMvXCs6jncnCTKBVUlVBWnf6djThUJoQ+xvuDWtSFLri3f4OhHdL6iC1GkDVdM8MNhrjBhFIr/OKA2e42RTWiCwGtAiOlKZPlgUcfZP34Mb79te/y+R/7CC+/+A6vv3aNzds3uHbrJJu/+Wtcu+N44rOf4MiJM4Bld2MdU4gLTM8Tq6dP0TaSfTzf3hZ4VEwURUFKXjC1SwFKShjFoYZ7eTvRvdcrZ0mTJEPo86APhwG991na8RqVkHupAR8FVaR7VpXWWggmOR+C63OnUUFg/Qvf0bYNbRCX1erGBlkluqYVKWHXSVBBlAajVoiHmmV1rHn99i5/7r/7DdZXSs79VsvK+gYbpx9k5egJFoNV2p1dUsy0s6kA/ENLyIZvvH6DWbPonUH9HZYeJ6Uy2kKOQru09OmNue9lkPjW1Zrn/+ZzrJevcPbUMV566R6PPvUYobiBGk6wRcRgelaZYWArTo5XaGf7aO1IOVEYxX0P3Meia7lx4zpE+dnQUmaqDE6bXueuelKNwCtCU5OrAcsI4ZwSriwIKTDfPkBleOfl75DzAeOHzoKrGB05zmCyjqmGDG3J2TNnOXHqDCuTVY4cPcbJc6cZjiq5YmWo60i9CMxmNSEnbCFds6IoGI4crtA9y+5dqCAkfID5PNO1jUwvKieBFigGpcKZ96rB3/3KQFtH6kXTa0QNyiqKylIW/Xuqct+FF1NPyhmfoHofa/X9l9+FYbx2DL+9RdctBBMUPcYUqHIkSRVdwI7GVDkS2oirRhhbQgqcfuABPvyDP8Df+gt/iccfOs4rL77G7KAReRye11+9wemLBf/gb32Fb/7Tf8AjT3+Yxz72CS48+DgbJ86wee8W8+1t7t68xtaN2xSjEa33NLvbkAMqG0HFZNWzvaVUCv2deZlEqI0Rm2CKcvL2v8/2ofCKvkhSScrpXryidcYiVJacwedEzkvEjCLkhE6R2nsSCRMjKEtMgbrraLqOADz7mc+wfvYUTVNTT+dMD/Y42N6hnk7Z3toi+I6QIPVhBU6LU6jUhlFVUZYrhGKFrlihU4YVLbADHSO+a5hPdwn1gty1h3fYlCTKJfebvtG5V4BlcjYiq2X50kpMjIgdDM7AZDhkZWXMcP0E253jymZiZaNjUkZSTKClv6G0whWWY8fWWQwso/GYiw88yNETx3nkiWe4fWeLP/l//w+5ffmSdOP7OW3Kot8vrEal5ScgYQM+h0N+V0iBCxvHcLbi5W98k8GwYOXUOR742EfZ3LqDrUqUtRw/dR6nHWVRcObMWYajMevr6xw9fpxjx9dQyqDJ+AD13DPdnxP6DVhpwVnbomQyspSFXIdkc829FVLGUXWdmM9bsgI3GGCcwxaKHCJlKWX3e27EpKwkFEFpZtOGrqkha4w1VOMhOmvGgwLbO/WW8hfZ5Po8yg9yUU/W11BJcfXymwwHA1QnIH1fz6iGK+TYYpxl/94dqpUNQntA8i3OOpQp+OgXPsvB1oxz549w/Lij2JuwfXtKpRQhR1w5pFq7wNx/mXz3Oru/eYfnv/VN7n/8aR56+mkuPvow/mzH8RMb+AeOcutux3h9letvvEqcLwT3U2eyEkcUORN7jpQ80F7kn2PPle/LbKWxOlP7gMr0mFtH7kK/KDIZ2TRMYQX3G6XwjjmTtSJreTFDijQRqQpiR8wdIUW64OlyoguZt954m/uyY+P0KU4/+SiL+YyDnU3q6R6XXn2Da2+/1S+2HmpAxmlNYeyhoCRG8VC3vmVRzwH66NuA71q870hK7I/9BaJP4pQ3LJEwSh/ih9soL7RRcr9Uaomp1TilcNZSlCPcYIwbDImIDLLqOkneSJEUenjDsGTFrfPMQw8xPnKUM2fvI2Fofcl0P7CxepRb6grwrn46askUs7ZALV9JJbCCGCRdJIbAuCpwwN7uHsophkdXOHrmBEkpVk+dEiyxMoxGI86eOc/60ROsrKywtr7CcDzEWo3VinohnuvZrKFpWvnegWyFTGKLkrKwWCcHgTFauvK9YgwyBweZ7d0FMXa4qgIlSaRtnRgPeqZYv5iXyzqRRenYCVfNWFFOWuckeCEG+XNt7uGGHP5zXQfzRWJt/L9df7/vRX3i3P3ceP1X2Th9lrtvvs7gyHEW+1u40YQYPfVsis2e3MzpYsBYg4+R4XAF7xvu3Nvi8cce5LmvOl75+nW64KWB4mQX2r0348lPWp7+yIOsDyOP3DdG6wF/++9/hTe/900uPPwYDz9xkQfvP0W5cobPfnyDv//PX+PEUYNDsbPf8MJ3X8bvBpwCpZMwn7KSLqYzxCgLDGUBIyoqZwi+lUGYznzoqdP88X/9J/lz//U/5/U3LpFClk1Cgw+hp5Hmd9U+QA6yYXglJJXly9qlRBciKFGx+eC5fu0yN29exxhDWQ0YlSXOWsrBgLpp+hJ5iS9eXhkEhpCVFrh9DHIP94G2azCmRz8FL7/WR9K2/VXEWcchTrUXQOg+qzrFZW6XXDX0siRG4Ial0b2LyfRQ+k5Io0oTer47ShEaGZ+5oqRpWrbvbnPt1hbPf/cl9ncPuHfvDvV8TtvOWV9bZzqbSdPSaDmKUmY2W+BcQVEYSu3QxjB0BWvjAU8/+QiDySqXr16nWF3n/JOPM1pbIWTDYDDAxcT6ZI3haMTq6ipHj51kZf0Yk9UJ1UBO15QyiyZRLwJNW9O1rWgVlPhSdV9yDwrLoNR91SeVjeqfW0yK6SwwPWhQQDEYUw0KopLsq0GlqUp16NrK/eJMOROiovOZehYIKeBjwFmHcY6ubllbse9eFfs1nfp3IeSEeZ+r9X0v6r179zh+7jzvfPfrFNahXElOmqIasGgaBoMBYVZjtKara1ZPniZGTyxKjFZcev0NGr/JUx87xuCjZ3j95du89cZ1CgxJWXY29wnzN1nsHfDac/f4zrcNH/vQCX78xz7ML/3Sb3PplW9A+zab1y5gV07ymccKnnngGNfrTzB7+xt8/JnzDF1gmHYJ2fLbX72M6SLnzpykGo14681LpBAwSuJkfZJMqdQHkpVDx5MPr9GFxMTOefbDj1BUkTLNUMHyvTfvCdCO5YJ7F7QO4sW1Sv7ttGHuWw66IE2fZWMeeYFTDJACC9/RzftrO+bQfEK/oFMWIGHIQkdJGboYKaKXDSYEfNcRCvE3J98Rk/i0PeC1YuPkKWbzGd4HirKQzaAN2NJSDAYC+ru7iVr6dt8zg9VKpMBKgY6R2OOS68WccjCWxBAvyKrYtP3ztcQEly6/gw8yKqublp3dLULXEXyLyjBwjhg9ThIBe5mFcLisUhRGMx6XPHr/BR5/8imKlVW2Os+Fp59i4/hJymrEvc1tcsoU1mJLxWSyymRlhcFghLUFyXs0fdY3itl+R+sjXVOTkydnCUiIGYqypCgsw0o49RoBZ0hbRQrpnDOLRWBva4bPCeUKisKhnWyL1mgmQ9kEc69KU1n+e0aUfYtppK4T9WKG3JdlSmPQjAYOo5fPou+SC6ae6OWE/0AX9bHTFzjY2xJK5mBAih12OECnSFUU+Pk+2ZRAixtUhKZBh4RGEZVh+/Idbrz+DmsbKzz1zBkee3yVT33mNL/265e4e+se46pgUji2b+4ytJoUIq+9tclP/8yP8kv/36+yfqRkUCp03MXsbfPc90Z8+jMbHGxNGU7WWakCZz70Wa6/8zYPbUz5wtpJrlxdsH3rGmdOHePJZ5/lV3/5VznY3WZ1MuGTn/oI07rFlI6v/ebX+aN/+CNs7kd+66tv8M7Ve2zf2+TF711iOLQ8fO4Yf+QLT/Li3cR3nnuF1PlDqEKIsb8BKozVjJxlYzJkq1HstrP+1JWqQNIspUuelbwoMqMU9G5KAhBcGuOXfLQIhCiVR4giVvC+wzc13jkarbDWkEOgazu6GGliBm0Zj1cZTVZBG46dOsmd69dIITBZmTAYjZkezNne3iX31Jm8/P60zOATkJKmDZGua2kXCxbTfapqjHOGHCF0LamrIQa0LfBKAvWU1nRti29bmroh+I6mqemalpTkunNkADZBVJGR0hhtOF4Zzp4ccuroac7fdwa9usLg7EUeXjvK9GDOwXRG2NvGGcWwKhmORownYwbDkVQYpsBqQ+g62trTdcL1nU3nxCx5Y8pYtHEkrdA5MxiWDAcWUl829ySh5RJLOVPXiZ3drq9ELUpbjNVoq4lNZDSyWLP8Z/r7MAJ3zEgTsuu6w+BDpx0hBILvGE5GFNaJbl8tt9VEzBnfSva49wHeQyH9372oTVXRtS2tT6xMxsz2dyEEgjX4+R6xaWAwolhdBQzFYETOgVzXlGtHaOopqquxUbO91fKtF95hdaPk6c89yzf/8QKtHdkcRafEwCmIltjC7RuvU+TE3ds1dR05ut5y5facL33x+/nvf/FXuHR5wZNPXqBIp9guA4Mj9/HczSuMujnu6DGsznz32i2+dN9DfPz7Ps1v/qMvc/LMCa5v3qPkgEId5cknLzJemXD53gEf+tBDbB9oqvEApyHUntfevMvd7Tk//x//X/izf/mX+fbXvylOKjIxKxmhhURInohohLUrKYoa3y2XhiCBoW9YsXxpwCpRwZksqNi0fKP63+RjJBi5zugQ8G1LbFpC0dAqhcqR4KxUDT5KJRIDcT7l9uXLnLzvIuO1db7wxZ/mr/5n/xm7d6+zqxEKaBIhT8o9srjv6ku4QaYLAkPsQqSuG+pFzWI2Q5u7kBOdM5AChkyBJlpNG7z4q62mbVtiijR1Tedb6Wj3Uk+vNAcx8+gIRl1iba1CF4oLJysGaxOYDNmtSpwpCHPP7a0rzPf3qKqK4XjEeDji+LGjGOvE4moLWY19g1BpS900gksOkRA6GXO6AlsVKKdJCSrrGJaiW1AiWOyD5nv7T8p4Dzs7LSEFXDUm54QrlKC0QqYoDdb0TdXDLjlySitFTjDd9+QUSaFlyTszTrK1ihKyVgiBuO96ZwVZ0daCx27bDhh9cIs6+MTRY6epH3mUO6++KHcvLXcp30wlSmXeUawdoa4PqKcHuGpMSC00M4zvuP/+09y9s8mxwS7miVO8+codbr7zBtl3+OTZvXaZsXXYQuN9YrJu+Gf/+E0GOdGlzHSnZnenwxSWB44X/NJbW0QfeeXl1xm5A77z6vc4ffEi4yNHKIuKY6cvcPT+B7hz8yaXb93g4n1nOfbQwxjbYnIHOXDn+l1K6/jqV94mKcet2/ucWK0YlqWA3mMgRdjaXfB3f+lX+SM/+5O8+PIr+L1dGR/2YyLdq1PqznNtdw+tZREKzPBdeWACluF8yyJr6cQxqs/b6ifgKWe6LuOspoka7XWv0rJ0zYLGObl/aY1NBVZpUor4lNBZ0dUSYXTjylVOnlX8xj/6Z2zfuUEIvhfiBEkpVRLoFxFclYl9GoRWvVAiEVKgbRsW8znVcCgAh5QYVpW4l7RB2QI0TGdTom9JHrJvCSGQvJTnKSXRn2vNymTEyZOnmLYLHlnTPPL0M9zYnjKrSu7ZIdqtsZFGqNu7NG9e4czZsygMVVmwvr7O6sp6L04BZwWKaJ3B2EKswEn6NUn1DS6t0NbRZcghsjKq5Mqk9WFWlXFyhzYIpz0meff3dhvatsFWQ3l2xuIGGmsNOiuKQgkqO9MbMMRWGfqGefCZuvb4thHRUi/LdVVBYRRV6Q4TOJZXoKwUXZdIKeM7uWq9n6/3vaine/uUgxGnzjzInTffwC/m2MKKdtkHGRc5y2jtCNkZ2u1tQtOgSkdTH7C+VrB+vKIaHOPq9R2y8nQpce5IxaWQSHbE9r0tCldQDgewOODh82u88eoOw8JyYn3CF37wcWZRUU93ee6Vy4ROsL6LTtHFxM7OXRYHe5Su4Gd+6ou8/OIrVGurHL9wjvmdBcfPnOD4Qw+w0m3y7H0DfuFXX0flwObtTfyljmK8Qk6BN159m3MXTzCYrNIuarq2oRhVfPfFl/kj/8of5sLF87zx0gExJJwG02dXaa17UUWGFDHknoG2HG0sjffLWFJRr0lHWk4XrRUpLvHv6tDVFGMkGfFa++hpg0c3zWEIn0uJ5CzBR2LnifM9dvZ3SCQIkZtX3+bejSt9Ysl7FHRZ/LoBaSr6FEkoCkD3SaWgUVlGNNF72kUtzqgsuVhlzzEDaFJgZ3ML11NYCmOEo1Y4jOmD7HSmqirKasBwOODY+dMcO7/Bta7i3sAyXjlCUzc0W3ss9hYMXMGpU2cYuIqN48epxiOcLcFHlJVZOykTmpbsPY1ppU9SDSgGBpRFa+GJhSwnb1WW6KxxVsnduY+VdFru9l2U1dh20CwideNF7ZcT1liGY3nWxiRKZw4TOrXKfWNU7ssx9lryfY8yGbTCx4Sl6DX3WrBRVmOMNO1kCi5VUsqK4AOLRQ35/c203veivnfpbY6du8h0cZvh6irb8ynz+YKB8piqIOuSwcYGzeyAtGhx5QBnHSFGTMocPzOhpOOpD63wta8ueOtG4MTZ07x5w9C1HaUd0OZ1Ur6FKQpG5RHuzkZ86kfO8Opzl/jkpz7Om5fe5PnvXOHxZy7w8tt3GelAyELaXPiIypmVlTFrx08w7wKvP/9NckgU4wkPP3KO48d+gs/+5IPk+Q4b9cv8Cz+zwfOXprjL72BSSdc0zKczvJGXObad7MTFBGc1Mbek3ZcY2iQIXRI5J9K7tNfD2SRK4RB1uAyWRMqqcy81VILXVUoJI131MbganJKya3mKLg34IUaieTchwgcPrTic6DeHNnpSuyAupjSdR/VjKq01zlhi8v3JnA9n07bveEfA5h7AqDTvtgXFyRaC+H7bpsEVgiiOuSe6ughKs7W3Q9d5dGEpNIRsUYXlSLcqyrHxkNB2WCPUl7IsyCFx7SCDyWQ9ZPfuFi5F1oZDxmsbrK2tMhquMJms4IzDokmdp4kt40GBsyU5Zer5FG0NbjSiHIyx5QBtC7I2AvrvPIUtWB8PqEqDsQpjOExJUT0fLiPpG6CoZ5667ijKAYH/X3vn0iPXdV3h7zzuq15dTXaTTepBk3LkUHQi2k6QIJEDxDBsB0h+QwaZ5C8FmQTIKIABI4M4s1iAHMuQEUuKpDAxqYSUyGa/q7qr6t577nllcG5RGnKgiYlaf6DRF7XP2Wevtdfqb0/bUXmNFoIyUz2PngZ8qu+7nYfkSyFZLZOWPXiHkgUBj/e2t9zqmE7GKCnWEQDPhrDJgDPSWY917gtJ21dV1O+/+zP+8rW/pRyMIKvQOmdQlLh2Tj7eRkZBe3KIjp7WWTQ5smuSn5e3nJ7N0JT8+CdnGJlxeadkeyL49L+fklVDhOvIwymTaQlSUwwVmax5/72nVErzy3d+RT7W/OHd66hCkLUN25lk5SNNb7maCcloPOL27dscHO3TNUumly/TdoZpqfjJP/4DH/zmmL2XXub137/Ld9+4xB//6C3+6afvcvrwAbmQLBczBsoznMKtN79J0zYsF0vMYsHOSLBaHHF4eEyuNU6mm9P3b2HXx+WGmN5RQqS42bW2eH37AuBDb0HMF9Glkd6LXPT5V/0B0As00tQ+YDqH1hapMpTzaXgWHHhFJlMI28GqoemFNVGAkBKlFN7aL4sPoffHppe+il6k4kJAhkDnHdorMq/pnCFzabhj2jZZJZEypBCCZrngfx8+ogsOXeboLEXblFXJdHuK7aWjIk2T0KqgGm0xOzvj6GCGagzFsGIwHlNWFddfeZUrL91gMJqkXeeioCwqgvOoLCMvC1Z1zUgpLs7PcLZlMrjCcDRFlQOCVBghsW1LJhXDomQ4GJAXEiVDsurtZXvpgEvG0CEKbCcwjUt+6EqgiuQQ07QNgZSyWeSaKAH/JbZAgPOJ30ZKbBPouohSCmtqEB2SFHsrVYrWKTKJErHvitaFvW69E3vgrCXLn69cn7uoP/vNx3z+f/fJt4aU0wlts41ZzQnWo9qOl775DXZe/RM+ePsdtoTAxEg4nyUHUG9xFzmD65Hv/tmrWB/59MEJ9++fIqWiGE/olifsP2lwLhK6JbaR6MJAEMznFh9amAtOEMgybTEpIRlngtdv7vL6K9epTzUHB0d88h/vMTs7IdOCO7dvcDavuXPnFX78zz9j/njObP8zHj+8x89/OuRv/vopH7/9gExCVlaMJxPGO9vo/IytnS2KpoYQyITgzRsZ//rzxwhVUk0CmRI0xmKMRYYIXYdUvRvpl76djH1YQK9g896nQhWRtQY6UR/9jR6Tgb+WIglC1rc1YENIG3BNg85y8qxIEsLO0hpDe37O4eERq66FIiNzSYQjYsTb9KZdWzwRY0o6iV/w7vR/S8j0DhWityj2nhAVIbgkNgnJeMG7xJcrnbN/eEBrDePphLIsmE4nSBkZjSfkRYkxhkVjMD5SX9Ss5gtOjx4hg2OQZVS5ZrK9w+6Vq1TDkt2r15EhcepaCExTUyrNpd1drPd477D1kuXslCgj02vXGVzaRZZDLNA5RwyWMssYD4ZopfqCjinbO4Sel08JokKmPO56GWjajuCTxgGpsD654BZFgSrzpAWXSaWslUjPsGeHdDqEk+93Hy7Qh94JrclFzmBcoXTGqExmhEqtqcw0VrU2YLtAZ3yaV5WScjz+aot6fn7Mg08+5Fvf+wHZaAddnOGWC6hGDPKcuoNPfvEe7uKcfDjGtg2uSxa0Ughar/jovwSZ+BRiifGC2DWU27uYrgMvOT8PBJdenFFCW2vyskKo82Qu2AsluqVBSU0IaQFhvj/j18cN6IrSd6wOPkOEQCUVx/snDKZb/OLfP+TscI5WnsvXtvnBD7/FO798xN/9/b+wt7fNw/v7ZFlBUZY8HuT86R98HW8nvHb7TeS3v4N58jHXBg3vPgpcvSGwxiBi5OJigalbCBFTr4gxkvsMZ9IwygPO2X6fW+K8BZJZgRYC6/yzKbiUKUzOi14W6COlhkpnCJGm6L6Xs6b2LHUEuRIUueLkfMWjx5/jnUdk64JObZ0LgS7angtfb62lOzu14Crp4Om17T1v7OFZDEwISYDTmhapNUplaW6QF5hMUF0acefWy0ynU4JtmRQFRVGyah2LuuP45IyDp/s09Qq8R0YoNUyrEaPJFkJJtra3KfKCUTGini8YFRUMhpDn7L30MrHrEMD58REuOFxzga5KLl+/wejyNVQ5wnjfa841ZZVTZkVSb/XbXnLNia975b6T6UzAuchyaRLtJDQqk6hS4lygWXSMlGA8LslU8unWKh2+sp99rEUJwUs649McQbgUnYwkyzJGkxxUUsflSj4raFKfgPUCY6BtOupVAyFQlQNW83PYG3x1RW2d5d7773L3rbe49rXXaI72EcOalTV0rWX+P/eo8gKhJfXilBDARU+li7R+uDgnL0csGkemVojRNhpFMCbplHVB9B5V5WRaYVYXFHlOCJ4sz4nGoEYVXdchXUTY9AFjCPg2ErzBhhW5ihQouiCIUXLx5DHtyRmrekUV06ofxvHRB/d5cO9zrl+/zPHTGbZrCZ2lq5fEGRzsST76z1P2793jz7/3BlNxwcP4u9x6YwtVDlicHdI5w5OHD4k+YuoF87MZwll817FcrrBdcg+VQvdROKnVRqZUzOA9uv9hKS3TOmlM725IbbPxnmGRM+hFGkFISh3Jc8ikJQs1wcKxDewfHYGQ6Fzj+9A/oWRKspSiV6ilW1tI8ewQycuCKNPwbrfShIuaU+cxIlkkhX40HGMKWe9sR961kGv2bt7k6s2vM9raoV4umW5P6VrD0cE+88WCxf4hZ/OzNPX1gTy4ZJyfZVzeukSRKYJpufGN25ydHOObhjoEShsYX72CaRtGCGZPnlJKTd20HJhHtKsl5XRMVkiGO1fJtraR1SB5oAfPIMvIs5yqrNA6pZlqLXrhEAj5xSPEefBe0DQdwUu8T6rDEEktugTXBSajAVtjjVJpCUYr0U/N0ztcCInzntZETJcOXWtD8qWzHTrPyYsKqZLiLJPrnek1DxJT+kkfXJi4aUs5HBDRFOPquWr1+XlqEbmYHfDpJx9z9/t/wZVbt1geDTFmieg6yjgBYYm1ReVDxOoCrSXWeTSxT0E04Fo8BWIxRxQKbIv2Hj8Yp4m61EQiSmtwlrwosBREGrTSRJU+EkKkPbQgUnQOqf3JdJbMEETAElIWlTWUGbgg8THZ5PpmzF/98A2OZoaPfnUfRQpuH5Wa3b0hV66WfOfuLtGt+PXb/8bDJ44s/5DB1haD7R2uvPI19m6+yut3vg0iYjtDPhhxevgEgediNqOrW04OntK2DaY11MsVohGpmPOM4Dzep4jcIs8TV2zoacq0JEKIrJylkZJCanKZ9rZdgONlzcHCIPMmUTemSwF4UpBJTZlniZv1KZyNNZWWJFY9n5r82XQ1JErJsFTkFxfsnJxgtKR1isb3PzkR0JlkkGn2RhV3fu93uPpH32d2vuT06QF2ccz8pOLsZMHx4X6aB/jkHrLWkI+3LyEHFbnOcaYjLzLM8gJdDZBRoGOkLCqsc9THZzhbE10gdB2nucLbyGJ2TLU1xorIYLRFOd3BK03XGvK8YDiakK1vZZE45/X/KqRgvYgnRRL81CtPZyzO214eIJMmQKVi93VgWCjGY5X81S3PpvjrV/AzxZ/1NG2kM8n1R8hUmN55KDQ6T1PyXCeDQyn73Gr6RSGbhmR1bVheXKTQwZDRGct4OnmuWn1u48ENNtjgtwPPY6SwwQYb/BZhU9QbbPCCYVPUG2zwgmFT1Bts8IJhU9QbbPCCYVPUG2zwgmFT1Bts8IJhU9QbbPCCYVPUG2zwguH/AddRudnPocC7AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# load the lensed image\n", - "plt.subplot(1, 2, 2)\n", - "plt.imshow(lensed)\n", - "plt.title('Lensed Image')\n", - "plt.axis('off')\n", - "\n", - "original_aspect_ratio = lensed.shape[1] / lensed.shape[0]\n", - "print(original_aspect_ratio)" - ] - }, - { - "cell_type": "code", - "execution_count": 37, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(200, 266, 3) (200, 266, 3)\n" - ] - }, - { - "data": { - "text/plain": [ - "(-0.5, 265.5, 199.5, -0.5)" - ] - }, - "execution_count": 37, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAADVCAYAAADQFoauAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d9xld1Xv/17fvc85T5teUiZ9UkliQo0EQhcQ6SXAlRJBBBUQryD6uldQ1B/FhldFxJcYBe6lhM5FUUpAUYoECRAIaUNC2sxk+jzlnL2/6/fHWuu7zzOTwARyjRPPSs48z3PKPt/9LWt9VhdVVSY0oQlNaEITmtCEJjShCU3oLqR0dw9gQhOa0IQmNKEJTWhCE5rQPY8misaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhCY0oQlNaEITmtCEJjShu5wmisaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhCY0oQlNaEITmtCEJjShu5wmisaEJjShCU1oQhOa0IQmNKG7nCaKxoQmNKEJTWhCE5rQhCY0obucJorGhP7T0JYtWxARLr744rt7KBOa0IQOoIc97GE87GEPu7uHMaEJTei/CF188cWICFu2bLm7hzKhH4EOe0UjNmI86rpm06ZNXHTRRdx444139/DucnrLW95ytwPxu3sMl1566bI1r6qKjRs38vSnP51vfetbd/i5j33sYzz2sY9l3bp1TE1Nceqpp/LKV76S22677aD3XnTRRczNzf2/vI0J3QMp+NG//du/3d1DudvohBNO4PGPf/zdPYwJTWhCd4K++c1v8pznPIdNmzYxGAw4+uij+emf/mm++c1v3t1Dm9BhTvXdPYC7il73utdx4oknsri4yBe+8AUuvvhi/vmf/5lvfOMbTE1N3d3Du8voLW95C+vXr+eiiy76Lz0GgJe//OXc//73ZzQacfnll/PWt76VSy+9lG984xsceeSRy977yle+kj/4gz/gnHPO4dWvfjVr167lsssu40//9E9597vfzac+9SlOO+20u+lOJjShCU1oQhO6e+gDH/gAz372s1m7di0vfOELOfHEE9myZQt/9Vd/xSWXXMK73/1unvKUp9zdw5zQYUr3GEXjJ3/yJ7nf/e4HwM/+7M+yfv163vjGN/KRj3yECy+88G4e3d1D+/fvZ3Z29u4exv8zuuCCC3j6059e/j7ttNP4+Z//ef72b/+WX/3VXy3P/5//83/4gz/4A575zGfyrne9i6qqymsXXXQRD3/4w3nGM57BZZddRl3fY47EhCY0oQlNaELfl6655hqe+9znctJJJ/G5z32ODRs2lNd+6Zd+iQsuuIDnPve5XH755Zx00kn/IWO6p2OX/2p02IdO3RFdcMEFgB2icfr2t7/N05/+dNauXcvU1BT3u9/9+MhHPnLQ53ft2sUv//Ivc8IJJzAYDDjmmGN43vOex/bt28t7tm7dygtf+EKOOOIIpqamOOecc/ibv/mbZdeJvIPf//3f521vexubN29mMBhw//vfny9/+cvL3nvLLbfwMz/zMxxzzDEMBgOOOuoonvSkJ5X4xBNOOIFvfvObfPazny1hQxEzHSEbn/3sZ/mFX/gFNm7cyDHHHAMYmD7hhBMOusff/M3fREQOev6d73wnD3jAA5iZmWHNmjU85CEP4R/+4R9+4Bhi3l7xildw7LHHMhgMOPnkk3njG99Izvmg+b3oootYtWoVq1ev5vnPfz67du06aCx3hu5ozX/rt36LNWvW8La3vW2ZkgHwgAc8gFe/+tV8/etf55JLLvmRvn9CEzpUuvHGG3nBC17AEUccwWAw4Mwzz+Ttb3/7svdEiOB73/tefvd3f5djjjmGqakpHvnIR3L11Vcve+9VV13F0572NI488kimpqY45phjeNaznsXu3buXve+d73wn973vfZmenmbt2rU861nP4oYbbjhofMGrpqenecADHsA//dM//dD3Os4D/+zP/oyTTjqJmZkZHv3oR3PDDTegqvz2b/82xxxzDNPT0zzpSU9ix44dy67x4Q9/mJ/6qZ/i6KOPZjAYsHnzZn77t3+btm0P+r74jvGx315+ydLSEq997Ws5+eSTGQwGHHvssfzqr/4qS0tLP/S9TmhChxv93u/9HvPz87ztbW9bpmQArF+/nr/4i79g//79vOlNb+KSSy4pOONA+ou/+AtEhG984xvluUPBW98Pu9weHQoveO1rX0uv12Pbtm0Hff7nfu7nWL16NYuLi4c8RxP60egea74NcL5mzZry3De/+U0e9KAHsWnTJn7t136N2dlZ3vve9/LkJz+Z97///cU1uG/fPi644AK+9a1v8YIXvID73Oc+bN++nY985CN873vfY/369SwsLPCwhz2Mq6++mpe+9KWceOKJvO997+Oiiy5i165d/NIv/dKy8fzv//2/2bt3Ly9+8YsREd70pjfx1Kc+lWuvvZZerwfA0572NL75zW/yspe9jBNOOIGtW7fyj//4j1x//fWccMIJvPnNb+ZlL3sZc3Nz/I//8T8AOOKII5Z9zy/8wi+wYcMGXvOa17B///47PW+/9Vu/xW/+5m9y/vnn87rXvY5+v88Xv/hFPv3pT/PoRz/6+45hfn6ehz70odx44428+MUv5rjjjuNf/uVf+PVf/3Vuvvlm3vzmNwOgqjzpSU/in//5n3nJS17CGWecwQc/+EGe//zn3+nxjtPtrflVV13FlVdeyUUXXcTKlStv93PPe97zeO1rX8vHPvYxnvWsZ/1IY5jQhH4Q3Xrrrfz4j/84IsJLX/pSNmzYwN/93d/xwhe+kD179vCKV7xi2fvf8IY3kFLila98Jbt37+ZNb3oTP/3TP80Xv/hFAIbDIY95zGNYWlriZS97GUceeSQ33ngjH/vYx9i1axerVq0C4Hd/93f5jd/4DS688EJ+9md/lm3btvEnf/InPOQhD+GrX/0qq1evBuCv/uqvePGLX8z555/PK17xCq699lqe+MQnsnbtWo499tgf+r7f9a53MRwOednLXsaOHTt405vexIUXXsgjHvEILr30Ul796ldz9dVX8yd/8ie88pWvXKZ4XXzxxczNzfHf//t/Z25ujk9/+tO85jWvYc+ePfze7/1eed+f//mf89KXvpQLLriAX/7lX2bLli08+clPZs2aNcvAS86ZJz7xifzzP/8zP/dzP8cZZ5zB17/+df7oj/6I73znO3zoQx/6oe9zQhM6nOijH/0oJ5xwQjHUHUgPechDOOGEE/i///f/8kd/9EfMzc3x3ve+l4c+9KHL3vee97yHM888k7POOgs4dLwVdKjY5VB4wXOf+1xe97rX8Z73vIeXvvSl5bPD4ZBLLrmEpz3tafeokPr/9KSHOf31X/+1AvrJT35St23bpjfccINecsklumHDBh0MBnrDDTeU9z7ykY/Us88+WxcXF8tzOWc9//zz9ZRTTinPveY1r1FAP/CBDxz0fTlnVVV985vfrIC+853vLK8Nh0N94AMfqHNzc7pnzx5VVb3uuusU0HXr1umOHTvKez/84Q8roB/96EdVVXXnzp0K6O/93u993/s988wz9aEPfegdzsODH/xgbZpm2WvPf/7z9fjjjz/oM6997Wt1fAtcddVVmlLSpzzlKdq27e3e9/cbw2//9m/r7Oysfuc731n2/K/92q9pVVV6/fXXq6rqhz70IQX0TW96U3lP0zR6wQUXKKB//dd/fUe3r6qqn/nMZxTQt7/97bpt2za96aab9O///u/15JNPVhHRL33pS+W98V1/9Ed/9H2vuXLlSr3Pfe5T/n7+85+vs7Oz3/czE5rQgRTn8Mtf/vIdvueFL3yhHnXUUbp9+/Zlzz/rWc/SVatW6fz8vKp2+/yMM87QpaWl8r4//uM/VkC//vWvq6rqV7/6VQX0fe973x1+55YtW7SqKv3d3/3dZc9//etf17quy/PD4VA3btyo55577rLvfNvb3qbA7Z77A+n444/Xn/qpnyp/Bw/csGGD7tq1qzz/67/+6wroOeeco6PRqDz/7Gc/W/v9/jI+HXMyTi9+8Yt1ZmamvG9paUnXrVun97///Zdd7+KLLz5o7O94xzs0paT/9E//tOyab33rWxXQz3/+8z/wPic0ocOddu3apYA+6UlP+r7ve+ITn6iA7tmzR5/97Gfrxo0bl+GMm2++WVNK+rrXva48d6h46/thl3jtuuuuK88dCi9QVX3gAx+o55133rL3feADH1BAP/OZz3zf+53QXUv3mNCpRz3qUWzYsIFjjz2Wpz/96czOzvKRj3ykWLF27NjBpz/9aS688EL27t3L9u3b2b59O7fddhuPecxjuOqqq0qVqve///2cc845t5v8FKFGH//4xznyyCN59rOfXV7r9Xq8/OUvZ9++fQe5Fp/5zGcus7SH9eDaa68FYHp6mn6/z6WXXsrOnTt/6Hl40YtedFB40KHShz70IXLOvOY1ryGl5Vvj9kKsDqT3ve99XHDBBaxZs6bM7/bt23nUox5F27Z87nOfA2zu6rrm53/+58tnq6riZS972Z0a7wte8AI2bNjA0UcfzWMf+1h2797NO97xDu5///uX9+zduxeAFStWfN9rrVixgj179typ75/QhO4sqSrvf//7ecITnoCqLjsnj3nMY9i9ezeXXXbZss/8zM/8DP1+v/x9IO8Ij8UnPvEJ5ufnb/d7P/CBD5Bz5sILL1z2nUceeSSnnHIKn/nMZwD4t3/7N7Zu3cpLXvKSZd8ZYY4/Cj3jGc9Ydo3zzjsPgOc85znLcqPOO+88hsPhsqqB09PT5ffg3xdccAHz8/N8+9vfLmO/7bbbeNGLXrTsej/90z+9jPeC8aozzjiD008/fdl8POIRjwAo8zGhCd2T6c7IR4A9e/bwzGc+k61bt3LppZeW1y+55BJyzjzzmc8E7hzeCjpU7HIovAAsUuGLX/zislDqd73rXRx77LEHeWMm9P+W7jGhU3/2Z3/Gqaeeyu7du3n729/O5z73OQaDQXn96quvRlX5jd/4DX7jN37jdq+xdetWNm3axDXXXMPTnva07/t93/3udznllFMOAuRnnHFGeX2cjjvuuGV/h+ALpWIwGPDGN76RX/mVX+GII47gx3/8x3n84x/P8573vIMqKH0/OvHEEw/5vQfSNddcQ0qJe93rXj/U56+66iouv/zyg+I8g7Zu3QrY3Bx11FEHlY+9s1WfXvOa13DBBRewb98+PvjBD/Lud7/7oPUIBhkM9Y5o7969bNy48U59/4QmdGdp27Zt7Nq1i7e97W287W1vu933xDkJ+kG848QTT+S///f/zh/+4R/yrne9iwsuuIAnPvGJPOc5zynA/qqrrkJVOeWUU273OyN8M/jWge/r9Xo/ciLogfcRYzswHCueHze4fPOb3+R//s//yac//emDDAKRhxJjP/nkk5e9Xtf1QTlqV111Fd/61rd+IK+a0ITuyXRn5GO8/7GPfSyrVq3iPe95D4985CMBC5s699xzOfXUU4E7h7eCDhW7HAovADPuvuIVr+Bd73oXr3nNa9i9ezcf+9jH+OVf/uVDMpxO6K6je4yi8YAHPKBUnXryk5/Mgx/8YP7bf/tvXHnllczNzZVk5Fe+8pU85jGPud1rHCig7kq6I01dVcvvr3jFK3jCE57Ahz70IT7xiU/wG7/xG7z+9a/n05/+NPe+970P6XvGtf2gOzpUt5dI+aNQzpmf+ImfWFbxaZyCCd1VdPbZZ/OoRz0KsDWfn5/nRS96EQ9+8IMLeAnF7/LLL7/D63z3u99lz549P7SCNaEJHSoFH3rOc55zhzlJP/ZjP7bs70PhHX/wB3/ARRddxIc//GH+4R/+gZe//OW8/vWv5wtf+ALHHHMMOWdEhL/7u7+73ev9R/SMuaP7+EH3t2vXLh760IeycuVKXve617F582ampqa47LLLePWrX31QoYlDoZwzZ599Nn/4h394u6//KLkoE5rQ4UKrVq3iqKOO+r7yEUx+btq0qeQ5PvnJT+aDH/wgb3nLW7j11lv5/Oc/z//3//1/5f0/DN66PexyIN0ZXrBmzRoe//jHF0XjkksuYWlpiec85zk/8HsmdNfSPUbRGKeqqnj961/Pwx/+cP70T/+UX/u1XyvWuF6vV8DpHdHmzZuXVU64PTr++OO5/PLLyTkvs6KH6+7444//oca+efNmfuVXfoVf+ZVf4aqrruLcc8/lD/7gD3jnO98JHFoI04G0Zs2a263odKDXZfPmzeScueKKKzj33HPv8Hp3NIbNmzezb9++Hzi/xx9/PJ/61KfYt2/fMoBz5ZVXft/P/SB6wxvewAc/+EF+93d/l7e+9a2AKTennnoqH/rQh/jjP/7j23UR/+3f/i3ApMnYhP6f04YNG1ixYgVt2/7Ac3Jn6eyzz+bss8/mf/7P/8m//Mu/8KAHPYi3vvWt/M7v/A6bN29GVTnxxBO/r8IffOuqq64qYUQAo9GI6667jnPOOecuHfOh0KWXXsptt93GBz7wAR7ykIeU56+77rpl74uxX3311Tz84Q8vzzdNw5YtW5YpcJs3b+ZrX/saj3zkIyfWzQn9l6bHP/7x/OVf/iX//M//zIMf/OCDXv+nf/ontmzZwotf/OLy3DOf+Uz+5m/+hk996lN861vfQlVL2BRwp/DWnaFD5QVBz3ve83jSk57El7/8Zd71rndx73vfmzPPPPMuG8+EDo3uMTkaB9LDHvYwHvCAB/DmN7+ZxcVFNm7cyMMe9jD+4i/+gptvvvmg94+XQXva057G1772NT74wQ8e9L6wsj3ucY/jlltu4T3veU95rWka/uRP/oS5ubk7HQM4Pz9/ULm1zZs3s2LFimXlFmdnZ+90GdjNmzeze/fuZVaLm2+++aD7e/KTn0xKide97nUHWQnHrad3NIYLL7yQf/3Xf+UTn/jEQa/t2rWLpmkAm7umafjzP//z8nrbtvzJn/zJnbqvA2nz5s087WlP4+KLL+aWW24pz7/mNa9h586dvOQlLznIi/OVr3yFN77xjZx11lk/MFxuQhP6UamqKp72tKfx/ve//3aNGbdXjvEH0Z49e8rZCjr77LNJKRXe8dSnPpWqqvit3/qtZWcZ7GzfdtttANzvfvdjw4YNvPWtb2U4HJb3XHzxxT9y+ekflsLjMT7u4XDIW97ylmXvu9/97se6dev4y7/8y2Xz8a53veugvLcLL7yQG2+8kb/8y7886PsWFhZ+qIp9E5rQ4UivetWrmJ6e5sUvfnHhA0E7duzgJS95CTMzM7zqVa8qzz/qUY9i7dq1vOc97+E973kPD3jAA5aFPt0ZvHVn6FB5QdBP/uRPlp5qn/3sZyfejLuJ7pEejaBXvepVPOMZz+Diiy/mJS95CX/2Z3/Ggx/8YM4++2xe9KIXcdJJJ3Hrrbfyr//6r3zve9/ja1/7WvncJZdcwjOe8Qxe8IIXcN/73pcdO3bwkY98hLe+9a2cc845/NzP/Rx/8Rd/wUUXXcRXvvIVTjjhBC655BI+//nP8+Y3v/kHJlcdSN/5znd45CMfyYUXXsi97nUv6rrmgx/8ILfeeuuykqv3ve99+fM//3N+53d+h5NPPpmNGzcuszzeHj3rWc/i1a9+NU95ylN4+ctfzvz8PH/+53/Oqaeeuizx9OSTT+Z//I//wW//9m9zwQUX8NSnPpXBYMCXv/xljj76aF7/+td/3zG86lWv4iMf+QiPf/zjueiii7jvfe/L/v37S4+KLVu2sH79ep7whCfwoAc9iF/7tV9jy5Yt3Ote9+IDH/jAQTX/fxh61atexXvf+17e/OY384Y3vAGwZNAvf/nL/PEf/zFXXHFFSQ697LLLePvb3866deu45JJLSpz6hCb0o9Lb3/52/v7v//6g53/pl36JN7zhDXzmM5/hvPPO40UvehH3ute92LFjB5dddhmf/OQnD+oh8YPo05/+NC996Ut5xjOewamnnkrTNLzjHe8oSg2YEv47v/M7/Pqv/3op+bpixQquu+46PvjBD/JzP/dzvPKVr6TX6/E7v/M7vPjFL+YRj3gEz3zmM7nuuuv467/+6/+wZl0H0vnnn8+aNWt4/vOfz8tf/nJEhHe84x0HKUz9fp/f/M3f5GUvexmPeMQjuPDCC9myZQsXX3wxmzdvXua5eO5zn8t73/teXvKSl/CZz3yGBz3oQbRty7e//W3e+9738olPfKKE4k5oQvdkOuWUU/ibv/kbfvqnf5qzzz77oM7g27dv5//8n//D5s2by2d6vR5PfepTefe7383+/fv5/d///YOue6h4687QofKC8XE+61nP4k//9E+pqmpZ8Z4J/QfSf3SZq7uavl85ybZtdfPmzbp58+ZSNu2aa67R5z3veXrkkUdqr9fTTZs26eMf/3i95JJLln32tttu05e+9KW6adMm7ff7eswxx+jzn//8ZSUpb731Vv2Zn/kZXb9+vfb7fT377LMPKs0apR1vr2wtoK997WtVVXX79u36i7/4i3r66afr7Oysrlq1Ss877zx973vfu+wzt9xyi/7UT/2UrlixYlnJxh9UVvMf/uEf9KyzztJ+v6+nnXaavvOd7zyovG3Q29/+dr33ve+tg8FA16xZow996EP1H//xH3/gGFRV9+7dq7/+67+uJ598svb7fV2/fr2ef/75+vu///s6HA6Xze9zn/tcXblypa5atUqf+9znljKdh1re9o7KeT7sYQ/TlStXLiulqWqlbn/iJ35C16xZo4PBQE8++WT9lV/5Fd22bdtB15iUt53QD0NxDu/oEeW2b731Vv3FX/xFPfbYY7XX6+mRRx6pj3zkI/Vtb3tbudYd7fPgKXFOrr32Wn3BC16gmzdv1qmpKV27dq0+/OEP109+8pMHje/973+/PvjBD9bZ2VmdnZ3V008/XX/xF39Rr7zyymXve8tb3qInnniiDgYDvd/97qef+9zn9KEPfeiPVN72QB54R/d3e7zs85//vP74j/+4Tk9P69FHH62/+qu/qp/4xCdut1Tl//pf/0uPP/54HQwG+oAHPEA///nP633ve1997GMfu+x9w+FQ3/jGN+qZZ55ZeN1973tf/a3f+i3dvXv3D7zPCU3onkSXX365PvvZz9ajjjqq8KRnP/vZpYz2gfSP//iPCqiILGsjME6Hgre+H3a5vfK2d4YXqKp+6UtfUkAf/ehH37kJmdBdRqJ6B6rghCY0oQlNaEKHOeWc2bBhA0996lNvN1RqQhOa0D2Xvva1r3Huuefyt3/7tzz3uc+9u4fzX5LusTkaE5rQhCY0of9atLi4eFAYxd/+7d+yY8cOHvawh909g5rQhCZ0t9Ff/uVfMjc3x1Of+tS7eyj/ZekenaMxoQlNaEIT+q9DX/jCF/jlX/5lnvGMZ7Bu3Touu+wy/uqv/oqzzjqLZzzjGXf38CY0oQn9B9FHP/pRrrjiCt72trfx0pe+lNnZ2bt7SP9laRI6NaEJTWhCE7pH0JYtW3j5y1/Ol770JXbs2MHatWt53OMexxve8IZJQ84JTei/EJ1wwgnceuutPOYxj+Ed73jHnS7QM6G7jiaKxoQmNKEJTWhCE5rQhCY0obucJjkaE5rQhCY0oQlNaEITmtCE7nKaKBoTmtCEJjShCU1oQhOa0ITucpooGhOa0IQmNKEJTWhCE5rQhO5yOuSqU9W6HrUkaklUCAmhQqgEaoE6QRKoU0JEEE0oFSD+AFVBsQckRBOooFmQnKBNaLYHOUEGbaFtoc0wVGGEPRqEBlDGU0wEREDG9CdVkio1So9MDdQkasT/Axupvcd+zwiZ5H8LGcpzGRFFRcn+X6uKqqIoDZmWjPr74zp2fagQBC3jjtlRIAOtP5OAikQF9kjQE6hESWLXq0SpBJBMlsxIMo1gj2Q/s//eCozE5q5NFbmqyKmCKqFVIleQRWixwagPKGWlajOiGXKmbTNZlTZDq9BoohVBBUiCSAUiJBIJoVYhKUirSFZQ7GdWstr8odnvPiN+r3VKVMl+r0SR5PtMoIfSU6XKABlVpS1XsIf6PbTAUGGYYCTQAI3CyB85l4nv2qrFxWJr2SbxR4JK7PdKbNOL+L2D+NrZZxWJ+8++GNl2lJbXMyItkuxk2PpmKrLfK1QZxO+nyXYWblk4PFOrnrJhmoTSS75/UZIYTxCMIUlSkESVhCQtYCfCuksKSCyP0ktClYSRQqtq85VAxNdB1D+jtj5icy/l/CUStjRKIomSEkAi55YqiXEx8TOqtkuXnVsFcqJF7T7EOF8ttidIGdTPs4AkoZbuO1WMJyTf/6rQZqEh+bWMhylCq3buRJVaIFXJvkOUpLYdNe5fEiBkn7M4Pwo0qjTZ7kXVxiRxR+ozkwTVDFrRIqiqb3ulqjJZKtDg+7b3s9q8VHTzHVIgjlmT1d4nyfa8v1fHzk/HPSEhpBTH03h7JRmVRM5CEkg+1+qfU5dNSWzxbD5qMj2Gfn9SQUoVVaqQVKH0aLG5qCqhXwm1P5AapELrmlQlKvF1S0KqezZ/qYJUQSWk1AMqkiSbRxFaaqj7pHj0BlD3kLpP1Z9G6grqPlQ9enVFPejR7w+o+wNS3Ud6Pepej6qqEUnGi7AxSFUDxoc1Vd4FveuEPp6KOc45Tjv96B/2KN9ttLZgEXEsYnI1ieORhMnIlGxfqHwfLOL7UJM9lyFp6nh1/K6GRXK28z7SwCBCi7j46GY25t/OdrcSoh3WqHzcFTZG/4Tfj2GP2vGGFCzS7fAkjkWALNlQh2Y/wkqj2XiSOG7R7joVfq5QP3cQpyuwSBZxpAfpACxSi41VRAtOqkRAMiqZRpQGg3GNGP7ICE1SskDrWKNNhkM0JaRKaEpkg4XkmMzAIgqpNYGtWcltNn6sxk9aTeRlWMRmLLBIhclismERIW5UMTRn8lid0wQWqVzGJDGRj/9eA7U4rsvismYMShQhYbPbIoyAURLaZH+36pgkMEHgBIwX2sW6cxxYwwZTIZXjkSohlWEvKsfgkqic94mvZcKwuRij8LsUv19FJBdZmRxrJsfNFVDpciySFT532eU/8MwesqKRqWhJfhRCeKgLkGwCQeKwVTYaFxMx4yIydmN2CO2k20NCAGBSR8UAncSKtWW2/agdSDK2upSfIcQrxBUO8YPWvcv+dgBfVCEc3rgQdKGFH67YjJKV+C+p0haGsJxBxMGG7hCNjzYFSPXfbby2j3q+WMFMQ+CbIG3JyYBBJbk8LwJt8iELZFEaByWaDJBoJWgSO/jJx+XAOEBXpUJSKUuVs+91FURtLBoHoAj2jolWauBR1JiFOMDPWYy5+0Ia2FRn0r6hRNFkY5GE78AO35tk1fJ8vBbXTA58xM+jHWqosx2aUWtM0EDs2MIsW6Q43K75jCsb/prNfdwz3ZjUlcu4hnYASrNpNcYEWmfa2XiIr3etxtRD+RONc3J4Uu2LNA4qK2yRQs8DY3K2EcvBMwYHLlCNP2Qgqca2s3kugjPYJ4VZm5KRnJkaIy38RcTOhJgwT5XtTaVb6hhHRlAH97Y8ptBkv4uM0LowSojtPwfUuIBBTEga2FFEfR5Uyh7ImBIdR8u+z8YZ/MnuL9Gq0mQlqdCrDSCrC1b1SVHn0QnxcyIuYH2TxVT4huvuLeYzxl2RccHj81MROrraaz5edQUMpYASG3N2XmpKTPY5rgIA4XtdTKCpK14J0Cwuj8UBVIxPx/iD37MPWsGVPgOIScV4d/BzP6OKKXOjbHsipVQUIdVM5TwPcZNUNmUZtTWUHIslZFcylESWZLJNXFqoKZZIKspQMDZ1kGTGHwNPFZCzgYGUbB8HqyTnch3KnvLFuh1JeaCJ7nCiMAU2YyAp9ov6CYwNoaQQFP5EYJF4xrFIwpmD+DHw9/keUHUsghTFoxtPJ8HLJf0X8X2vhCGqM2aawtEp4pSrdOC9wyGBRTRYle+TA3BG4SEOFjsO6KBRXTZJwW9h9pQyaSaDa8IQK+V8V87TKkK5NyUpFSwCmsT2qChtGHiANtk4WjEe2xkoKcqB6XUSdmaTd7j8R0nJzm2WbNtdjQerK2qtn+M4r/HlgfeSCpK04BBR5y3Z1iH4fdkZwUPG7i3JGEYJGFBpwbKhrBm/kU6MxTXNpu68XQo/abNvrTCOqU94MXoGJk5ISmbUSJXhkZTswimRXMGu/GHz54o4yZXawPLJvjO7QV1s7Uy5jT3ja6728C1ia3mITOTQ+2hoKpYik0kGyLMqbcqk7Bsj4aC00+TFV6TAQRl7JfnBdU9E8TOIAwlJSCrIpEx4ORSFum8qGqB0BzS0cbNpUaaZsUM6dofFumiHwIWFJKqQfCK+wY3pB1INz0Zcq2iKjAvDAw3m3b3EDJgFwaw2dVL6AvWYVl0FEwmGk1paVxhGSd3LlGmSMvKpaf1zWUCTKRu4woHvU/H5s/0sJLXDHXqjZJPVxEHNNmZ1wa4ODM2iLAVsiOueSbtrtNmFXe4ERqxhgsK4KGfoAEXQtaIAoCFgQmmIea79vhsR2qTFo1G1Zq1oGrOw5KzFGmEL4wOQyi0IoWSkzqrg912J0BtjwiIOgMUVteQ7QCWMKGRRt463FEuVuDVOKXs2lKrYM9Xtnc/DhKpUYGcBUSLZBWKnzIojpQIGfJ5FQ2G1q6h285KC6ft32Xyr/27qQuwrcWFkZ8i9Bahb/8XOuZ/njJSlT6rk7OI5tkfu2FPy+yq2RxFb1yLSfYAqZc1D7ANjyq2NyPQtt4yKWeElx44xQQ6x9817oSpU7jVMbqyJaQwlIDx+IpglUnN87TKgpG61KnMY96bWcVsQM+L7/VTlLjsLbQYazQYGJID9mCUyKUUR0Gxe3eTWR7+e+pxLNabQKCYQHQhq7CExD0hhy5K61zUjksoaJee1LYBkkjoHDvlDRdZwXnZ8zcDncqkrsevcyIA4aBKHaalGJCBPIJf46V4e9e9JFSrJPdx2I5KVlGJP2l5MRdOIAcjYH93vB74tH8bFJs1z5vzUxUYlJosz2XQuxrFIB3YLFhk3LmBgGemMnB3GCGxywO/SgWApV/VzGOcVOsFUsIi4kpGo3VJsRgwd20fhtYjfXVlweaP+SL5PIdteVwPfPoiCRYTs53rMIDMGqA/EInE/lQZPdTwiQpXUIyuCfzpfDCwCqGRyglaUxqMuKlGaZF4OxDCHGVCUnMyIKAEPE916iWGPwvsD2rmXPzl/Esx4KI5FUmCRuF/EFQ1XwPyskR0/JJ/+4j3QEDvG10NZDYNn0mWGaFG7aNLOWExarrRoYLDkeCO5QQOLWhgloW1NZmh2Y1rIwRxAqEJkzOCZKp8w92aI+W9qEfP4FZ5FUTTsXhwBi/PyypVhF0BF2XAsUpTdjh11mOsQ6E4oGt2gwDZhdldcVqXxDa5op31qZ80fF16hJ4eloFMuYlXHvle677fN5ZNm7H4MvndvLuzVGVAtSq1KH3vUhIuwAz1hZ+78JNrNrICkqoS3FIeTg2YhdyqeuDDzMKsO7sZvwULKtxBqmSBu4UjUmHu+TolecrCccC21s06Y4BZyJeTU0iZ7zd4vjCpbj9jkbeE0IEnRSsmhaBQeauNJJTxJ0WzhUlnDBIArDAcKM7tIis3NGHB0YSnu5g3mWvxcYVWNz4kJ1qJkjIUUhacnPCqiHY8It2vMfIOfSVE76BrfZeNNlQGN1lfELC7ip8oPcXg0ykOKBpCc8RbXst9zlSjhLOH9iR2WBVrNDviUgEUpdnBIAunua9nvhy1pYfyK7ccxDuDTbNaxVFkoDi44JNSFlMwqNOYBCHyclTKHYY1yxkR4y+z6du0SWgOQ3YOhBiKTHwgDyh7G5oImxwYTQZMWxT+7JSqAvFmgbS/nAlDEhX6YXoIHJeeVtsjJAULwOIeX6LhyUT7plOz9rULTQlUB0oVXZb+/NraXf53LXF+HcU+GOIDzMSg0KJW6FySZkhHgpi2jsi9QF9Ae8OAemQJ/0JxpHUSEEpb9vIQHqMUAuyMBX1tDBtkVNfzMm2XVD4qoywAtHunYY6YQ2Z22MQ/ZQ1KqRJLKea0rL+6JrFyoZ1eCxXlFDq9ayDGl8z4F6KlSN9m+ciEKQuqEzAwjS1ssJmr8WjtZqq4IF+vq2HWKPCr7qXtPKEuHrU/DkGTZs4oZrQQPy0khl30RgJRDxnahQh3XcQRwABZRYQy4E9gTMCU4a2fxNyfHAcw6Tq50z1SORXpE+FQYWBzEYuNOOoZFFDRpZ8hL4kbBsXAqTeWzYTQw5hEhU2HByGUKw6wavEMLVuuwSK2GQyoPZa2TG7+SKyDSKRk2t+7FS0KVWlOsHK9I5XzFz3jlzKdxnk+yz+uYPXoci0gGrYyxtrnb/yHsxceEjytkgMjYKoccUIgQAY1NFB5JOnwgfv6L9ztsjRLh6yH3tXh27B5dpqQwdtjPFEYQx2IpFsMZX0oWDpqTyRxTNtzYTgKpx7BIteynJlMGk6c3RIqD4KFfaopH8uezr7ym8KynEtINUiKMxhmWs1XCS3iocOTQFY2xK0Ycmg/TXU8mDBJmtQxmHgw9BKa6EBDfcRKuHDOzx3bovtMRhIHOZMCtxDOGPtkNsmhe2IayA50trp9MTS5hX/EfndjrLpXUFlewGFgJzT68Hw4iNfsht/CC5Ic6ue3QvsEgrOuKjDsuffuUmMkeQh9xjXRcM6W4w8wKYoCdpGgyZSEnaCuokuVriCu7pDFhLcnjhpNZ+jxesBbKNUL5QTtXa+7M8H4gKZ4JdRNLcne/y4HOupzHeHWyvaIuDCCAOIU5xHNjxiOz8I/tqbALRgRT8X5I59lufK/GdVIAKrrvq1Lwm05AiAiN2AEvppYACikZyEm4G1VKWAva+bDK8RTcEuOeKu3mVzC3ZXZA153kuE539owZLD8ehyNlOsAflvLk82Bx9BlSWJBi/T3PJeS4dFOgWIhSCkwhseYBCRxQSHyX7wVzRxqrLFYzbG2JuXdkocks71ndmZVNOXW/f3LgbeutZEm2x9WNMYp5tJLL/jEFAxJpTKiFQDImb/HKYY0MBap1flg2GOKhibGzPF8s+1xVAbIgRfhOMiUoMEnYD4rS43McVvvx2SQspRFC4MqYtMaHLF7b5h01y6bdqRS+2bpglhBosXY4eNRcvHmaElq5eSg3NBEa5B8ILtudC/sle+RusRijJrTBLHZlTMn4FzqWqxLz5cJUK8iJnCJvxPcj5rOxoNyYM/P2pGpMoRE3MImFPUgas3r7Rhe6+VeN3ZoMCIX1ojA6Cp8IXm2ac+xpHfNORaaLjH1UxhjM4UWmKNjNRd5PQnxPYfImCW3ulNXOCyxjCrCMRUt5BHvIgjEsEmJJA4ugSEplL9sxK7Zt4gMh2wPI16rUkgsmqQof6PIC8L/DgA6mZJSgjsgF1LHoXSqSZsMeGrsosIjhhA7rtGXeKKhHDhqvOBbpEeHbUnJiquDVjIfQG9/Ofl49xYWUMg1acIiI6wUCSOXA285FfD7JWGg3HR8SVzJUsZDHMQUj1j0RWKQzBBT57F8e3s3xLVF850pR9IPnFRzizxXsAB5hMa50+XonXDG06xdDZsivFKbFuJ561EOHJeoMrSSyOuoMLBLGzsqMHlIJGiFTqbtXFftM5CWGELTcuORYpEOimexGkw6H4GO8XSwS93MIdOcUjTFL2sh/9ojkPcbAeJfsOC6iKMtbxD+RnJJIy54Pxqxicyp5zG1d3legLGALFyDc4gmVnrirD6WnFvMet6JlTMtj/CMZprjL/RDGhrKELtuclcEk07Z17Bp+r5G/0snSCKvqWJ/lYtijj9AXe5j26cn3YhujKhvahXzKaMq0KRmgqKRYfMXjGEnujhMxBimJWlwLlkSbkiWMJ4+NLDHEmKXRlTtL0ncLQwspkvjLqqcxP064jgUVdwOGJ2RscyY1i6hZBsZAztg9ShEWyw9zhJCJP4d0UXiRaxIqZPbnLL4/NPixgfhaK8ZMNQltjCh1Ckbl8xcxbJI68BTALxKWI1Y6xpJcCBUXsIQGlmndd6uS3Lpr/+UibTjgxB+eFJaZPOaasXjrwFAG3G3OhEiEZMwyVa6FJx9LgAWf28jtoRPIMqa8ZRVogxcl56kOnNUyrLLzMturZkiIPSOCxS8LoHb2i/AkJOny+85ueQurmyKoGg/ojN3ie9Oe1KII2d+mIJsy5nKanDPZPRTjsd4hSttsljeqLj/Axu+he5XPpAqS7R5t4hweSXdmI/ZXEPrTA9YcsZF6epZd37uJZv8eC+lxL0rtw26yJ51LKme3YGbUeI0DPwO/uXhQMpaUbefNObtCmxu3MCYidKQtAMh4Lq7EqCYPM0m+2hRjEdJSpao4GsASbMMDEIn/dtRbMy4YEiUV/hkhGn5lNUkhIrTZeLMn/riFJRuv9DgRU+Ry2ePlehFG7EqJAUyJxe2svQXBpbDUEJImgvJYzum603OIIOE/G0kIWVeCGzkAixQZIWVflLNZ/u2wSBdPgGGRZaFT/p5gMpjBTjQU5ADqqUOijgNMfjsQFfNgROGcWrv8puUsPgwKy7FIhDCJG2mXYxF1LGIAmzEsMnZ5V2c68NipRt1GKHmVPp89gZ5EInVYzMX5qs9ZhC+mTJJshpCQjSmZQTSmaEzBruqE9vpo1aNpGouakGT5C84srOiOyexg4IK4VdQVqez4MMWqC4G0yh2K+48F51NaFDafHJvXYvVf7qFMEsavzoge+QvjWIQxLKISZ7rs3PJ3eEQ7h8w4FpFihEmYMVjHz3jBIhVRfEeqhCRX3AKFuqJRLKwSKmF47cSxSCKLutKsxZpnDoLkxq+8DMvge/9QAcmhKxpxwbH5UCln3f82a5sBW9dM3ZIUiUzq4QDJvQDiByKV6whEBYgAbjHJblm2OLhw/4YW2LmwasyrUier1NTDDk2tiVoFiSBOMEG0LB7SXuqVa2VziakpT+H6T2I40UJiOgt2Nz2RGGpq2LiKFWOOvy13xKwHAxH6cbglLObG/OxgdHkToRNnEc8FsvdnB2xxkqKQgZYkoZrsrjZNiTYJTRKrVJXMAmlW9kjmN+tBkoS6Sb4SqLJtRDQOt1WnaZAuDjz7xh3TkMnOChLUWUpoW4lelvAgdTMlaPFodNYGvMJOt+9NqdBi6Wq1q+5Q/s5qoSPqCpB/gziTgeTKb+Vz5Apaqko4G0nQCreA+uLnsIyLgyePp5bQQfz1cY1UMQWOyhOybL+EtTYUvnLK48YOUzIw6Uwu/hZP7sPOsWLrU4C+hNXQ1mfcGiUOOCIwwDxhrsjRbRT1HJnwMHT1VbrvsNh6sXCVuBji1nDAxyVEQqC6cii0ByjYSdwB6GNV3x/hqQuuKM4Ag6fYe7s7TBqKiXtK3GVfu2LSjvH6wlvKbfu/CtIoJPVQ3gPuS0BbA2S4oqM5F4VNkjA7N8O6Y4+nHbY0+3dyn4f9GCc+6P6w4Uy+9rHP8I0Pv5eFfbtN6crmZQ1xnbOYV0Ms18UqctmaLqnNaZVs5f1/gq+hWEhTHoFUVlUnltbXIPwb4fHNftYlJVRqGrGqUpV7tCPuWB2AmPKXPRQjhG83T8a+WpdhVfE2SVSeCtmknYyKQgVdSFWHQ41fuExQRTST1Szc4f2IeHUk5GxnfAi5CAEg4uLC2Df4LMY6hB4yfn7GhPlhRX7TMfyYitvDIuJFDwoWidkwTxQaybHqymlY9P3C7tkoyj9hKfZ1Ggu3ChQQJtCkEfKsXXVOvLCLJGoTkOUmIoJH/B7j9roKVdmwTzYsUvC744JKO+UortNJz1A+7dWQtYHh4v3jlbAMhwQW6ZS3wCLFC4i9GHvX9Gp7TyjNiFJVQm9qQK3KEpnBihmqFSvR/gzze/Yzv2eXVcoSN3hWbqx2JV3BvU2uQKfwSKkD7MAidoeZyGWLTVEOi2sFFCMKyfIkahFqHTM8e9hpd36jYIt2c1+2SidVSG4+kJAPFgbZYh6DIso1vAPqWDSkYGAR200tFp5iHorAIlYxDw9VkyryL6TwIvERqxvecuH9ro50cYSYocS5b4Qexj4MnBxAKzSkEjr//elO5GiMnWLpxFjwt9i0pGDe5hIz7a/TukFLIo94IHOoC5JTUTJaNcuwWesqt/kEE4/kvg60F4sEFtdfp0ydzN1nLkA72LWG/SKXzavagTur3CDUmqkz1MkrtGgas8bFmGONgj0FUDRLpdmuwjrXKRuBG+OzFam4KfsIfSrP0egsWWkMOoxbPCRG40w0u3ZqZf5ysfKFVWwkiTpV5pIbUzQinyhiVESyW+c8rCeDtBDVEMzb49YfDyGJGbGSmVIq6qhzMtvYcXRMUemBeZ3GFI0SNgWIl74NS04JOot953wMn317dwf6uoC4guJsLBHSolEGIFRXCR+VWRN8z4nYwa5d0RDP0bDpGLNaKGO5Ju6TCGaGlJwAey0Zo6EyS7KHnlVYBCWSO0uOW8kjJOdwJedn7i62Nc2Sy2smNLr5QsY9o2PnztceZ9qVM+sILaCsG52ASdKFVkB5TSTWhbJ+WT0BOYXly4NkVGiUUpggzl8SLEk8whe0E/ShJAX4NCVKsYpjdm+m9HaKiVH4ihX7hO8pf2+xYCYDEuIxx8J4HK4FblaEh7LjkxIgQ3E+FdZTKblDLTDV73HG+edwn2f/PIsLPbZ/45OccZpQ67UwtZF7PeYRzN/6XW78xuXsuelmMsnmSJyrJooy2MTY4vxmO7wldtpBU4nUBCRnUjMCaQmrZNgrkyRaIoE7FUOF3WRCqJ2xCRFLZELcvCwZD5dxTqGElynOr81+myqQivDaopbU6xVmDbSGh8U9yOExTu7hQDwUTsI44YBXBc3ZDQ1S5iOUceg2koVRacdT4g0H/oyPhS4pnQJ32JOfdYTi5TkQi4SgFN9oXfjzeNhieCXo5EIoCh4+ZcYJcVwlZK1K2BV+ppcZ0ZCyvqLqym92ZSMiFxJViYpIxWARxjm7R/dsqJT31njuWl7uGezK33ZcsjNPdKtuqpWWf8Vf6NROj0ahM3z2qLAy+2NzKON4q6P47uQGjCzGs5IIdQW9FTP01m1gkcTC0l7qqURODbnKVKtXkTSzuLjAUjuirYz3qrhiGFgEMQNvMFf8PBUsAuNYRBEH93GeI+zTt0imVLKqgJ5a+fyYy8jTi/Mqkl3RkoIsQs4kDIsUXCqGReLvLOPlZGPfjeOiVDBHJAGIY5GSFCCpYJHKIywkKk7FLnBjR/hECBlDYMQOS2nq+GKLGZTVBxSlamx/5y5cyjXikB2HQndC0cgs21babbSw6oZ10hIu7RG128MaLeDxdQrZtr60IRjwjd+5eDImSHLEpql4eAnF0ju+6SPuvo7EJTEttQ/0cmirAaJj8/qiExq6epiSJUNXgiU/xvh9gyXCmqWIVIXXxGhShGE4WM8OIzpmEHGOpgj1SPTU8zKwBKyoAS3OSQuDcFRu8k8C+aOVuR7rBDmlkkSe3NtRJaFxJSMsB43vYQ9D9gPuGrB6wlXr484OVsS9LWY2KhblOC4BrpCA+p3NR5KXbsWUjH6GnsqYomH7IZQ+k+ThEAxFww99KBnONQt7Ke5viiu8Uzg6oZBFPG47ESXgrHSmWak1pSKoahF6yXrJiCRKmVoHkKSIG1UHH/F942zP3t8pRREiGKAYOoZof7fOjIKvHdaKRnjVNIBBeDt9IV3JBTUFJI3tm3K+bEYLsIgwBgfjobaYIqMeOhM7x8PrMGWBANd0/KNNStMa0BYPdxIiDMXCvKrcnSlBimc2rldKdysGicVBcwgW/Iz5uFuE7LUCAzwtC0EEai+HKg6w1PmKq0Bla0eIRYjW1hX+CHnoysuq81Q3vngJaos86vZl6ldsOH4Da44/EaaPY+NJG6i3/it529dJu25k9YqKBz7rUVzx2XV89X3vJzfZ88GEVCVqq2Xd9d7x9U8CffEKLJqLtbUIRgd4ASrU42gTXVJ5Ea8yJkoFkgWM2elS219j3JMon9yqkrPVdqoqsVClstEiqj2UBfs20c5H3XO5QfLCFYEhCkDpzFIWwVDRigenuHc6drUpi60pHZo7L78rfdnr/+vY38H/bvesFfC7/PfYqcueOqyo8/jCcvkvwReQOCjLsEiIyhJmmF2+ZbfY5irQe8EEBhJBNRH18QKLxH7QA8YSBrMUCoZ4IriI90YyT37KneQMnh/x9JEfKY5FQrmIyka27w30BRbR2G3BTlWA1t5TQqJD5VgunYQI47ZiNHUJaRbHImGKi+mx79LK5XUSqMxzYZ4Ny/9MCaSGmakp6ukZetWA/swUTTtP2y6i2lJXLb11K9i3vybv2mXKtCdvVmLhrhHyjK+vRzEWY6y0wfM6Ku+TzvsRJhj7rOXOVBlThrJaWFu5T+nWosDUVK4doW2dF73jzbYPS0aX7xXpDDlAVczG7o3w/nNR4S68HFkMi4Qhw6pcJjdKdjVTcW9bEQbOTtX/CYUTH3vwWreRESHABYtI7Ex7e1E2wrJ6lysaZQmluEvCRY1SYmwLwHMrYQjjCGNKANk3TQvaSrF4awh+lIg3idJcAdBIQu03XCuWkKnh7gv3pHZAFvFEcClhVJ11hzGNvjtyEXcXBy8e8f5x70nw6nChdbAoyBQMy3uQLgzGrx8JVcXrcsCjcniDgxd7qKniLhirWkle5DonqColqig2aaxilc/BSMytHI38qqSmrCRFKqX1pjoqvsbaudvLwQ2rQlh03AMVa19pwK4xAObIOeGVo8SqgPVS5M/47EkoE56gF58vq+MQTBw0iY7vTsy3FApjN66uMZK9y8C+Cw5XwioVU7jUmEDUvi+J+r7vxBWASKbrwtO0uMCDmeDjjBrUFkNrL1rd/WzhfFmL5bxYo8KgHREjnVw6LKlOqQjIEHwhvILJZbDqPhSdrQMPlIj2EvOPdII+5ryUNnSFxpJjlc465ZZ7okmi+7IcaeeUaFuKR6k2e0JZ1/DadeEsEaIRu1X9ZqJAgq+nKx6WkmnvFEfTOfahuMeHYjwqE1GJl5uO+y7CqKsspXlMoPgYvZ8UmpU0qNhw/DFUgxl23XILe3fuNbe+xJnIpfRso6BLLQvW5c6+e9WRNM0ZNHuXqPftJ+3+EiuOPIn+jCB1H5HWlLRUUdd9a/LaNuRsNakkK21ufO4pllvGywY7CRKMxpQAOj9lRhDN1M4niu2IkEOQGHk4VA88STW5xze8WFljHl1BS97JQ6PIeSqNqooxzeeyRXw9whgUZ35cAquFomHe0EZMsYz9Z6G8wUdBXMkowM4ttiFhOkODezbcs1ru/Q41iO75O37Pf34q56ZDUOXcZz8TqRrj9Q6cIrQ4gH8CIvwmt2EA8jMqfgC1wyK4XIpdGBhRXSZkOiySiB4ZnafevBn+vNhnov8K0t1DYBEYT0ru9kMV73Hh0klal3ISRoVAjEGeFC5tZwjxT4ZFvXhdNBWlI2lUMYpCCjaX1WAASWjbIa2aJTJVCfFs6SxYArd7lvp1Rb+uqKpEYsCoVZqRGRnadp66P2BUQc9j1MWL3Kgbc1tVwyKtGRpp6bAIjkGVYnwJNBYIosiAwBLOEw03WlRF5M/UMbeOuItBS7rIFdt+cRhbl0Vh7Aj+4709iAgK8WgJG1sunjPDerZenVKnyaNDfM+V5oOSfD/Z/ohqgqqBEbu1ja0SUVJJOp+P9Xd05KSOP+xidNFGlDNGMerRpZgeAt0JRSOumorq05bRa2kgFaXMqkx3oMRBmnTW6pwtBKHNlvijDkKtsyQOzhLR1dtWLeqH22OUI546lapElo9BAa7W6M6bqTmww4XGOOBfrtfHgnQupiiZaIdyfBsHCBpPKLcAmLK//bmSMOpegSg/Voc3A8vHqHzTmaIhxNZWouukM5Ck1JUdjpSSlX4zDz+pMquGVsowmeWwDwz9MUpWVm4kyjBJqVylHkKVq8C2Au1y62q4bgUDB+qaeLDC5KFuKfYLEe9jUZP2zlwAVViUo1pNxyDcVTxeus+hKRJBJpa0oAEciHCLsDLLWF8XB5Nj/1ouhvh+66xhQggqA3DmSja3atWFidtt04Urlp+qxUoQHjLxfJXsGb+iSsrebtZjoqIBUVBxT1oklQOcQzmv/zmphFBKCGxCM+ywma9jCIjKjRb2OdsJ48aAOFelJK123oMQK124oSkW8XxYCIVwddv6V15KNISGxLjUwnVytl4s0dU7GLpA0Xhl7DWJ8xCKgWZTNpwfRiyMOoBFzBKaQtCoW+NTKiBZkpClRrIw1OSg2ys6VZ0gIYeQsNdaETb92GbOeOKzWdq3h5u+/lUu+7+f5bbv3UqrmVFrAn3YNswPW4YLwk27FxhpSx9hcfd2vv53H6c/OIIjVmfWr1vD/m17uemK75CzdYwV76jcYlb3ejDFOQ+/gA1n3Y/brr+eb3/qEyxu30pW66depZoqm5WxzS1N2xYLHeAJvl7b3UFdmx3c1YnKGozQQbRuK6kqKtkSuLEFSlHUQSycS1zAKwnJlXvQ7ftbFSTb3CVRUracODKMJDufXi50RV24pYQkUyQsttoMGiLJFJpQnnJGK1xt7dBlEk/yTIlU2U9836TU3W1npTxQ+BtPC/l6OCsYQVKwiN+YW7tbxyJhza8EUtYCysybYUC6J2My3cMhs7qH2zRfSnlEMpINixRDBZmcPIwS20M5GxZJutxzEsqFNT3zZGIVotBK8AyHPXRKg2OR4CVFRgmi7pdchkXUz0CEA4bUSx3YJBtwD4VeKREKQnI557gjLQe1FuwgZe4H01MMVq9BaRmN9rO0by/ajsyL7GXpq6QFjPcEputEr6qo2oY9+/ci0qPuCb2qYphbGC5SixaFUUTJdXhkEzOzc6T+NM3CkMVde2DUWL5EhN1jvEdyzEjV8d5yTvyskBH3EofR6kAvaYcGHIvQYZHw6qh7zXFPfKfficNj6QB6Wef4tyukg0dWEN/jWETd2Jkxr4dV//IQrzy2b3w9VUNpLrYLojVFEscialJR1XJHDKNk86ZyB1gE3PvXeZPu+tCp3NngTFPAY0YpViIy1ntBvcZwFSEyPjmuGYM1lkM8oz7LskZpAQNSUuoxrUlQFzjO7HFre3aIq2qldWN75OShE5EME0LfV9zrp4WO2Yko9QUaD00I8MnY7Cqxq6S858DrdKEZAYKi1KnpBV3FqfBgWHMc92pIuNyjWkCXCxwjSz5X4ppeqsS9HObZ6IeiocoIZQk1hUNgyQ9JK1YONrrQGnCP7zThHuClVHvC3aNaFYvwWOFZys43zQq3/yGeMl7heTTqOSWMeZPUvAvFxe3cWDWiTEMoWxxnTh14hLBceTw1yas6OYvQhGazWJab9V0RoX+FDbiVM2kX7pP8hEk0GvRLZJGiaLQ6lriak9VxtwiS0I1QL9GXXIFAffw+Hksa06JsFEZ1iIf7PyMZWKQUDYjKKYK73n2xQ5fq0VVTyVAEfQjkEMkdSQnHGhfXcb0KY7LZw6JqP65K54mKksW1mLJh+9+tWW4VM/d47G8DAePhg0V4JfdojLlm1PlnFitSEF11S7M75y8R8tjkCNui/Bt7tCfCYGaKM849m80PeQSz6zaxa+t2rvz033Hz5V9hOGxovelHrkzw7l5Urv3G5Ww+7yw23u+ZbDzrIRx7/hP51sfex1c//g/s3LXPjkWbGDbKtvlFPv/Jf+HM8z7Myec/29dlRF/2Mrf5bJpB4vL3vI+bv/VdVCpSJTRNY5Y8VVpt2HjUWu711Cew8vgHcdz8EoOVs3z53e9kfude4xYKKfUYTE8zqHvknFlYmCc3Q1Rdy9Yor2GeJ02WyGt43jt96Bjf9QkzJ5VxTXHlwTwukeha+dm1nIoMBXj5SSwSovXPxVqGchgJkmXnqlfb0YxoSxJTsVuP85ZUW3muEvvU2v15EmeMQ9X3f5XMSh+eOhk7BWGFTGGIASkVuQ6mw17ZUMci6od3PH/NlQuz8wmpiiavHsaNUFcmW8KT2mKl5EcO6Jd307LfUlIv/kIxKGQ1y3qEMrUe6icYIK9S7qpD5TAqpE5ulVMdWMRkZXfSg+GHO9XXrXjVbM+pX6PwKf+rJPzGfZS/xfcmJWogiTA9M8PM3Ep69QBGymjfXtrFRcQVaVM+QCXRZmgWlpiaG9JbsYbB3CpmVi4y2reDxfk9ZFrU96umTEummV+iWtpPf8WAippcJRoBmZqhqWBh5w50aehVn1wix14VqAY9ptetRapZdDZTVT0Wb9uBjNrivcne0C4lm/nsVqhujgJQOk9Jdj4rzdYbQ8Pj2fHwIv+h5E51GM9kdAQeuBO7k0sF60V2UGI86Vvjby3Ih3EVMbAiZU7MOBr5gWFcrWI4wX4cm1lUSoSN2QCTNylEPXIjIizCHhxbkvAMRxqDFkXG4dghY5E7oWjEt/sj+2HKWuosV9lcTj0VeirUWahyZQqGClVVFQauWH3gmMwigONo+1qORcOBL5Vk8QYuY42nxmCmz0enIEgmwluKxVot1rckpodiEMuUQVIX1mE5KbpsYoVw+xO/oWOvhlWcZGUTTQsOK70BV/O6CJUnXYlYsyjroZFKg75whzUOgiI20OI+IarXRB5GnfD8DUWr8PRkRmrhSkuSWcKUtixWacoa1WmZbcuFHTM3i81JKAWokFNYEgTRyt7vMchSKhKYEHR2bMwwYwccS5brER3bOyEQqVEx6a5+YmxLPLTBLc9e6cbVLtTLvlm+SHJm4+A9V+TsIVUqXdNBgSgh1yVsdopGCIAsHRMIf2Spby5FZXGl2mNBzXRA60qGtB7ikhXNkfSlCLUfL/XwlUgS7jZXQJPDksROWcyldUHGz7r666Fw+dkeO7dx1qMbdFFCy3sj7KzjGtCtSTFauADLDhLcMOrKhnHlEl5DBOzQyZf4XtzyJcnjV92KRVgSC4Ma04fCkAFR6jH8gaBeSCM8qmNN48Q9G84PAOoaTj3vDO570bNZecJxyOJtHNus45iznseX33MEV37qEyzsa5mZ63PC6cez4bQTaaZWsv3m/Vzx2X/l7Dqx9uzHsH7zmZz91D7bb/gu+/7lq+Smdc+KGeav+uZNfPx/vYVH3HwtR597ASeeczRpuJd2/7Vc98XruenbN9KOfOVSou73mVkxx+zGDdSr1jC3bo7U7kfYT2/FGk59zNO4+apv8e1PXooCbbY+AM3SkD4V0zMrmJteyWhxnrZZRHJLb5CYmpum16sZLS6wuDhkcWGENhaGFQJQAdVsaxwWPwHVltxCovb5y5QSuZ7Vre7ByL5Hx+VPsW26Fz2KdAhKVitZPq4AlKpY2vEoUqbKmV5SN+pU3bWTjyPirAULuXUAbGfFAVV473xPRgrleNjZ+JnrwOs9gMaxiP+dgCpHWXuzYNcuX+NnpaYEJzXFLbBIIpVmfc5obPUjhyoMhIw/tCgQlcLIlZBO/h+AwIqSYIwmhwxXwwIpiYXQRU8ubI/dLhbJzgn9K2JMhX8QUQSJYJD2dYLFVHvAsPi8JWFmdoYVa9cx6A/M66LQzk6zsHMfzb69CFDXiempPvX0gJwqlhpltG+Buk7UcytJU7NM9WtEWxYX521s7r1rRMnDzNKOncxoy2B6lnpumiY3DGXIvvkhadjQE6FBvbytWAncQQV1jVaV52YBdY+Z1WthaYnRrn1IwvCkdiFGtbgyrxBAsVSoEkW1QdsGbQXJreEO0dKxXejyRqVgkVjdbj2DUxjfiakfe34Mi7RjWMSUjKqEPIE4fvJV9ZyMMGolr4CWcueBUjecJMQ7ANrfEpVbfYeE47ykZWQzooezwKqDtq7wlGCqgoojV7co4XcSixy6olF6x0uRyua9wC3zloAdoT7jNb9pHRRmtwqmiH1ljF/YyLv49oAbpeqvLZB/t6q1nCfAZoAUiZAEU0qyKK2Y+z6LlyWTTqMzY0HyJLv4TptiW1BbnNA3u8rM44ykfIIuRCf+s2unlD2+2l1X7v4yj0+i0i7hMIkngldC7ZW7LA7Xy28KqIdGpUpdNqlXAPZcAwcr4gMXD1bvSrO5gMS6+RbGlygdyKMpY0sXnoK4hSaZwlc8ABJu1vjdG8iEmXcs6c0WvHIA35I0GgONJbzRbeLY7CqZ1r0Jtund3Z0TOWUD7uKHW02RbcUs561YJbPGbOqW6G1uiGIR8492cf1+w2ElKoCzTGoq92+mNNxJpmV3hBKbvOt0iooNcXizW1ddqJji1FXCarH9PF768HCGCwa+s6fq4uexu7ci3PE1kKqE81UUwzSBDbNnpwXPMeFpV8sBSAxlWnPG4J7+paFgtNopNJS3dPG9UYKwNLgqiyCuJJnXNvu+TBHjFtfT4FFeYpexKneEpdpV6SRef95Wu64scTgs3NmHLwrTs31Of8i9WXn8kbBwA9x6OTJ/A2vmjubeT3kkO773XXZc8y3OedBJ/NiDNjMz2yAzysKKR3LV13bwtY9ewim3foe1P/ZEdlx7PXl+N6tWzLFnfgFSw4jMyqYmNyOuuvxW9t70vznm9EuZG2RWTiekv4r53ULNDFNz00zNrWHuyCNZc8xxHH3ayWw45TR6644lVTW9wTS5bdi/7Qq2X30Fe7be6tOjbgQA2obh0gJNbql6A6v0NjXLmo1rOPGC8zni1JOoBzULO3ewb/sudt5wIzu+ez1br76KdmnRDUKUxlURcx97JpSQNounuZm3O4VlWGztWod7rmuVQhEiXRiKbVclGruGIQNXNEs/HV+34MGqGdGGipZWaqJ0ewlxEeNj4X0pFmyvn98pyVrCKihKz/heIk5VUdAPb+7h1Do3DtwQ8tmxiHnISkCKK24Yy84RumhzqykMBE5lr1iT2gOxiEUl5MJIKjUvVZWTKyXLsUh4uBOgYn1jTGwqHgNo69f4PlIpMfIqSpQfTVEa20OvDJN0WKSTCx0WKYCV8J2EN9YUjZRsznp1YsXKlUxNT1FpSzVcQnJDXQ+o161mf87oaImVK6eYmRtQ1UAFo7SShcWG0d4dVAypVqyibYYImV5d2/gruiiAlGgWlX3bd5Om96Fi4YIjSdAq/ToxRYVUNf1+TR70SDMDZHoK7fUdh1jRjLZZpF1cQNvWMVzsffvdUqq9dmSqqJKFbPXn5uj1e5b/0QzJoyWaxUXaxSXywjySW08Gt3F3PX9ie4THsGvHrETOXkSEKDmnDovg+DeMGO41i9L6bayg70sJBh/7UWJVGTOA+hZ0zKOl0tQy0LfMKFUiBzznKI8px1mzGzxtzqx/iY/J/2vx2qnacZJDjeK+E4qGb+WiRbsjyAdbFAz3akYoS8bczYVnJilNW8C8IN7HiMiGsoNvtxAVZcSrVOUs5tHIQqVdMci2bAKLo82YglGhHtZiFm9TNrLFyFc2XnEJ0x3UMceWRm1p9c1bdFlCQNqnuvKTpgnbv1GnohalTp54mmL+vBoFpmREslEoG1E5K3kIBa4QtFgYBJ4ELpUzKVc2UopmOkIY2KSUrZXC5Lp4RQPxIpZYOUrKKCkN1pixDTwe1jXcmiYeJ6yWW1JrVMuyO680GnwRpmF3iPkp0daZQqZ292U37+PgvmPQ0MWWBoYwYSAei+0HLwoO2FL7w5jBeMlYcXdBKBed89L5dDD6Ai79+pGAq2F1iPHEnsh09lAHkARDjMZonVdFc4Baq34S7C2rFR4N1yx0TO+wJMFAlUTNLimz5XLa19cBeOxb/3Dw33HXohL7Xce+ZuycqjHbNq5JMN0OfsWF6+SDHMNjIdg1QJxEWmXAjy5oUsb2ihAY0T1udBzDSnTbWWgJAOEAxYFKKOyglgPn/u9Q/JPAqrVTrDpmI/RWIfu3wtIS7LoV9t/CqmM2ccbDz2P+WOWsB5zIlO6jufYKUr6VmVNuY/P9XsT2793I1V//FpuG/8r+vUM2nXk6m84+l6XGC0Y0if2LS7QL+9D9u2lH84yomG8gVT3WrlvDCWdsZHrNBjJTrD7mKFZuOoLpNaup+gOk6kM7hNEOcjPFbddt4Zsf/yi3fOMKtt+4nUisjZLo+Dq1o4alpkUkUU3VnHbuyZz6U09hatU6mL+edneG04+k7T+YfdtavvOZT7Llc59k/9atDqQqO2f4fvK1DuWtVRe44uqjL5ZoS5VMLBbDuXR8xninJ81ndb48ZjFGiyIwDlKT5iJnILkFcUSiRqRCqqooFOO713i4yQTwuHmvhGc2EinejnE1oguxouzP7rTAsg1+uNF4i2U6z1OEoJbKSLhi51091Ys7CHg1JCnnOrCIo64iI8LAgHpZU1rPB5ASlpO8eqaF6gav9vPuWCSa4OJA1Dq4Z1Kly7EIwWfsHkvpWrHzb0Y4e64qa1m4mP/uLmIgahIJlUVVqGGQyruNpwRT/cT01BS93oCqGZKqBskjJC9RD2aQ1auQ4X7mVgyopEWaJaQZUU0p1Yp17NMVtMMF6sX9CJnpmWmoLXQn1VKUeXPNtCgtI4EWUzQGvYpeXTFV10whjPoVTb8i1xVtZf29WpQmt5Y7NlxicedOhvOL5GGzDIuEum1h1+ah8Do5zM3NMLt2nZWDzQtooyg1umIFeallafduRnt3I8MlU1JKFMvtYxFbX4qhvHO0ybJVsRy7cSM6rnyMYxFZlj9csEgRRX6G3dNN4I3Kr++eOW/HXlBsnHyhOyvBZsRlVy5ycYzRER4Y7XiS99IYb/x413s02u7mbBjdJJRD7WFVVlHKgH6J73ch6l3THbz5pGYX/NqV8ixFKl3Iiy+YeDkk8b4WcesJr5UcAEIsGN74Rig9Ua0k/CkdpIu7Wn5gl1Ms2LgY0GVL2U1QVIeoqDwZzJQNC8uNGvB4Yo+FS4X7POrBV2KJn1XyShMOQlpRWnclSa3mzai8y+8B3ozS76Gy7w8zRjQwMkZoTXLMy+IxraKM3IVquRu2BToLoVnYom5zrUJPK3rYI8rzVmNlaVFnurkmR+UL2qI4ilr1pcjm6I5rWJG1KCxxICLxzfaBFuDOWA5RmKxEs9XtVxMc0aclGh8JftiLNWFsd/vpjOpqRaGhE/IEAxK887UWC0THOMZVU+m8Korfc+yjcGFWBaAW4XXHp/Q/PVmiprcmc69jxxAduqsSAVDGR2yOiqFWIDexTI4Ew1NJVwlvHFoFw49zFIaSWBxxoVSes9FGCpaHgxtbrTwM0vBLjN0Sfse9cBEmCVLCyVvfE7YtU1GokisaZgm30qV1xDj7HVgeh3lOpFczHGWqCqpaQdbA9EZk5mh021XI/q30Rts4/uxjkY37WLFqDcMdtzK/N1Pt3snM9JXMnjjPec96Lkt7b2TQ7yEpU1eLpLyIti3a7iNR09Rz0FtLm6domwVUp0jSo6pr6kFN3e9Db0CSAalqYeEGmj1XoYNZZOUp5HY/ad8WaObpjfazZt1KFo86nl237GbE0MsNC6URmtr6NKo0bQu5x8zGGfoDGO29ga1f+zS3XvYZZvsLbDztdFb92JM558LnMLtqFV9937sY7dnb7TccjC9D4fYjuy2gzUpKlkdhgNJyxzzKsZzdsFoGEBjnASafHLy510ELGvASu1FVrkrk5EmqaBfukDo+lMYOegCACKMQ50fqwCq8X52SET8DDCz3v9v8HsaKRsRAL8Mi0v3uPARkGRYxl7IvYPazHVgkrpWdh4zNv/soEWmRXNlZdyyiqgWLjAc8ZUeUEsgxsAjB87LJXi2xHaUynG2bcYOnb1lh+RoXAOwecdUCIDtgGYHqZtCsxLBIJZBq41uDKjnYnyKlygC7tAgt9JT+qgGpgX5dI7mBdmTz1I6oa6HesAFlidQTJGVSncleMSZV2RrcVhXSq9FUodJaflrqyuvbw9oQLKTMSBcZtkNaSaTUp9GM6JCUMyotg36NNH2WmtYcx5JQS2qj0mTNmYmcV6GqEjNTNdO9BNrQLO5naX4Xoi11r08arGSwbgNLdc3ibduRpnEs0oUf2b9xuNQiGFxGaFm38TV0pcOfC8OSxpppnPMOj4h7uERCTZHydXGwOyzi3k1/ZC824SegwJf4aPCB8LB1SozLrcBOijf2C95jeKTDH13Exl3v0RjjVAHwo/pTDKPI/XDntL5QHsufxRhAgOy4eXHrbgkP0e7rJE6XM/bQWeM1Jayh8f1ddYRSRx+zIoQGGsHYXY6hjAGT5SpEXD/5z3FlA7p0rs6KApFbEOXtSkdQsZBBqaKkplotZPEmcJJKRE4pZSeUWtYxqlYybVK0huRJ39SKVorWglRCXYtZSaJ4eLL+AOGJ10qLpc/Cy8xOauFwmUrdveoAqBWlkUyWjLZCdPjTnCBbulilFbVW1LJc2SgZCGoz1uZMW1m4U04V2rTQepK3Zqv7r51XKQSruRzHvBsaXX79cLiSG2FTZKGOBAffY9EkUj2UafxQBTcPoG/Ax6uHJa8C4TkcBjD8JAhQGQ7Vyjw/uWw228tJsUocauE/pUPn2F0WBuF+sxYDOg3iapTt9OWw4fCi5JI9qq4ZEHReIAHYKLk3GbP8N2ixTiGep1QsL4AYiK80fFLLVbISvx9M1t3DVsUlmnC1JTbfVQf3sKh7RBzQiBkPskR3Z4+382+OgHm7J8yi6i+GYlV5CEOW1I3WeZaNN7nF3LTg7JKsTsKxZ5/FSQ9+NAuNkLZ9lbx4KzTzMFiPrjgCZo5GF01pX7lxDWlwGtIILCiLzRS6U6n3JqZTxYo1c6yohHZpO3l+L0t7trO05zYW9uxgac820miJNZvW0V99JNMbTqHacBoydxIiU3afuh+a3ehoN838bm7begtb/v3fueWq73DCmady+mOOpJ6apWnnSM0iK/s7uNeDj+HIez+UHTffwo7rvkdV1VQeTts40EuppqoSo1HLUKe4+l8+z+YfO5Yd2xJXfO4KrrnsBua3b+XYdd/ivCffxPHPej3HPeih3Pj1r3H9l/4Nci6gPxFKqJ8itbNrDarCDO4CyXOkKtHiTQvTUVc8IkoWQ9QfNUVVkIj9d0ZbdpNURLQMJE9aNRjk1T5AIbrzRCigfZ1tXvWcrS4MlmL4MN4kY9XZIIDmQRrWMghz+FGULoaQk2btH69gGEm/Vr7Twm0kWdOxNqXi1U90S18MhWrhVGEI7bhIrPU4FjH+VRGloenmNsL4Ip9GtERdhewJA1zBIh7BMXaVMX4v/l0dNgkKBWdczRC1/K4weiZV79ElTM9MMb16JZqgavbTq5R+lajqKaoaq5TGEAZCqvqk1jo+SJvQtoZhRUoV2quoezUqLSINSVqyNuR2RNu2MGrRpPSmalLVR3pT0J8i1wMr8yyKJFNqRFuytgybReYX9rO4uEga9OmtHCCpZ+/TEakeUa8aMJpdgd68lUYbSCaALTLAKl/WWGO7pIkkNXm4QMU8uVWapRGjJaUZNVQMmZlrqVcexWDVapqFJUZ7LbSrUxg7KV1C4NRlvVvAxA3I41g2ckRbtVyh0klbDbNmxjwm2ikR9kSgSsMiFr4iaLLcDJGuK7i6x9M6hBsOIQm5CkVDSrPfFCA7gXpZZ8Z2W/ymY7vK7bYlpLTrVnVoWOTOlbfFDouPsWxw+xnamViJLDFGnsBKpWZLNpbKQwBUynwmxZsRSUnmMQ298x+MNzbrGpLYjYbwFp+/qOYUidQlgUi953NnZHAX9rgCgWv/3e/dAujYo1M4xBUOg53hyYgcDCvrWyfrjlnVVhGqqqzZXC1ClarSbdoqiwBJSi11K82byuJnKlrPdksV5tXwxiFqmflIUTRAKhNYoWikmHTsBq0cq1U9CSVDIp4tBLGVzSCSgbStLBFcKnfVVYh65W2JWGKvoSWW8G2CuiXljFQVOSlNatHUoiOl1Uybs3ugSh0HRIwLK6boZBe6JM85KQLCPpE9xK7NQuOFA5LfwsjDlbLvtU4s+XoXBcDrBDtgyG411GTgxRiClajMMZ9VpqR9hIaKhy44GEh+aLSYQMIWZhG3Vo3JQtZGVDRYCFvQwSLm8CLBm7l5KcIKyNpg3U57JBqisSXeD6LDFVIAY4S0gYVARJ5FSHDTQeLkiocueTJ+uNpxxT9ZNpI1avRvCiCHeoKcW5+Dz4iW+FYJE5Ynl1gN/zFjSRoPhDEAkFPcuxZ+FtZOgwKdB0scfCxkZWp2mhMf9XhOf9xzqOpFmsXHUS99D0Y7oHc6rAZOqpD57aAV1cJ+6M0ajxusIK06kqVdNyEbTkB709x27VfY9s2vsOPWrezbcRs7t+5g/+69LO2fZ2nUMOgPuNd9pznlvA2s659EPTgJUPLCleS9O1jau5d9O3fzvWuv58qvfpVrr/gue7bvIy8NaRaGnHT/q7n52pvYeeV1HHevE1k9NU892MqKtcczt3qa7c5Fm7alN5gmSY/RaJHUq1i1ch26YweL+3by1c/vZsPa93HuU36OC174q9z36Xv52j98nC9+8MPs/dh1/MwT9zOz7lhOfvjjWBpWbL/q28jCHuPPxYAQzfu8VwhRFl0gV11hAnctlG7emJBOlfg+CIXDzm/xKlQmDcw7XPnmsr3WJusfYPuEUhCDnK1pW89DfNXNDEmWNw+EklSe8VwEsRy0YnMdwyiKRxJQuVcuddeg24+HJwUWwQ2XQDmbY3fmXiQVpW09oDWJ9XERk48hzos3STFrfcTcSagTATUjBDeMTQ7itMMB44pcFTJ8TJcNLBJN40yh0bA2AOOGy66HVzeKjgeN29vF9/hYwVTHIh2mqYBeVTG3ei2z69dR1Zkkq0mMqFMm1bNU9JBp48XRIE60ttCxVlCmyHWmnpmGqT7Ddshoad5744xo1TILs7cqSL0EvYqp3hS9qVnoDciVIAyR3JDVylkPR0P2Lcyzd2GR+VFDk1umJFGTGS0uMZpfJA16JISaBukN6PUr8lA9FNXyMRK1nS+pqaseeNnshWHLYP9e5taspT93DCuaEft372LPbTvYP6+sWVMhU32m1qynzTXD+QUrNCHjWMQwcGfwdOwRUSq+GLFmgUVSthzRbr29HDO2l8yg3jXeM8NF8v1nOES9olZ2fNWmMGgYdtTK+AEJMzC7x8gc/sbbNEfxHyll+sOAHifJ8oyMP7ZkGlIX1QKEh69D3T+YDl3RKKews/DH2eiClLSEobjTGZHsAM08GmaVMU27hEmp4dk2e4OoGHwcaI9hj4UJ5jDuygkh3h0uL1Wm7m1xy3x4O6TTF7rbQ5cdTtcly1SO/w6h4cYjF6YQSd49LMyhX0G/J9Q9oepB6qkpHMnDojxZSapUGu1FLLGFULkXx+8Z8ZhOL1+banuIKxnqnQtTLZFniIoBVvHutW6YM4AG9DSZGzd7mcXo7SC53FvjiUwKtJKoqMgOyK33h9fOSrWHfSWqlEqZz6hLLl59pZUuxahV64ZrybQZza1bcU3BEO+VkR2CLVN4Vb0KGaF207ZCalMJycNj4ZNbuaK2tVkmx5zUeWwVXdHIyZ7PlYc7iUBKxbJg3ozgIJ4AqHEgLT4/wnqSj0fHki7iu7MrGQ2JEcrQ/x4vLH24U/YeEXHuIzSpw1MOxESQ2qz6hg1DqQ8Y1TG5yFdIYv0pXFaXcBL1kILShwg3PlRdWE1R4MLo4J8p/hEJMBI8wN5r4GEsaMIBahILyYm/y1iVAn5VSx0Zi2F2VSbc2lkzSgVVok19Gk2s3LSRtUetoO4vIXoNg6kF8swmkCNBVsFgJbphE9LcQN79Hdi9Cx0uuMFgxNxRx7Ji3RxTJ5/F4tIC//6Rj7Pli19mYf8Sw+ESTWPhhzMr5zj3EY/k7Mc+jekjjmF6xVpSlWmGtzLc+j12Xvttbrj6GnbeupMNx2xi5XFncsRxiduu2cuw17C/VW64cTvbt3yJ6bmjaBphz85FVp15OtIfsfOGG9lz41aQRNuY+GpGSwxWTEGaYbQ4z/6dW6kUZnqJxbSCL39xJ2tP/zqn/cSZzKw/k/MuPJq0+iy+d/nHoLcC0czM6tWc/uhnsPfsrdz4pX9k301X0zSL5NHIvVrJvd0d6ItqYTUgYqEZxkQDFJrlEs3UUhEhkpTiHdZ3IwWzDd5A5NtZbgWuEKsbwKIwivjeJRkzN9EUlYECVEr3GDsqFikR2kWHlstniCp58RlXiEsIx2FIt4tFtETMJpTOiSi295NYiJwbzMwTaUCxokv6Nyxi2KRVunh7/z0e2bFIyJfbxSIaeEQLH4n3pzyGRfz6oSzFLabxnzKGP7R7rbvLwCH2BsGMZpZXKl4mP1FVMD3dZ2a6x6AHqR660XNASn2q1CPJAEnTSBqieckxQQDkZF6J3EMGU7S1srRrH6OF/SbvSpEaqHs9plbPMb1mLdVUn6quLQmbEU2zxGi0yHC4xELTwKBPf3qGKakYNh463VoelDSLDOqKJlUWPTGYMaPkYoMMrXIc3rVdJJnhVu2cA1RVGDxhcahMtSMGM7PUMkWamoLeHIt7dpF6A3IjpP4UU2s3kqZHLO3ZRTtcoA1cFFiE7NZ9x2oeU5m0q4yKQuUGT/GQ7VizgCq2jQ2MRehoWekIkSC598I9G36v1mtDkFSRPWyMKvlHbB00uSoa+9TDO2Xs+60KvylQofTYXVobwobMiC7Conj+4mAcAh2yohFOhAMvG4pGJGNDRrKHuRQ/YSRJJbJ4UykPGfCIA68ORKmwwxgYi6ReVbXSoJF1E+8njMdSRjF+8DP2BsGtiEQEuN9beS/lKtbTYfzglkCZcufLD3dHxbshFsLU6wn9vlBPCWlgykblBq8qKsy4Raz4cuOqEiqQM9PUgdoDlY2qcqubtwKXyi105V5DC4/kfLecgZcqNmt8ld0bpNbYyBbeJHN2S3RSCw5TiZ6hiZ5U1KmmkpqqMi9NlVJJUDd3tlK1mapSGjH9vfGwLfPVWMKYu8Gs6pK0dmCSkC3ggdC/SxWnFqoWUmsfJycrTa8R/uZlDXGFVbv76oJlwh3uvirtvGdhhW/pwiKyZ9NpdD8V8cohtnQW063L9lVS8aoiBFb1h43DvBlSDnaXTdS981AP939G0sLGQjyGtpVptSGaO2kB8eJCThwU5mI1CruhB9dRqYWkhZFJPd/GFAVdxh4p7+n+KGd9zFtiOUxjYylC3cdgW8AUolAT1PZD9AUpOLC4ZtKyQZTT6WAHaaGumZqeYfURG5k7cgOrNh3FuqPWsGquZdXsfhgtQP9YaLaQRjdBfxphJdBDZZql+cz8LfsY7dqN7r+FfjWk168RGdFbNQNVn3r6CI4+8wKuuvTLLOxZoh2NyElYvXED5z7ucZz79IuY3XAMmvfSLmxjz43Xsv2aK1i6bQeVZNZt3Mim0+/FupNPY2r9aRx95gV879pbuPaqa9mxb5Gbt+2mGr2fn3zKj3HqIx9Pb+UJSLWPPFjNqL2JLH0Lv9BMzspopDS7d5ecpzxsEEn0xLpp79knfPEjn0Tnd3DUuQ9DB8dw9BknceIZT6eaXo02iVVHHc+q49eR7tPj2HNP47bvfIldN97ADV/9d/bf8r0C1isXMBpn2+efbEUxLPw3W6+OaIIGmPWwC1nImOzSqLQXe0Li/It7QKOqVCrcS1KFSA+kZyGFERJR+b6BUsUvdq74QIuEkM4jFnwkQGuw7jFpQuQH6eHLQjpFo/wR50d9PWKezEBmibgW5CRquMQSlK2MqVmIPdICSoXCwCJilwr9zKtRGRbpGsEFBopcUJtxC28raeCAeUQ6ETB2/ukMGcGWovnfciOnLlvT5RJk/HmoUk2vVzPo9RhM95mZrpkawGBaqftC1ZsmpaElh1dCSpV74xTNDdoEHjPeXLnCjFRov4L+gB4rGbWLxaAjNfQGPWbXrGJm/XpSf+ChWC25WSIvLdI0IxCl3++TZmbI0wPa/jTMKvPDBpaWyBmG8w2ZPcysGjC3eiUtPdq2ARWSDqmkR08z2U2dQvJqclIUjKpyQ67YmZ2fXyDVSm9qjirVzKycY2q6T92bpk0ZnU6kfqI3o/RnZmgW9jFcWmRxfj9Ns+gGg0ykRTO2R5ItsBVJsgo61jC41eLlUDccJ4nKU8Y0uo7mhh3F5V45wflALBKFIZy/pCr0Eu+pFpsID04Z32d4Tkgne8Z3Eo4/LKLCcwrLrr7z2aKHrGhEyEeXp+AMVTux2eVKRN3djKjdpU1iLkqBlQ9LDgq8s2fyTuE6dmzUnlOPYwzNLGhc0YlnxrV9HXsurjr+ipR3dCAu0XlGOtVl+QEOQFqVpZHyOcG9FZVQ9RNVX0hTQppKpIGQelDVqTTkSh42RTxYbqPoEm48gduN7TrufvHnLNlciuvM4n8tubTFLf8Scb4dEywKTcl+lZLkVmFrUHmVFi8ah/c6NV9GquinRF3VVFWPOlXUtXs0aunCR9RMRXmkpiTVLWkpk1ImVS1t1ZJHLbltSW1T7r4Vfygo2feWHeI2Q52F3ELVhLIhrlx2MZAl7wVKgYAoB6BioVSRXxPM3jBnp+WHi0hjbj0W0g53F2MfJeqyJL8DLUIp9tK4gInsC1O3xkvnjR/oe4CiYdux8MDIPRhPC0/l8GZjzsYVfZ7s3nsSqLyy17J3eMW3LybQieR+/1ERgMGTzNXi8SvMACKMe2gp32nnWzuAE6Gf/qil+1zE7keyaOGK/lG7WwOIGfeyuXtHBWZWreT4+5zFpjNOZd3Ra5leAYmGxV3b2XXjdbB4C9NHnEG98Xyoe9BeC8yjLAE1Czuu4Wv/96/Z8b1F1h53JnmfMtds4YhjV9Jr5ml27mRm9ijq4zZx9Nmz9Gfn0J270SSsP/44znvGhZz2iCcwtWYNzcL32HPjFdz6nW9z2zXXMFMtcdQxG1i1Zppq0FKvaUiDIcISvakelTrcyrC0v+GLn7+Z/Tds55xH7GTzQx/NoBqyuCDceu1eWo22U3asbI60VAdDbXkTyiAJqR2y7buLXHbpFmav/AgnnnVvTjr/Caw+6iFImiL1lNkjZsnNPM3iTuY2rmJ6zSNZt2eBpXaW63d/Al3cQ1cf0JBjV0xaiNKw5aiGBbAUG3AwFX03cICpIdc8FjvWXYxvVI4cg8ME6IlSp+p70+SAeVItSiO+08c2FkolMUY/V7FhFSleNqsy5IaRCMsRC6k4XPlICT9lXIFa7h2wtL3wUppS2XqOnmqJjl+Ws2XT64pJolQsDGOER2IZV3Ys4gWtCnUcely6dK+FShiP8oqvtb3a8fjAWJWHZ6p28mM8hLaU8sXxR5WYmZlhamqK6UFNvyf0elCnFpWh5frUDTI1S1X1SDJ0HFKZhbxdZGH/bpphptefsXwxHdLvR/hnY/fdn6ZX92HfTrQFSUo91WfFujXMrl5N1ashtbTNIs3QSsmimX6/pq6EplJSTximRIMa34wCNh46u3++Ydg0DGZa6tk5mjabUWKhBbUw0xoLLbKy+pU14qxqqmT5X3UVxlzDPEtDGOUFBoNppmZXIbKStrGcuJQyzWhEO2qoZJp20Kc3HEFVk/dlsg5LeLSF1nbeAlXrH5daIbWdshFpYOpRISk8TERvJONBUZbYOpancvbRSO/osIi4gUMDP1bBP0AqsSaT5TvxyA3fP4XBSfm97F3nIVluD4eM4xfKvz+IDlnRUCgx53GwimAnBHSIUPG4YkugNINvFMayC4hElRW7knuqiWOYIz6bsZh3wjKw/PCORaFgfSGMxhO0pUxWR4IDnrHJPDjmcTkYjCuW4aJj3+F3k8RyI3piLbmnEjqVyFP2u/SSxSh6HK56EjgpamXbn+GeRSNWXa1scFE0/FB6IkrlKQWp6srPlllSLd0vReNuYn5tztqqC2GL4qM5ufKRqrH79JwMapJYUlhVjT96pKoi1YmqDkXD1hwFbRV6oMNsMaJ1RnotMmxJw4ZcN+SmMc9E2xZLVQiXRgPQheDWsaZM1ulSPOQmZy8HXFzdY1JBOiEOKbzxXRyte2Jsvs3SqB6aJqHcuRKFuNLou0BThJqp57IopeKJP6SoUYqdkHbsXOlBe/ueQHGGCnN2ZBChZUXNLqi8E8bjQLAwhmQCuuuwHUmy6h4C4xjZ0Uec0VZtj4hIqcIS3WDBLZkazfLsOxRIYiVXS3M+Yvx+bTeaRGnEOIMdSOnuN/k1okpWBqZXr+a8pz+Ozfc7k16vYX7HDWy5/Ftcf90Otly/g2237uKsE1fwhE2ns3rVcTB1jHXj9JacirL1O1/lny/5CCPdwAmjNczMzDG/0GPtUUJezGStmV17OtKbQ3UHo3aJNo+YXrWWez/5v3H6Yy+kP1B2bPkSN3/zK2y94iq2X/ddjjx6hqNOX890vpnhjTuR4QJ1X+htPI76tMdQrbs/J9/33nz3si+S2ttYNVAqGrbvyFz+2Su5YctehJZ+6pOXeizsnSe3pYq82zrMIIVoVw1OElPVgKlaWHXUJo57wGOoppWjzjiNVUdsoqrnyLQs7dvG7huvYTQS6K2hSdMg06SpHsc9+CmI9rj5y59kuHs7bt92Q4KVnzUJb4c/ctkqcYt3sSKFAU3AY6bxtY1qSJUzK0ltsQZZx2/zTqRo8uEKQez54CHxWuSehZAPZSONI1uW84fud/Fjosu/Q22O0/JLHFaUwZvB6jKQL2OP8CbpGDDLAQYjBt1LwXXl3g2UaYVFTkQFHy8cYp/qznwoEak75uOqA5lxRaP7XFr2TntNUC/I3CkoUb5WYq/owVik42j2imChQnNrVjM9M0WvgsSIYbPA4tCjAVJmVhrWsEDqzZDrAZKsIpRIDxVhNBqxf98+A/LVAFIPtIVUeQR0TZqahV6f3A5pq8oMBP2awdr1DNasIVWQm/20SwuMlpZohkN6PaHXq8m5YdQ2tg6jjDYL6PQKtDdDPTuNLOyxwOwkqCaGbabZv4QstTStoiOhHYn3frBw5yryQquKlBJVlUiptr+rRFVbw8Z60GcwtwIE+oMBdW+W3AjaZJAhbbvg8rqG2goHpNRjOllY0sL8LtpmiGKtGzJWQSw6xNvaebUrN3YpYl4FOkN6pyQ76JOQVKnbz47X1PFiYJEUWMS9FxLPO5/qGr7aBoqu9ZowI2gygWM2ZS3yLXZWZ1y30xM+1fG4gDvDQg5Z0ShVGHynB+AeBwfLogo1WUUit6ibJ6KLT6xS9jrHMZniLmi3boqVPwPTMkSKnlOO6LgSIRx4yKVMS7zeLvuMjMVOdlOYxu5CDphQPegbO/KIXMIgZUnfUPXNDccgoYOE9hPaS+RaumQ/SYRHsqvmJdTaMUurugSkbJUEErb5JJVsryZZQ0AJ5hnMKYv3A0l2eDWsP3YArOeIzVnrIUGtKk02L0Ij/rxgSpFE/oInhqTKytbVYz8rq0ihvYTWqQhQNy659p1JVSZXmVQ1VKlFLZ4MhpAa+zVntXj3bFWpLElJi7KRHLA3eHWNEKxjVoaIuc1q8Z9Zosa+795I6HUXZlGmXbCHUmc5GanzIvmhRnD1K5VjKuKWMdHSyC+jRGK7uvDrPBidoIlicp2CPL67D1+KkLRMNvDmIQ3heTDLcC7vDUuRQOEVlkPrIME7nEZICNj6g1cOEpv3yPtMBfBr0flKfHeJXzVrk+mF6qAzlfVI4AUJPDRCYw8Fi06FZ3XJvOrKhCzjFWYdFRqx68xu3MiJP34u6AJXXXkVl3/xG3z5C1dwy637WRpZVaytt+7hqCM+zkNWztE/5dEwOAqRvt+lMLPuGNasP5Jrv3MTW77yT2zYuJpN997I9Mr1jDTTm1tDtWIlsIulPTczXBrSNLBi/TpOvM/9QBuu+9InuerTf8/267awuHue6V5mw9krGFRDdGEPum8Hef9e2maeZtv3mNp1K73z57jXIx7Etquv5msf/xCZmkHdMkgwt3Il+3cssLh/iUFdM+j30ZJ81EmTbq+7iqgJkZqqN2DdcSdy1mOfzPHnPZD+3Ay9wQyp6pN1gV3XX8EtV3wD7R3FzDFnof05GsU/WzN7/BmctmYN/dkVXPfZjzLcdWuJYTfvuxl2ks+hhZR6pbNKS/x0KBSKGXTiPOYCAk1xrMUqC5rukUq1NRUPG5SoTlWZwEjR2MuTwUXpkpDHZVBsNPe7SlSasldLCLEHYBvOyT6PY3HhMm4PP7yo8wzKHWORMNI5FiklcfEz7claySu7RSiLiNJ6UQhbAftcTq605DjHy9ek++7l8Q+KK6ESKk/32SjyYcqKEP0xAoYmpaytGS0YKzLRIZTlyoZQ1X2mZudIkhmNllhYWmS4uGAVpvoWvt2OMv35fdRzA6S3yvrdeLyNJKGamqI36DNaHNEszdOragbTPXq9Hjk3VnCm3yfXkNtMmxJtqqn7A+oVK2lTxfzCbtp9u8nNEtraWaoHfVOgspKyVZoiN2g7IucRuiLRXznH1NIiw107LO2AXCIthq3SjNQmLztaC0zC2FmqzcOhVXIsUkOvop6eYnb1Gvpzs+DhjIZTW7SZZzhatIpwg2nLeR01Xuq2pa4TM327drNnBzpatPX1EKhWbB0VcSwiRMlyyzfWMZnvWEQw47HSFRcorinfVcX24OFW4fFxLGIh91LycaNqaRQ0Mg+nY2sXpBo7tSQr5wOU6c4bXzy5jBvkY3cfGt2p8rZj4p/sGtu4lb/b8tJpdOUgURrO1Lj1ma5sq1VhsI2epLLqQDJ+fbtO4R/a3Wh3QLvKT8vZ6HKFo7MIUCDegWpEUCcA49Pe72LZ0R5Ts8b+SLWQ6gS11XjOAaKt9bbXfQ6XuH0ukokqFa+W5d/tbvYmCW3CWtx7QLB4kmGWTBObIGuxxsZ+cjZizQPL9Q3WtqolN2CEgfYWq9IUiUFWu91qpyWpEXogNVrV5LqiqRJSV0iVqKoarf1+rYNg5ynw1J0k0EhGU+uKS1PCjwyoe2hdSwldULxem6pVEkqWmkW2r8leQlYqP2JKCWtosYT4Vrv766zMHjSVrKpDNOMzZS08IWO7KORWCK8xWDBuoU2ubGgkkEp0c3FPCwnVyo9v1y06LJldX85xZePwpQLSxRSsWjproxl1xs5eMOlxCuUAiDgsQS2UJRkrbImItsKhLSYbE4r4WbDzZgA/Erdj34XV0XL83J09trqhwGQHBLE9koBkV5y8EILrGJZ/YvoUlQuT1EapxIpdiy2rqwFf+KevsuOW67ny8iv53g07WVhYcoUks7jU8o09mbe85+vsWxry0GfsYMWJZ1JvOAupjgdm2XDS/XjSr72GKy/9OEt7dnPU0es5/tQjqVPN3sWt1IMBNA3a7GFmzRwP/dmXsevmbVRpRJJdfPPvP8dVl36K7ddsYXH/kF6v4sT7bGTdxjlS3UcXa5ohsDREm0V0aYHh8NvIug8zff9f4KQH3o+rPv8Zlvbuoko1db9m1CR0qaFONdoomUUT9FVtYW/iyllWJFVU9YCZ1evpTc2watPRHLH5ZE564AWsP/k0Un/a1iaPWNx1E1uv+jdu/vZNzB5zP1aeeCZa9dHGwIxZrqFpE9Prj+HUn3wG0qvZ8pkPM9y1jegWm4v8MPCf6HXGBld0syjiTcdKmSI63h+1S9WRQkpjEie8mcuok3FVMbJJkTLGQJJjgU7KWtfwsHCE4lAOjV+5k2TxreElPewpzhNga5bGZHqHQTosIsv4c5TlD3lYqZTfO4lvSCJJRVOeN1BZvB+yfDydsTIkyjgWCeQxjjM6HmKfzowXDYn3Ur79AKwlIZ8or7ZZUemxsG+R3A4ZDZdAG+paqMxtSxZhvk3cuntE7u1mVQU6PUvdn0bEqkbWM3Os2bSJ4d49SNPS79UMBqaMtE22pONarJ/XoGbVEUfQNK1b1JX5PTto9u2G4RKiLbUIUzM1vVoQTai21nQZpWpByDBcQhf3wOw6qtlZ8t49tO2Q1me0cc916TziURuprhA1o6d6YrSkRK5rqn6Pqu7Rn55iamaa6ZUr6M9Me+gjZrwcjsijeYZLSzCYo5ru2z16M8AWrKyvY62pNesYJRju2gHNEsVjgXi/JLGzP3Zm8UpmFp1hhrYWV1CK4uEirbVCOsX4QCr4I7DIMrR6UFhll2c6fh5wg6m2HtLpoVHQemJ7KkY3pWtYGHik6ypy57HInShvO348vDawL3jnBZByk+OVn6xLo4W3WMuHSIahm0CECG2ISQzncQqBDiUhq0so7UBZWAKkjKWblPg7czAlP+4JA6CdHWnMi1OmPBjbuI43NvUqY39I+Vw3Wg8NwxrK2A2KS6po2mbzYhqxb5BKvDm7MaNc4mztudgIrTecWr4V6biiHwQxVdxK/wk0VIyAITDK1qyvUXVA7t2LkwEDa2xlSgbSQ6va4herRK7NikBVW7fbqiphR0Wf8hAES2PIZtWjKYyjdQaKWxE1CbkV2saVnmx5GWZh9GMrap3fI6ZNWTYHbaaUjR0itHTuxG4H16hWnuxph1s8L6XVCNnya2vsdU88812m3ZcXARCWROvHkGiltXk1LOQW/O4I57FHR/cMRUO1sZOtZtUvcaB+XLPiFt0xJi0hkvEKGQHarMeGWXDsZBrDzp0Hzf0HmluitKd6wn5ybxhZ0NT5UZIIeNK5huUYs3ZGcYGUbL3b4n42IZQUWumq2AAl5CupmiEgqecJhatd2DtSdi0O+eoXLuOb/345M7M9siR6ObOwNGRhsWX/UNnXKAsZvn7zEq/762/wkC/dwi+89NGc+oR7wUzf5qaqWH/KGaw/dpa8tB9ZmEd33cz+G7/JvluuIW06kxmdReqNrDpmM+duOgttG0bDhq1Xf53rv/JVbv7WtSzND9EkTE8JRx29kpkVq9GsDHUvTQMyVKRpEVFGDElXfYWZ07/DuuPWsnHzZm782r+TW1hayKg0lhAqtu+HjVAlq7NmhitIldDvD+jNznHkKadwyoMewoYzzmVm/VH0ZmaNT2hDM7+Vxd3Xs/O71/O9b18HU8ex8d5Po7dyDTlnmsVFRosLLOzbRR4tsXLjsaRVKxlUFf0jjuDHnvRs5jZu5LpPfpi9118FTePedKxCTLLQuDrC9LKYHcT3RvTzUVUq27C+c/ztCI2YRxrp9oEZH0xZsd89dEtB29aSOdWlVVgsg/9jink1zgYiz0wM6FRURMNRjbCJAkaMw1QipVrO4U2dpM9jUvpgLBIKhRZPfkKp3OhZaaxrKGyOLPz5kNsuOIlmoiaj3Z5AZ0AYj47o1JNxw6cSnjvzolrCbQ00EmPtimWksetE+IpdsvNmhKRrVckZ5vcvsDS/SK9KFv1TmRKfM2hrvRWyCs1IWbptkd1LmaOOyMysnTELiBjGqadnmJ2qqbJSe4O+3Cyh0qD1FKmukV6P1J+inpkBPxOjpXlLnF5YpMqtdyK3HkApYkgiHE27WckCzcICbX+I1j20P0Wzv6XB8rbaLB6RAFE+v6oSaE2JsKgqpKqRXk1vZoa5VSuZnllhIVL9HpVb/qFF2yF5achwfgnNfQYrNxjwb8wkmdtM24xoJbvBtLbZrmcYpIpR3WN+9w50cT/kSAyPpr2Gz4IndOWTxbFIVJgMDJA6/IiQpaKhcoWowyIiHq41Fk4eWKRSIEVmRxTbNf4hy/CoOBYJ47SPwYtjEAqPdHik4xf/YYqG3UA7dozia8ctugkpXgwrL2tHIkrLRghFqZgR2pa7OMUnx4S9WxBduEd89/Kb1rFxHjwhucTGd+9qPSksZYMYwZTGy4laHQMZe/XA4KoDrETjioahS3P7ufvWDktnUVWR4vqK+zTwkYqm2oXuWAx6RVfH2foDGAyzqk6WKH2g7apTjKArGUy5TovSOJhuXblQT+hXzGIsWD5G0hpxj4akvsUyep34VFdFwfDM9IMVDcXj6W2jCy0pCU3JOUnkFLXpEzSCNj5HTYK28ZJ2jUFLbSl1EXxbanIrklqeRhb8YAvNmKKsJFdwlxUhBHyf+mK1WQsjJ41bCuzdVcRPxdZzZcOHMD77Y8qENSxSTYUx5PKzqzql3UXvESSuSETYHsSp6krvjb2ZCF+I3ilG1hMhu0XYGiK5xTl4jCRUvFyo+Bl3TTcSxaMstykb4t9HiW+NEJMIz0oJPxc4D08WNqNqBQgYi8HNmOIreHy17YHsIYkiwkiEfRn2Nw21+4ina6FqWpYWF1maH5FHrVVX82uDeSsXR8p3tsKN3/42x536EfrHPZg0exz0aqQaob2jSHViaddX2Pq1z7DtuitZ3C30Nm1g9erTkTQFo2th/mqkWaDf38QRJ5/M2U94Lntu3ckt3/4OWRtWrhqw+ohVVIM5mmFLKzVto+RhQ922VH1BtaXdN4/uuYXplUew8sgjuPHrPsfZ4aC60SX4jCq9Cnp1TW/ValasX8/x557Dcfc9jzUnnMFg1RpElGa0l4Xt17G4dw8Lu7az+8atbL32Wuq5E5g58UHMHHE8rVQs7tzOaHE/7dIiizt3sveGq9DhbmYf8gR6c0Omp1ZS9VdQVbMcf/7DmFq5hi2f+Tg7rv4Go/37rXs0UWa7RdTAkYhpwBHSUMBD8ImyVyheK8tzS6W7u+29RIqSxgmvClgRncQjJMo8fJHDGNaK8E7bWFSc13nVmTDRgSwP1XGFvXhLRO4BrKTj0Vr4+DKuEXY7k9wSHowxLJKkwIFlWESXY5HIvVqGRXAsYqivwyKqRbEsXoyifPh7wKs+aunQrAQWUet8PT52V2Cgi6UwA4t5NCLgyipZ5e4dcS/NGK+KXE9NXkVLGGWYH8HC0iK9pd2QMtR9r7aWEKZIJPJoHh0u0I6WyFmoewOq6VkzAuoQ1UW0bVHpkab6pNVr2D9aIi82qGYr4V+nMjMKXTVRMaUjt45HRi2apkAGtHmxKPWlB0z07fIEypRq80D2pqh6A/pzs0zPraA/M0uv16OqvCR1HkHO1udjNKIdDhHpU0+tRlLfeqo11v8jWuXmdoncDKkGs+ZBkhrJFureS2uZqnvI7p008/vIo4ZOYnfyv9MQrWCNSlc6tnWZnwNXqvGA4JNod4bNsxpV1EIWxOtRn0pIUnner395GBwk1Fz/WyNmInAg/pxhkuzGvOym0C6q587TnVA0DqTlFlj151zvd3ew34/QaXkOHMJyn/2eDeDi5VcPSIjBD7VfC0/WAvtiG0M3ActUDsf4sYZm/em0wZy923AeVyNk7ArGzKK/dTw4YNJjHsLr0mZoMl4ZyUquhX9MXBkJwNW6SxMPG6pCKCTvrF3yA2xuoqKXdcJuS8yfNR+0Znvh7u9G6NurIHHblBILoPgkhdJioUqVVGbJTdZts5LafDFSk1IPST3wRLJKLGSqqirqyurKx9ilxJXFonfjqyJROlXgSfRSCakWGIKOlDyCthH6TaIdCbmJjdU48ww4P8bk46/kx18jTCeRc+UMbpwbiLkrfa9FvCOJkhdDCVtLxdsUlcPCQt7FAEeMdky/gjcxsjOh7kqtCuC1cKrsParHVfhQgQ9vMgOweEpGcArKyRJn0NJtXNuP2gG2AATQnTULmXMfoya3DANksgtlY+viTReF3OBMVYoJp6tJIQbWXNGwmvoW6oUEkw/w4V1ikVLozZpEdpDDSj+GymjetIywp4G9Qyu3OT03YGaqZmblgP50j8WhsO3W3eTde2hyw1RW2gp6rsj065qjNp/Ov195K2v//gNsOu3rzB5zBvWGE6hXH4fWq2jbzPXX3sQ/fPgKbv3uTaxYdyRHPf4kGExBewvsvRx2XAcLW6EeUK8+m+POPoc9T3gGu256M0t79zI102N6dpqqnqbJLW3qM2oT7UhpRw2iUKmSRiPYv4P+GpiZnTH3Pwp1DdlCBlNlVWIi1wpq1h1zFGc86ic55pyzWX3ssfRXHEXWzOL277D7pmu47dpr2XnddTRpNVTTLOxrkZljWHv0vcj1NLtuuh5dmqdZWKRtl9AMzb49LG69Cdp59m67iXb3FUzrJmaOOpuFbbewsNTjyB97ILNrj+C7n/8kN33xs8zv2UF05o3tp971XTUbfy22iIjpDznlpbP9rObi6UrFWGSlsGuXJ53yQSVIVbmVNrmCbDw5VIjOlW9jkaxlrCFzlxu8HLOEcq7q/C4Ohhyg0R/e1GW0dZ7gwHduGxrDIm6888c4FhGJHhp2/jPZDUGMeSyMh2gWxyIag3BQ38nawEXB1xxHuuG6C5g1hVwt5CYH6jBe2fUu8D2nLq+890J2fpqorNKlWJhUnSLpv7VWA+C8zidGzQtc96fYv9hQ793FtC7Sm5qm6k+R6j451XZWtWVhfkQ7aql6fVbPzNCbqsnaQGNgPOuSKQzVgGp2gDarWNi2iLTWWDiK1Vg+ghvdVMnZY6lja45apJdI1JArxyJdzh1YaFSK0vpSM5iaZnrVOnqzc1SDKap6YKV684jcLtIORzAaIl6FKmeQNEXdn7ZcjtYK0OSmQb3apaSGVGeqrKQetM0SVQW57iE5U9WJmZWr6fX6DHcNGO3eRTscotrGdqBr8qp+JrvytBY2WaFauSFN3IjpXvQU4VquONqSkz0JHNdEtWAsxyHJkuGD7wi2uYuhIeSXOOqQZLg4Q8kjpTJ8KYnMWJhIh8jv1Pm8E4pGfAl+dLq/wlYXz0aLt1Yi2duYZ+uoLZoYFTMQkWjcWZ+7sqvBxClmCjcc+Fnx8JeiXXTCvQCWpHa9+BkHPBqpRRiHw56WSDAeVyzsZ6gc4m7tcHWXWH9nIPbDNk/KVn41Op+nLN5wW4qrVrwMbDSDs01iG6auhOQJ3zkSiRU0W+WMNrducTdhmDRTaQe8xMdoEVoBiFOx4ZfGhgrVGFNFPN9KgJSopKJOParkVoRkno1c1WgytpjCE5HccudKZmyWTnG0eTJnjylaKSeqDKmxA1PX3uBwBAwFGQnVyIoEWLdesxBkB+0RQBaBTOYihJzscLdqSkYw6NBCAyREF9QIg7EqD4JWidQTpLJEsOw5NpUrgrVEF/pUErDAKlHEDdt9ekhQSqRk8ayalJJZ7DvXWbBv6FBfx8XmYUwqxbhQ65ixZ5yHOQXLtf3YJdGVqjtjyrSM8wAVcs6k5CaFyLVxbGU9EuISJrTjNYuZjSBJLZWswsMX5SztOlC5p6QYW7RTdsXDENrWzmVVxi3kusc+FfYPRwyqHmfc73ROOf/erD1iHTMraupeSyOr2HbjbXzlE//Ely/9CvXCIjN9WGyzdTgns+366/jUNXvZd/OIB373Ftav/SpTq9bQW3M0S70VbN2rfOM7O/nyV3cy3DPknGPWsX7zcYjMQ3sbjPYjbUaXFmF+N7L0BfpHtJz2oHPYesWDuOoLlyGiBlqqCuoKrQc01AwbqJcySZVeqq0Pz2iJvLAbbZc8jKwUaUQxryBJyNnigY88YRMPvOh5bLrPw+lP70GG16LDaxkO13HlZz/J4q23kBvYdv1ummaR2aNORKY3IFMr2H3LTYwWr4HRiKoWVq6apic1e3ctolnpDWZpFzO7b9jC/EyNLH2bNbftY35Py9TazdRr5jni5COZWfV4qn7N9f9yKYt7d6O+7mEDN8bpZarVdmXy59TlhsX3W4WaCGVCO/lAKCWpQpPxy1IV0eWjvRaWSANeWbty62MI0WRXXflZcJnnvxY1KQBdNkCp3dPgyvvhScvNSQ67yyvBSaHbe9mNnESpX+lkuogZCeK/kFcFi5QZ685+yLYx+5yNSceQUvzjiikAyftYedEWC2lzJVYUbUNpdAOHhALbyapi8JTOQyCVMD0zxfTsLL26pqSDSkJzw3BhP0ujBcysJcWMmxSGS0s0rbWgy7mlP1yi169p6z51VVtftCVlOFKSJvrTfaZXTCP9hOZsMsyxQputvVubRsysnobRDO2+/UiVrZR91Rom0my5bLmkHtudqedpta3jpkQrFp5sWMQMkpUkN3YmBlPTrNywkf7saqgFZYRZUPss7d0HrXkns7lMyL2+hVelilE7QtpFC31S9aI8plilntCjZ2A9tdZAlpHnGmf6dUUSGMgUraxlQWFx1y5aHVouoJnb/TSKe3+kRFNkb3oR0qbbj84rwpBQmTEz+qOlnmES9dxfy2s1w2419rOS4DB0Sq4IJcCmtb2bPNdVtTHl2T9QMHbZZak8M57XfCh06IpGcnW9WPKKOB3T2dw1TqJxIG4hZsZEU7LFbZ2hxmSGh0DGrhel6ATT8Eu/jgiBStrNQh4PYnHw4NZDVwRBoBMLWq5jMduUhjwtJQ3MwXjk7/vCOVA8UPi4wcA1xEi2gZyt3KFmbyjnIUAkQdqEtEJb2y4QNfBqzVeSJ1U74K47S0iwPc3qnhNllJXUWsKoqJey1Vw6UUdV5qRWV91mPJV5TW49s9AsoUoCNWjtFvsqUafa+2RUVFXtwrGmTRU5JTQS+tPY5vax5rImBvhycOOEc/ME2Xt1VIlUZdQiskqRq1TbuFoszjG30FQe1pTtOlEaM85EqYcudsAtZKyCXBUAUKSHxcyULr7iniatBaltPbTyfVtVrnhZ11V7uN9LMa8JntznTDhV1hTJEl7jbGRXnCvXNaKjRCSo1nQbPfb4nbMm/GeiTkDbHVoDzXixq/oUHg+wyh1l74xdx2Ldfa8q5uUT8ya0CtIonYsCSoUxV76t5HKyzu14jodi1uJkvCAMwkkolctqgyOFFQfYqTUXI4si5lnMkHN4Ie3MUdX01h/F/q1bWbFmFec/4WHc7wkPZc0xG6hG87Q7v8to+3X0jljJ8T/2QE6+98nMrJjji3/3KUY5s7AIS42d+YVbb2LXSPnEdrjiukU2Tu9gpvc92upKWq1J/Zol6aGjBaYqOPbYI5mZqxD1vvPVAHqzUM3AaAj798K2rzO7aS1nP/Fx3HTtjSztv4Hhwn6mJZNSH6l7UE/RyoDcVsgow1RFv+5BmmK4exf7b9tmqn4WVKysploShFmSqwH9mT4X/OwLOe7+j6Lur0R1mpRvJe/9Br20nU1n3ov6nFPoDRbZsW2ab3zk8+zbdjOpvxfp98tR0KrHzIppNt33KBYWB+zefi1VPWDlpqPRpiXXPXqzaxnOrGZvnmNqVcUavsPUDZcj1Twr15zB6Y99KPXUNN/51N8x2r+3CPvI0alTAqlo/O/KxSHJwz7EvRO4qS31S6+Nsl/BypnXPct1q2pvkJZMRnoFqlbE5VYn1MuJl8Cs0nk/6LwZMmYPjI7FxaLvlApXPkxJwLUoYMxYQYCicSzS8fgImyQlqyzkhT8kxTz6xd2blN27kD1cUjycyuuHdRYOH4A5nA6EXkI0IR0PC63UPjuORZzpGWgfwyKto8TxEO4kFanfZ9S2pCqxYs0qZlbN0ev1kDZDO0SaJVKvRzWYo796Ftm1i4WFvZ2nKwtkaJcamjaxO8NS0zJYUHp1Q12N6KfEIFX0qkRdQZ0SM7N9+lPJmxIJVFZlsh0lUqs0uUVYoO4Jaf1K9reLSLuEyIjkHj0BUmPAPsCAEBb4hLQt2uYSFUGUlXf5XKXaoifqmnWbjmIwuwqqflEMc7uEoFQrZ0wGJ2gaYXH3fprG2+FqWjb1SaA/OzAAnhcsMqPfIw9atMlU2qfVKZK2SNVHR/vR0V5yHlri+ZrVJIT5nTshjwwPObTBcz01mlnHLlIrrlPyAFPqQGsx2pqRE1cupGfh6WodmpHKCigVw2dEwogVOjB5pEQggPFfSDl4kno4e4VKW4zN1gTRTtWBieC2j5dnb3w/uhOKBhT3rUYib4SkhNIeyVN2qnIy67OITUSLJfBExYyUujCk0M5Tgtx2cKJTHsYS33wzmVU/+I1JHXUFxZ7pbANWJ926voZWoSUbKZBEQLxx1u4HIAWPsrGrW76R6DRNYTaKFitHVlM0mhaqVqlGWoC9qPezFDuzfY1FsXmzZiz2YlWLlVNMIVTsXpPH7EqTadtsmnS2JMUI3zEGaBqpOIBLY7ObHI9VKtTYQVbvMC4964VRVRW9VFPXdemXIZLQVNGm5HkPdqoyUR7QKENXKUi8H4LtZPfwgGgyj0+rZulIoFK5uzQjUpv3xZWqplHa2q0fbuo23pm8qgLFQ9aKl+clWVlUCY+G772YjEo9X8Y8FrkyRSvXCbyaFp7QJmLJ/LV7NGpXRysXNCWeMgRJ8lK9VUvt51PUYnMRWzf17lDV2N47MBkRX/vDlTLq1by0eDHDkmjJdHbGA8IXizCAukcoPBli3o0S/WdJXI4TPIwlK1RKJMjh8dHWMNAS8sKIU0qUagh3kCz0SyiNKbil4I9QvKnGgsL4YePLrcXRG7tRGneDa0rctmeeLD3Of9pjeehzHsfs6jlYWGC4bRvXf+3fufXyL7Fh/aUceZ/zWXP6+Vzw1Mex5Svf5NabbzEPG401qUxCv23IDdy0S9m2W5mpWga9ltUzA1asEiS3TAtQ1cxODZDcglamZEzNWdzq4l5ktIjm/cjifth3E2uOOIXc7GPXtp3s3Hobq44dIdUMVdWnnp6impolL86Q0xCtB9QrVpAGU8zv2MbuG24y3i42r1HJqwUazcwPh5x+7zM45twHUfdnscISq8mz50G1nmq0hY2nbUQXboPbvsHU5rO55bSTufmjH7fY69lZUm+auTVrWH/KKRx9r1NYf/zRXP/vV9KvRmw67TiOvNe5qPSZ37uX27buYHFxxP7de1k79V1m2s/D7q9D3kqaW8vcaRdx2k88mr079/C9L3yW1I7MOJOSG8FTZ+QA0GyAw4FfFqGRaMYXoQv+cEObdQIfN82FscHkSPGSS4TlRrhg5wkNri0ehxLKs8Y/Y2Ff8VSoK1WRi0Wq/ugH+u6gUubN7suSgy16QN1QU0Iegajs2CYBMZBuYY5dLmBn8KTDIupd34PBtAYALbQJNMJgUS97rOGY9rF1xtLkRk3LETHhZ1gkZPQYFinolC5Bt6yqlHDeFkWqirl1q5hdv5qqrtBWaduG4dIieX4/g3o/U3Oz1LNz9FetZn64xCiPbE+3HhqqZgxpNDFCWGiVQQ2DXoY6UQ8sXFNEkAp6vYq6VrOwa/KqmjVSJaQR/n/u/izWtiw7zwO/Medca3enu200N/qMPvuWzIbJTiRFmZRM23K5yiobUhVg+KFe/FQvRgH1UICBeioDVUChILhkG7It2xTVUJTMziSTmcnsm4jMyIjMjL69zbmn2c1aa85RD2PMtfdN0VbQhlEO7cTJc+M0++y91pxj/uMf//iHDIVSlBI2yGTCSjKl9AwluAGEvQdJ4s35Xo+KQmhM/sWQkaEnRcci0ci+EK2yGsWavhf7e+xfOCLEBpVEDkKmpZQNlIEQGooO6HBOmswIw4TN8YnhDZcZxRhI7YR2MqFpEt35mjgE2qalnUzRDGXTs1lv6LoeyUITOlTOGco5eVhTBkXiIXJ0gdwX1ie30WzXwQ85q2Z4Na0QHDea6yRUgOnZaISw49hZoth1ThFJtQe2qmsch4RIknE+OlEtxkQ/Qw0/WwIdCoRYSAo5bfEyte+3bCNHXXfbDqCf/PgXP959olGJVQdJFcjtMgv17YzNKzuBs74oAw8B9eEP4sEZ2RGJxG1w3J7iuK63JhvqG4RRmzO+HD/YQ93QxZhlgmlbR5Sr9a8YCNHqRYlJkiqXpKGY7WlUy/6qL6zbyu6Cjfr0g1ijakZtQw9jIX5siK+tXMkv71AskwxACvY1w/tVzmPXpsrO6t/S6raYBfXx2eKN6IxvVUZrNGMN3DEJCyKNGOi1ibXek9DY3I+UEilFmphIPowvRjs4a1WgEMZFMValxjUoYwwlmN90LZNWkX0o+ERvzEouqiWjIogGQgmEGCx7j5mYAn0KSImQC6IRVMgUa7DOziSFmrlbI6YBzsjYqyIuKQigUcegZpUMm3eiTSCkHeAgVW4VCRq282B8HUlNNqt0TTD2yhn7FK2EK1HHhLNIIUs2LTjVAak+tiXLus/ey4+qY66BqyaeijCMUkbbL3YdatZaD2lPPtzKoza41iUmnm2UMYmx36i/p9QSuSe14OvWExyxYYs4AVA8+TMppGupfflYnl8ToC25Abgcwl+/7/aigbMBbq/O+einPsJnfuMvsXfxXrRkbr/zGt/4wy/x3//On/DOyzf5xPvv5nOHt3josQV3P/EY1x5/lOO3rpsMQZJVbvrMhSYgSWnFNN5tCMzawP7C9m2/7Gw4YAh0qyW6WcJC0LgP032kNLA6Qbtz0GIRaXNKezjw8Gc+wdf/7o+5eWPFg2UgNomYGuJsQrO/T2EgyIa0l5hevBtFuPn66yzfeYe9vQkH995Ne3Q3b/3oRU5uvEPOyqYUlpsN93/oftrpgJZTZ5VPQPbYDJc4fv4rHFwRJosGupZIy2SekKGj9C0AVx66hyc+97Pc9YGPEydzhtU5DN/ivsf3ePinn6TZP4DhdQ4vFfaO9vnhV3/M6sUXaB97C53P0RXoZknsz4g//q+Yf/RTPPUrv053csrN732dUB1zxO+rKlGy390wVo41VEOA7PfZfr6aYxBNLlVoCNUZiuJEuxEbKqbTxgHweBJptbpl/Pn6Mdq/V1nOmI9vAaQlK9tvi/dqvKcfdSiOf4xtdn7IbLHDVi45Dt/zWEFNTHScakNtqmX3eoUafX1fe7goWkar2+KknzXTbrFIZcrVxohbkuFSIULx6tMIWIARQflr2DbqjsSqa/KHaCnWYn/B4tI+sW1QgWHYsFyecXZyRtlk9qcJJgNTCTBt0KZhs+52zCnq6xNElCZAcel2jOYJN6hZ3ou4hMnfT3QSGaLJgkOiDpeSUghisqrp0ZzljbXZ0Eeo1vEhWR9GiHZtUhBoEyWBdB1BB6aTiEwaZDKh08HOhhiIXgmcHc1I0zhWH63vIKLDhNxv7HwPYZQa0QY0YTe1CYRpy2Rvj3Y6N1zVD4R+xTRGJrMZgYjmDTSQUoTjDbJeksKanJJDeiUzIPk2NDP2L1xAh0K3PIOg7rBl63HEItj8jkJV9lQCVCzZiEr2KoZEsdlkKUATt1gkeEVDnMDX6H1jTtybY8FIQthRJKPKIogQY/HKrOXvaEHF8Ihqrc/vPhwsjY93h0X+ghUN3xj1SK+aJBg31lbXbIexaddl3MTqOnkpFlyV2vimrrX3IBF0PKOlKCWUsaphGFpGOYJlYMFfmnhA8LYWtdZaYxK2PtVjlBKoMxrGngZnIEbQIJZchDiuB2vakp2ESGtwsdeUxRKiwaVLpr30zNG/ZjjYEo0WIxYJ2PRKNRedFm8eEnM2ij6UT4kWhjSCFAO8saA5ULK6ZsgjnVPHxZOPsCPxSSitmgRJ/X3nYA1HpXGQ3QRiSoTYIClZRh3iKCuoeuQxZca/PoIs2QKzWv7034wUUoaUi0vLcC9ZGddz9h6XUATJQsjBpEyNJU4USx/wnhctrn3NWAKDeDkwjFUi1eD2cy6T8onrJCwwhaqDFBe7RtvMYtfPKhjR55G4xr82/9b36glxTfxFss1PKMUqI8JYkhwoqGYXTNVk4yf7Md7jAAGcVLDrUhCXIVXSx2z76sbfDWdjP4afwVWKM2IM38u293b124JUo4f4E8+nWxBha98TljvkD+pgxlnHXXTjiUd2hjOGMkpUdu1tBQghohLZkLhdGpqDPT73b/46h/c+QuGAW689xxf+/j/jO3/0JZa3Njz8vrv5xC9/ivs+80uko0eI3ZQL995Nk2q7nkCBvRSY+/uahHp4BJppQ2wimy7T9+bLo1G4/sbbbG5dJx6cIfESpALzY3RzDsMGCVbxUIVUOt7/uQ/TvfICB1eBtBj7l8JkQnu4oLSFySSyf5BoD/Y4u/UWL3/zOa5cmfHUT93P/b/wr5Du/xW++Q/+EX/6n/y/6fo1q76QGuXuexeUzatweoJe/Dg0LaKZt579Kl/7z/8Lnvj4T/Hw5z7K5PBJhjzn+o+eo0hgyAOzKTz+Mx/j3g9/ghDnoIXNyU3icIOr11ra2QTKD9HjbyLLW+xN7+Leh+/ipBOmiwk6u8omf4funTWzvY42vYysXmD/nl/l4c//CpuTm5y/9iPQypHbWghAKybF9Nqm3+Nt8gBV+pogNpZkhGikpcgIDJBdkGFS1BCs+i/BCRD1hk0P5aMhAoXqGGP74s7YMKpwxhhs/TG1VvLu1dX/K3x4c/u2fHAnFgFGYiLcAazcucmJNsMighRXKdQkY3tk3oFFrKpk8mT1OFXhelGXYOsOFhGXyVpQodp8RE9aa2V2JFRxOWgMd2CRilnqrTQiPBBSYv/yEe1sasqCbsP56Qmr83NAmcwTs8M5cX8fTa3FxZToiydHPTvXUQkSGIZC6+YtSZUOJZaCiMkHiwjDMFgztGCVBBQNGxAzwpesaBlQzLlocbQg5I6mUUJjJ6eRuZEYjHBMuJwnBnp66DfMZ0K735IOL6DzI5bnZyxv3zKJohiz3yxaSNn+XlpYwq5Cv1qyPL5FM98n7s2hXaCS6PMaGjOCkUlgemmfyWzPEistIIWmzbQx0DQBygY25yAd2ghhIWyKIET6wex0bRkWoEdDj872WBwdQclsNmvbx8Vk6iUEVz1UMGn/1rp+vYJKDNZvEuOdidKIRWq8sGpGlEjyBCaEWiWqSUbFYvhBa+ssiDlWqFc4ajJdsYiREnXdlnFb/U+JHH/BREMqIth+eMbfYAszIiSMIW8wNr42qkhtwPIbZcAt+NN6s+XIRVQk7p/FIZgzn2PJuBoWiEUH8RNegtrUT9GROXDyyNywtvSPvQ0H/Zaf1yZ2xswvBMvwo5dag2yrMMUrFMBWwoP5Y9v3lTJscT9OVYlC1EKr3jgfoEnQ5sJQglmgiSWmEm0BpaDEUGstlmyE6C5KanMkSrZS6Ogw4lWf4s3pSYUGoVXdVkXw9xqEIcAQxdl8sUSjcevaal8rtR7jwhfFmsbUJSq74iwR21dClSG7yVaxak5W2izEQQnJGuLoXFOoQqlJRq1eFWMDatmx+HToorV9f5tnj2mwHygxWNJhiWC9wbaINag1jtckI1iZ06puiSqTiBp8dkatcEjFo9aLQi38eRrqL2YLbIUGqOYDW4mbkv2rvnLGZ9p+vLcfIttkP7Mjg6JWfuyeb1lXP8plB2SNFE0Zq6e2fqX+EbutO88wJiniCWlNaCp4q4yyOqHhCUd2n/EUBJvq7BCtwFhvkRoDLFBntfdmccQJFUnIZMpk7wLzLnPtkQd56KPvR5rLrE5u8p3f/31e/cZzTKUlXb7ClbsXTCfC6cvPcnr9JsfdHjdef8WqnRLMZQuTChro9V2XhBQTKKw3AzlDHpxkCYHXX3yDl559nifvegBprkK4YuX4/R40I2kKw9qIoJO3uevCjM//q59FVjcoRDarY4Z+Zde4ibTNHkfXHmK+mCKh4/Xn3oDrb/HhDzXcNX+Jaf86aR6564nHSbOWsl7R54FpU9hrA+iUfP48Xf4u6fAp2sU+B/c9yT0f+RTxwiE0ezCfU9aJxaX7ID7H6XLJ8OYrnL36Vbr7LxOaC5zdusnrzzxDufljpg+/D8IMZIrEQ+jeIWxe4uKFltljV4hNIkwuwvQuNusJdGvSgRLyOcNQ2Lv2CHd/6FO8dHydsjwxSZ4nBsGb4ovEMSF1mEbUSDXzQKINNw0JkYhVURPEluomU5wkM6mPOuFRf39rby44gNVtPNHie0mjB3D55xDANvfYZcuxtWA/8T9rL///7WENVne+bT/EAyY9jmp1iopFTB0go1PYdtidnQvVKhYqiYHbe9bnV4vWzhCWMa5vezDqbAiTn2yxSD2Ex9hRic1QizOyE4sc8vjP1r7JWsUKIRJTAxKYzqbMD+ek1FBKZr06RbsNEweljfd2ln7NOg/0BM67DZusoz1qDaVgs0YaFI2WXPRZ6IdCEqEJbogRlH7IDJuO6WxClBalRQVCo0jI6ABagpvVFNIs0l7dh2zzsks2Fj1KJGYjWaVpSSJ0KKt1z4SB2UEgtB0l9WgbmDKlWxo4VzECNLXBXO36tblehRmEQJrOSXv79r3UWEJQArGd0ne9VyAL6JoQWpM6Dh2lPyeFjumkITbiDTrB4n3pSdNELA2lL0gQStMypOg9GBGNkImk2Zx2r2PIxfvSbH0kx9BBTSI2aPCkNmyxSHWVCibts4qooI6XI42tVXGVhngvsX+/rp66rrZzYeq9dpUIoFoci/g5OUINSy9kROQVSG5xTa3cv5vHXzDRKNv/8OFLBJ+uiW3wpEor0GKVjCTbVm98u4lLTijWjGUXI7u38A4LjG3IQiGHMk5ytqtWW7t9w+w0XIWwA+rUAKXZDFo1II5MD14eqhvaAXINRGH77xASKQSa4LMknCkZkwe/UyXUgSr2unpnPE2bbFUF9Z6CUGyIYRFbtE0QulToUqEvhUGLXR+zizLL1yhb22B8EJFfH9VAKUoOSs5h26+iUMtFVbKV1CRTdSrlpP5I8IsYrTdBk7lhxSSExh0QapUfs/As/v414K491hi+qzt0EoIQlRiVJpgLTyLQRqXJSkziMzM8wAuUIgxZiFmIJRBzIRavItjkIaSYfaZNZPaAbuc2Jdr6S8X18WqbsuBZfhB3erGXm4XRkSTj76M4QyBVZ10dY7a63hq3DDxsQQS1V8arSZY7yzisrSYv6pIzS1ArF7G7wf/lSDSCZ2RVivqT76jKROzTnT+xy+iGUL/v99GrG2NGUZO7kQHYVjCQ7cAj44trRaz+mjVvU4TsRIVVUup3fX269juoAYys9jw1UdIQGLADIjWJhz70fp747Kfo6Vlcvszs4IA8RF7//rd5/VvfZvXODT74i5/jno/+LE1+k6sPXKaPl/nKb/8D3vj+j3n7hR+NVyMIZkygFgMq6EEDOUPJA5oSqjD4ZMhQCtdv3Oabf/oMD3/kCaaTq8j0IYSEThQ5jNDuweYMVitYrZDhhEY61jScn52zWZ8xLM/IfQdFmS72mDz0IeLeJdbnx9z8nd/koXs2LMrb5LMZMjkCKTaPwsGyqrJaD3TH15HJQ+hdd/Hqt78K4Y945COf5eCeq3zsr/8tdDiDzasMZzeRcMje1Qv09KzOTrh144yv/PYfsDwbmB7dz2YVODtecdAENK9QTUh6ANmL6GqFnLxC090g3nUXUq4hm0Jz4SGay48g3Vvo3n1omFFWZ8yS8uBHH2dz63Xe/OZXKcMwsoe4EUYIYdRcj3xzrerW09olJjISUTJKPFSNYNDRecd/1kt2WgGxlUFGKZRqIQRrJDXXwu363k0c/sfUUXeSMO+9h1Qs4hLWEYt4XI41sVB1wtOIw1o9HYmhsSp1JxYx/6XtIFH7cR37LCq/a60blQeW0cmnSsor2WH4wiN4xSJUKe1W2radg1ElSTuSGm8Mm8zn7O8fEANM2imTSYtIpFudW8KsmdnhHs1sD7QnNJGeyNnxMavVmvW6oy8wFHNxMjUIZhLjOEr6QidCDJkUhSaKjx+wdTfkzGq1Zu9wRsCG9Sr2HCGo2a/mQMk9JQ/koSDRGqCLuW3YdXMXxiQB5jOQSC6ZsDxmMSvklCmSkDahSUglEGONrQ7GGZDUorFhWK7I/RlxuiBMErNLlxkKVu0o9rdCO4FwjpZMzpnN2TlNgJQSoRg2bBth0iqSAlpaRAtoRktm0EwzC/RxQlgPpOmE2M9cxRCgaQwvxEC7t6DPmXK6NKAVbcxB0uBJnq09wyKyBa8B6gT32ktacH/94lPDfX0ECd7zuO13Hmd5O7Fcq99VSVNxYMUiqpWc9d9XSyOK1Jlyfz4WuTPi/I8//uLSKcoOPRh2WMWqWhfTtWLZepU6MB7sW0AgVB2pvfyMD6Gjond7kxllEAfFsn2b9SKO/SJBbay9YFaLwS82Vuq2he371y8Usn0NWg+BUN2FvOoSzB0khUgbaoe/gSAtBe8zN3cj70DOijVEqUmiehV63C3JiZHojEwIkKLSJ6UfDBgMRbezRbAAVWr1xx2L7N1HbBiWNRPXYIV4z8W4cCpbYkx8Emgp2xKx1EYlLzmESHYWjxFW7y4sHTPfej8V3L6NsYm5HpSO04kR2lhog5KCVb2aolapKfV51BkRGKK6TjEisZiuMwd3YYieIGR3pbBNgxYkVrZmm81bcUy83ciCVU001JM5m7guFGcTsribllqCTNnxu/d3WLeFlc0t2ciOM8QTSinbTKQW6sZAoIHkFqwmJ2KnprFb3djd6O/Nh4WOnRBVAZQISHFjBKnfYktR/ITzDl5Jkjr0r/i9ULbOL2Mq4r0VWJMdwRMDHV+TSZ6seS+XMjI/Fj+sTLkNt3YARN2GwiA+5bXKZpxdKqqUIiwuHPH0pz/Kg0/fx+rkTQ6ffD+haTi/dcrL3/wGrz//YxbTyMd+8QMcvf/TDG8+g56+wPza+3n0s7/Aj//sP2Z9fMo446VeSwzA51H2IeRiidTQ9eSsDNX1alCkdHzjaz/g4997lkenLeHyAaRLaLhkjeHNRehvQLoNw1tsTq7z9htv8uartzm/bSgqNZn5dE2rPRMRGNawfxEt+9x9bUF885zh9il68X7C3l2ozBlWmzFWBIQb5wOvPvNdHvqVU9LsQfau3OZ7v/ef0Z4/w32PPUpYPMbbb5zx7D/5T4nLN5jsX+GVlwe681NmTcOF+z7M5Q99nsWjH+Pi5QntpEdzT3j7GWL/KmzehvQUtDP0aGOVhZCI0log0hVhsU979yOEfIQ88kmKHjC7+Qekky+jV57iib/0c6xu3+LWj573teWSG69kBjHXwRxkTGAtFpjO2UvLVl2vK9EH/6mYjfLgc49ilV0J4z2uTPa4lmV714Mzl+Npv3Pi/6SMqj50J2z8xK+8tx5/HhZBRixSzx1rtRu7Qe/AIvXMwwGVyC4WqUmG73ndEgxFi5FRfw4WMdLDk2nxGC9VKLQD1fyMqYSheLKye1ZrrYSG6INEA7FtmV3YZzqf0mhmOl+QmggFNv0Gcs+0EY4uzJDJHqVbMwwraKa0+/ucnS/ph0yv1ndhGMVeVPS/G1ydMwRlGIQ+Fvoo9CXYwFs1Cd75quNgvSEln2chEaOXIWhAw4ZCjUUbhr5n2GSyDxAcq2u4kgOF1FBKYjFNbIaejUJJLZomFEkE7QlsuwZKUbr1molmRCaEWFif3iTnJWEypciCvleWt29BycQ4oRvsfsYUaSYzpntzpvMZkwaaUEhlIHbQ6AaJGZUWTTO0UfKAYYuihDAY6ZoawnTqZ9EUSoPoOSGfEtOE6eEheVD61Rqz1ff3LFu8rNh6qKRsJT5HLOpOpDZzI1iPLwGtWMTPQgkemxzzjtjXF57NdKt9ibrFbv49IzJMsWEKorp2a8uCones5HdPfv7FEg1/UaZhqbt2OzfjDjjkP1NzdHPSMC5AxAMr2VmJyhLuvOg7Nr3L9tmW+yprMCYLfp/qpRBRs5asTF9QOxCEkYUYP2OBpojNSAgheNk7IH5AmTtBJIkPpqtAvxgDr0UZCsYmVm2melao0Ct0O+9BsM0lAWIwB6W+h36APit9hr5AXyxB6YlWHgtipU1/Lya7sUwX8Z4FFUou5FwZRKCWdZFasCBJsLJZPfjc7s+kHuZdUBc3BXNRcPlI9W83Ztg2SyYwUBgwtiQgLjWwjxShTTCJwiRAK5mI0IyVr2xypYjLlixwRyIZxXyeiiV6uwSAbM+aygaMk0R9zga1yqVb+ZJtalsbViG1AFA3dg6RKOKa/+i6R7OjG0GsspXauGzO/q2MCzfr6Iy1myfI+E8Z2Y2E9S1kTzgyu4fULqvw3nxUDFSHUCWLcnavfV9Eb3SoMytqnKkpx/a67QAmMYJDtznCthzssSkX9b3rz1MsGJsrjf2wVucYD7wWMGzF2PRej2eetKiY6YRUQKFONgSnSAr0CNdXPS/84Ftcf/Pr3HznlF957JegzDm7/iJvvvA877x1k/t/4dMc3XOVvH6NF7/1bVavv83Dn57z0BMf5ef//f+A3/q//V+4/uqbmIzDXXHQHTbHKml9HshF6XOxiqBCj8kV8iB8/wdv8F//7d/m3/53b3DfJ1bEix+E5h5UFkiYwSRCL6zz23z/uy/w42deo19PafevEeYHCA0n58c0/Uv0p8eEr/wBe69+n7zpSOevsTrdkKRh/+gBiAtgyvnxLTQPNE2iGWDdJ7765R/ziRf/S2aP/Xtcvf9R3nngw/zu3/6/sz+9TTPZ57U31tx6/TptFC5c2CMt7mL/4CL3feqXuf+nfpa7HrrMwYVE0yY0v0P/2ndYvf5lVsOrLC49RJg/AOEAWTwF08tQbiDLW5TT27Be+sTfKZL3LTC/8E+JP/5nRL0B6Te4+P5f4+4PfIzTV1+mDL0B1KyMU7kdMBpwqkNmPe5U0kd9brUAElA/6EP0Rl9PAq2QvJVKjcO2wp0JRk04xiRBK5DQ8TXVZvD/gR1o66Tum/fioyZkwMi2jlhEt+QjZuhSpMIk/2Up4/dMq27wtUout71Y/vhzsMiopIARQ9TXUfzPWIW/9n/az2Y/f7MT14RdLOLPIs5Kx+puaWBzSIGudKzWPb3C4vAyqWko/Qa0I4oyW8yZzRoGBlabFd2mg7kwmc7Yu3I3q9dfZ9jY7w+eLFnos4MxDkqOSj8oaYDk5GffQFegw6THrDPv3DxDUmGa1Po3ESDZBQgFkUwpHavzNcvzjlIECQ3WGRpsUB+D+f4vz5GmI6A01lpNEwK5mVGksdMwe3UQGXvjzk5XLA6vEyZXiKkhpAkn1982VQcN6w763uaJNE0mNA2paZkd7LM42Gc+i0wboQ2FQE/cdIS8IeQ1ElZoaG3uTZxDE83Ktt9YdaD0CEIMDTkogUjozgirY0rfI+0BaXpEmi/oN53Hjp889Q0bG+4ACUoJupV1y7Y6riLjLLqt1XEce0MrBqxOsNTE1Y5YqvzGOxH+XM7S2v3MtCRJsXkfbEVSd6YX/0skGtXpoT7/CHjE5+2aLKLY8QrUoUdbiGQsgSUZkJ1F1LENo06LrI4IFKWw4/7EDqhz9q5mZGPeY8nYCD6Ko0ERoQRldM4NOiYsHqPMWrfaulZLwugNeu60FCXQhKrYt9eoUSkZZLC/FbJNIY7F3GpsloWz3exobbG1UaJlyyUrQ68Mg00VH4olG50KGwft+IJMwQbEjYmFM/dZ7XlKVh8UVhingRY7uGwSt2kDBy9dau1NCHUSZKBzNl/VBuMJdnCq617G5Axj/o2p2S6T4HKwJkUrwSbMNi9CK0orQqNKkmwwXoUi2fF4YNBsAUWV5NOzsycdSdXTjkiRrdOekVwmQhrGs1m3CecIWtmetDVRGf8toz46e+m6SEBGkWD0gBe2mUUuO9IprMKkxZvVxVkD9U3vjAQ7fS7+tVrKr/KuCrDrrNFtsvHefBTdpgsSLGENnowr2wbwO+6PY+lKKuz8RKUa3FXGwNrggTGLJcLRE4SM2Uw3mLyzCZC1kNUqjZXSDAE01/TC/kKfvf9IbF2b1Mq13NzZE5K1WL+/T8HUyWVeGw54/re+CHnF4cEFfuHfX1LKHsvb17nxxpucnq1467W3ODs5Ybp4GtoraNuh57cIp89zePkCadoCahIef73qFycIYyUjoP5v6xPrMQnnbLHPz/zSL/PUJz7ByekNnn3uRRZH3+XSgyskzdA4hcMPIpN9hl744Xe+z7f+9PvcPC70wyl3Pf4wR5ceYHHpbkrfsXppxq3VN0nvnLFZv4ggbJbKoA1pvkdz8SqyuITKwPUXn0eHTBMbrtz/INPH7uJ7z/whL/2z/5bHFw+S7v2rPPrpv8Tzf/L7fO93/z6L6ZJL7/sAkQN0fUqazplefJD7f+rXePizn+fy3TOmiwBlTX/zWU6e+xKv/ck/Y7j5Nvf91GeYnp8h519F9j4HsgdxSlFheeNFTl96nmG5JmzeZt6smKRA/8oP6F75FvHmi3BhQpAJkiZceOBhmr0jVjffNsdBsUZXaCg17oedZam2l1UYE1aDtW6HW3wNB0YGsqavUBWc22pdnfBbH+KJhNYKiDqyDbtBjJ1kYzctrw9f2fIejSN3YJH6PiuxGZyUsrP3TiwC1ERkxCKBRLYqq2znSuX6J/ysFsciY315TEj8ObXGBNmSI8Wr6ABSJ3w75pB/HovU46n49yVi87NEIDYMMXF7uWIVYNG0XG2UOEmQ17a+IoDJsFNoCc2EkO3+R+1pUrLqgw5OaKsnOH5NKhbJjkUGq2oMzRaLDBKZHF3g6GiPIJnTbgPdmokMyCg4a4BALrA+X3F+smbdF0pW0qQx57rQEFJA+zWa1zAoqj0E63VqgppMsWnJsaEXGDadETxBiKFF0oTz8zPOb15neiGh7QXSfAFnU1anpzbbZrIgBauSp5RoJzNmB0csDvaYTYNVMiikskFWZ5SzY+g6munMKlJljbIgGy1sKpG8oWw6ymZA+8EmnxMIXQfrJaEffMSIDQCbtFO6lNAyWEP4uGq2W3b8zE8ccbJD1NfEw3GC1Fqduvyv4gUn0AwvSxVS2TocWUt1TFKrtIY/tv0chivNOMgEXo4Ax6LA9v//xY93n2jInf8WdjdabRuxjL0Hm3658zLGJEKyZW/+dYOpYQRiNcmojeE1kdhixho462hAezHqyYax6Lg/846sJ2BzPdhhHdgmGlGceU+Cuq1YTS5StCEoKQVSdK9isU59yaY1HIYa6+0wihpIodBoMY9qCu7PYIvV9VOaoWShZCFna3zOJWw15GI+4UMw+Vi15UQKWWrDtxozlrcfg3+UUqjaMmNBa3DB9H+h6h29ZOcVpgrQwQE0vlRVt5IjrziU6K9RgjeMCdVBxeZvBJoYaIMYwMPAXrR6iV0r8ti7YACp+GERicEcyWIoNpXce20sAYQUxYdUCKImIysaiOq9PSpjubumIXd8rpcITwSK2Z+aDNgSjlJXk7MHUrWRisvnZPSfrn0wY1+MN7Jrke3h5Rt97Onw1bwNIjXxsFN1uxve44kGQA1tBSRW2WUFDMYEm4GE/az9ivzEM40nuEuXZDzE7abA1l9Z3ajGGcki5GC9QkkNRJiEzedr+KG7+/O7NSRVHzoHoySm1ICu9i6tmibEpuHi059gtcq8+dIPODnvUM5ZvvRHXLx6mWYKkhq6TvnynzzLPX/n7/Jz/1bhwQ/cS/jIPcTFvbzz7B/zjS/8Pidvv4Mo7s1uDHZU6N0limL7kSjmp68uzymFIpHP/epf5m/+h/9XDi9fI+dzbr7yLMcvfonVj25wadrRDm8S7ztF7/pp3nrhBzz7xa9y+3jN8TJxvuo5+973uHK64r4PTzi690HChfsZ+h8jC6HMWnOrmgxIe8DkcEHa20Pbls3JLa4/920mkykhzWgvXuHSYx/jxRd/yG//7sssjv4z7v3ly0wv/zSf+Nf+HZrVCSevP8/04C6Gfk7PBFkccdfHf4Vrn/4lDi8nZvPIsLrFO8/+Aa/82R/wyo9vcnq64H0f/Usc/txfJy0eRthgNndQcub6D57jmX/033L6zgl3Pfkz0B9yeX7CvQ/eRZCGbv0cw23Qg0Pme9coJTM9uMLi7vvZ3L5B9PWgXu0q3hpguV4YZ7qMyj0/tOt+F7VqrDGNftDHMM7HqGYCIRR3ndoijrFC68B6/H0Zd4hvk92Khux8jZ1+jrqvAu/FRwXl+OcxlVIjmAoy2s9W98dRbcUuFikEtysW7FwNfs8ilRiqcGoXi+iW5DTgMmKREZ6Ay1mq8FjH16tiBGOWHQIFvGfEX0MUU/gFgRhp9vaNlFqde8UUhCUpTZFpILaJECPrTc/Z7dvMDyKTvSlhPmEoieH8hO70hJCzVcwdX1kvmp/zjkU0mzOolmKxr/6swPzwgAv33ct8OiElJQxLuuGEoeuJ9EjxKoC0bFYrTk/OWPeZTa8MuRCGJanJTGb7NJOGEhvIvQ2ji8HirleCQ0qQIjkGtAwM62XN3yAIYdLSrwM3jjccyTs0h5HS7jM5ukCnStcPSNsSslV/Y9My2z9ivn/EtA1MIqSS0c05m+UJZd0jQ8t8uqDdO4CSKEPvRLolE6XrWR+fsF5Z4/kwFIoOhNgSGiXQUUgEEZpmZqRQM6FrZshwZpwkMmKRojV5qJWarXwOxyLeoWCV913s4s8x9nJp8LhQ446dtKFeNFXDrB6k/lwsol5BU3UsuNM3tEO96fZOvKvHXyjRqNlW9ItQLwZsm55UdDzfdTehENvIUdQySKmb2cEvLqfQLYtY/GvFE4mxRxw7YKNs+SCV7eWo7GKFknXeRQnb1xU8mbEmL7vZccdGzOY1hLEZqoliE7qjOAsb/OZbErPFoEqVllXIWG1kB4oBG8/8aznXWJjaiCw+t0OtyS0WNGZLknyIXA6KBrs6mYzqwKADuWSK64KL2kfVlsOOXajgFrb2OQfogtIHpacwEDCjVdOxZ4o1uRVLwtT9mevgQnPTdRveYP7OKSQa/0gheAXGg64zcrj+XbWCOoNupk+1hEWT2dmGRgkax6a1iDVVZY2o1hpINLtczaal1cIghV4LA+qyNbmjibNuWB11Ooxs1NhzZXtuTEa2Jxv+xcBYknRAMTKbPmUT8thLpEHHxLiyBNnZBPVkQ0fazhaZeL3wTljxHn2I7QlvcxrDlSXqYRQO1+P5DqkI9QrsAi2/h4gd+qpOIBQqayQVPGBMf+cVi4mbG2QP0DXRFdGxarrLPOEgo6441J6n2v+N+Kd4NXWyz4WnP8Hb3/46bREmIbLu4Idf+APueuAeLt//CJ/4tb/M22+c8r1v/ZD/7r/5FsdvnfGBTz3KXQ/dy9A+yNf+8R/ywte+w+Zs7WtJx/ev4tXSus7EnI9y6VCsyjFkJUwaPvGLn2b/ylVEelK4yZWHj1hc+kVe+trX0Js/5NJswozE5vbbvPBnX+SNl1/l+Lgn64LF4pAQA935KbfffB0lsnrrFe6eTZheOqKdTtG+J68LUTOL+y6RLj8IBF762h9z8upLHFy8wlqmrFdr8q23uPe++/nyN55j/g+/y1+e/R3u/cyKB97/CQ7+T/8h3/ud3+T5L36Z1c1jSA0HVx/m0gd/inYmTKeBkhMvfvWP+eY/+C3OucLlj/xN2nZG6L8CJ88hB/dBukZloXLf8fI3vsJzX/k6m02EvfexODxgP7XEvYuk9gLh8iPo2U3CvR+Ew4foViu6smB+6R6O43dhGKjsIn72lFEj7R/RyBpighC3eQYOKGSrQbakQtDQoDFRJLhuf4fM2Pm3ARMn4zzDsSW6TSoq+ad+OJsUaPv9cQ3DezeU+J4Xj5JCfb842bjFESMU2sEisoNFErUvjJHdBa+P+DWsKpMxifQ4X4tTSV3GTDUr3wLCmghusYi9Rg1u/CGVoHDxXa1kVblMDNA0NIs92Kwhusw4wrA+g8WUZj5lcemIYVD68w0nZx2b4RbNtEVjoisN5ydL1mfnAOae6WRI3tZodrCIJWjmeGkWtepNpbPDGdIESiwQe6QJSNmjW57CsCZSKJIZhg1npyesNhv6YSAXW8NFYCgFGXoIkZI7QhJCm9Bo3++Dm+m0idw0FCmsz0/ouxXEBhByP0BcE1Li5HyFsmQ/XCceQJzts2jvRU7P2Cw7i/2xoZ0smCwOTWERDDh356d0t08IRCbzIzt18ymaO5sLEidYz5XJq4duxWazoh8K0mRICckNMTVoDMRZRouS0gRt9xiy9bvO2xnSbbwnyypE6onFTxpKVNnTiCGyVcZIXsyLVTCoO4m2r7kdUlnBpfV1j1Tq33ZFxSLjQq5YRAMFMxeyEQYuGfe/Wtf5nUDof/zxrhONnWZ4KynBqEUXrYKSqjP1F141p/59s7uFJMVma1AQDYgzhKE2r9QPubPvA3/L9eLWXoPatFUvqJUvt+VoHAuagkXGjEzrmxDMRSQKxac/VzvZEM3pILn7kkSTVRW86SaYXGgQSwCy6+vsA2MevEktBmuOsmaxgg95oFRbVRGbFxIKEgohFIIPCJTgjW4SMF9vTyYwJ4ReB3oH2PhhJPVaKZ5s1eaiSIn2fjX46xahE2Uj0Kk1jPWq1jSGZeHbQ9LTlno9JVAkUmJCY4OElhBaJDSIpLHfIktliaprR01mTC8aHXwXsSmuQ+MVkvo+gslWogSSRGqjdHBnMnveQmYgS2aQTDe4yjBbBWlQ19CznQGymzCLTw6vJ0Jt3KKwDbg7cK/+jHgSsssAVDGh/3PMltWT3Jo5a7Covp3XXsVTtZKxrWhsN/h79OE9DzZVdxukxB1f7D+2AqqwG898fdgn8Z+oDJCOSaPUTLESGJ4MhGBJKs7cdEWIAZpYRlmbqpDzCOGoiUXdSDVRjcGDbvE00GNVTUjMVz8xu/s+Ll86oH38bq7qx1lcPuTSg9e4+vhVwsFl2v0JH/6Vn6Pdu8iVv/ePufGjH3By0vK1L71J+sKP2Jz9Hjdev0m3WqPZxHTTWUtIDatVh3QdYAd08UMqZ/XkyNgwuxRKWL2MlGNIewgdIh2LwymPfuYXyKcfo0kdYXHE5rUfcv2Vlzm7dcLZaSZrR5MLzbywWbecvvMGpzffJJ2/yqOfvIvF0WWaZkLebJBuSZqumdx1H+xd4+Yrr/HMP/wtNqsBiUuXQy5ZvfwcF9vE9YMrfPHb73DW/Sk/f/02T/3caxzd/Qk++Bt/nf37HuGlr36JW6++yvziRRShGV6lmTzByZtv8fyffZ2yeJTHP/9vMLvrEb7++/+It777Bzy2f43Lsz3C5Z+DuAesCE3k8qPv5+5Hn+Cdl17i5K0fMotXuPDoBdJ0Rmgm7D34ELNDpb36CLkcsTpvGAZhMtsjpJY8GIFQV2epQL5WIIMNEtOQsEnniaqxNjLBiKfacRt86KnZ+JkMovbvBdlasYZgP4vHqirrhBpzalzxPfHPVf/gTkBga1v1z/mx98DDpIuuQth5E7oTasd5GSMW8eui1SHTySpxC3yKxSDTqI4RvGKP0RdMfhKLGNaoc8O22MJf10iObrFICdvnGX9ebHZGEXt/JdYGYbGZNW2kiRNio8wnLbP5hGY+IUzMunV68RBNLdw4YbNc00tkvSnkYUXXnbHZdNarEr2TIrorZfbzxS35ihTDInh11LGIhOLXaYOEwa+r+tehXSwYhkjOU7IWNt2SZbdm3Q+UIbts23sSKOQysOlWQGY6b5GmscF02N/MCrlNDDGy6TacHt9kGKxyO1QArGomMSFyusz0smShN2gPQaYHTC9dIc57yrpDhkJop9ZvgaJxQtd3rM7WCDNme4fQJJYnt1ivTkkaSTNFZWFJVzKsEvcWNOsl+XxlDlkh0EzNMYs+IHv7NLEBbSgyJ2iDJEXbCUNsrGfLZwpkrY3tO2e/r1FETDHheERVTAYXpHKPW9m/Lyx1AVUtk41mTCOAUupQKaXK+f3eVyxS48pONTVQ2xfqv8JOsvHuHu8+0ahMQT1zoTrM2WvXKvTwYCpVqmNfa7HZAa1Ys2eF+8WaM+xgLNtNnREG1zVWqGXX0Jur3CJtDCA7AEx2mM56jUcmARxo1IstYwYlLp2KnlSEEHy6q1u8+vfH7G8n0TAGflTLOIAXcsTnMgB18rXim0TH3uIcCjmIu27Ve+wLIBR3n/Cko7IkWjCHq8ygxtwXL79Hv2cy3gsv0YewLdf761SBLMrgQLxXoVPMYrfUexDQnes92ouO7hgJQkJSQ4wNIbaINCA2PTx72FYt5lxBbaqz6brRteWG8YWcTGtvfxdzC4o2jCxKIsnWCyFSfJaGJRoDAwMZdCD7h5ARKd6w7RUE3d0odk9HyVJlEn297CbPlZ2sRfFQS5reCzD2CFG8FMw2wfAOQnWWxES84r1FW8FU7daof6P+rzZnvVcftWUWtmxfVYAqds6PEoZxB8uoiQ6ebNQgVIGZczT2W1Jtl9W11vb72zTOk0a1Bscg7gADdp+qLGpnfUhNqv11im5ffyUtahqYvSpycLjgF/7KB3jop/Zo5GmyPsXk8Ij24AIxTYlNg4gy3RM+8HOf4b7HHuD8tReZHl6iL4mXv/cqX/2vf5Nh9SbZbbgv33OZT/36z3Hpscd54Zsv8ZX/8jc5X52zTYrKuF6r205CGPqeF/773+Onf+bj6LVfQMIRsEEk0M5AZldQEqKJtn3DrEETNK2im4FueWyzeUphyB3SnfPkE4dce/he9vYODBxJZjLvibOWyYVHuP3WGV/9x7/Hjed/iGpgvVwiskGI6LBh1s54+L77efN14VvfO+aNt7/Or7xxg4998gscPPFJnvjsz/DARz/C7ddf5fS0550X/4wHLx2i4YMsz24TFnfz0Mc+z/7DT7FZD5zdvMGN1zp+9Gff5fBozuTDB5SjjxOkI8bCfR/9NEf33MXt15+nO32Ho4PI0WFEUqBMFqS4RBYta7mbTf8Iq7JHzj0hwOLag6xv3aQ/P7M+NTFyqlaQROqa9iTAE5Aae1WizxiqoaPG4R3Jn2DxFJ+hEYyckuj9ebsA1h/juegSnzsF3ruft49dh6X34kM8Psh49juHYxvbIqUY7qj/FozwDNgMqTpfI9br71SOgTChciBaiTbHIrsJnVWMTDpdEw7G11OxiH+9osKdj1qfLvVeqEmt1BlUSUJqE0eXZuzvJ+ahpY17zNqGaduQkiWzIoJGYXJhn6PZhH61QSXSDbA837C5fpOh91goQpTEfH+BNonVcsXZzRvjeyd6siFG+IGfik6wbc5P0GEfbQ/NXQ8/vkImxEgmkfNg4FzdRVTsnmkxZYZJKXo0D0znDe10Qkl1LzjiE6XEhk0/cPv4lPVqaVikeCO/GIknWHP3kAvLtbK5uWGht5kd9MS9I5qjiwSZQG+OpEPeoJPEIJGSlV4a2r05uZ1AGVj3PbopNKFjHpXQCjlNyX5+p6N99qcN0+WKbt253EzJvUIIhKGn5AmlzMi6b3s+Z3JsaKYLdNORh97IdXcNqNZIFkKErdOnf/b1WxMIqQlBlVxVUt//bXbNtlZFvT9Jtz1Z23k8lYjz2FEbigJjg/mubCqylVJVHPJusci7TjTGPTRm4gZSxecThLKdp1FZw3q5EjDBm3+B5PvOZkvssAayyx74UCNGkgHEGrwsy7b/LmOQr+UjtiSkf83wsIPkCkaq1AX1YXxKSjYwr2n8czL9f/TkI6XoPQK+0Is3sXqfRhm2TEXxAKTZb2AAGYyt0Ow3MQoSPViJbqVi6pIl3c7k2NXe1R4A0TDOYxhxhi+QKidDGIe6VFkTPuHast0aNk2vaZaL3oRehMFda8ZAJMGYjeKJTDF5kM37sGF+0iT77HWuyg5rsQpFlRjZUJFM1kzUTKopplgTn0ZnmV1yYNvCGvaiv151Zxf1SfC5pvs++m6sweT6POYONmjV3cv4/3Vqbx1GWEGD+N8Xi6j4grLt53ZzFTyreA9NUW/K8mSuePLpB2KVYtVDZ1ti362HsPMKx1dZV/l78mExoZinve/98fAdg19wYLWtGlXPmN08o4qrDPhvr2EdeBV2EhHYNqIbCPc0tVg10gCHVVjrAHErBlh1DU90Rnzmsjj7p3piUgkRu6HTgymrH/wJx+E1Dq5cZe/u+2jmSlwVQpqhuYU0Q8OUuLrJxfaYyw9MkfPn0O4Gd3/qCS5e+T/y9/+j/4ibb70BMfK+n/4In/o3/wqTo3t58OMT3vjO93nua1+xHS+WHJXi6ZX4USUQSuFbX/wRf/n3/hOu/JUD9MrnqP1Ywg3g1CP1lOmFI+576mle+OYzzJoBEaUvSmRJXves1jd48vF7+fwvf4L5NFOOv0NILUk7Cm/D4fs403v57pde5sWvv4D0GXyIaNNigCR30BVmoeW+u65y+dqDvPbaG/znf+8FvvedV/i5z/2Ia0//GQePfo799/8CJd7FA+88w+LSPkESB1cf5n0/+78hN/uE2JIT3Pf0R3nhK/89v/eFF7l88Gc8sHdE8/49mDwNTElt5uCBD3Jw7cOQbyLn34Y3vwnLE7j4NF26xgvPvER3z4QrVy+gRDRm8mTBxY9+Gs1w/sbLnLz6Y7rjmxZ3ou15A5Q1lWVMHkQSBBuwFmK0XrJQ40y1D3fabaf3rR5qu7t9C6p1uw90q5i2Sb53xoYKJu6scijy3g0h272+g0XAr5Vb3FuVcSvzrlE1AS1qTodsLeaL/9zYK1s/PGGs5EPZeRHRwZk40WjDXf37Ndbs5BgVi4wEKX7mjPIWRYJY5dXaE2gngTCcIV0hTKakNCU1iZisxyyEQp2GjQzEyYAEYejXNAzMD1pKc4n16x26Mb3oZDFncemAQqTd26PfLNlszuy9OLk5qkrUqrP2uXB+tqE/uc6kbdC0D2JujKLZSEQKaDH59GTG+nRlz2nd0U72FLT0TGYz9g/3IUKfN45rFGEAaelL5OxszfnZkiHnEYvYQC7QLN5jI4SYkDShU+XGccd8gH0NTPeUZn5E2rvgCcfG5nVJRNoJaf8iVU5LKUg7YXki6MkGkZ7JHmjD6D5Fo4Qwp2lmyHwgr1cMyyVaBmKYo32mOz+j0BCaqUvUAqGZ0OxHdJYpmxXDeoUO5g5Yeza2pLCTAY5HbLh1GPGJ9dI6FvHPu0lGJfpRJbhUy/qKKhYxJUvtMRtlwh4XahVEuROLVGRVd1vdc+/m8e4TjcHjYn2x458bx3yYft5fjOTtgd6gNKK0BRqxjVRhw6jN30kMKrO5W9WoFyKjZi1brzOMCKNeELsYYQvkqIlGrQYY41nlVZZoBFISmsY+2kZok9AkoW0CTbLqRvJhfdb+pdaY2XtzV9DtoJ+AT3e0YDTaJA/Yya8ur/IqiFUSlK4o66KsijLNSltsmF3K0GRF4/a9CrXSZAtMQrABImNDT10wtn1DRbhG23iyYBrRKDbgSHwyci5mhWmb29mcIGgxJyXRQlQbYy/RKisG7tT6bwKj9jWi40yl2nxUSoFsQ3CC9hTNFO9UoOAVih3hkKhVh5JpFskQGiFmS3JLrg5lheqTEPHXUEmCnP3npLrObjEuLlPwJNKG84kP6aqNanH8XrWjtURjC3JRl1pRDxdG9jBrdQcTbFS6UkIhVxar7DSC7ewGvePo411u7f91PqpgrQSfTOofyd938CSuWNY8NnGLVhLCu1dGZqcCDw+kaoF7t/Iq6kn0TvVie4+MWcoB2x87IAYVb+C3LwYx97XaJE7ZBmZzcaulf0UkcJ73+K0vvMM9L85pVs/w2EPXeOgjTzLfC2ze/D46nDFdtBze/xj79zxGvHQPQTdw6xV457uk9GUeeeLf4bFPfZKv/NZv0SelYUk8ewtpGiITmAOevFeiQQmoZpvjk4v1aWjgO2+s+KN/+g1+qf1/sP+LLfHyT9ukahpghWoHJOIs8sFf+1UOLhzy3S9+mVeff4nzsxUIHBzt8f6PPMYHfvr9HN11H7ee/T3OX32Wvf0pzWLOUi/z0muFd86f4fjV1yl9b7OD/F4OWW2Alnrszb2BPh146J6rvNkof/q9m3zre9/n/Y+/wSc//gKPfeRPOHr0I+w99K8QZu9DEOYH+xwNkZunNvfkfHVOs1igRL787CnHxxt+9kf/gI/+letc+uSvE9tLxO415PBhZPowpIg0C8r++2ByGdn7INeD8qe/9/e4+tS3OXzil2kXV5AQaWZzBpbM7n+ag4ee5OD6Gxy/+DxnL/2IePYOXVZs5nEF/GbhHkRtwGfyBGO38l5lrM4TBkexGSF5Jl0lf1GdYRc7qypgHZvDB1PaSwhoCaYb35G5VjggUvsUlPfyQ7Kf5/U6+NerlcbY6bYD9sV7t2xCuJJKMNkUW/JAVcfqgsoWixjoFgYnLlyfYrEomISkiPdpyPb+bO/AT2ARB/PiuEd+AouEYORmk4TQRM77QlgP5O4MydkGzNHBqrfkJAakmSCphbZBpVCGjpKXaCm08wtMDuesb67RoISmEMIAWEIjrUAnWzmXr7delU1Rm3OVbc7VySZzfLykTW/TXAzQLtiy6WOHByEFZhcPSTGyOTtjWHVotrM5pch8Pme+v0dsJnSbU3K/drdPSwI2vXKel3RdRxkyQ19sfIDWXlCLzeL+9SEJEjIpNajA2VrZ3FixtxYODjKL+Zo02SO1h+Yop6DBzH3KYP2tfT/Y/KE8cLzc0HXK3lnHdH9NnB/ayZM3KC0lToxoShGaKUES5AnDGtbL28TUEacQaEzV07bEDKmdUqZTymzGsFqjqw7Ng2ERdULAk4rqMiohIiEQolVB6wgG3BkV4ugO5SveqvGlEtJbM4R6buYSUHVH0urPJqZsUY8/8M9jkTvT8HePRf5iiUbNgGrMxHB0VCVpsYBIRXXVQxxfgG7AlWuJKJjkxZ+jsC1xuqCd4pm1SWhMVmTg0XT6vt/9b9QtXZs+oXbpi2AbrMquRujtQN17MFIKpAZS6x+NVTdS45Ox/QYHqdp+RTLe27F1ksgRq27UGQp+YhjOl7HDvXiioZXYwoB+LIUmZ5ospF5ohkAzZNoIw2CJG8GAfQzQFJNoaW0CEgPfpsyprHutMMgYTKp8DGddUIVR2lMtci3RGBCKmHQCFaQMNhxRM1EyIQwma0oRiQOxRFKMNGBHqYCQDQBpRnNhyNkaLEsmlt7sH136Rama+e0BoBWI1ywzKCFFtMhIXVsMUoKYfrLer5CFMASsX0ZHCb9qldT4upNAkOS/a8mGBrGNPg7O2a5zVXMlGitlnoSKj52rB3vRaBU8ojf9Q45mQ5qjVWayCiUHcwui9idtOzSqWOw9DhM8A/MDQ5UktfNE/f+tsmZSzQqy2Fa3dLcVrfY8+UHvsaQ+UwgY61tqoFVnhnQMvKb7NSlFzdVrtctbonBRHOAgxBFJ9EWnaq5rIBATYbbHZjLnpVcy68sHfOyjH+eDf+3XuPt9D6B5ya0XnuW5f/qbvPblP+aDH1vzxP1PI0d3o6c3UJ2wWa4I63do7vo+D33kKb7x+7/D7eMl3/7SdziYdxxcvY93bva88fwLVObVXptPK1KrSm5KoSuwzoVVUX77a6dcu/gtnoz/MfufXZHu/iwSW2AGdIbiaJlcvMzjv/orPPIzn+fma69x/s5bMGw43JuyP0+EVpDDi+TpVV568zluP3/OpmTeeecGt28smTQzZrN9UoQcI6iPe1LMvEEV0QEJA0FaSreiEeGeg0P2Znu89cZrfO2bp/zgh6c8/tXX+MATX+FDP/8clz/5N2gufhhJ++zvJdbnZ5xsAqvjE974wTOcvPx9gma+8/KKH7zxKg995R/wgY9/jwfvP+LphwpXHriH5vJjyMVHkKP7kXs+BXJEHuD1732TvFqiq1PYrAgLW0PN7IjjV1+kP3yQw8v3cPDAAbOLd3N69X5uv/Ad9J3X6dZrq3rWSKA7Sag3ileHv7H/j5p2hN3s1vZ3rV6gdo6F4BbOdk4WoJSM5jwCWiVbAlUHzrIFFmOFZFc29R5lLKr8WDIQqkS4cnpOdo6Day1iiksPR9ZXi2GRaKXmiAGsqkK3e2J6dDDFgapbZvvzRjF5UcU2Wcaivx2lbIeP4kmIYKRS7aupldeRSQ5ibpdNJDQJaQO5ZIYm0h4s2Lt0mfliRiMCfU93cptufcYkFeJkgobG8MgQTC7V92hY0xxMkXPQrrDqV3A2gCS6LtMPHSUxysDNbtdAqJRCyNmu+SBIL1w/6Zm3ZzThTdLhJWjnJlUTGwScvXohbUNz8ZDFwR6569F+sMnYIZFC8mCbUGnYdBtW68KmCKe546wfWIMNDS6mDMnZx1J5jFNr0EXK4KZCgyXtTaINAS3K6ryj9DAsM/vTJYv9NWF2kRAm1H4QLZlhGBg2HZvzc9ZnZ5S+p1srJ2c97c010/kZTROZNkpsGohTlCkqLUz2rKrQQR7WRshHgRR9vkgglim67NEYCSmZ1W6aUpo1ZbWCvqeUeuZVutywiGGPNCoqKhYhhDGpxXsciyeJipFpRd1FdCQ4MOJHCtlHAxS8R7iEMdGwqfHWFJ61JqH1f9U6oBIX/+LHu+/R6LyCsK322tfVyo9BDdzZ5h47qhwIeN1Dog+g8aqIeJ4lYxvbWMqxzV0H6+AJhzE+jWwvpEjNAu0l1R6Hyi6IWGKC2MVFttMJojdAjeMwUzC00ShWflGkVaRR72T3QFDLqHaXxj6LWsGQ3q/T4Jdi8M0b7AaWwfz8BzWbzeJauqHY9GLJQhwg9dB0gdS4+1WARpRGIJGJLiGLSWjFQHSMgZILkmvVQrypqL7A6LMvDFyZNMsbe1S8WmEJlOkPbWH2FeyW4tPPraphr6MnBSHFgPQDyS+Alfts9mWwk9FZVqUMmTxktC9oHiyYlYHq2iTbaUjjBkEDUoJZ8Hn2r1GQFOqCsFkoQQmxjNbETQzkIVJizxAzxQcsSjEASk2QsezegEGi6q/NBasCCAcTfnBXjWJlrGrSIlhznys77ZAChlqWFshSyCFYb04I1qezU0GyjhN3/RpTjZpuvDcf0WehqlcZ6r01eUG9lm5msCuL1O0+9166O0JeTRiD2JquITAGIbkccBiDcmUp1SpYnsQGBw9JZBxmFdSbZrWCeFuXo4kB4rK4AGmCTPdpFofEgwts0oAG+OCjV/m1/91f5eojjxCGl9HlW1x9eJ/Vr//veeEkMBz0xL1DZHIBHWBI+6w3kdQJQRIPfugpHvvwh1n/6Vd469Vjfuc3v8509owNCT3rqJPOoaDFkrSclS4XGxSard9qk4WvvzHwX/zJCX9t+cc8ftJx8WdXTK99iDA9sr4NBZWIDC/D8gZxcZWrH/g8Us7R/hTWt9HTG7A5QwLMHvoQ6XXh+Pu3eP355zl9/Q1mSciTQglKO99naBtK7vw1WrVHc0aD0sSWXLKTUoEUWxbTOZf23sfp+Tm3Ts/4zo/O+N6Lt/je8/+Ez77wEo9++lc4eOSzTA7ex113zZmfDayOlbOXniVtbrDfKtMMm6I899KK773yDJcuzPnsR/f52ONvc9+Db3HxoTdo73of6cJ1ZHaJW9fX/PAP/wlJCm0bXSFpgCs2U2LfsT49oTm4zHS2IO1d5uh9c+u5eekHnL78It3ZiZ91YkyhLSyq4UgJAYk2ANaINpzIMPLCDFI8bfAKRl33ErZSzuLJbT3HgndB2xIoFrRDrV7X/aPj79THe1WCGXrZvj0PhSYbdCyCWqXdNUtbmZg6g6tGEo2xvYwEhq1P+xkjKf2/xRISRyYuc5bRPbPUJGKUvjBq4sVfoJFg9efKCNaoXw8QQkSbhLYtMm3QBqQos73E0V2HtIsWiT0iSjNrCLNLdDcFmoLMrGdDA5Q+UjpfP60waaZMz+cMt0/p88Dt896WylAYJDOEQK6vSaEvBuw1m4JABgidmInBMjM57gnlhFAy4fCINJlAiIQ4oZGIYNbBhYyEhmYyM6tW04Ub+FBsTlW7oLSBfuVDBnuzgDFslxGf5aVFRyyiYljE+mkE69XMbhAkpBRpYkOKVjFcrwt509Gvb7G/WDGZ7SNpBiSvjhVyLizPzug2HTpkJ6gKywKcdKQQWMwT89mGtulJTQ8yQ8lISfSD0q3OTTretoS2oWhDkEDUKalfUYJNe4/FnDknqYF2QlivbE5ILmN/hEp0sjw6Fgm+bl11oeGOCtrYL+FLvI4VHh0rJYwkQx2ZUKcfFDEjoxKKG57oOGzahLhlB33s0p/v7vHuKxplK0uSnWcX/++Rf5FMbU6pB0tt/9Tg5Rp2mirFGOixHIw5Uw1+6GcxpxjFAsn2j7oII2xLlvaE27xrrLzUQOO6t9qEJYIbfoglGUnsiiTQVNA2U5qITtSSDzcHCfVFFKUUGadKm1OU0IuMF6sMUJvXK0edMS1j7/M1KpAZMuigyACpV5oOmijEpKSg5tblkiBBaaUGQ3fHCsHjYTAHh+LJEBFKRNWmfJcKZN0jO5c8ak/rwRV8o6uzNkWFXoVcLPBUpn6QQgxKCpk22GzwRm0+uGpgbCBxuVX1JnflFMNg56IOHoByQbSMfs81F5RgmtqglcUQqpa/RE+QnNWO3iikMdKkgMaIDhGGCEMm9JlYCoMH01KRPy5Bqzd6zKrvnKFRS8UVtW6n0ZoFXij+WnywWsElcplRz2+N9VbsL2IVI2tZtyFru8lFHjd17eJ57yYaEswpxpJrbE/iWMzlVPWwj2LfkB3mxGModzhWjeLN4sRChQl2xVIQojJKeIb68+LPKCbV2yg0Xg4tYxXD4sQ4J0iFrMKgSq/BGLfUEqcLpgcXmV+4ymL/Is2k5dbNHzFthY994C7uunY/6Dl6+wW49RKiwr13f5hf/Nd+ib3V84TJAqSByQE6u0hpDtHplHDhES7dfy8/97f+XSKRV777DGen5yxXK5pgiVQUZVA7IPpiPUg1EbKqhskxB4VuyHz5RTg9z3z45S/y1DPXuefxpzh86HEOH/kA84uXiIcHhNUtuP02ZbNGmg7VDRILkqZweJ/Jn9KC/YMn+MQDP8MHziPf/t3f5o//P/8xdBvf9gOiPUcH+5zGQr86A7eFsHnZulPdsMZnNBNyx6ydMrt8lav3PkAvLe8c3+brP/oBP/o73+Tj33qFj3/mT3ngAx9j75FPc3T0JA8/sM9bj9/L2TevcOvNjiErfTFjCw4u0Vx6gD/8xo/5+nde4dF7j/ngk9d54oOvc/Xh62zaK3z/Gy+yfPsdJtMpabaA2JpZRQFSsvXTr8ibFX07J4uQminTux7kyuKAyf4Fbr30AutbNxj6MvZtaClIyVCcMBNjJ80BMCIhuTFH1WQ7SbETX2pVtzLiAUtOYk1AdHsdbUXfCZq3QNv3yygbfG/GEVGv2KM7jjpbbLLFIj5nazzdtgypxeutk19tqq2N5rtYpFQswhaL1MaL2sOBYxFER1kmOJmB7si8a/QWr46blDcI5mzZNEg7IU4aQhtAeiQW5geBOE/QZJANaEGkZzKfcxQPIK/QNjoIbaBv0C6Zjf10wiQ0HNx9kSKZ5dk5XTdQ1JKMEswK3sxk8CZlm1BdMkivhOh4IBpeu3GmkDNd13O4WjFfTEiTljBpDCNFuz+aC8ZaBne9CtazlKJXfSI0genkkJCh3L7F8vqbRjp6/A1AionesYNSyTgZ9c+qJtuKEogho53JsIME2qalSS2isFx29Mtz5rMV09mE0EwgTBBsDklMDUUSQ+khGxFpkqbEIC03b3WcnAzMG2UxKUymmZgyRVs2516VaBpC2xIanxgmkQA0/QTFnebUro2ETEiJpm3p1xv69YbSG8AKtbKx87lOH7MGaacadlwyi2zXJjBiIirx6XFGNTNeXMfp+OTyOvTSDHvU5rXtpBY/Yfj8rvbsu69oOOCr9rZ1w7jccAvclZ2tu5Up+e62TzWtcq1dBRVjdSLUid72tdpgnnTLbAaprHLY/nH/IybVYmwA3xI3utUh1q/7m5IkSGMJhzQQWhD/CK3WvUET8angJpkJPhk2iJCDTZnsqPKdQv1fVmt8Vs2UnMnBnKKGyuwWh0aDmENCNFlUrO9JFTRSNJCL0BdoizWxh5GZCV6WhVpK0yAoEdWEqpfHPGkYgjhAGYVkBJdupVxosmPzIubEWwK1Ub+ofWgWS46CO2dJIUtGZbAAHJ2pIYwNRsHtcMGCUCaS1dhYsdooIatLv+xgTcGboAhEt8pSCcYSJmf7THxvWDyq+XLHYFZ+Q4Q+IsNAiAMxF/qsDF610WKs9lgI122iodsUe5QhVO969UVf9bbgv+rrUuzsoboiBbVqSsCaxMSbd6yUacWv4Sc4gy1vUNPz9+4jO+skyNhXUB9SagOzpxOeMNg3HUc5gCrUeOOHu/3IaGFdt7cqo6bXZuc40ewoYaCMwGDwpDAET4xh1MlmEp00rEM0kwQF2obQTpnM9pntH3F48TJ7BxeYTmZ03RK0MAuRvWZl70cL9Cs4fRU2J7SlcP+Vu4H3QTNH+xNjoiYL2ovXaA6OkMO7YHiHa/dkfumvv59XPvNhvvLbX+LVZ79F31s6OpRMHTsmHlutedOqpoMWm3yOreIuK8+9PfDijTP++NlvcTB7lsODORfvvcJd1y7wyIffx5NP3Ms+p9bYuDwnRkjzOc2eNVam2SEyPSTML9G0B5wvz1m98T0SGa3WrUSaINzzwD0chkOO33qT5TuvM6w6qtqx63p3mwkGyBFyCEguFnPbloNL93D3Ux/h2lMf5Uff+Rp/+s3v89Kr3+RX1i1P5EKc/SkH932az/zGr3L58pzv/KP/mrdeeIFBIexd5vJHf4bzeMSN19/gjbevc/vGmldeusmzz7zFPQ++SjvbB10wObqX0J0RZ4eU2JrRBYLEiG5WpGEDQ4doJksgZ4tr7d4lDh5uifMFxz9+gfPrb8MwmGwmhJHwqiYYdv5UG9x4hyRiTDa8eqdqTfQh7Mz3HY+8mog4dSa4Ftikqv9DkWIc+Lc9GN9TD1F/m7KVVdbw++djkZpUbeWP9aG6xQh2n7YxvsF6Bkp9Qk9mzNHOQ5FjkcrKqWz7NWqPmYUQb9R3OUhRc1aySobL6VIktS3NpCW1yVwp6U0q3hakAWns7Ii5I4mtsXbWUMqUwc9UUSFOImHWkCctfUwM2jGbFrg8oV00HN88pT87s5kXZAYntLJfEy3Y8N/BZWOuxzEzo3p+CateOF52TNpz2kZo2kCaCO08MZkkYskwdJScrZoUHFyFhNJQRBkkUUJgKOYQSQpAMmimanirmYBGtBsoXU/JJhMqBKvMiBCzn8VDdfEslJAhFmIjtJMZtHOG1YrV+YpuvWK+D6kplGwSztnRBRRhefM6w/m5JZ4SSbM9ILJZHZO7gm4yw6pj2ihNk0ESqonYztBciJMWaRuCJlSKzXxbR5JYRVMUpGQj10ohpkRMLU0zYVhtbE6ICrFiD4mIREtUrOu1AmaqMc1oRlA3vjut1DxiC8NNFhhqjxdW6ZMgUCwhrC5ru66vFY9sd9C7xyLvOtGI0T7qPA3bpLZBq7tD0mopZ6+hwrPom1fHRhP/fd/AtZs++AA4cS/dmoAMCJXwZkxyZJQAVXBStZpRAnG3BLPzWisAqcHEzJJqE1bwPgPv2WgCsRFCI9a7kbaFj6AQ8xg3rJ1GrCIYKprx6kUmE9QbnTVD6r1Xobhnv91wCpZoeD9JsFOGXLLpNHNk0wfWE2HWBiatNYw1MW9nbjj4ktoUKqbTK74oi9hAlq1NqgXKhPG/6u4ROOiXDLZXhb4IXQkMBGvSF/s7wSdfM+BN8DYtXAd1EKhutuLXWZWUArFEehKCW946CLdJ2epMnb3GouasESQQJdYBKpZ4iR3S4h6mMhjg9HwfQQghkkKEMCDSE3IhDoUhYPpEb5xQ1/WpOjsUzJrSs8nx4EK8rwirdxD8tQf1ipAxEuIMg4qg2V0gxOawEAO5BEIJ1rOTxTXAO3vk3W7Q98gjepYvoTZ6b2Ng3Qe1abVWFYARIAgWazL2S7UaaBPcnWdxsF1jVVG7DyFg1xkbZFfJ0K0SWzzG2OA0iQkmM8r8kBLnFCY0zYyUAnnoaVNLO50zm85pZ3NmBwfMZgs0D3TnN4kls1js053coKxvEGbXYO8BkOfg7MegPyIcNbC4x97E+U10vURXtwiLI+K9HwKE/lu/zeaHX+Do6G72f/4/4M03Cm//8DmGvERzGW1TtfYF1AtVczRnaqPaPpyGQlKh65XXu8xrtzPx7TXTF4+ZTQIX/uR7PPXgnJ++1nNhXoipoZktaOYHpL092v0DpvsLpnuXiIuLnJcZX/rdL/HK177NlExOgZASk70Zj3z2ozz9l36edHCBrmt47Xsv8uzv/He888MX0NzbXdcIYyXcQVkQJCbr39t0RAJ3P/QYF+++xvUfv4+9+Cb3f/43mNz3Ud784t/l8snfZ/HYz/KRX/1FHvjQ03z7t/4+N97esPfIh5g/9BQv/eAHXJhPmEyESYCkyjtvnTJ0cPHKwL3vf5L2ypOsfvQdmsVF2/u2sBCBvLlNyhvTgetAiFOyFIbBYlQ72+fw/kdpF/vcfuUlzt96E5ZLiz4pQmqM8d6udAqYXboPiN0mDnbfkrO+tem7SrDY3tpxf+AV1FIrI+wuhB0Sjy3R916NLTH43pYtv1gvTd3zaXQ4sm9WUZq3uYyV5frYxSKIydh0zBIYyc2IV0d/AotslRLbyrr9PZvVQ4pmc487GoZi/SSCDbR1iW9qGlJqCFEQycQQaGJDkEKImdBMiNISh4FYBmLofOhjsmuRM1EKOWTCJJJpTSJ8dkxY3aYVgaPLrPqB5foUymC2s45Fist9i0LJ1W7f1p5Jl4rtV43kQegaYdkFc+qMQhMLKSpNC7NJYC+ZFNWBFojPCYsRQo+KTQfvNXB+eka/WdJMElSSOsBsPiMs9ugksR6Es2XH2fEpq3VvuLBiETAc4oV/HQlERfuCJKVpJkyblrKZIPQsDg6QMGF1/A5Bz5A4IV08YjqdsLxxg36dCWlKTFP69YYg0WKpY84ymPogRqWZTonTGXmz8YpGcCwTES1OulrfRkKQXBAZbMZHtsGRGibkOCNvOks2MoZFdpu/xcwlRrLBieY7BtuqZePRDZDMic3NDsQkaIKSikvnoxHHwS0yi4opXnbxOtu48xeNHn+hREMiW6bEs/kqIhkTDd1aitazLvh/FD/U7yzl/gSDI0Iau+3FZVRVsrAFJVmqv4E9R6AmJu7KHwywqztcjVtc7KeN/HFrWxGSBBLBPkskSqAJkSZGmhhoo9B6RaPy/yqQ/EWJumtTwm1vjR1I6I7JqwswVKEYoN9ax9nnkAO5y9b4PGALuS/kPtNtAstJ4LQNzFph2gYmDfa6UiEmHZmeVBvfJbhLmIx9Bloz1gB4Y1Ej5iBlbk1Ko4U2w2RQVlmYDKb13hRhU4TOkw0c5Iexz8Hux1i0wioS0YM3qiiRrFYhSkWJQekCBvolUGQc0+fAyYJ8EGvQjviwxJrlSUSLW7wV74Wp71EGckgmIXNP+qgyCpLAGW8JY6JRNDBoZQ1sc++u0e3y97kOmNQMLzEGMb/pQNVOOyMUAqVsKzNKIGmklEwY7PoYg7D9G/b/775E+b/2h7hGuq4P0yr72qnEhVOUo60zOyyleEl5R4IJ+MTkWj2zvVl7uLLdGqQmfpUJKaZbDWKBMHv/jLQNzf4+iyuP0Fx9mHTlATYl0y+XtM2MEIT17Zto7olt64lsIE3Nj31Y9fTDhqYJzI/u4db5hPU7zzM/fBxZPIZefBE9fgWme8jsCBqbqq3dhv7kBpuzY0q/Ih6/Rr7+Y86e+zPk5i0mT/7rxIsfZDH/AikJKXoVTiqTWxPfMsoffRVbTFWhjco0qPWtINtKCAJakKysNxu+8J0l3/524eefTDx1T2Rvv6dslCHb/SJFupg5P7vNd772DV789vMMp2sDVU1iNpvwgZ//FB/6y59jOrwFN76KpsLhR5/i6P6/wRf+9t/lre9/FyWYC9BkQjOZEGRi5EtoaNoJEhsjCLqOzfU3yd2Gey4f8eGfepSLFwQZbnLfp3+N1M4ZTm9S3vgDrjzwi3zu3/s/88ZLb3B8LpyvOg4PDrn3vmvcWr5JomfaJtpZw2wxs0TxwlWm9z5Me3iJxT13E9LU4ksY0M2SsjpBujNKt4ZuTUytu/gVypDpCrSxZXH5GpO9A84vXebsrdfpT07RXMve1bluh/HC1uU4oK8O5wsWQ0OoM318v1g3x/hfQcRc8fB4VL/jcbOC5F2IANt99V58RCN4qSFjp+MdqORmGMcCwJ1YpJ7du26XDj7YziwwLCJhG/dNym04J2slQlxa7BhkrKbGYD2CyWQ00jbWaFuKOz0WKMOOuY0Sg/1OCMZjR7JhkNSCJmLpSSHSpClNKKRh5Rb5JqWJxblnHVAGYiigPTF3SD4n6kCZ1Rk+twmN90wUm29VJc1mcw9k71XLhkNKVnQokAvaD/RtYJmESWPOnG2CJkDbFFIvHJ8pSYSjaWDWBmJSu29uGygxQFT6nDlfrdj0HRqFGAzMpyg0Bwua/Tk5D3T9kmmE2WTGYnGVm+/cYrlc02MDSwnWaB2C4TdL+ipGsGqvDANBhLZtmM+npCZSVEkHF8m50G029JsT4nRBe2XOZrVm2GDvPUHbzpFuSROEJkbDijHa7LCmJTRzJM2Q2BAkMYSqVhDrh8WdJx03xSgU3ZFDi5DCBE0zcj8w9IPJy3G8M2KRcEdibFVOOzdNwWfEdRUV2yyN4nhKid78rcEwn4oSNZoELVuEqS0G28dOWeSOf/2LH3+ByeB2mm3dTfBtNYpKfL5B/XoZLWSDC+2Le057JWhsng4Sto5MUdxW1Jq+jUWwDV60Bgih9y1d9du7F998htUH6WyH2ImDbCNVK9Oj5pZAIBGJGgklWsJUIrEEs8JToanVCiqT6vpLLAghnnS6PZ3N47PegkFlrDQQQVNwXa3pw3OpgMi4LtHBG/uKDXzJkXUXOF8HZo1VNKaNMDFHO9qkNO6iGEOgCcaQxGi2aAQ1Zr76vQaQJITGbH2Nubeei4nD8L4o3aBMB1gPsBmEzQCrLKwReiIDzvjHSIiJEJJvBjM6HsG6uAmvABTXUvpAKq9eBYIlBhIglB1lrVu9xZq9272WYhm41jqaOwtlVQasoa1Ts+hV9em8EighjhNSA+KVEHPnUo1kFWNsNLh+tkqktqmU7WNLIGzQXvHX5mNsJGx/ljL+PpgFpYRgG8AlYXVKewletvaN5rCcrSbyvf1QiRQGYBs3xEvf1TXKgMCdieaYaMRocgnXLtQmzqDGvlSLQHeVNsDgiXz0PZ+LTfgeKyfUzhehPTzi3o98lgtPfYrJ4WUWF6+Qpnuc377J8vgGQ5/pVyvORBm6DSrCMHT0eaCJQvD7qFpIbQuTCxzPn+btl3/Affd8kLT/AHL1U+j0CJntQxa683Ne/cZ3yKtC7s/h9CUOjiIpvIlIomfB7IO/Rnr612Ay5eLDDzFd7LM+W9mh4b1BlfQ2cibQikkIwGSnKEyCMIt+1vtlBB1nE8QEXR44XhdeXysvf3XD01cSH7lPeeQe2DvPNMtAOVbevn2dF1+4zunxGbPJlHWJRM0sWrj7kXt4/Od+mumlI3j1e8jZK8jmOnLz+1x76K/ysX/tr/En/6+X0W7F1WsLHvv4vVx45AHOytM884ff5uZLL9MeHKFxgjYTVqszlqfHnJ8c89TTM+77wKdZns94+4t/xOLK3Vx+8iqdXOHFL32Zux74ARc/9u/w0NOPc+v6Ga++fIPhyj089JGfYdIt6W+/TiMd0+mUxfyI2aUHaA7vR9oJ+5cfZ//KvaRm6iA20G9WKNCfLUnLM5ZFkbPbZAL9kOmHAWIithOmqaGRTJjPmV+9m2E+o3Q9EmxgX86FfpzGbPcr1wqcyIiXrfnV/j2C3bpfPCHZbcWs3w1a4+Y2+tSejfduanHnQ3awiMUK2VY0arxQD7eVGVe9A4uY+tafIFq8kZ/EIk54hlCJCEsm6vDPSuCZSY2DQSCkRDvfJ832CE0iur1xKT156A1klww5GNPtBBwoUSLJjQKCRoIGYkioLCjrjjAdiHFKSgtziwtmNKJDpl8tGXoYhkLpOnvv6v2hMRL3j9DpITlHmyqeIvSWqFZbPsWTDZwUL8qg1hgtqkhxxnsQui4wSTYKwD7vzB/bMM6GuH0W2JsE9qbKdFKIjXofrDAw0PXKgBKbSJRIDJaQpFnL7PIBtJFh3TPEwqYf2JSe6d4RTbjIjbfeYaOKNA1pPrGKQljQrXqkKCG1hGiDg3OBUAYUZTKNTOf7lF4Yzs4QAk0SSmjYLDtEepr2kDjbYwgDm7U5W8ni0Pqj6F2laH0dMU4IzZQSEzElRBqrRBQjnIec6dUqICS1Lt1isshSsvcPbpPdmFxilUxZkksliWXEr9skwAk3qcl0TVq2piqhTtf2pLy2HagGw8n4gVmxSN5ikUroCZ6c/08gPt99okFtiFSq2ZKxj5Zs1EnPWxbBmrFq2V6CW02GYsBKdsCX69QlKurfr8ykyM7GlsogVPDhw9C9dFTlLQRrNBzt6VTvuEDC1lcYB7gRH7xWAlIikgNhMAY9uCwD9Rvgvyv1ZC82JKj4+08OaJNEkhRSiMSoxKKEHAgS3Wo3oqFY2VJMIx4AycpQrCF6PVYAlM0QWHXCKu0mGTbvo01KG4xRSEFoU3CWIdKkSIgWUKTxpCy5LrSJpCYQkiJRLfsWSzQGTzRaTzY2Pax6IQ3QqLDWQEdkIEJIltkHc5tyJalJm7yvojjLFNQPPr9eUa3Jrq4pmy9i62pMLoNNWq89DbUEbRZsVqLUomPSNgxqDaGDknMZ5wlYAcokBqZYEtBgzlzuykWdb69CrLXDynD5IVZq0lltFAtW0RBLcusv1XR4O9/bHSOI3sejaAjkEMkhMATxpNoT4nG1/ctR1ch+vXGnnDp3R+s+956lykBaUN1qq4sn+GjlV2wlGGjeTgyuAzDN3nnbzG16dq+aKGQtthZEaOb73PuJX+SpX/8bHNz1AFGUpp0wdLbK82ZJvz6mXy+BQkjRXdusOjZ0a/rNmr5bUoae3Hd0dNxYRb7yZy+yuPplrjx9EeYfJMyfQBhYn7zI9775W/zB3/0nXL33o1x7+oMMN24xna1p54dIM+fooUTzyCcJaQNynWtPP8WVhx7i7Pp1hpyN2ChO5Pj1SMXZM7F+p9YTiiYIs+A5O2GU5NjaNpZxWYzFTECflefeybx2rFx5cWAxXTGZ3CLESL/saKMw358xm0whiHnR03Bwccb80t1Ia84ulAG6M2R5i/DWF7j22L/NAx9/iunqxzz+RMvFvZeIw+tcffIDTK7+W3z1v/pv6AaThBSFYbXi/OQ2t27f5vqbtzl75duES5+g00T3xutcfuoKQ4k88+I+z37lj/jMcs09n/mbXLz6QSOgSsfmyQ8Qc8f5q9+H9W3aSWJxdBeL+x6D+RGhnTLdOyDNZoQYUc1kHQgh0qQF67NzWC0Z1muG3LNeLVkulyw3ayOSZjOapiXqQBw2zLTQCrSLBXsX7mVxeAWKslouWZ+d0nedU3IuI6wMpZMzEuSOJGNXQlVlQNVEyc4j32Rum6pUyZD63/mX42Fv2YxMKiYwRldr3uBN2JXj3WKRyoxaQlfM0tV9+7UOe5KABMMidSiaYREfELyDH3al4IJAjDR7h0yPLhPbyUiiKYWhd9lmHkCzk00y3iv8bJFsoF/EybMhUPrI6vaaRbu0BCPNQBZuMrZhc3rG6c3bhDC16t4wkEImRZMAlwlIalERIpnpfE47nbJe9+bQJdGwmdpU8FyPG4/FpZi8eeP4qRShHwpdCkx6YdMoTS8mn2osd8FyOpoorLvA6aowa115kQqSBlNUtIE4aZAUXR2UiY0w3WuY7U/RKGRJ9CHQRGiHQseSdHiJ3M0ZcodMEhoyOaxhfsh0ccjm5AyJjSVjREpRerWks+sxiZPMEI3kPtPElqBCt2kZ1reZLQpheoGmnWLalB7mYtbReQMUu4d+PzS2qEREEhDHPrk8OJFchCGbvtwGI2ebEZLN8SqrIGJ2P9X0RjGralIgxpYQDbIX72mluoD62h/HA9gCQsTX0k6yYBjGEbRLROvoB1wVFN1swpynKklRKxr/CyYa+JtQ2TKA+EYzS0n7WoVqVLbXwVQMnlmLmDTGg6RXkexNekZlA6+ccfQDMYTaEW+JSwUfg5jcJofaDO0lpXphdoKzgYy6qbfVmCg2qM1mXBrolByQHJHBnq+UQBnsF6w5zLX6I9mszrBbBSZJIAWTXw3BhthVU6u481GdtMaetDoxCANcgzAuliErfQz0Wemy0A74NHOzvm0jnmwIkwTTFktImkBssH6TYB7dMSZCE4ltJE2sByUmhbB1xRqKkgYb1tP00PRmuRt6a7wKaterJ5qzQozEINTBgEXNHSKUWo72io7rPU0uFrFhfzbgqricrTjDKmOioeRYqx/mnmW2nrVKoDahfTA9JoP/e7CZHTnbezIXBaxJPowrgOCJkXWr2H+jMpodoM6AqYzOWapWzbDdWO9jQUu1TDQhg4jd51pVUXfMKl6BM3mLz/4Ym77GcPEv1cPydbsuRe2KB/H5M/Vn1G66t+FYpU9qEp7vYC6j9yWMUiyqjKreZwxoOiHAzpWtzW6oEGcHTB54ikvv/zSXrj3K/sULNNF+7/j622w2HefnS5antyldh3mUD+Suh2I9Od35KZv1Gh16ct/TDQONrHjk4WvM4kXC3iV/hwFhTi4Db/zwNf70H/4+L//wDTbdBYbUcHm2Ye/iPaTYUDY3aKaJ7vQ6y+tvceGh93Px2qM89Kmf4pVvf5OUB3eJsXevagxsrQzHIvRSrYQhRWUWvN9S8f1o1pYafEBq77Eq+u+IJenXTzM3TwYmSVi0sDdLhHaCYNcitS3LTUc/KCkWJE3QsIc0R+TSQtfDsIHjN5lde4X3f+YBpjdu0py/Qn77VdJM0Utf5K4nPs89H/kkr3z3+wzDQOk25NwhEkhHV/jas8+h/+k/5hf+jY6HP/1x1us90nRNU6Zc/cDn+frvnvE7/82X+YXzcx76hb/J0ZWfJus9bDZryupJJosF5fw2IUKc7aHTIwiB6XzK/uGMtm3MdjYXpAysl6cGCNa3yDfe4GzIDH3HZrPmfLXkrO/ohzz64wvGBMc8MGtbZosFV9s5i7seZL44YpYHNsszVqfHrE9PKUNfa3YGNPw8sqbuiortHKxNgZXCyPXgUIerUgU8FUyPS476LGNQ2QHJ76WHnbsukWXn7dQ44gBX1LGIVGcndQWDS0jchEP8l5V6ebWCEscwhkUKflJULKIyOlKBUGJEJnPa/X2a+YzQNqNuPg8dDG6m4pmR/Z6Be6M7HWNls3QVl0aGDJM0pU1TpCRKZyYsJQQy0K07Tm+csl72NClQBksu02xiRG3pSNHALd2SGFomk5b54oDlycqkiwwMjEvNqkGl2qAYRDVpldLnYustBooWSoG+CHEopCTEvvaomHSqjYFhKORGyIMQUiE1SmqVZiZm+ZwiofbEiliPxywynTWUIGRaonTE0JtqQwuxGdCLU7oOutzTFWu6Vla084tIgbwZrIqulcg1y/DTZYfkUw4PoZnNkQZMTBpoZoes15nT41Pme0qzuERqF7SS6EKgBIHSIpohGPZRrGoSguEHdW/YKjXLXXYsYrOzOjWDoMH7XvLYj6ousw+Oc+pihpAwZy+JdoKVYtPFczZJXpUZF0VKsUqFurpH3HUqmNzbqoCy7YH19V6oJEbxHtOKsRgTlf8pj3edaGwZ1u3m1vF7VvbJau5EdaFKbSSSMjIrtUKjlcEeD/64U54TtsNILCuz5m+7AcHLmbW0OYQdByLv9hr9qgvOZPvmGO0iatZnwMcsvezDHJWiDU+LgT77zMVscp+KdOwvqR/YdmGqVjpi/R59jMTiDlJSEw7TSCcto8d/1u3zjOeD1p4BYfDrWhtmS4E+Q+x3qhjBekgmMdA3ZpebcyAXaEWs2UxM4kRKhEkkzizRaFpISRFPNKK7T4WshKzEXok9yMZulQxigHpnrsQoPRa75vWhBTTtOFdkvPpgh0Id1hir7M3/e1xgo/rK0KYSKMWz/VLLiWW0kLc5HSY5s79T51FY4pbFnkOCW9kSUbEAgSQCEdHgE3mF4MMDC7JdOqVYNUPMOUt9Hajv7bGRua4NTzCKswRaE5TKvkuhMKCkmnbgLeWMNNy/BFUNLdY/ZWZRvmC8ulWtCxXrpSjY182LyJlEj3QWCdhGvpHZ9UqZM4+5bKuudZKR1HvjOArwvgABAABJREFUkSdNZkzvfZR09UGavQOm0ymzaUMgsDw/5+Y7b3Hz7bc4uXGd7uxk1L3mPNBvVuShJ+eBkk1Tq6UwbHqaGPnkT72fT/3Mp5nuXSCkNchtKC8aICxCt7zB2a0zRDPd6Ru0m8TjH3qIg0sXKKvXyeev8crtOV/59vOU05v81b/Vs/+RB3jgQx9lOl/QdxuX4Bjb2riMSpKZI9jcHSWTrYFR1PTdYkl0dfvLMdEDq3Wh7woJs9QOMMau1mPMJAnTFGiSacolRFJKPPSRj5H27+HkrVfpypq8OSUdPYDMLjDolGGdiSUj655040dcPZjTnTasX1/C5pwmBWR1nRSPmR7MCU2kbMxSNgrMD44oErh1/SJ/+EfPcnr89/jLf2PJxcd/ibd+fJPrb7xM7udceeJT/OBPrvOb/9kX+Ve7jod/NXHpyscpm2sMJ8cMp8ds+g059+TlirLpObp6yD3XLnPl7gO6oizPy1gJ7ZbndOtCHpb0N9/mZN2NuuqgsGgSZTI1kJIaQgjkXNhs1iz7gfXNYzS+xsG1x2gWl4ipZXIwIc0WTBYnrE5u02/W1CYkqWcbW3e7UYs9uhZt4+0/BwQqQeckXRm/uV3zYxnkPfj4SSwC2/ceKovsJBH1617hjFI7wvL482NVRLZdX6pqYN9ltTreg+1flNqAK1g1fzKlTCbENhHbSGw8bmthGLZ9EPa3xGQrameh7V/1JEkc9AspCrP5gtl8n+mkQRMMuSClNxtXYOgy3docoga1mVaT2dSnXneEPDD0hZPzNZvNhunRPrFpmM33SOEGiWzScVUzitHt2rATaGu4bAmHOHBXJ4VcJlWEmCuzDikobQyU5IYP/rNtsD5Jy/STJRptIk4Ti8MFzaQB3dC0maYFTS1ZGlCbP2ON9CD0MAusRNC1xfQcFXOvyeY2GYRSbJ6QhmgytGAS6Vu31wzrgf0LAyHtMXQDm1Vvr3G6YNl1nB6vOOAW6SDRTudICvQbKH0AHbaDhIv1lKS2IWhg6Mo49LgMhTL0NgB5GBii0pfMgEGAImLD/czAnxAaTztNbmkT0O3aR28mHwdJJiUOPWUYIA9bTOJKHltvXq1wBQYhOlEaKDpYMks2XCR1UPbAtsOvYpGKTAPbHfjuHu860ci+6nZLhePDF1526cL2GMcbYXwDq83dtJQ+ehUjWrQIvocVq2o4Y4EDM5Nr+b8D5hQUGZ0hZFfr78113v/iGZ510SP14ruiUqwiMtRyEdbkPDhTn4ogTo2WIKRSm/Z0ZEWEMlqYFmGUhAV13XmxjxjNgSJJPbytEdIawuy11PLvHc3bDqZLMcYj+xTs3Lu/dxBSsGbqJopb0mI9BiKUaBtLYiK2DUxawiyR5olmHmhmwaegW0N4YSBU//dBzWoyYbafgo3l6IVcgs/pkFFfWIv25kHvVQsT4Y8sf/Tr4QSzJ5TWSxKdSdmW9vxaBksuYwWo2ZKFOshHnWWq/QzW5mrmsKX2FtVkqE57Cl5fErPaM76qIdTpi9VNS3x/qlez1ErxhmizbXAEGIz50mx9HaWMyQdeDQwFskaX8tgJp6VA6S1xs8W9s6lrklG/9h5FBzsP0Z0Dyt+PlXy94iNmAqFU+UdgazJ8ZwM4VHDl1IF/0yb5CiabxPeWrbXa7FgE2vkhR498kPaeRxiiMdKpSSiw7jbcvPEOb732KqfHN9isl2xW54xygm7NsF7Sdx39emUMdAwMQ2a5WrE/6Xnq0cRieoa0FxDtoHsJXV5HmjnSzrn21FV+7d/733L95VdZtIlr91/m8GCPdPfTdOe3+M4//S/4J3//S7x1Y+Ceu/e4/dpr7H9ow8UH7uXyQw9y9q1b3mcczK4wWrUwCkyCJfxRBdXklZ9CDEIbt8l9FtNID52RExElJqFRoSle2Qg4OylMGquipiBIjEznLZ/4a7/Gh3/tbzE5upvlrets3vkucXqExAtw8XHC0XNw8ipIj04voifHSCuoTtmc93TnA2GSmPUKmxvkvEKHHjZrKD1NSqTJzOamPv4kb+/t8dzzz7D523/MJ3/jfVx6/FOs0g02m7eIfc+Fux7ixuuFv/d3v8G/rv9PHv7l/wOX7vkU/flDnL72CuuhI8VETIUHnriPhz/5MQ6v3U9qImno6FYD694qU6VbE6Yt5aQj5mxmEoPadN9Za1WdZmr68pQIMbHuOtpuQ99tGLqOrh/o1mv6YbDhriiElmZxAWkmbE6PyZs1lQAb5xgp9rU6a8M11z6qDHb2g52dvtDx+UwVdNzBRRZ2sOR77pFhnEUo/ETnmhNzpq6w7/qP+tnmrG2dmLxDOopr0iVgpFOpunaoWjV1YFjP+iIYaTebw2Rms1GagDRijdpAHmworVBsoKzPodpa+OtIIGaRrVS72JzgZhq8shsYiiUZSiGKJfmhadi7eIncb4wQaEzfr2lKCVNWq+sc31xy3g8UUdrcESbQTlumk5bNpnM3R4OW0TX7dgY7+ekSvlEr4lmeJUfiU60Lg2xXZY4mgTaVrG5tfDFigrYxC9hpQzNvObj7AgdXr9BMGoJ0MCyJEyGHCdLMUekg9oRGCUM0fZcIOSe6vjeM6qZF5mJn8a5kqPtE1a6pxBaawMlyzaY/Y3bQkJqZ27psiEFopjO6TeD2yZrDdJP2IBAXezRNZLM8Qwd1lyZo0oR2uk+Q1hyu8gAyoGrDSOvcinrPRwdLl5sTEyL1o7HBthoNNxXQbIJukUSQFnCXs6BoEwmxUIYOhh4t2dRD7iglYmoeI9iCk23e0FoillbsYBEdwEnkOwH/Lh7J/EUe7zrRGIxMBnYgTwWKVTNdtsCBaIWoyrQVLeZLTWRroB99wYoBdvVmcc9SrP1VRq2xTVP2f5vD2haDBR2TjWq3G7CbFIogQyFTBwbWUG4sexZ3lAhQklvAig9PUyH5zIhcBAlWtjL5pg9RqzMh/KXXCcIavIQerIqxrWiYQCcFsX9XnRw4xVIrA5asRA3ELGNSEvzw8XyD7ENO6gDw0tg9CC6dSESamNCmQdqWOJ3QzhKTeWK6F5hMolc0CiHYoL2+DHQ5EIdM7oVexpdGFuiD0OfAUBKUSK/RZnRYpmXAmjpwDvoBryA4+1EXz9hs5GydB1krce4kkWKN47WybYFXfLKlyfJqu09N3ILL8SqgkmADzkoIpv0OiSINaIPQEEk0mogljhFBMcapJismH6wHg+kqxwYtuxuWcOVsXzerNWTs5TDYXNQvxCi98sQmu7yMn/xg5/N796ESvG6oo1tLBE/QbG1VtlXEp7z6l2oloh4Ytg2EMLKMWz279WvYPshYlaMO2xoUBom0e5d48FM/z8GjH+J0eUbQjr2LF6FN9MPA+dkpt2++w+mtG6xOjgFFmglDt6EMnUl6up7Sm/SliDmI0bSsS+b01dd4+Ytf4PKi4/BDv0S68ADoDO2KE9OJ+cGcJz//GbOpPT8lpDkyewxpLnLy0kv88RdWvP3aTQiJnK5w81y5r2QWF/a5+/1P8sq3vmnJU7AJ6FLUBuup4aQcgvvNe1MwSiNiwz0x+cOQC13X0/dmqzB1XZXpq/0eeKLRJJNCpCSElJAI1x65ygd+8Zc5uPYoIZ4yPbgA9/+qaZUlwt5HSE9BPLyKHL9J7jOFQIx7yOQym6ElHytpr6WVBWV1m/7khGFjUqvozFzUgdhOSJMJe+97jO6ee1kczMmL+7jx5i1uvfJjVjdeh+WavbZBHn6al58v/Jd/58/417sNj/76hHuf+ARnt27yYwWNgfvfd4EnPvtzTOeX8EY8RIxRLUNhszzj/PXnibIhTuZIjDTTGbnribMpzWJBaFpPUCfeGBppcmbPmW4UYtsyXewTg/nU90Up2ZjZmGZMD4R8fkbu1nVhU7eC7xxwMFqwGLGdhbGTcFNpPj+la9UQ7gDVesdzv7ce1pS97eOqZ8KIRbgTi0hUPy+yJ2tCwvCAnd0j42XPqNa7JLV8uoNFHF9TBHNdTA3N/gFhvrDxTSLENiI2XdaBW28VFCmkaExpzlDIptKohKKTqFmUECIZZdP3rM/P6VohLo6IMqFIIpfOLJExqd1kLwELA7YIyAQlMeQNJ+dmWBDIRq4VG/vWpMB0PuP85IwUbH5NVpMgV8v2GofNKUtIGFEYXTIW7VC0c1gtafJjmyEoJHNGG6KYW5dESoyQEtI0xElLM21YHM45vHqJ2f4BTZuJMSEyAy0MmulzJKRAahvyeqDbqOHhHGm0kLqOWBSRhMaGQnFrWywQYsRfEWu8TiESQotMEgQh01A2A0PXk/sNWuw1NLPEZhM5ub3mQrrF9EJLu7cgRaFfrRAVmibSTA+gREpvi7FW1INiEqt+DcH6+sQl9QHMejM2aGzQYDhEpCGRiBoIxWz9ncEmxtYkVWIEeh38y9hnFCh95++5IMkkoJV0M/OBMpK1ARt3YFIQjxfZCNyKRUZ8Nn6MZYR3vWffdaLRiVmmuqvclqn1f5eyBcj1NShqWvgRtFVJkwU/i3u2UK07vr4dZ/DDdvPVElMJNkSu9u1WFyvzkrZKRpRqsys7WaTdjOwXSqklIq+O+M+VUfNa5RyM7h944nSHZ/aYsJi0xQ6CajNnTxAxQUxCTTYVrClzECHH4BUfG9SmDkArOK4SMNQrJKomT/Pqj+IEuCefmty9KQWGHOlL8oE4LSSbhJnaKc2kYTJNTKeBdhqYtKarDsFStC4LknvoYQh+zdQm+jZBSDGQciDmRBii9bMUYyuKVqCOl4t9/cLI0llZ366PqdkswI/aMZzZceY1uEtVwHokioJEIWcse/cNEbFm6iBWNWrwypYE1CfAa4zk0NiHNKi2BBqSJncd8wnr1rNHLtiE0/rSPMko2NC9LIMnxNl+KfoAHS2oWOYfCsStbRriPrYyODgsdl+D/vNb2h7v/SQDYFCrNCXZAoHi91SdVakxpBKKW7kU4wWp16baBcYKr8KWBLGhsbUR1tdwgGay4OCu+7j3o5/n6gd/mi73lLLmwtEFLl2+wmQ+IW961usVy/NzY7X7HkkNk+mUIIEB6GLnrwAmiz16FbrNCkU4uXGDG68e8w++2PDWrd/nwy++xbWPfY7ZfR9EZh8hhDn57G24+TWQgHQDbTMnXGiR8ibL49d45o9+l9NXn2fWJkqTCJM9js8E1RXNdMqFe68iCWQwpzmr7BVq4x8CQcK2siZQeV7roYJSTF4YEVoRilt1qVdjk6i72AkpFk/Yo82GiEKMiatX9phNMkF6hBvAKYQrwN0j6NV0hXVzjTx0lOGMFC0Sx8Uh7aW76dfHpAtHhMUBN94+543nX6J055jZgsfiYkxhFCHFyPzwgNBOeOsH30f7nstHwvs+8T6GoeXVF17hrXdOWd73IK99/zb/8De/xW8c/n955C8d8L6PfpBVX3jxu99hdmHBZDbfVsSK0m86cl8ow8DZy9/j9IdfYX60T9p/kqFAWuzRzAPT2Yx2PifFhpgi7XRCmk5J0Sw2q6RMQmQ632NycAGNDUPO6DDQa2EYoFclhQnN3M+7vjNJqhqZZv0ALn/ASRpRlx66XYTqaHpbK8tOl9t6GJOM+jMVLLz3Hp1sex3vyKHAE2w7GMcZABWLiLPDHhPMvavs5F9Gdu1Cq3oNi8vRRswXos1K2Nsn7u3b3JeSSamhaW09GDFipXvBTE+MPKvgUb3KvwWMJutxw51+QErm+Kwn6Cn0mbh3QJzOCWFBJiI5U8q5mztY87rGCPTk3LE8u03u1paQiZF9FCzRCEI7SSb5KdtEY6Rh1faDeJXFhD2Ge6rJhhQdp2fXGDN+RFNt2JDgSNZECdEAdWoJTUtsJqS2ZT6fMZtOaKcNbaPEYEMqIdBXy9EwgdJThg0hZ+uoDIEkDSkPxNAjsSWnljIIeTPYGTvKzt0SveAuh062aGCzXEEpxKC0sylaoOs26FDMcayD09M1aXKL6UFLs7dgI5FutSQ1DU1K5D4gUryNAB82rGi/QvtzYggQp2Yo0DTe5J3Q1KKhoYQEMiF6ohEwLBIQNAuiRpDmihcC3hRuBj42tNmJ+cG80OpIhZIraHTyu/imqddHgexYxDFmHf5a61j/c7DIu69oqFUcgmdpoXhTyXgT7/yQWplRv+KIs5k+tMwZGR2boazEK05d2ubz0ptgWrvgzV5BKNUGtyYbDizr8D6pbA52QWtyJK5ZK6ouGbCG0izVhUgtAxS7uTbp0+QI5mJVfJFuD/Pxfas7Yaj1hIyDw1RJWMkuewJVgrGJqLH0A/Z6ss+BADzR8KBq5ACpGGglM1pT2saxaxSw585DYCiBXCK5JEx13SL/P+7+LNiy7LzvA3/fGvY+wx1zqsrMyppHoDAREwGSIECCIGmSZsu0KMoKhVuW7H5yODo6op/7wd0d0R3RD+6njugISXa4bVqyZokURZEECEAAiLmAmlDzkJmV4x3OsPdeUz98a597ix22QVLRofKpuHVzuvees89ea33f//sP0mBMg7MNjXU0Ti3qWpc1+M8WEPXhL6mAjSpKk3Gsa5CojlwSLRKqrL1UIX62VWCqHYWpXXTdV0mVJzzyi6FU5x7F8KSw8ZQfRf2b34+P8QKVUseKZUNzUgGgOif4erjYeq2lujdk54jWE01DkkavCx5bHKZYtatNUKpZjjodlM2BRbUgViGcJaHXOkusB46+vmLiu5rNUorqPXLVeiSFXEzONZG9VEvksvGxPnHYHpf5u5f8e+3hGIOvTlEEOcFGdFs9Me5Mmc1UKpeTgklNB6QCHuNeUs8jdL2O3vb1uCdbS7N7lnse/xBXPvoz7D74FH23YPXOG0wby/6F8zRTD1IIITCsO2JQa1I/ndXvJ1jn6cmUFCi+wRqHn28hQw/Jctz33Ll7wHFKvHb1mFvHa776/Nd4/I9e4p4rF/D75yh+TlivONO9wOXtwNn7HmD/8qO0qyM6u80z33uVb//jf0HolzTekFtHxrAKmZIHMD2T3V2lFFIUZHFZ96yi43DrlB7YTBpyKsRupfdvEeVXo9be6taiQaU+VTOGSnfwNm/c0ZT7X3nPVC55gdViSTp6DfJPgjkHrKHcQmQHmJHTbd5+5ivc+O4PKWYPa4Sd2RHn7umYuAlb99+HuXeLdncHdi6yuD2lme4zLAIxDJs9oOSkIaAxVrDekENH6dbsXLqP9332IS488iFEdrn4/qv84X/3/2H3RqG/9BAvv9bzr377y/z6fIeLn/nPeeB9j3H1jVd5+bvfYmdvxvbZhyjF0C2OyUyJcYuyuMv6zWeIyzv0E8/s0jap65jv7DCf7jCdz/FNo9Mha7He0U6neOehTs+N87TTGZOtOa51DKEQhpq5UPeREGEdM8l4/GQLkZWKPOHE2dCMegDRbnpsJjdbwSntBbJBl//ni4L35j6iAbRZ95Ci5+F4mcaHnsd/qhaRUgWy2jRoLaJfOF67skF9KyJW3VrGOgAR8B47neHm25TJlGQgpYCzgm0d4uTEMfZ0sWasMiykVHZ4bWBKBVHFqPtiQfVBISqRpw8c5sLQL1gvBuZtg/deQUEpeHomruDaBts0kB25GJbLjuXdA2JWO3GREdUu2JJxYmidpRmNUSpVKp2qRaj0dWtMJY7UKVxR4Gykhad6/Tcll6AgrFEtZ66skJxH2FWRezEea5RN4KTQGKcTU9MhNoBYxBlKKoRuSezXxKxOl0ky2YvmUTDDNxCKJ8mE2HvNpKkUan3dIKRKqy1qo1/rJRHBeoefN1g/oWCQMBDv3tV6spkwhI7FwQLvPHb7PM2kJXYD/WqtTUBuKUMm9YE86E1ncoLQ47Jm6djGawPcNuB1qpNcQzaeLJ4iDdY0WLQWUd2vbFwxc9F6Rx2Hc80Ny9UmN9faUvXKJUdEEiJJa9cijGkv765FyuYNNFnv/7G+t6hpyhiS++etRX58jUYx2DwuyEx97psD/vTHBkyBUZNScT82tBPhhJdY6kSDzZ+P9KaKhsmJi082QjHKNBELxdbCZTPNUNeoUXB++mMsTMdpRQKCriNF/4yiDgO5eg+N0xvlb2LKplDSF2g24vdSu1gd10ktfqiLt4bgjVoBg9qVkXFSiBmiLaR0quguoyuWboYua6NhGYsr6riynNDoRj9kgey12UjJELMlJUvMddpQHIKrfD+rEyCTavp7qj7RmsMRN05SKL3NWCQIxhrlE45NRqrv09jg1U1oHAeNgrtRxDjS8N4lKion4keD0QT2+trGqU5CG4qUddqngs1yyr62CiUxJyiMMTplcAbxluQcxnqM8UTjycqE1XlIcfr8kzYbhAJRkZuc0CYjjenp42x28yWbV6W5GicjzRE0GGPmMll1HqhMXV238iktgjYnUE5FC3Jyrd6jj1wdX0Yxty7HSo8b1+pmDlG/pt4imlIrmwW9ue3roX1yaXR8X4FNjFhcO6O9cB/nn/oo93/oE5y9/2FygXdefZbFzau0l66owHEIDOukIutxsug9zWSu72qM5JJoZnPE6tRKYlZBY+nAOobcscpgrGFiEkMvPH/7Ls8/d5WJJLIzRCxGhHt2C08/sM37nixcvrak2XqLq3cSz3zjORY3b+JbR4pUW8MCxeq9WRpsO1MHEokUsmZ4FChFQzhd47nyxBM8/KnPslxFXvzD3+HO26+RkiKaYyGkAkNAwEvB5dF4A5zVd6lKBMBU44oR7Bgib719xPFbL7P18DVk/igilylyl5Fwsrpzje/8o7/HwRs32bnvw8z27uFuOmZiwJzbxbae9sKT2NkuxU+5cOUCQzzHi1/5JiX2lDjoWVHH+7kGT4HBlJYklqOjQ179k3+NTzeZ3/MBhnXP+sYryLBif2eX9YUH+Parz3P2H/wuv3zf48wf/ivc+8ADvPi11/naP/pnnL3nLM10h+3zD7B//0+QhoHF68+xePMlhnWgZYJxDX7idKKxf4Z2uoVzjpwzJSfVmBmLdVaZCFmnMU3jaWsBqniVIHhyLjrxFCFl6HNGTINtC4UVuRZ1mq9RdWUVgNFHxdxF/7dJD3/Xo4xHwrt2DpH3LmCRimDz6IWUNwDT6VqE8XPdFkyVqoxTeS2K/ydqEWo9YnSf1t04I8ZB0+LmcwUW2gnZGkLoyDkgzfTELIbxjNMzMUmdlgichlVk3OlLISapoJRsbFGtqD37IIkYM9164NgIjVFNozGaXzGfeKbTQtMkEEsfC6vFStOlMfV16cli0KwOxNJaz8Q6bSBEbbCj1bMu16vj25Z2vgW5MBwdUoYemzazUeqArd7P9RY02vpKBWxzOj3ZqCBoza0qxRIilKCUWiMeY4tqQo3WjiYn+vURQz+QZEY0DSFFbWh8DSjwDZI8RItrpzQz6MKKEjVTY3NWw6bCRExlvhhCjMiyo5kOGDtVjWkMld7oSExY9x3NwSHWT5D2DMY3rLqBYX2omoogGo8gjdrs9z1lCIDFGo84r3TwpsG0DcU3ZOeJYkmizYYZtRrF1mmRRiKUmithUlEmR9JahJxqE6kA0cjEZnMv5829p3e0VF0Qm1pk7Bg1B0yBpZGeWDk7/EVqkR/f3jZSR2JlfKcYsxA2AhfYdD9wMk6jLuo8LulTCngtyGvBJhlK2hQIsikloNTFkqsOodQmQ6xsRJim3jSSTxb7WIhvgvrqxltKJhbqUqqUnTLSY8rma3POKno2hmQtPqtmw1ptHuxo1Uml3FeeW8lCrlzPUgsfK+CNQWzGlkJjCpM0eiyXWihXoerm+mjXalLBVYBhXCi17q3IGLVj11WfYyFFdaZSO9yinyOo+6soKoCtY2GdHmEcMqKYRfUlBg3aM0VTuX3NCPHF4ItVrcZoL8x4KcumQhxvg3TSn9Ve9OQQNJWnKrVpVO1KBZbgpFCv9X2M2pjp60yklLThyKUi32YjzNdphlVPT+8Q6xHnMKbBiAfxFBwqClenBZOEEoVsS6VQlWqXO0679J4dqVGbu0uKLliTVZdRC2ipOiIFJurI3GSKSfp5M0I/qRVORvjl1FV8bz/U3pdqf6ioa6mHr0ULXEVOVHdTqFqcOu3SWaUl1IRdqm7HykkTJ/XWK0XAT2jOXuLMox9g/+H3s3PpCtP9PcLQc3D9bW6+/goYQyiF9fKYbrWi6QdSzpruaj3WWLJttIBsCzEE5RAb9WYvITEMnZph+IbiPCEX9qcNuzszFuuBGCL9kMgk7JDABLKzvPxO4e2bd/ne80vu2XmV+bQhoWt+2nomk5Zunekymt8R1nWbmmLMVKkSRQ0IShFmWzs88NGPsz48Yj4N/PRvfoF7n3o/wexx7solfv+/+r/THR+BrYLWXHQvEtW9qTZNwZyRUyKVx55Hbi9CTHV/jJkXXlvw/Pdf5ez7n8VPzyD2HMJM11QR+sUdrr78CquDJcvuGfbuS3jpGK4YrHWk0BFvvwq3A8b0bD2Uue/p3+LO2+9w9fAOKQRtNlKv6BLVYtIoYpiHjsWbr/Kt59/k9e8+z/6934D5fcSuMJltsXv+CjEJx8dH/KuvvsCVx/8HPvE3nmJ3Z84DH/lZwtAxmTXMd/bYOX8JsROOrz7L7Re+zdHBbWJMTJIhDx1u+yzGeaDuW9YBkRQ0iC2ZQRu+BDkmFedzch45a6rQW0AaJEZiUnXweih0uTCxDa5JlKEHCsZaBUvqNGPcBeRdh37dXAtQqr//2JTXIlOxtpOvPj0kfk89NnTyitJWFsFpRL3+M951tWpBrPu0qUXTCHJVQKxkKGYjoE1V42Kcx81m2OkM004ozlGkMMSeEHuwVqcYUhkJVWsouYJcI6fTlBqQV8HLoqh/GuupXGnYpRBjxrlCwEJKSC4E0elHsgaXBOsMQzZ0cWCyTrhKNc5o7aLsDq0axuwFASwWjKexnolzlUqltQhicJMpISqaPN/fxrUtBcN60rC4fh2T06mzuWzMcDRsVi+p4QSgy0kISfN+QtIaZIjgE/gMyx5W68gkDRRxFGnqIaGoPEZd/jTfayDjKaJ1WDYemzM2JEzMmAGc8ch0n7zODL2ikqrPrUAshlHba0RL6DRk1uueYdVh3Rpsg2BxTvBNQ4yBkguHiw7XHjA9MyWLQZo5UTKi/QSIoUQI/Zp+vSbEpACpWK1VfaMNh1MKmTiHEUfGYqRSdIwlU7USxVQwVDaBdVLrEUQ0841ENhrytmmijNsY5ZisjbNU/JNSa5FS1CZ3U4OorlZDhqklx0kd8uetRX7sRkNiYhQ5j+F8p/oIXcT1G47Ay8jp2zytUVBLHU1KbSDGfIuSN5MPHXVVDh1VSDs2NFIXcl3QJ2nX1YjthI6m/7xQhea50ni0Ws11thrIG1QhjwFeJFK2xGRorRCNJZhMYw0+GayzOGuUroVaCCqQL6dGXZuzGkGF38bqwe6kFsW2bpCl1HTI8fpmpXApbK9vdp0SjPkUseQTnnWpN1HJ+jprUZyiblghJIaQ6GOii5kmFXymNk5jcoStozYHo3gdU2lgQnZmMwZNdQyqFsBCdlaL840GUUMIR/BzbCIYz0vGZhJdLON1M1ZFp1JdbVCxfkYnPSkXYsrEVIghqV1cjISYyEmvmd6cWjBlYyjiNLncudpwqPCqWE+R+utqV1F0TKb0PJXP6fBV6pZaC7qStcmoLSkqysu6gYmt93T1PtmMzKSiBuWk2RAVqGWTSaYQjTacI+Z10m7/r6PRGK9HljqercjqZo5Zxld8gj5FxVi0BZSa3ita5KuRhB6IUpH4UhQBttv7zC4/xvmnPsaFx9/H9s4+5MCwWnB0/Q7XXniGxZ3bTM5dIAwdse82NrW69sbnoPclxuC83RC7fG2agushDmRjcNMttn2D8R5TBrzzTNvMfNIQuh7J0FpwraMvgoSIFGiblt39GU3Tsjo4xDtL4x0T17KMK5arnsYtsGmp6bJM8O1c030Jei3E8b7P/So/+zf/M1JaYZbf58y5BtO/TpO+w1Of/hm++88f49oPvodktbEuAiWpZmbc0xmdKPO4X+v7RpYKguhvY4FgLUtj+J0/eo0zj3ydpy9cxk4csEM9ydm68AgPf/QnefYPv0i3POL41mvc9+AOZy49ynS2zWp9h/W1l/HpDq0Hc+YJJpe32b94kVvPv8gQB1K/pqSgm7l1lJSxNEoDEWhzJDUXWKwy/WuHiO1UqOkceXXIzFnO7O3zxlszvvGvXuBDn/s9rP91ds+dY7JzjnYypWlaDNAd3uX4zZdZHtxkKILxM4b1mrC4gzt/L7iGHBLR9LqfZJQDXUCSEEKAqNTT4iqHOtcQM07Est4bbcYA7xJDLcBCsfhmirGCxKD7zQaxO7ULbIZ4sgFsTju6MVJ9ZJyuj5DNuyci77WHpLypRUaA7/TuOH4e6ZljQTxOUKUWBWNIJWM9UnSfGWuRglKKTNNi5luY+Ry808agJHKIhNCrHbw/MZcZkQ/FnLIKw0PtkbNsWAqakaDAaBHNU1D7b90j+0qr9flkkm9LDTzOmcZZbJ28pKTBd2pWI1oTINUcxSpgmrRm0qdoMcbTuobWOxXHZ33Ns519ZmfOkUsi57U+7xgpuWNrb4Y9nBLTCopWZhFBUK1LGvMcalMnJlfkPVd710IImSFkfMzYkLERTIJbh4Fme4WdeYxyR7Q4F/B+xmxrlxiPKFFplK13+OkUVxwlRXLfKcOhGAwRax2lacB2xKKshzEMVh3ERoMMKhBctCZAyKEgKSqoaqrVvViya4ghsjga8LNjUtmhGJ1WVkK1BvDFwFAdCRUoq6YQuWCcI7sGMQ4jhiyOYpxOd4wDY2vGl0A2qsWphOq8qUV0wlus1O5O/7mMd7oo40QNCUoF8fO7a5GcT2lqSq1FtOnIRulzo5W0rqs/fy3yYzcaJeoQMcnJjxmL6/Ewkvr7jZ63Lm7KiD6coM2jMIfx6+pmkcvJ15u6aUoW7f5rV3YibJNTvFXl6o0e/FSUFEql8WRGUUnRIIcKjyvyqQu9Kk8Lqrw32nQkY4kmE40hOIu3Bp8y3loV/lXniFHgrD9e6T8nIimzee7Fs6FwjRdKr0Ft5PKYZq1IfYr65lMXc0zqWmJRRwZFb6vdWEYrhpDJIZNC1CYjJro+4odIEyJ9zPhQKqIwNhvq5awhakpDc5I2BSD+JKTPVi2DNh66IGKuY9JS1JEj69RIm8TaCNbESeXXCmM4m5QxskhpH8aM/Pp6/SrtLaekzVNIhKhuGiHpR0r1cM+K2agblCIEYpyG6RgdTRajAiyNSq9ZGpiqZVE6WK7vppoGjMeaUBRzrodcqchDHQOTUc/wVEdvyp00I9cNo1+fq44gF0oaE83LJlekrgCqKoDR4LX8GW3l/l17GKRql3T9aiZcpZaVcVwrivRR1w16D1mpRIRSC2OKTg1ROgR1DTLZob3nAXYf+xB7DzxBM51ijSWmwHpxyOrmdVbX3+Dg2lvgPCElFseHTBrh7KjPQnnX5Ew7m5BbT7/uGLoesoYZxZLphzV9t9bi0nn81hY7xjDf2sItO3W6ITFthL5xmKChVkYMJRbO7sz5mZ/9ML/yv/1lLty3BcWzuLPg1us3uf7CKxy/c5vDVaA/OiQsO3LXwzrCXgNNQ/WSUYDDei5/6MPsXr6M9weU+DOQj5HDN2HRs3PG8bFf+ywvnt3m6vMvcfjOtcr1pTZVVXA8AiNWkVHdm8vGxWUoEGIhkMnGQLF874Xr3Pq//Da/eXPFJ3718+ydv4hpL4K5SDN/gJ/6j/+P3PvII9z40TPsnTvDQ08/yPbFizD0lDvXWN5e0OZj/MXzmPMfASwxDOAbslH0WMSQU0CyfjR7Z5ifv4eYOsqkYFyLGCHHntAPxF7JHd36kBbD/vYWi3vv5aWXnuPFP36ee3/1LzMsHZNGLY2dM5RhoLtzg+H6G4yW20IgLG8QD/dw9mnwSovouzWpZKy15BRxxWCSJfdBKZal0K+XuGOnTjOTidL8RnS9gm1GhMZ7Ysr1WBKieCaNxfiBEqKeWYyz9vG4H9H4Ot0oZWMmUeqWqyh9pZvVrxxBv/fqo6R6TlYgSxHqWpe8qxaRza91JleNRCqjIleqbgZqsqde2QLFWPAT3GyOmc4ozhA3vPZU9XlR9Q+N26yhXIs3MVV4Xq0QjdcKP4XK+RWtZXJO2hSkiMQqTDc6gcqlEGKiU/121UVInYYbtCfRJO6trRn758/QtBbBUFIiDoHY9eQY9FwsAZIyMjwWEU/yDRPXoKQYQAz7Z/aZ7m5RJJLzlJQiJXSkIGRpsOf36ZxnOO4ZclCNIQpCSK1FCmzo0yPomWMixkRIiX6ImCEiIWFTwURgFeDqXYrJ7J2dM5nUmkQc1s3ZPX8Z287olmtydhg3IUvLMAg5rAmoA6c4S27nCoRaIXhXC3Sl1RdGMLzgnMF7DzkrE6bOgJSVMdZBasIjUtO5XaZbd6wPB2RuSFH3yJgTKWdiigzDmtCtCRU4ptZDNiecUQtszezS/TNTg/+kuhxlQ5aaY5FNpVuazVreuKtVcp/+28LojlSKrXumU3Czskty3SNGtEi1pnWSdqoWyRXsfHctoo34iV3Cj7+H/PjUKZ3KMFCRgdPThXH30nrzRBfBCY1qdPJM9dKMSYTq/DA6Oug3Gy1Ky+g1LKNVZUWVQb+zaNdVKiUFqQLqMu4WdWIwFnR54welJ2bK5KwFb6oUp1FDUapgO4uKjpI1JGMJLuOtoXGWxhVaC37UMdSshxGx14Jd7cykNhXFnJpyVLG3GTUQY09cCilmUkjEGraTbCJzkiY5lMxQVIwZy3hTjONfbWBJ2mzEkBj6iG0jvh8/Em7I+KHgW3QMWwxWnNriWqkOVHkzXnQIQdTpQXUPFqzZCPOD1do6DYUYC0POmDqBKRXJdjXzw1Iqb5LarRqk2IpijNMuvdHGFO5UkUFFRjIhRvoUGXJgyIk4voe1YamNPRijqeXWYY2lOKdFi7FkGcPxanFbTgnXSrUGLaNi4KSfV6vlrJOPXAVY2WxQB83lKBuEUcYiIKd6UKlj1obutaHQsWlwSl3YNTaNP6t39b+LD1snDpuJaKkTcpH6d/r3iK3386ktbkRtUdrcZjeoVZV3Lf7cPcwfej879z3O7sUH2LtwL4c33uLgtVcp3rFYH9PduUm+e4MUAqaZkTKs12sOj7wG/DlDDELMiljmomhfLok0BIxR9LLvlqyWh4Suo8SsYsJ2os+3QEiZIQRyysQQNbU3GWIBk4UnHr3MB9+3x4c+eIZ7tgbmvmDnE87cc44HPvgh8q9OWB0tePMHL/O13/sqz33nGe7eeJu4voUjYjDEVPeAnDEpksMKmIBcANuTs0XMLeT8B7HTi3zsl3+CD376CX70gwV/8Lf/NjdffA5JoQoj651XueoGNVKIddJqjHLHqU5sAdGU28Uh66MFz92K/N/+T/8tv/hvvs5/+r/7BfYf/wxm34M9z/zco3zg1/8ahNeR4QhJieInymm+/hbrYUpKM7avfAZz/qMsl8cc3riJn2+RwwrPhHa+hW1aZjtz5rvbnHvkMfYeeAxnMxAxptFKJwWGEOiXHavDFbffvMbBO7c5OFrgJw1vLBe88K3rnPuZV+j6y8y297ShKIXV4pC7z3+X7vrrGHRvD3mlCPiwosQBYwwxDHVSkbFWwS3rWz1jUqmZAZaYIqvFYdX17GDbad1XFZEbi1Mp0DinIE3SxjliaewEZ5SHXepk+130p4oyKn2ono0bnYD+bS6nm5KyoUz9/8g53iMPybpHhLozllN1yAhaQj1razPiR5Ci/v2mFiljLTPmY1Vqy2QL285g0iqXvkTC0EMKG9C0lFR9SbRZCYqE4UWtb2smJ4lMrihxNgpTbaCrnEgpqD4hV4Q910ZqSIQS6bOyA2wWPLJxvYq5MJu2tK2jcUDSRsJYo3bK0ymyq+h/WvesDhf0qxUuZVqhOh55Js4rkk7BGMPWxDOfTauDUlanuB5S25CyZ35eSFtzVoeRg2u3WC9WDHVPj4VNLVLqKGmkUueoIZhxSPQ+YQb9sENC+rgBItNbd+m7JRcvzZnMZhjbYoxHrLrMzfYG8pCJA4TkME7I2RA6paa6dpfkd4mdYbDQzhokgE3qyoSojso7x3Ta0jQtY66EYDbA54nWNFOGsEn3jqgpx2oZmDYdMWigXcyFmCN9HOjWC2Ls0EQvBdqNUZMXNag5qUEUPlRjgFHZo/WzgvJJ7VAVJNfidGMSoYyRyoKpNSvVuYxka/PYIKfei0wF83Pa6IlzUmxU96MxG4VTdcipWqRYToIrf7zHj99onHooAnDqD079Oo1F9OkXVRdcrCLuWB2kxGpxbkX5/ZuZspwUm6ZycbXZzLVY187m9BQFToqQiqFXtMLUJS2bAn8cZrC5uLpJ27oJq5hGCKOtqzEUa0g2a9K2U+6bZLBO1AnKWRpRwbaRmp3BCSa9uVRF39hxGmOMetKr8LletJTJsTYIUScS0UWyyURJBBI9QocwiAraNf06181VR3UlGUoU0lAIfcH1ib5PtH1i6CJDFwmtIzaW5KF4FTK5YvBiUfG7BgyG6jrljeCcwXiHBEPxhtIIxsPQQGoKcSiEWLBRKU6p3szC6Mdfkev6XhQEdasa/cK08cyV7KmFflakL0nVmmSGmOljYkiZIRdiLpUfOqLbqs0Q5zDOKa/W+RN+vYyIluppEqNg7dTvRepBNjbFKLWkNjS52E0jVIzdBAem2jZW05KNO4od03fGEJiiKIve2MLp/0b04N2pnO/thyMjYonFjicQBjQDQmorNU4GT1PIBEJtKgxyanxcKL5heuY8uw88wfZDTzO9cBmLgWFNXB8TQ2C5PGBYd6xDz7BeUIYBSQWvCn9SzoQwbES3ueqjUk70qzWh68gp4X0D1rJeHjOsV5Q+kPtB94NqMZvrAd1FpYKGEIkhqdZDRmc6iFJ4++aK9dde4vqbV7nnwpT5/g47+/vMzt1Du38Ov3eOJz5+Pw9+4CLPfu+jHP7oO6S4hLLUhqjAECIhZUrqePP57/Ph1W2cP8v64IhbP/h9Jhyz/9ij+FmBw2v4g1d47GO/yI03fomvvP0GKR5hTUaSIaVSoXAtekSsTlMzUOmEUoVSpURNzQ6Bxlk6Cot1zzPfepXXf/9f0By8xOypz2MufRaZXEJkn+IHimkhLShxDcbSnrnAmac+jHPgH/wUOQcWt2/SNJ57H72CtRfY3SnsX7mHye5lnLcacFoyEntK6ii506lMSpQUaCSxte05u2u5/8FHSOkBupB47bUP851770MOr3NwdUV73y6+0eYwrFccvPwii1eeUcedouYgMScVbCLkNKiLHQXjHa5tsU6PUWka3KTRCcVkgvcNJWdCPxDCwHB0F9t0mGaiCcXj5CxvWNVqgVkpCwHdH504rLMYp1SaEiM5p3rW1RnHqFEYo95FNmePnogjCFMfZfO/99xj3AXVcqNshjPjNGL8Ta6A53isqiZsPN9PapIsYKxRm9J2CzPZwvgJiBZquTpIlpLVCAQqw0D1FLoqtDmIjKGAJ9dcMb9Kic2KjJexyayUohLrXlZQ1x8KOShCPmrWYkInGUC2BZ8N1jmWayixkPrIvHW0TcO0dZpQ7jVE0m017M/26ddzUr9i4kAawQTPpPHa7IoCjI0ktlqDcZ48DIS+J5MojSPhFXiIgen+FnZI3B0CtkTN2kIncpkT8LigGVslKSUpOjAhE4aMC4mhC1gnNK4lBQhDYbUYCAeFaRnwsgXtlrpTiSfKQJKMM5V25RwU1Ti4JPR2m1ga+gKTrRY/a5nkSj93DWKaCnrWvK0xzK5OIbWTO2GmiDjM1EMqNClj1zOKeGLf0XWZhFUSSVKGxbpb03erqrs5cSsTaynWVvdLi4jVyYa16tg5TjTE1Um9UrqLaO6KBn+Xzf08MkXUEU1dy4ox1VmtnLBA6mox6KRNcmWQlFwbLKV4M1L+ay2yobTXRsMwNh6nV+GP9/hzNRqbx8k+x+Zny8YJ9KRoqALuKBAsJMvGbtSZk6ZiLDDKiFIWKhoM1FRPfX2mCkX1ileCi34UKiUHvXC5VHoUtUNFf6/Ef3USSlUsU3ScJuPoU4QkhmDMhiakdJiCLfaE00zNxsiG1kgN5avTFVMR2cq50w60jqKqc4R3Bm8FV3vGkrXRUE2FJQyRZA1REhFhgI0DjITqp5zMZlOL4yQGS85CCZBCIQ6Z1CdSF0nrQJo4UmNJXijOVI1LzawQqzziOslwRgjOVJ2JLhS81Z06GMRDP0BoMqHPmCFjQsKGUQxWB3BV+zFSNHSiZzYf4/IuRREnioralHmkqEgcktLBhsQQMkMoDLFU5LV23WKVKuUcxluM00WerSVZnciMY/NU2AjrRxpKou43J+p7fQ9tpcTVDz1g7OY+1XG52sxtJpTaH9fpXsbhFecQR5aoG44opcwwUsZ0wZ92Zxob6PfyQ4rgJdUmTa/gqHoIWUP89NYeIzVPJh+nB2AU3Vx9O2PvgSe4/+OfY++hJwgpMqzXlL6nOz5gvThi2a3pQk8KPSGs9adNZpgQMc5jKAzrFcdDz9CtaxGtXGlTA9j6lBj6HuscOUO/XtKvl8RhUCeqnDBtSymFEHqGEFh1PSrahmkjhAzLXPDoKPvZ59/iBW+YTjzndxrO7Xq2poa9rYa9Lc/ejuPy5X0e+fSn2b38AB963zbD079Iu30FkcLuPbtMz97Lwe1DhlgIJfPit3/I8fVXmG5PObr5Dt//vS9x5tw+T1+4F3e+helFBAduqgNJAWMqLWkU5uey0a+NQV0i2vBbCo2VinjppKaUzO7Zc6QYiOsjcix855k7nNl5EWunTMXCvR+CycOIXAF7nrh6me6FP8RJwOaB3QsTSrNPvxrIBx3GnuGxj3+AdmuLdi44D8KC0i9gdZvSHZO6nn61pFutiN2Kvlsp4th3SBlovcE7aOcTmtmEyf4FHnrkQ2T5PCV5ds6cYXb2ImIsse84uPoWN77zJcLyGGMdZuiRsEaypg7HmCgx0E4nNHv7+HbKZD5Ty8pqD9m0Fjfq90SpCIvjFf2dnm55hG17/HQb386UTy8jekltCDQYsRQls+h+VJBscMbXAEWHiQOkoa6QkWe+gd5OKmzqeVY79lxNN7QReY8+6jlNGeHGckJRHv9N3XBHjeBYi1QmCmkEPq2A1WRvv7Vf3eWUokLOpFj5glLqng3FVADE1MJNKvBUEpKEkiOQNyJ13b+NTvFS3hSAJeVKKaoFZByriUp1CZGcAiryGOk5NQw4CyVb8mJN6AyD98QuMDSWedMRvWXaGBovTFuL39rCty2zLQs7e4hpwQhu7lhPW8IwICOToUSmLtO0DUOGNPQIgvWWYhpSmZHEEoOnnxhWrTICJBqMgZRqFgja0BUxxPGaRsixkIM2UmWI5C5QvEGmDSaBi5nSWdZHiS0XEOmx4sEbrJlgpSU6SGWgDEeql2wEzAyTPCY1DLkFDK5pSVl0Il3dKUvKkCOmRG3cS1Kqeq4p4kXNHKBO2hlngwCWpmlp59sYP9tos2KIDCHRrQfWx8fEqNOHMXBa6duG4ozGMjhXjUMc4tSqOI+UJ1Qnqo5cCsJnlE5fqtreFFNxea0tT8BJrUW04aM2IKqdzaATr0oHQzKurg4jyu4YaxEjCVNGxcdYk9VaRMYW7Md//LkbDTn1+U/3G4wjy7FQs5Cdgril0pLE6kRDm6exTyqb/zIaGjJ+j3Ez5tS/NbW/skV9oY1ELFbTKuvNsvEhr5qIkw39RIRdsr55I23AiFTnKhWiJ6P6A+XK1Z9ddHoRQQ9oq2++w9CKBlxZw8Ya1lROYBmLWPS6GAfeCo1VAbQtULKQbF30QWq4XxVf5or0lrIphE1UGg7VfSqKitdTRRIkCjYUzJB1RNkFytpSWkP2o9uMrZkbVouIJNgkYM3GPjihnbc1BucMTbJEZ5lYQ9Y+paY0pyqarmFho+iojBMHfRT0ppU6JpDNDUM1Acm10aCiPpk8qDtE7BOhz8RQqgPVSTwN1bqvGAtGUQNjHcU6cm0yxgNi02gUOblN2ICCVf9T9F6tN7e67tURYmEz5SBrI5JTQaw5pb0sIBmRjIg7Jbh3itKYhBWHlaTJwUm5mTUH/dR/uuLMu1fbe+oRkbqBnYRexrpFFmSzkeioWadAcVy3hQ3aW4rgpjPufeojPPzTv8KFxz8AxnH9jRdZ3XqH2PekHEkx0cWBfugq9cRgrEcmUxXm2ULJkW61ZLCOXD3nNbNB94WcVSc19D2jc8ny4I42GUWniQUQ5/V+SokicNwHYqz2m2RCFFZB8AbmTmgpEBNhlbkTBhYHqsbxk4b9C+fZngufObfHE/sPkucPkO6+iA+vYLyD6Ra757d55OOf4trLr9P3S/osNGcv4XcuUcyE+bldLn3k49hhwM52tWBpztMvDnjje3/CG9/8MqkfECu07ZT1eqWamXrAlGqAYESRVFOyXq9KdZUoiBeCAdbHOFNw1pD9Dt9/W7j/+dvMZz/EuYRf30IuXCPP7mM9WH745a/znd/+R2y7NZcuzbn4wEV2L1/Bnj/LfG/F2UuXce35qrdbIkDuDlndvMrt19/g1tW3uX3rkIO7xywXHYujQ5aHd0lDZFgPmJLYaiyzxnL23A7nrtzH+Se3cRc72tlFpvsXaJoZxloN5rt9i2vf/COW11/F+22lmwxrJHe0zjJUOmZYd2BgvrcPqPtcWPcq+gw9ixw3mT96DyW61ZpuvSR0PX4yZWsnwRa4yQzjHHbTbBRc7RWKWEKKdVINkKuFuN4jIh5jwZSo55rouTVOXzdnqYwSTkVBDGZjw/2ubKL30ONkGPPuKkRO//34N6cA2lyPhlIpvirlMzTzKe2O2hUbcRU8SNpfiEDMGwH5xigBPRsxRs9gdJ8gKVKs8/CCKGUCUxsMyaojJEWKQtQntcgIsOZx6l3pcrEKl7PmUKVS1HETrWNisYQCfcnYZDVAt7GY4pFi2Wotk6bF+RZJPaYMG7fOxlr63TmLw0gRzSeaTBomk5bGOTwNsrdNDAlpVdeYSktIkdh1lLDGO40/EGuQEDXmpU6jk2gQoAb5GiQJJhVMzNiYMEPEDAbphbwyII1OAYxhcQRzG/F0KsZuC8arFqsUS7cMHN1dahNpPNm1WCN4sYg4rG8IwRAGnTQkMqSBEKOeD2FQJ6s0aiuqAU8xNTSi1nBlpHw7rJ1s3PeMOFJJpBAU/OwC3eERsRtIYimbmkLNRLKxiHFEMRjrcN6DtYQ6ilOKrmawkZPWAVkbtBRrDZTyhiEz6pONFb2pNw6XTpteq6Y1uYZSjm3shootHkzGSKJIwhiHMRmTHVYyySTV4P7pWmRERJBqwf+//PgLNRoVINiMIzdp3a4W1k4L6Wrkg6l/XmwtSmvuw6bJqD7HJyhwxVyMdvy5TirMOJYg1wAZ1QIoVUkLfjNyz2oTQRl7y6QfJpOqpZfmF5xkGIwOSPpcdBSlgnEl0evmra/BZfC50JZCEYtUxF4tYA3WFKxV/rnUkXtCaRMYLXScK3ij1reuAEkXp15ojbeJxRAqzaZUWo/qU3TCoJMZvbFdXdzJKvUHrZVxOWOT2sDJUBsOrw5LAc+QlQeqqdiGXClRyQrRWqK1VbNS8WZRZwhTM1ZsLphw0jyW6oqVimixmMephjabxdTxnFSxcyXVSm0whdojZkV9csg6Th4SqU/kIVHCGN190hyMjmamWiBXEQDZ6g8fAxdFTvEPC5W/Wf+u1M6Jei9Uh4Ii43SKKgNRjnx9qwD1/BaKLohsEKnWy8ZgUp2EqD+zWgZnh80Wh4b/JU4v7mrZXFec+TMs7n8XHwVIKE2ylKw2h0AjghelKeiFLoqG1RZkdEtWqVPBTWbc/5HP8L6f/99w+X0foS+JuzfeYXV0xOLggBQ6TDtRt6ik6Ex2lgYV2cmkoaRAjgMpDAz9gGshxVgzY1Sj0XdrlsdHlJLx3pPSQB4CaVjXpFcViY6IVUxRGyjrWMdM10calPMacmZVicxOYMsrEKFAg9GMHGO57+FH+Y3/4j/nzPl9zrYvs2Vuw8FNjsIFrn35m5w//x3OfPTzuPs/x0//1b/Ctbff4eu/+y9YxYDMHH66jWDY2nM8/ct/CQYw4XnK0fcp0yd4/aU1X/w7f5c7b14jW2He7vKpv/pr/OCPv8PVH/4QMUnvZefJIWKRet9bUs64+haJCFashlWWoEBC09D1C350N/D37hTiMPCx1LG1uEW5+iJv3rX84Vev8cd//DzX3rrOzBo+93Pn+eWPP87Ok+/Dn3kSs76KuHOIuaT3TJkR44IXv/k9vve7/5K7128QIxRa8C0xZpaHA91K809i35H7gWMSF+45z6X3Pcrs8qNcfWPJXjtw/tE9mqbFOkPOiW55yI3vfInjF75OihnrlIKV04rZ3ln8rGXZg/FTYsoc373L0bIjxkgMAymlzRSsFHXZMd5Vo4dIialS8cCuO/puzXS9ZrZ3jna2pc5VRQ1FbLVBFak6xartSrkQiSTRos0Czjq8Ecg1wPBPjSh0Wqw20KYizKenhLxHGw19jAfEyZ+crkU2xYmtx4FiTtQtFbFqG+y2tpntnqWdbSsCHVWcHWOoIJKjiKliYMBUnyqp0wwznnWpmtZkTQiv/OxcEiZGJAVsncynoiN+m6OCT6YQK0PDmFJrFK1H0obnXQE3ymYCL1J0ci9qV5+qTiIBrm05d/EeZhPPzA00JmBypFhPXixxcY2ZbeOaHfYv7IMkVotjjCm4Bnyj95YXwZ3ZJ4RCSEty7EiNZ1hCd3QXco9rDY0Vtra3WRyu6JdrpaUXSEZR/WR1D8HUiXXRgFqXMjYq+0G6QDYQxdMTKCFTgtKtdmPBTRPZD6yL4+46cbQIrIPqfSdbDZN2jmtm5NzCoF6ibKaGSo9dLtcs7h4SBrWjNiIUWyn2uZ7ZY1GeVQvYWId3U8R4+k7fM8RrMxBzrUcC4fCIvFhonWPNpiG23mFbT3IerKEIhBJJUcdqUot2nfJXrWc2is5nNd2hKECn2E9tYKUyK2pGhq3NsFgqR0BOEr7L6YWhC0WqIFk5BVqLaD1iyNUaaBSDy+azao/HScePC3r+uRuNAidIfa3JitHvKBasq8CyO2k4rKGmMG5qwbpfnIx6T0J3tHMXqDCznHDTik4x9GbNOEmqjchgjMVUL2xGES65BoUVRDKmCrOMLUqbMrqZm/r9R6vZjWtwQT2sE3ij4XmxTlk0PRFahAFhUjej0XXXGb1O1oDUkateO/1hm+tQBXwyaguSWsqCkPx4k2khrrQi2RS90YqeNRWqKmijkY0mqFfnVoyFiRRaCk0u2JSREMmDIXhDbw3GZrBjQ3QqodrUPAMjJCOb/I2cx2Kd6qGtXbkKoyBW2lQZeWYyTrS0MBNXC/Hq9EQW/bex1AZA6QclZHKfSF0i9ZHUR/IQ9CCv6j8Rdauibt6bjKsqVh+Lwc01lrGYt5WL7pCaDq73kd1Q3kaEUOklSfmmIqSc9AbQXCT1rKb6Wlf6nymCL4LLBivaZEixmOJQf+9Izo6Sozpl1OZH6pEzUqfqGbkxWHhPPkRfl633QciVSiBU0wDZSMBLrry1UzS7JEI72eOjv/Efcf/HP8fFBx5lvneGt15/jVvXrnF0eEAIAylHWmOwkxlheaDjZqPZKlkyeehJMWBy2iBaDYbYD6So1oimCDEO9F2nwVjtBLpAzkH3I6PG1iZHIoUQBibGMJtv006mVSycVI4jhlISA5k+ghUFSLZah82matXAeeHpJ8/zgY9dpN27D4bzyCtfJt99iWSEq/05jn70FoR/zhk748KDP88X/tbf4u2r1/ne177OM1/9Y1788n/NBz//NzDtJfwESttBuoikFdltM5Qdbl+9zerwmIhhdnaXJ9/vOHflF/j9vxO49aPnFSXPeVMYUBv4IgZfm2hrhXPndzl75RK+9dy6cYtbBwfcvLOmGzJv3Un8t/9qwZef6bl45hZrnuWN2z0Hx4GShacevMAv/OZP8alf+yxnL96LbXZZPvdD+jtvcuaeX9jg1GEdefaL/4of/st/Qt8V9i49jdk6wzhhGLo1WzvniUNPiIHGZu5/9DKPfOSDXHjoSeZnL2ObOa9+77vE3OLaGRQhdR0pBo7feJnDF75Jf3yETKboaosYyZx/7EM085Zrb94mFG1c14sFq+GuClezugMaazf7uBGBQTnvJtc9XiwWBTeG9ZqCFoOuaWjcDNM4BdHG4sEoRUpE/f+lJC06kep4pIFuxakzj1SqjhmFoPVRpNJBpdRJrL6VOuB/jwIWpxsk0dchnNQhUhkVp8+9zdS5AqHWOmZnzuC2dmkmM6xzDEMihYGclPq0mZEYIaaEQ5R2Pa6JrNwLk/WKGhHNc4gJiUnLsopQq9NlpTnnustVCrGYgqmgJ6C6TXRPiLVApoJhkUIomquVTCEmzRajKBvCAq0Y3MTSbFnatsHhsWGFyYNqxsTBEPByiLGGZrLL7vmzpJwY1mvWqyXd8jbN9jnEtTgpFIkQG6X6GodzHpGEdQnnC8YatncM7WSXwxuQVj0w1iKVvlNrEWr+mZdCKzC1lvl0wnTqcVbPzDAoOLwQFSUfrQfaaSa5njWGgAqpm4lndmaXdmeHJA1D9OTFmrjuyX6rCpsLMcLi4IjVnUNSzDg3Vf3myNqGzTkjFVxsmpamneBdiy2OEgocHJI6BT5TryngsQvE5ZK4OCSFQXU7Up0FBZrpBDNp1KZ9zMTJmv8llba6ua2rBlFB65HGpBUFI2VJUMoWqvEVUNAEdc7KKVVuYKr1W2a0UxJEw6hzddPKasJji9MJWrGUohMRNbc5AWPHWkSbjJOPH+fx59do1GZhbDY4hRZgTyYaG423XsNqUVl/s+F6mXoQGxW0jEizOaGxcOrbv7vZqO5FUjfVwobnvaFh1WYuijY6ZbRtzHrDa9qshuaAXslqOMBI46IW3a5oOnhAxdciGSuG1mgAX2ugkYI3BWu0MDUiVSRc5zAnkJIW1qNzUe2CrUARg1NICykZ8Vpu5qobaU3WICALMahQyOQRfa9FsNXXWlqDtIJtDW1rmbaGthFazYyphXgdC4/5ETU3IBlDEVsDCzW4MBjDgDAk1YsMqN1uzFlpTFGfT0xSu/OMLWbTcBlntANrLOI09dLUwrJEqv1gJktUc4FUKDGq80M/kLqe1PeUECrXsuYxWFdvFp0sGQOYykesUw1t/fV+E7G67Iqj4ChZKVZGHLY4fc5F9TkYSLY6XyXNWDE5QDYaQDeGSBoQCdg6MVGqlVoKuqw8VqmbiFT0ICWjCz7JZipyGqw7+XxKzPmefVS/+aJTBmeElE2lr53YRKvDRtJNuAZf5gLOt3zsV/9Dfv5v/ReYyRYkQx8Chwe3Ob57i261ZNUtFW1MgRg6hhgx4+FohBIG8tAz2kmXes2ts6TaeFhjsVadSawxrFdLchMh9MRhgJyJueZt1AmMoBQL5z2TyUQ35woMlJI1l0aETuA4JDQYLOMawcR64CVDO8lY0yL2PPhzxOkblF7YaT0f+/A5jsODPPf1r/Ng99tc+lzLg49/ip/5y3+Zq1evcuftt/mv/8v/is9+7yUe+el/j8m2pzG3OHN2Fz/f4+joFd585k9YHR+xjpl2d59P/LW/xZknnmLn+HWe/tlP8dW33qTrFkjRRt9Zy2x/H9NOOL5zl9j1kBLt7hY/95s/y0984XO0+2foVgu6g1u8/fpVnvvWi9x44zqH7xyyWqy5MRhmuy1PfnCfSw/fz5WnH+fSU09x/uH7cR4ohnhwwLXvf5OdJ38SzBkoQux7XvvWV/jRv/7n2DLl3OMfwO6cZegH+sUxuTuCfsC4KfPJHufuO8NTP/kEl5/4IJOtexU8wJDjwPkHH2fVqzlEHAKpX7O+/Q63vv81Vjfv0vUDrZ+Qkxb2uSTWt9/A7z0B5x/C+23c/ll6GfVFusatb/DOKyJtLd7rweesx5kT1K/kjLWOnAqu9WzN50ymU6azKba1WGs2DbVzOsUfhupGVwvOlAvDoLlBKUZWIdMI6nGXs071R4t29L5mpG/AZvKrf/xenmgAjPpNvcYbAPN0FWRO6pORRmURJnt7zM/fU92WnNYbVUMx8kxKnZqkCn5mqddWKuiZc92fTmyF1UFfdYkisnETSnCiNSyZSLXnNdUZc0Qmi9YoGUMxloDQ1/dOxeZqKw1Kox5qM1I2M3ChkUKwhWCEKBZn6lmFYK1lOrdkGtbLJe7oDnbb0jY7bO3ucxgzoY/cunaLvBqYbe3ozy6BEXOTPJDjCrEZaYTGOs2imTY0wwBpm1VJClTIKF4XpPHQOgV5G4NrLLOp4+yFbfbv3afdmuC81ZrEFC2YyRgLg62v0Dj8tGEym+JmM2Q2g3ZCzIYYFbhaL5dkmeq5kgopFNaLJevDY8iGpp2pIUwFewuZ4gBrsMbhvdfv72ZQnNYfvTah3rUUM5B6rUVi1xNWK8LRAbnrIEUVp4tBas1H6rGmIdsW00ww3quof6xLRGoN5DBooU9RO35THA6rLJ1SM+KKuv2VupjVxrneAyWSktHcuySIixomGaAEt2HcqMWtukcVEpKNfqQqFk8nVO0RmKgr7tTq+/Eff6GJxkhg+p9a4ChzZAOjjO5QjMVEpQ9t/viUwp06DqIKXfTb6K9MLd5MkdGISpsMMxZ3J8hoqYs5lZE0ZerBL7pQqtZrfFWVhbNpMhSUHj2G1MvalRqGg+DF0JpEJ4YJ0BehKaIuOpvrpHoTrUeq61RF98Xqzy0oMnO6uRqbOFvdELNRPQdWJwE4lNoUIKd6cxQdoeTxwxpKY7Gto5l52plnOnNM6kc7dfiZpZ14momjnXh863CNRbxBGkN2ZjOByEa0WS4wlEKXhT5r8vgQS3WZquh0qe+XgDOFxgjWqae4NFVM7mrORamuFEVdWFJNMSVqMJIubG0wUtdThl6bj6oyl7G5tEbHzxasNRhvsN4gXoVYeLNxeBB0QVMciKeILmwxtdHAYitdTel89WZJCYooMpWKjnts/RDt92296Uul4dlSaVPGUiTrHV0nOJJBkjbMapB70tzGusryZs7x3m41YkEb5zrFlEp6DnWsa23BVR3USbtVPxvh8pMf4pO/8de5cuUeugwHR5HFwR0O7tzg8M5N1osFIUca01IyxL7H+gbjW1zTEpMKehkbwdos5JwJw6ANgXWQI9572skU13hkWRj6tQImxquAeLVSsWbWLAUphb5bMZBx1VxhHRNzMwr5iuqwDIh1LGPGhYIlEZ3+uSHy5vU1ITocc46uv8Lb33yR3b09ts80xINDJuf3+Pb1KX/yje/xq+u/ywM/t+anP/8pck784A9/j6PXX+IP/vt/yL/55/9SnWEaeOCR+9nb3+f2zbu8+b3nWHcDZjrjM7/5H/DJ//C3aGYZO8lcemrF7Nw+/VsrMAYLnLtykU/95l+mPfcQz3/p97n16ktcf/smR4sVP/zmc1y8vMNjn/5p5pcvI/ee575Hr/Cxz36MYehYHiWWR0vmrdCeOY+b30Mz3cc2DiORUgLENes713jt69/g1qLn4iNPV1eewp23X+XVr/5LVrdus/XAR5ievUgohbJaYZLS3KxvcO2M3XvP8b6fepQH3vc41p9HappuKYXF0QHL5RLT7pFjJMWesDzm5g++wcErz9J3ay0uN3TbzBATB9ffwV96nGf++Es8+JFP4s6cxTctc99irFUE0hh84zlxEXSKNFpHox2DAicpq0NVQYW527u0WzOaaYNz4IyAUWqMrQBVyoaYIeTahOTCuvOsuky37un6NTFlGkQnTZLxYjeA3EZovimW62lbeM+2GaVyUsbnP9YimzO1np1a+dfPckLvbqYzZvtn8d6pxXkWDXzNgZzrhFyoglltNsScnIGm0mj1zKmavRE8TKPTj9YtWQxRjOomgTKChdaQsqn6Ln3CYszGiKRQiEYIGJWGyBiWnAm1XkhArAGypmismxNhXRLLGBkyDMXAMNCve9rG4QWN5vaOo96Sj9bshtu0O8LWfAeDMKyWSOw5un2X9YFOPQr13hUYwkC3WmC90oom27u0O2fJKeOG6jY1NKQhaiFsBNM2zM6dgcmUMKxUp2gF1xhMDvjSM29n+K0JjXf4ieAbj/XKfsgGbCvQNhTfUFxDsoYg+hpDKXRDZHG8ZBUSfjYhRaWbhWGgOz6ixIR1Uxrf4gxaIZqiOhtrwDts0zCbTWiaKSU5nVzESCqFPAzEIVT69kAaetK6IxzdJS6PyWHQmyAJSKqgo1ByADGEbsW0bfRs8GpOo8Wdakq0HrFI8dpo6DuKkqq10aAySGzOyoRC69uqslfgMqtuNUedcDpjKFYzj8QYzKBnbkmaOwI1FDTLRrQ6CsptGeHN0WpozBP7s9Uif/6Jxmm4deTsnpqjjAu9/KkFP/Iax6ZE6sYn5WQ0REWKNnz5ikKMbj8jO4xazGrwzqmnViciSm2rkwSjdKNU6givVPX/yLPMbCwzx8tZ6uREVekqOM7VszckIVghZHWTGbIwJEsvBo+oeCkr789tGlfZCIR1TI5GvzsoqU427Mk1G99gUxerQ8dExqgAyLpEaDM5CiXqzwNTM0AMSSp1qrG4xtFOGqbThunUM5l6JtOGyczjZ55m6vHTBj9taFqHaXTikBulZkVjKnMUYoYhF4aAuj4NwhDU0jZFlPqUdRO2krHG0lJoreC8YBrRgt/pAs+MieOKBknSYj7FQAyBoVcOfdcP9H1PDL0u6lSJoIKOQes1tlaw3mAbo/zIxiGNo3in3uGm8vnwUCwleUj1z4pF8EqfqkiCTiW0gSgVlVKRu62CT80bUDGWjiNLNpBMHRdr8yfVxnm0XYZxXet4d8x4OXFcKlWP8acNEN67DzUJKEQUDtgETXKKKifjFFubVql9+faZCzzyqV+g2b9HD1cDKQcWxwf0yxWFgvMtWQrWNWC9NmfWK03KGBX/5YixBpMVnCiogDsONYzPWlKJ9SBs8JMJftKwXq5IgG0cbjpTF6v1ghIGzGSmNLoQMEZoJw2CYd1FpGlqIFLGb6ijOkVcJC0CZxm8AWLmRzc67hyuuHw2c3z7Bi9+5U84d9/9PPmZjzJ56FNcfec6b7/8Bj/8zm2OjiO/dPe/4f2/2PGFX/tpfurzH+Ht55/j2g+f5+ja6xzevsvbr13l+3/4XUxOOKuNfBczl+97kKd/4bO0c0ORiEzPYmraeCnqsjTf3uKjv/I5PvT5j+HPfZiHn77MwdVXef65Q7749/4x3/jaM9y8cYfPvXGVJz/+Yc7cf4V2ZwvrGqaTLWZnZ5x3M0pt6tUEYabvfrlJXt7kzptX+dE3n+GH3/oRD33oKZrZWYTM6viIV//ki9x55WXavctsX3kCJhPS0RF5GEBEBdVY7N4u97//fi4+/HBtMtqqmUisjg65e/Uqye6oeDpFYt9x44Xvc+vZb8KgqJ8RdarJSWlPxVjsbE6beo5feY7bO1ucuXyRnfsfoIjFeo9Bg9WMtaqvQGkMo/7LWnUMyilQhkGbE2NpplO1xvV21BRXdJVNEatuhXVaXycjRgTv6h6SHDk7+iHSJSjiIMXapIwrrk7vqcf0SDMqI5nivfgop/7P2HmwgV5H5P30X9VaxDhHu72DqdNNDVAsFDUvRow6Sup5bSsgYTb0LINSYbVRO4E/Sy1AUlbK8WiLrsYshmgtySYV9YqKuWPWxO6yocHI6H+CKRArc6Bk1XCO1tkFdZ8qdXI1JA3180lokn5e9JHVEPEuKwvgYEGYTJhvz7F2Tugjq8VAt4iEdc9ed5vZXmF7tgPzOWXoKH2HxIGcEt3Q069Xqksg6f1jLdNpw+75PcRZZTC0EyRD3PLEXmsw8Y7Z2X2mZ3aR6RbC9iZPKfRLiIHheAUzRzsVJrMZTTvBTRp84zCNg8aRvVHatrHEqh9IORJiYL0KHB10HB0OYFtsseQEKUT6xYI0BJxradqZamGryYW4olRxaym+oZm1TCZTKL6CiwmSOtn16zVDHwl9YOh7hr6nWxwSFoeUEBkNhcauU5B6hngaB12nQaPegp2o4xRG98Qypn9nD2kEQQ1a9WmwnxmRc9DpjqhJwFixUozqdOMYbqtOqeNHtloIS+X+R6s1cBJNk1dWgdYjuTYYFfZHTgGghVL3kR+/FvkL29tuhLvC6AK3ARHGxV9NgBhp+ErVQacZcuL+pDShzZcxquo3B/OIWlcOZh4/101EL/rYfaEb9zgeM/UNKbWBkJPvMwqERz3GJurgdDNV9R6jDWQSdSmIMTEEoTfCughNTrhUw+5sIRp1clBmmUIukjVPwY68xZgRn09oXUaq5aQG25UyWu6aDfPHVhG4Gy3Z8igTVmeoZMxJgIuzOOdo2obJxDNpPdPWM2kck6ahaRp82+BbT9M6fOuQ1lK8IXg95GLRKUVMei73MdMPQt8LQy+EXvMzUlRKmtH1ixi1+/UiusB8patpc14FWDXMJ2hyaugjQxcYOm0sur6vTUagC0ERhpS0eKv3iandq1iDdRbnDa42G6axSOvAu7q4PUW83v7J6QFt9NcbR4NykhZOkc0C00ZxnEYYiFVfgiJLxYFENlzUbJQOCCciwhF9GwXOafz15mbLvMvalRNc/88iwPp38WH1mCJkXQ9Oiq4DGXnjY0FUUb2sn41rufz0T3Lx6Y+SYmYxKD+963r6dYeIZTLbJg4BgwffEnJ18SqZYbUkDUO1K9axvtLXalYKKG920EwMpLpiVb5tyrmaLhRSUtvJkgM59KS+w1qLyXPEWIxzzHe2cUboQ9Lnb7QZ9Q5sLPQx04oQijYbfS54KxjJvPzS63zn9/4553/rPGceeoyHP/NT2P4dth54gNTs89y//n9x9+3rxJz54jN3eefOkl++8bf5xBde4uz7P8kHPn6F933yKdbLgaPbC269/jrvvPgqV3/0KkfX3ub29Xe4u7xLEEFcQDgECuuu4eqP3ub4zhEhqVD/yacf5IP/3q/hts7R33oDt77Dxb01Z37tp1kdL7j2yrO8+MJ13nn7Bo/84dd56v2Xefx9D3PxoUtsX3oQe+EKZm6QHCmrJUUspAHas0TZ5fWvfpuXv/tDXn3+KrMrH+behz+KsXsMq2Ne++7XeOPrXybGhp17H6Y4T1gdk9ZLJEWs89C0iPW4nT3OXtxjMp8BPTkeEI9ucnjrFodHlihnMBNH7laUoePgzZe59u0/IhweKEffCykkoCfGgnOOYgtb+9tsTQ3eQ+47WueYTmcaoOYavPGErN2wt05vYGsQZ7XQENH9LQg5ZaWNGo/zDWLspphN9VxSqk8tWquuwhYFd6Rq/7yDiYfYWCgNpRQ1HsjagBgiOKfritPYP3WKOE463rv7CJzsidTPo0vlWJNgRqKm1DNfaGdbtPMZxlZqrdVpqauAnxRLrLXMmEFiQJH5ojkm2FqLjAyEsZaoTyiWcmrqUDYamUStR4zSp5D8rkJxZHKoqhSKsXXCX7Cjg5GwOYtS0ueWKART6GNSt0tJHC06Dm7fZSIezATaObEkBmkwxbI4uMV6EQgDhC4Q1pm9LrG9t6bd3qbxHtdu6wQ3J6bDQOjXDF2n9t1xIJeAc5amsYjTqX0KnmBX+InBeE8WQ7s9Y+fyBcR7sihG7xtoZ7sMqwnr5R1KKqyO1ggZkwc8c7yb0rQzjHcUb4hOgalUkmqUimVIlsXhgqOjjuOjSGKGdxNSNMSQ6BdL4mKJwdTMG62SHOP7r0yEXLMsnLGQIadICtqEdcsV/TLQ95FhiNpkdAPr5THr4wPiELTZhA27JwPGCuIsTetoGoP3CoL6xmEnvmZqNMqmKKaKvzVXQ51r6rSjBhlraVDezQwi198rI0TheGXc5KzfwmTUYEi0FhFksz7GkOyR0h8LlapZ2NhjUzbaDDn1cVLV/C8//mKNBpwU5lLF2COfahxjGuWvWwviBJzRN6AiwKMWQpO7a8VVuUzjRj2+eRs1OLV5oNSLpVoIFeqOPKjq/isFMy5mowElJteOqH7PDSUlU/Myyjjtri+y/khAkv6MLEYtLwUGEboieC/4qILqYhLJCI0pOMmaP1FvDFOk1qEZYwVn0RvNKkcOq2P0jbCNip5IVi/m8QCzQqoWq6WYTZNRjPJ9xyK31FRs3+ho0DQecZoxMaZ74wziBHGC8aJpmw6sFXXIyipAikmISlUndELsUeQiQB5KnazotMYbfRcsRTtsDRchmzqAyzUFPWVCgNirbe3QB4aup+86uq7TRmPo6ePAUDMLxkNS6sFsaoMhzmK9wXuLbaxmaGwmGl4/pH5ku0EUJLkqtBjdr+qC3PTzsmmGN7kfydYmI0KRjatJtvX+rPetHmV1ylYbtnHcNxID1a/75GdtfmZd0qPd7ckx9N58CJoxE+tSZ5yCFkDqkVvqRLD++4Rh/9LDPPbpz7N94RJHRwe46y3TfXVDyamQEYahIw5r5d/Wb5tHxKDoPpBygaGnpEj0LcW5ysFWZ7Qh1vG31SDGXEO1Uhjq8y/0qyVlvSL3a6XvlaJNrlHLQmMNk9kM5yxHw6B5MFpv4qTgBVa5sJaycbeLBdY5Yw30127zD/+b3+as3ODxn/sNrjxxAVbC6s5rvPnWD3jxm98jrztmzjJ0kWdf7zn6p6/x1ptHfOLTz/LQ+x9m+8pDzPYuMbt0gXse+CBPfPrjdCvP+vAdXv7Oc3z7D77CW6+/zvf+xT/Ffv4Opt3lR998nu/+7u9wdHhEFzKxQNtmpm3PELZ54Q/+AI7f5sqjU/Yu9txz+Qz72y1CJAyB5390xEuvHHLft97ipz51hU/+smF7Z5+8OKR0dxHjdN995+uwu02++FdJfeChD76f2b3v55hz3D7ouP7Ss7z1/W/x+re+w/L2ITv3PcK9D19hcvYchzdvcvvGQumNsxmmmZC9h4lnvbhOdyws7xxw5+pNDq7dZTVM2Lv/I7jpDDcMDIsDbj7zDdY3XqK7dUPtOacNxiWEnhwXpCTIdA/SgPeWdjLHNS3T7R1yvyYc38Vt76twu21xRdHopmk2oEAz8ZoRVYGUFFuGbqKgVikUURAjV+MRoVIxDcpP121dMXOp2kYZ/13GGWHiHab+fgiRrlexmISIISLe1oJYNyKpNsxpnJa/R/uMcW2PtLANG6yObRJsrLFLHp2hwLYt051tmtYzEr9tnYQrZU51FKYU/QZ139CtqeoyBOqBW3+o1Pey6JRJlN6U6v4fyZoMXrQG0a/PSNb3SOXdSZ0sxWwKODJqY1yEmIpqcMa3bKyHkuaLJ4QkmQHoSNqcpoHr127TxMTO7jlasUiB1WJFjoXju0uGLqhRSy4cxUwfEl3Xs7teMZtPmLSt0pdcg5s2TGYTLfBzYL1esVwc0w89w+KYdnuGiCV2HXFYYbxoNoYxNFuOdsuSZcJ6cQRkmtbjWgtMiIPHNmo00YVCWgwEAJdp5h5jGkrpMTGdsE+6BRFHlH1Cr5o237TkwRPWiTys6I7X9McrSko0TUM7aXHWIikqa2LTZNRaqRTC0JFSIqwD/bKnW/b0nZq0DIO62nXdmtXRHYbFghB61RvWgGMjBUzGmbSpfRtvaRqPaxx+0mBcNa1pvHLfTaMxBMUh2SHZUrIKwbXWsJup2UiBpIyAutK1S9FKi5Kq9a7eJ7mC+eM9ow2DjNg5IBXArnl2Y9GSqzvYWKqMmrTadmzqlh+zFvkL2dtqx36ywE0GWwv00cFpDK1zVotX44yOlo3Z0HtSKVVAlWtqt9kU9k7Ku2hUei7ry9w0HXU6omR3YTMoFqqqX/nvUjSYr2yaklONS52q6M8vm8ZnTPEV2AS36DMoDFROfcl644YETqcjwQi9KTTW0MiYiK1Nk6kTDi9V/Z+FgNAUQ3JjzLsoBQtO6UTGyVmpgvGKlo3Xpd4ZYgVjrQbrGXVTwlrEO4rXSUVyhlizOsSOblwFa9R3GXNiPzturOOkJ0XVhcQAcdCPEFUnkopUkVNtAoqOmsUoTQWrLhQR3eBSSppcPhRClxQ16ALDuqNfK1rd9x1D6BhCT8xBrSIrImErd9Y71WOI17RU5xzitNEQpwhjcY5sPcV4Ml5zNjQ9EmEUaJ/Q8sYj7WSqUGcKOdfXVOcLxVCSwRqlOhgpddpWLRHHJqOWzlJRrTEU0hq1XC11FD9uBOoYcVJwn5oTvmcfuaiNrTWadJuzqYYR+kpHjU7E0AiUkpns7PLhz/8aD338Z7h9fJfXfvAtLly4wiMf/SQJg/gG4xwpKsfaNhNN+ZWGNHRKxwPiEJRO0w86bXNCVJ9U1c5YwfmGpvVEKRiptBijomRFqpSqqXaIBuMmiGs12M95bOMpZOXpO8+674li8c4TBgUdrCSMgS5tZKg4C0OBHCHkzL/54U1e/S//IZf/zlfYnU2Y9CtF8YEh9AiFuYdcDOtYuH4Q+Cd/fIuvff+Qhx94mY995BKPPnGGs+fnzPbO0WyfYfvCk+xevMg9D/48H/7FX+W1F97kK//wt/nu/+H/gW093fGC1cFdhiHQhcxiCPzJN17nZ1/6Hvd84DxnHnuMgx8F3IXLmNklLj4CF+9/BHnpOZK32MmM933mI/zEF77AfQ+eZ+7usPrRtxju3mH2/l9icu8jEO7AsIDW4eQ2jzy1BXef5/4nPs7zr53lG3//t3n195bYUFitEna2w4Mfex/v+9zP0m5dYL1Y8eyX/phb79zC7ZzBTGfM9vbpuzVf/B/+O87sb3H2wafZOv8w3PMUc2nJxtEfH3Jw821ufPvLHL/+Ah2JfnnEViOktIWQsAbSECBmclxA6skxkI1jtrfP9v550p0b5MVFZlceZLq1XSmbBusE31jdA0rB28LG7x4BWlLSXTzEwhAy1luMAyibIhcRpdDXM2PkYWNOCgVnhOQKxglOLG1qKtqqUygjFp8SjVP9wJj6XIHPk63tPdpobJDV2rxL4V0T0VJAkhZJrlDduByznT0m29uIZEK/wkimbZwak6CmHLFmW5Sa1KpZUEUplaaQ6m5sKjihZ6OKnkeWBKO5Sj07CyeTC2Py5nuVCkJlI5tg2E11Ue2QS51oJCO1iVK6TAZGq11qLSKip0xJQrEJQke3uM12u2TiLK2oaYASCrTGGV+CIRE7oQvC4WpgPluyu92yM/VMG0vjPdY7jJ/gnMPtbjPd3aHveo7u3mF19YbSgHMh5kT21alIYB0jO/Q00ynYLVIYMPMJtBOcazDDAhgU7GwM09052xfOMNlpoYE4LLUZm++Ca5AUwbSqV0gD3kEe1rTtjBDg8PYdSEopjxnEWtrtKfOtLZzxSMn0q4Xq9bwjGQWJUozcfud2fRMbYrbE5Ai5KF1q1dEvFqzv3KE7OiaEoJTcUnDGVGC41gEWnZpZzR0zzuLbRvV+RR1QjW/BtWRxGydKyeNHdZoaJxmnNJ+Z0e79RDNRkqkgRKXQi7JiTG14S6VTjnVMHkH8er/ayt80Rq1tTa1DDPpF2kqfqkJOab1+nMdfSAxey/nN47TXvT5/U5NntZjyxiBWnQ+kZjJsEPpcVAgXdWScs5ZnGaVW2MpvN6MlXH2dJ/W1chZHIVWm0o3qRqNAgtSwKYOQN9zVUZtd6mRFOWpZGw60AZE8vkF60cZmRqjISYRilaIVTaaXxMQYJkbD+3ylTpj64Q0qjs5qN+ZEHSLSSAGqUiAzotvy7rGpCopHsk0VudcC1liwvk6QrNEmwzmMs9jGII0gEygtxCYrlc1F1X2YEwRNalFVxkYwl4poqDwixkKI6MEZISf1gS6i3D87nmqiZCBtiPQ9ijUgJ4RUw24iw1qbjL4LhHVH3ykPMgwdKfakEoDEZmQi2lRZb3CNKE2q1ddo/Nhc6LRGXSX0/VdhXr16Ut+TUidnY+deThEATS0W9FSAYjCpukxnQ0na1GnzbCmiHtdFtJE2tbkqpuqGjE70NgnrySJJHahMViqWwdYgu1rUbqYb7/FHyZscEyPqCGdRhzbluJ5Y6OViwLY8+MFP8NTPfIG+O+YHX/l9rr7+CqsHjrn4+BPMz55lujVl5+x5Dm5cZXV4uwos9aDPOdH3a20oqOdqTvjK0U5FBXPWtzhnsc7QTtQi21SqivOeyWxODKHuewMhR8V2GocmaUNOgdj3ZMmQofWOXqip72oHaxIYY2hsISRFQSMFWwxTC6tSVPMVE7eOMsfPv8WWNex4YdYI+1sa1EZR3vberGHPe7pUePzjH8e1La9/74e8+U9eZeJe4sKZhiv3b/PI42e5ePmb7J2Zs3Xv/bQXnuSpxx/m/v/9f8zr3/lJvvL3/0cO3rxKCnmzRtcx89ybh/yD//4r/EZJXHryZ7n3yd8gXf8Kh699g1uvHuAnM/bPneOhpx/lI7/273P/R55mOsvkm69z98XXePv5lzj/4L3sXvok0s5hcpk8uQx4JA8Q3yK99QJNu809l36ZmXMcvXlADJnBeGwpyPAWttxF2KWdNGzde4F1tszOXKDZ2mW6vUNMFvezf41mPsPPtsmxqPMKge7oFuub13jn219i+fZrxJjpwxITl2S/TUoBLzVozHjwDalknYANnVJU2gnGOaKxnLt8mXsun8M7NZoeqa1awZ+cvFJOnR9Cte4UfCvMJnZzP2rBrJRTjHKlpU4wxgkEsFn/RpQ667wWis5b2saz7oPeU8ZpsFtWR8QyFpSVklVPLez/CrYTODm/R971CM6MFFUjhna2xWR7t04kF5QcSFbLKesUQsytiqtVYJ1JWadPagyTN4oMi9Knbc3NQkYAUCm8zhQaW88YqRQ4W8BVRx/0cx7BQjEUGe0/3n3W6j6Yq4280qSUXiobreemfBS1/N/UpbGQTKZbJ6bGMLWad9G6qimk6l+N4I2+pnZrC5zhaBjo7qw4csJWY9maOGZTh2+WSGPA6zppJp79e/fpVhOO7txlWK9PnLZEKWMhJ46Pl+y3jun2HrgdpKwoslajnInBGEe7N2Xn/BlmZ+b4qQOT6IeBlAb8rMH4qcIyYsjekKNOAXNaE7sFmQxmh5QjsQsV9LSVYTIoCm4LFEtpWnJUUTy1NkliYLJDikoDD4PqMULfM6zX9MsV67u3iasFMUVKClr4iaOMBjQVSDfeYxqL9YLKsrQewVmKAzdpMa1Xd0/sRoy9mRoI1dmO2vjUIr+yRETA1LFnyaYGJRtNiycRs/66SK7siqzvh61i/VqLSAU8R7pndtrolFJrOWqmV9HGJG+A0LEA//E2kb8wdYrxPodNMRzNaeqPbETXtoaW2WqdKpXas8lqKEK2hYCOHE3t3nxFC0wZBzd1g67jzJFDmWsPOMpLx03+pJuQU7uS2pKOdJgseTP6HNlf44g5V3pVRpuKTRpwRTo0HVTpUlkMSRxR0iY0z5sayGVMLebrJMeBc2q/qo4R5aTRqP7JBS2mc0FHshQ02DCdEvlVh60iGBJGBGcKxhW1GK5yBPHgfMG2BdNmaKC4TLZqtRdQbQUZbOLEBSNXIXwsaqUbMjGqlW0ImT7AEERvbiUZI8bgZfQUNPqelLEZVSvcEBNh0MZiWAeG9UDf6UfoekI3ELqBOAyUFChERqcyQ72nnMF6UU1GYzCNis2NG/Uu2s3nMiZvZiJZ7YmLaI5KKkhOihbWBaSTJEUGxgZudEEaAx2l6PtUjDYVTixZkvLQa7sro1bGmo1/uIy2w0502pIEk4RSDDbohnMyQRkxC9ncl+9RIBLgZB2h+oxUagBmRS5GekKm0JfCuSsP8djP/CLt7h6vPPctbvzoGboIN29c5eDGdbbPnqNpW/xswmRnl629s4wS+jD0DEOndAirVAgphZgifQiYlMjTCabxOGsxztL1PSlGfNtUh5n6vtiWnDK57wgpgNUgLzLkEAgpIl1DXDZkMoujI7xXM4iQEp6CNeoa5y1IMrRWEexc1FnIitA61TnFAiHX8E1KNXgQulj0Xkm6nz7yvsfYf/ASb7/6Nvt2xS//R79A+U9+jRe+9RLf/9I3ufr8s7z85jX+zTevcW5/wpV7Ztx334vc98C3OXf5LLv3XebRBy5TfvMX+Wdvv8XixlUaERorNN7Sdz1f/J2vIsdv8fnfWDC77yd4/qvf5q1nniHGGZcePMMjv/FZHvn4J9g5u01Z3WDx0mu88cMX+e7XvsvNN97mr/zNe7DWUPIdct5hebOjv/sS2xfuw599ArnnY5SdByEkRGzVakWGPLA6PuSr/+CfMdx+m8sf+CT+zEMYu8e5Bx6jmW2BbepEPbJ96T5iPxB7daTLKZBXRyyuvs7N577L6q2XMBJIcUBSp6JqIiUvK73G4+ZnScUTV7exktRFLybcECAs2X3wg+xdvoi1otPYVAGTlMi5aIhf1CAvKKSYCUPAiNoEGwPNZKKC18bjrFE0EQWIoMoGNqtcNvSpVEqlHGqD6jx6+GdHnk4YhsJx1yugYyCWUB3OzKbxPsEq3tv+dZurU0XFMoo7T004VIwNbTuh2dnFeEcYVqShwxqrqdsp60TZCaZknHf4nAnJEAVCUitaUFMXJ1rUSQay2oJiFQGmntm2aDHoa7FtoDpOVRClgrGKVivvfDQ0JKN2tTkTc9pMamIt73K9N5RJUnUiAEVp4ZK0FgGtZ4o4TYY2CrglK+SodZjUmmw+m2CnnpwiMQW2z+5hmx1yH0jrNYvQM4TIYqUuUd4bbCNqyewN1lsa55ntb9ENvdoEl4oFGrXw7pYLFi6z6wRjM12/Ji8GrHNMtjzTvX2me3OaqacwMPRrhqR6iJwzZydWnZZKIiVL7BP9elD6FJYknpAhxIEQAn0IOnk2kRKFcmegxJ7pdBuxExIOmlZtZkshhkQIkVAgDJGhGwjVhCasO4blku7giGF1DCmQiQr2Wr0HxRZtMJwaiNimAaeOl8aO9H9tFcU34Kz+3JRq2KJqLIz6IEMRbEmoCLyyISoqIWZkU4yAhNT8HVH3rGzwMmoP62QOrcmSZKI1NctMqfIliU6TvMMmS06iU42o9Z9iFCfTjCIntciP+/i302goQPKuDzFl4/hpZeSYVu71qYRrW0naub6YTTcnsnkhRkod3dSmgXKyWkeWVNbGhjrqyeMUoiiHe7T6I4pS6gMQTd1sqjp//PYbYVb9+vFrq1jd1gWfjSr8s811cxfUsDsp999YitVmI9UDxVpTR+JCSmqDa0W9BZJJlXpzQl339Y3OplK+tIVFik5kNBDckIyOx8EgogixqeFE4gEP4grGF3AqfMu2bFCukvW1FCsE0fCf0cUq5kKfoB9gCIV+yAx9ZOgyYZ3p+0IfhZjrjW10YhWNI4nFjTi1iArVSyHGRBzUUapfq/1et+5V3NsNhGEg9kFD+WLUEQpZm9d6PzkjeCc0VfhtnOokxBbqC6CUTB5D2UjaAFJ9zUuBGii4ERJKQa1vx8p3XKz1vhMtVjcHtmxmapumSkbD9tpgZ2swVQJiHCroGi0eXEES2FQoiXcJOEtdXCPKr+2lbBrp9+JDQd+MFH3/Rt7pCAiXUsWTCFsXLvHBX/oNHvzQx1n3S66/8iL90RGxmXF8fMg7b7zK+Qce0oa7ZKzzTLb2SCkyrNeaxO6cirlDrA5yFViIQSkWbYsxFvEeY4TVakmKgWY2UdqdsSDQdytSqK5UJTPESOjXSN/pC2sackwMw8BqteTm1bcxMZELhBgxE4tJhibDzBXudlmdhCr0GkvGFMfUKrrZB+iTNramqHgxFdWYWLGUXLj/ocv8pf/k17n4vsf4xpe/zz/7f/89vv4P/kd+9W/+ZZ74G7/CT/z8Z3n2j7/Gd774JV79wbO8+fYRb75xxPx7lgvnrnPx3hkX73uRvXNbLNuHyUOPFYOzmUljOWOq6LhE/uTrb7I8+l12z/wJy0XknvvO8uSHPsxTn/koe5fugWFBuvUc13/0Ct/72jP84Ls/4s2Xr9GQSf1Ki3nZZnnjBt//J3+f2y8+w2Of+DQPf+pJ2ssfJG+f5/DZm6Sur+P6hC+B7e09bi8Nf/TPvsP9z1zjqV/6LfaefBKcWhWHbk1Y94Qa1kdWb7wce7qD29x+4TvceOYbrG6/w952w2R3h6FbVEBJECIl9iTnmG6fI7s93rp6i3h3zXab2AmGOHTYnLBDh51tcfdgzZ2jt+n7XguRmOiHQIqJEKNq/CqgFQdNnnciOGMRC7O9PXbOnGM632I6ndFOmrpXqI2pNTrts6Yo9xs9D0aQZkhKURFz8tk6y2TSMORCiEldAkVzF6ypk/G6VY2lRz5t1fiee5zsjqcHvYrWlk1RZhrPbG+X6XyKkMhDh+Sk6zplYh9oJvp9bFGhcjJejSCy7vfFFHIN3FM4s9YpGTWVyBWIqvVLjvpnxo71jpYEOSaquwU5KU2yxEIJqm0suZ5HRUixEELUs7+cCI21DJFapI77ZtlMysuYySGa06PT/7qPRSG5sRaxGCNMJ57Zzg7T+YSuX3N8eAC37nLm4j6z/S3M7jZltSKtl3RdT+kiuc/1nhvPXy1ao2mJqQKw1czGGT3zxBS6bkAOj7B9T0FoZw3TnSnzs1v4uUdsJsWV1hbDQIiRlDLOGmZ9wPeBVAxd33N46y7HixWpmZEbRyyeGAzrxUqZEEPUuk0EXMMyC+HWMdOmZ7pzFjvdATSIMcZErE3F0J187nulbnfHh3RHh6Rlp5NuIBM32mFrCq6a/jStxzWNNoZlnKwXrdRKpiQ1rO+HSAodsRhCNtpoRFPZDaqXsOgkfNTxVd59ZUNYdbpDzxA1YpJK/R81pfoEdY0oiyAbg9h04vpaa6XiitaHTgGMUMcdpvIsN6ut3oMK6CsI9uM8/u00GvUhtbEw9bOTUj/Mu6cQWQszUy9EqYi+Bs7p2pANclOdG0rBZE0+LKla/Y0cNTEnydOUigyoW5OKmLW4KKPFTyi6wFPWsUUum+ekHaIW4Kor10Jo/Pal1O9LfUG2NhyinCOhaNiXoRb7pnavyhe1WbRpMPr6klG6Uhb9M+XVqfUaEaLVa1KqwJh6Ayv1qzZkkgFBTMbYjHEF67TRQPOI1MbNQXb1xpJcrVgrnSPoDenR8DDj6k2INmohwjpA1xe6kFj3kW4V6daZYcgMEUKstq2VruWM08Cg8YatITVpRP76QOgDfder6LvSpfohEENUy7gYVRMhKqQbN28nSj3z3tQPUcdap++JmgJoQ0ZWUW8iofOM2hjoqmQTnoIeKpjKiBQojGPtjX/JOD9icxNUUTfAJuF9M5IUpUxYfX7WabGYU1G3MZspJmuwo85sNv36uMTHn1Y2f/befaQijI5aitTm6rpVN7OKUG6fu8hHf+Wv8IHP/CLT7V1eee67XH/zNfr1moRjMGveeet1Hjy4S7M9w/lWG/sCoe8JfachZzGR+jVlCJim0amfdfXd06s8hq7lUjg6PCT0A3MjWO8VvUmJMKwpMWF8A0NPf3xAHtYKFHhFsJI1DCFw+9YNbl6/zhAqo1v0YB9/4syqUcIyKgpW6tQsJm0+GlMtpRMsU9HiMcNWzgwJnM0UsTz6wYd46gMP4rbnPPmhh/m9c/v843/6fW7fXvOF/+ANHv7YR/m5v/IFnvzU07zy/R/w6g9f4LXvPc+dt9/mxu1jFkcdt64vmM9bIlcJq6GCFEKDmonPW4OfTdne3+Xc5fu5/MSjXH70Ie5//xNsnTuLZSDefZtrL/yId167ip3v07XnuXv3BY4OOmKBN64vuRTewbpziJsjzZx1H7jx6otceniCv/ciZfIQNA2zC1fo7hyRhwW7+1vc+8mf5zjPuPbdr3H31iGLo8AOhtXhgtCvCX2vac5kchwIi0OG4zssb73NnR/9kJsv/ZCwvIu3jr49g1lrynuOFklVFxgTdjbn/sceYXXnJs9+8yUWB0vk4j1Mz14idR3rxYKyXjIcHvHGy68TwsDQd8SkCC5Fm+PiVTxrrKVk0UajH1Sgq50ERQzWtaQshAh+yGpYYUylrLKhHLu6B8sGgNAjLFZe0BBVTB6j7iNt6xjts5MIWRJGRoR5VBUoWDIeY+/9xzjNGJsOPb9949na32e+s4u3lhJW5NBXgX6GVEj9QB4yxtfMpFzzCkYrwFoflCqkz6J7mJ4DosBDLkjOINUWOkRKVB6+jiMKOSbyUM8ahBQyOURKyBtnDKlg55ganaLmNSlYq3x6o0OYTTBgqrS4ysojJwW4pPLuqueOalWtsjiSA5fBGMt822Obhoxgm4Ygllt3VoScOXc+sL2zxWRvC5lPSX3H0Hf0w5oQBsKQCENmsKDOnUHBO9EsK2ML1kHTiObmjPb58ynNfEKzNcNNPHgIoSd2AylGrG8ZsqFf12tgLe1xYN70lDKh76HvCt0iMpglTBpCNAxpQhiUfh86daY0jcVPthDxDOs1eejBdniZEItqRGOotUhQ29p+vaZbrehXS1aLBf1iQR56JGacmGpAoyCkLcp+bqzQNJb5fIoxhcW6V9qWeMQ7yGkDmOYQGFZrUhmIxZCKJZfqNJWrrX6VFYhY7NhoGG1xlNI0TrhqlZArsJ4UNNbcSdnU0pvlIaPOS++JJEqv04Y0IyYzhmwnqdVObVYSJzqNTfXzY+4h/1YaDR2tnHwek+a17julMyiQqppdJwxyin4mowihulfVlyQ6Jk6VvkSsgV5FC2ZTKTEUy8ZJqs4bxzC+0VmhlLqoazja6KW52XDrG4GpSISM0xHUsaMq3/XL9E0ijVZhWSlLInibVRzkqld55c9Btaolb5xASk0ENrZoE5K0uRgqEhIrCKs9jVRxT+1Y6yjcVNSg0ovxHpwXpAHNfinaEFkVKdfTBpJSWEwqdcPMmJR0KjDS3orR5xS00Vj2hWVIrPrIugt0XaYbMiGquDehUwsqRU4bDamjZRWLh5yJIRGHSOgHQq8OU0PfK0oYIzkkTErYnLEUtcaVuukild5haJw2GqYGABanVKa8CReUemtVkbrIBnkqebx7tQFW0yh9D23VbozhhyrmQ28GUxuOOsTIVqrVSR3hW9QqMWtjWWouYXKQvfY2OWnjx6lJlfbAmvw6Jn3qmFyneZmCq2qN9+oj5WoriKJNBqVKFtSdzIsw2d7n/T/7y3zw536N/fP3cv3qq7z50o9YLY7JdZo39CtuXn2V1cFdpns7NNMJzXRS77FaFIRA7DvSaonkohunKAUz50KRVG0O9YYvAsfHxxzfucuZi+dpJi0ZbYpLjPTHx9h2Ql535ONjbUh9C2gwYC6FrnQc3L7FwdGxOt6I0FRbRSOGTMJKZrsRDoZMSqb2qvquBuoaoZCNEHOiLyoQXufCLGVaJ4hkDu7epTu4SpsHrr30Mndu3ubGIvAP/+AFfvD8VX7up77Mx77wWR74iY9y5Vc/wSe/8EluXzvmtede5Y1nnmd96xbS38Ea9Ypfr6KO6tuWyfac+f4F9u+7wLkrD3Dm8kV2L93DdHuKbxK29JThNgdXb/DDP/k23/mjb/PYR3+Cn/qlX+DKp2AIO7z1xt/lzuEx/+br1/jwX7rNfPIOs33hQ7/+KzzyqU/j8jFtuUaxnmG9wrVzLn38c6TouPvsghwTh2+8Qc8UtzqmLG9x9Vt/SHvuCslsIQZit2Z9eJejd65y9M4bHF17jfXdq8TlXYZuTQlZi2orhOxoY8A0U0rKpDJokCLC2XsucGZvh0kjPPqBD3Dz6g3uf+xxrjz1fq7/4Bsc37pGf3yJuDwiTPYYapZPiD1htcCUSNNO8f7MBvFWq21HjNrwYsB7R9u2+KapGRuGVKfqUs+aEnVmqWJNU4u3Sh2uhY6AUnariDynRCmKVLaN0SYmW6wknE1I0uSBUgvkSsL9//8G8G/hUQrvoobXoeDm11YEsZbZ9g7znT0NTYwasEZtGEqBmDJ9P9CGiLUeUKrkiRWmaPp3zJikPyEXpZ+MtsXKkxrBKd2n46AW7a3xG5RZDaZKtVDWELg8BK136hMqKVeufrXQrmG0VmQTCJqK0nxJKjlISWnPFe/a1ANSGy5rihbFjKCVRr8mCjbr1CSEHsTT9T19F8g5c/eoI4bIsFqzt7/DfGtOszunYc40R6UodityjFA002bMfzLWYLylmTQ00wmT+RQ3n2KnU8ysJmP7yp4gkvpE163pliumW3MVbVtLFx3L5V1SiXBrzYWmA6NGNOK3sPMJhEC/6jRLJA4MXaaYCblEzUWKiZiOEeOQEIg5kmOijZlULLGUWof09EttLrrlMf16ydCtGYIG9Jmc9K22lkaqvpKTWqR1wmzWsDVxYA3GeYIUmvmcZjZjCEHdrrJmkIyuUdoPFsix0oYFEbdhALmxFq31Xql0F2NloyEc62k1oVH6v2LSWj+M1H+FV+tnUcZRMZo3rHW4Sgi0tkUlDDKya0pdZ2Mtolb1J7yj//nHX6jRqLiwfpxecwV8YSNmVstYNjx9qVzp0TpOUYIqfkqyWXzjNliKCqo4qderm4S+gjH0T7XHI39e+Yvk2mTUjeNdinWqYFxk06vlOp5SH+1CLhqUUhJQXbE2nYmcjC2TCMFAMIWhKOpo0Oc5qhRMAWurk4U5cSEyxpAMGzpWSplYeXiu3mzeFKWjWaVGbcQ4hupwINgGrC84X2oQzckkpIgWrHHj8FU3yqyTEBLIUKcYknREV0VAORpCLPQDrIbMasgshkjXJ7ohEUImpKrjKPoaFJ0bgwNNHTeKHoCpMISKJAwDcaii734gxECMSTf4rIVga2BiNYPAG1Geuwit1fAq79VdqnhLaSzZW5KzJG9JjSU6R3CWwVqSWDKOLCcowuj0YIpK8B2m6oLU4z7Xg1390Ku4slTUqDZ9ow2zhi6q/sKkkyA/XdBVN2LH5gXGDJdMdeIqJ5ob1S6NLcYpG+b38EM3xVJtm4WCrVMMvaMnW1s8/OnP8YGf/1V2L9xD1y9446UXuPHWG+SYVFCX1Xa5Wx+zXh5ixeCdZzKZUhgPaW0OSowQszacMWKKps6nYY1pGnIa1MUkGVzjSSlw4+03ePCpx5hOtCA0YkkxMCwOSas1pVtTQq/5HDEpT94onWEVM4fHC5ZdT2N1IiLOU3JQ7YkVYsjMnMMRGbLaV1gMjVUUYFX3xfGwUVC00BWlLtpUsMDvfvUlLlz8fZrpjG9+9XluvnGdxgqrGHnm9bu89PYRv/fF1/nJj3+JT/zcx3jskz/BlYcucuXxnyT9ymfIZUIpa1KCsFpSYqFpG+y0xdgGZ6eIr0FiZaECznCHdLji6PCIN1+5xre/+E1e/u6z3LnV8enf+utsnbuHWV5z//sewM22WN865Ktfe5Nfv1p45PwckSPme/cw23uccvurpDdusbjW8/rrL5G230+zfxGZ75HaLdLqmOUrLysNNkXa6T4lzzi+fo3pdJdwcJXDl5/lzeee4507Nym2EAnEboXJmdY5zc9JBWmnJOdZDcpXjsYogu0zrm05e+E81gnTnbM89Yl7+cjEs7O/j8uJFw8O6dZrTXJ2TXUizHivzUIjhpI6mumcrf19XDMFMTTNRL38+44cE77xtNOW+e4ek/k2rmkx1pNATS2MJcdCKOikpX6OJakmsJQNDUILag0JdIL+edEzC2eJqElHLBCL0QlLCZSiWhKFVN7LJEx9jCX0OOm16ORoOttmvr1HYx0mZ2LoSTHUsbACeiC10E4KyulIVYv3ceqc2LAsEK0lMoU4TrqLVGdMBY6MimlI/QDttPr31ODXrFSpVMqYjFabC/TvADDV8TIrwCk6ATN1Am+KqbTwjM2iICGjg6Y+x7EWMVKURVEKhsRQbD1ZKu3LFg4PlzRWDQXW656UIsYZUsgsiYS0ZLEc2N1ZsrM3Z74zp506pvMGa7b0e1UCTSkjpeokLNf5BmkU1c9OqhYqkipLoo+J5WpN33XEVHB7ZzTNPELEsuwyfYis+oKbDvimUcpkcAzBM3Qd6+WaboDj5TGxtITiCKEw9BoOS3eMQUPsvLFAT+KIgiOGgW65Yr1Y6BqPA0NQjWhKSt0S6vU2QmPQyAKnDaA3hsYYJt6yPfdMJhZxnvmWh9Zj2inZeo7iwMSB9xZpNecrFqMaGjSdnmwweKxplDKFxYvFYhgDIYvVmqLYUf9a6r1ZEXMpxApGFKm1SK4lXV0x2m7qPVNE7eZPAH2tRU4bUMRax+vuM96lfzZrmr9Qo1HXh25w5dTv68GbROqClA0KT20QTiP9GQhUbrap4q5y6odAFaVILcKkOteo8GVDlitjnJlsLs2Yt2GKUEo64aCo2qEOQE6K8dEK7LRuXEo1LMhCTid2tyNqUKSQTSEVoyJOhB5dgrYUDZHPOlHYJIBXMQ5JhUA2Z2JxVcZaVYECxViMrRzNUcAzWvbWG8QYRYm12dVDMNZU3JKqW0WBmB2hTniSLRXlH9/NhArM66RkhEiyIUWjm0IolTqVWYdEHxIhKeUjpeqUUTdHW59rMvr9jKj1Wspq7xhiJtRGIw0q+I7VLk5ywmSl3TUGJkaYO6H1ygdtnBZlE2vxzuGcR7yn+IbiPcl7gvNE70lNQ3QN0TcE50imoeDJ4sjFUor6VjM6PiXd1G21vC0YdWcAMlkPIL196qLT+9GgTUwSdWlQJq/ST/QM0CnJxkGqHiDU30dOrhPV7WFcAMLG3Hi8Ld6zjxFNNKgrju4AKjorbcOVD/0UH/21v869j7yPdRy4+uabvPXqy9w9vMuQoGSjbju+wSZY3L6BkJnMpvjZFGk8uWRizmRJyoM1QkmZ3K+qIYVQSsYYhxWHZBUAWqchajeuv0VYB5rW08xmuOmMYq0mf5OI1OJg6MmhB+spkxnGOiT0hGGgiypsNkZofIP3Ru/vVDN4RGicZQhR39tKmQypkFBRqVTet1JKR6vtMXch88Y7x/w//84fc9YJTaXFTGzBWcOQM0NKPHv1gGf/0Xf4+7/zAx576Hf43Oee5KO/+JPce+leZvsXcfMtxExg5yxS+nqvBST1kO9SVkviuiOu1qxXa27fOuTlZ17g1Wee4/bVuxzfPWa1DMiZi5y977IWRqUoRzoGpCTu3LjDP/i//p/5zd/6Sc498WHkzNOs1i2vf/2LvPRHf8B6lXG7D7N1ObG4/SUOX3+OuDzAGEMpCWMd03se4N7/L3V//mRblt33YZ+1h3PukJlvqFdzVc8jyMYMkCBFUiQFhWWL8hAOhf2L/JPD/5giHLbDEQ7LcoiCSQokCJAUiIkAuhtAV1d3Da+GN+Zwh3P23ss/rLXPzSpQZEEEGKzbkV0v38vh3nvO3nut7/oOP/9LbF97k+sfv83Tf/7fcbGt1P2BDz94i/cePkFWmdW9C1IIrAdhc75Fa2Mujbg+R0JkKkeYj0xTs/dsdcZme856eweVFSGvuBgHtmdbxnFEabzwhW9x8cYfsf7Clxnv3mc425KGB4aUY6LwKI2Uot2Hq3MaSh7WTHNlOhxAIA8Dw7hitR4ZV6NbvduE8wTTC6Vk5qJLQzFNlalUSmnM82w5QmqTmIAV1iEYfVhQghaS07BmFY4kqsAYArEcASu4F4Du8/jwt0s/+Vc0EdarM9Z3XyCNKwMBy8w0TdaoheDIv4N8CocyIVhgbgl2ZjWUFpoHyjpq29ef781Gs/YisAUDIx1YmqdiUyqJhJCRUBCJKNVZGAYjizZnW2BOh9InD9VmDz6RNy615RbEZntCrR5oqrdqkWAIdlUL7S3SrHBvajQfgrlGRjOVOJbGh9PM4Fb3MQuhBdCEijKLcqVwKJWnVwfOt1fcvztycW/Lap0JOZmjkghINNq3c/+DFFA1UwYCWoSKMDXYHQs309FqAbXMHk2ZsxppO5PfX14eeHp5YJoL6JHp8CMuLs4hr5l1xeEoXD1/wuXT5xymSpUBjRPzVCiHvTVN4lOqaNQwWa+RYWS62VP216jaVGd3dc1hd7CgPm3UYq5SUUCaaeRyCAZ6BhiiEiMMEVY5sh0zZ1uzRpc80NJgVN0hU+Jgjqghks+NhlbyiHpYX5NokQ5Es7klEslIE3M2a73RCK7rszGD4rqeVi0kONg9nGKktkRJdm81R/9NjG73vasLTve3lxdBT/BD7DW2Wk1ttWJfdLqswc/y+HcP7MNq/bqM7lyULSaibRqsQG8Bj8fglBTQGwGfaoRbCIVAaMbxaZjzS7faaj60qa7zEC/qegS5SDAbORd+GlGNpWDrxY5qQ9xWrr/T3oN8ahKizsPUpXHsz1FcZd5TrivqrkYWKj+pUb2CVOPceUeg3oxJEmoJ1Gz0o3mOpLmRx0oukTwm5hZYN6NUZGWhNgXRJVeoNbWwxGKc41pntDQ0VjRESqzMoTDHRIuREoQSnFfcrfROzDJ65KlWMQeOIkwzlNl4wVNtFG8uan+ffNITxKcsye4Fc10Iiw1wqEoolTBXwmyCb5k8mKMVRFvPOCdJYAjCmGA9COMQyENgzJFV8EYjWvhgy5E22PRCsln6ypAIKZFTYkiWxqk+ZVE1Gze7ge2eMQqD64jUF7P2dRWp0rzRaAsNqwXLTbGpRlicwzrS1qmD4dah0XwC0gJIDJ71EZAaCbPleQQMzeh3uIlXhU8er5+zh9phI810QkUtmCivBl779k/z0//Zf8n9N7/IXCeeP3nC+299j+cfv0ed9tTZEck40FplV2Y+evguZZ4Z1yuGcWR7fsG02xNCos6J480NMoyEeaIdJqrOlg5PMDpLbYQyoTlTWkPnmUcffczl82dsH9xnXK2JOTFsLmBcU/cHo4cOwyJsNwoYy5R2MSlUy8Q4zI07Y7a13yyXQwQ2ObKfTTPUzSpMRGwHg/o9o3R0MxiwAKDW+N4cKikL2+BOcwK5j92TkhvMCtdT4Xe+9y7ff+shr/y/f4uf+Np9fvInXuaL33iNi7t3GM/umE9+SDSSmXVI5OZ6z6OPn/P+2+/y8O13ufzoCfPVNe1wpFahqDDVwBtf+gKbO/dQrVw+3vHuH3wf5j2bIVFK5Td+7fu8//0f8cYb/z1hfY/dFHj68D2G44FhvebsrpLffpd6uKaWI2m1Jd95hTieEXLi/PUvEocVH//Bb3F4+1/x2ssD5w9e4Azl69p4/x/8S66vbqhccXZng6Zo2U1xgNAYckTrEalHJKyQMqM606bEevsGeb2BkBAiKQ/EYQUxE2Pg63/1P+JH7z6H9Za8XnH24kusz84tTyAls8eNMOZGiAMhbZmKIcelNeq8MgezGMnDQB4CORkNVPz8sx3C/lSyMLf+mTBkqDXaVPmYjCrVzBFrLtUa9mZORXam+b7kB10jMIdoaDOZoEqgEDqg9Tl86K0/Lf7+IZA2a8a79wjDQAFaM2pQKdXOa58YE9yEQhXmyQ6/FJiKUGMwm0/sLFO1Ih1tS65W18E0dWdGxabcalbppRgoZSYTzcW7A4SKtrrUKyrJJ9bNayFhsd2Hhf5dW38OVot0CndWCxqlO281A2vFJy+mb61GxxQDPkVM6yriYsRi4GdMQiqBmgOpQimBODRibpQamJoy1cJuf2D97JrzTWKzzYzrTE4emBtY7j9x5H2OgVmVqVbmuTL5njSL2c+WIExA2g7cHBv7MlGmwpOPn/Ps6Y5S7LU+e3IkhEtiyMwtMs9wONi1bSpImFG9oVUTXiMBSZngdr4JIdRCuTrQDntysN+vAdZDYro2cwCtZbkmEgzxj5ideJLGEGHMgeQsi9UobNaZ9WYgp16LJGSVqf75drNhHkbakC0wcrUy96mQaCGhbrwjBGNYaDR2T69PmpibZaf0+32prS38JonmXlbUaufQTPjfmtHJQxQsV60SYqTFav9erHFu/Ya/9SH1BJSephqeHebTsc/y+HPRaKg3CfZEDWnvk4GGc6KrB11FLHmzi6pbHw96Uee8VGA5UFFHe08YsSHQ/sbYG+Fbz0JlsbelSTNxsjplaQnsc9qL9ImGS2594uIJSibSUhOe2wbd2xL1Q8LHlthzWMTHONdaGse+8WO6gdIRf7ecCyUQ50acqtnHTYF8DKQxMoyRcQhMOTBmSx+PybyvTTB4a7qyUHcqNVfTK8TojUVkjkYjailSooUEVkwvUKtlW8zNjTHUm8MqlgZehVqEVpwX2sWE7naAvzdR7IYPyWhjKclJ9O8jPK1qnOJWPfmv0Goh1EJQMwKMKClYanqOhv6OOTEMkWFMjDkzxEyOmRiTFY8p0lKAHOy1J1ss4ROibLuxXA5k17K6CLy5a0f1RaxePDZZnB/McljRFiyk0TmOIrbeuwAc5z1K6JsAtmi7UK/Tq5KYtWIPs6yB1IyuJr6orbHuTfbnGIXEwYhmIIHgvWkMvPGt7/BX/vf/Z177zs+y21/x9NGHfPjBh3z8wfu02dJOE0rLGU2RMh85Xl/y8Xs/Yrq55vzllxmGFeN6Q0zZkKrjEcBE4p58WmZD2USCFWjzZGtWQXIl5sRut+PZo4+5eOkBm/Mtq/WK7cU9bs7vcpge25Y7rl0tY3eRApTi4kCzNzYEQHlyecXdbLQuibaH5SpsU+SZGOUqiRCaEiVQOO2NMRjNbLoFcCAdSbIJ6tWsTGIHYRYLAYzR9oiVwCC41aGh7x88fMrjD5/xe7/zY+7fX3H/zoaLu1vSuEJColTb64bNmsOzZ1x+/Jz5eEBKWwK/AIqXq2Fc8VN//Wc5v5c53Dzl93/11/j+P/lVhjZzPgT2YrSfH3904INHD1nlDxlzZIj4fj5xXR86QFQQUdZ5Rby4y/7mwO7hOzz50R/x4MX7pCjce2HLg9cfEIdAKY0vfeV1njy94vd/94+5udoRL/eMsqG2yLha0aQwDhEplZYGSAN1ajDvidK4uP8CeX1mIFgIJvgnmBOf5/SEFBjXa1558w3uvfEmKWdiCJjG32ftHfETYeMTZRCajj576AWYn22OO/SGoj/6FtJhseRNw6gwDNkACjcIKHOjFvsoszUdtVZaqz5hbjSdFycaozfbtFjD5xiwuA24KCBCXq3Z3HtA3GyYaNT5SCmF1iY6N0mwc02b6z5bpU5HYq2Wk+K0uopNHu2c97O62SQUOivDrpldZrPp7qiU+nXIeSCmZM52KSE5m7gcuiDnBGQ5PU6lw6HNQa9KndV1IbdSlTqrQa2G6QyHheLitYhi909BmFxfogQ0VGOdiNMjSyCmRpztvykLeTZHxzgE0lypWSgpcDwIN9fWBA85MiR3fuy0HawZI0cKTtl2KnULPm2JiZbs/Z4InG0iN7uJWo9cPbvi8UePOB5n0366frU1Y0ZoFVufTZf1I0yfqEVSyoSQYS7oNFOPN8SDuQumEEgx2ZRaK5ss1FXk+qAca7EpQbBzIgYLmU3xZPs95kyMQs4wDJFxMzKsBmJIaHK9aAzLh9lvmdZmXA2k9YhEs6HUYLCq7TneWKi/vioOQLm4ttcigrvgerHttIvmzJZei0g0w06NuJ2t1XaCNSBRo4nRWyS0Sq0Bzc7uaEKsEE88qlsjAlkGG5/l8efmOqXefPXBgom3DRVewmZEHH23zbgjAj0C3UZH9sYZ5UT9z4A3GUmFWD3MLjj/UPUTL3ghnYhTjVAT5/oT7Xw3+oFObzKsqZBbUww1Dzu60EnokxvfULxgtR5LTaMi2HQhQJXGvNC+bLQ1d/pGMPcriUqMzW7co9mL5SGQhkgerNFYuY1cTmL8wJ5A6cj4cg1E0GS+4JoCRLFGI7luISZqNhRhRphdGFuqMjdd0AajOYkvcLPi7fqZPrwQP7hSF1IHK6QSFkiYmzA0a4isAXTNtLpzVivLh7ZKU9dm0Cx7BGEUG/mPITLExBgTQ7QmI8VMiAm3yKIRjCJWwZyuzWVqSf32CRixIaG6N7QsEzVbr4EWemqq3QfizSx6cvfozQNup2sf9gL7OlD/d6J14uJ+z8E9nzXZopZq/6410Py/NlkJCIlKwhQckVPKy+f0EVyoxjIC5cEbX+Xn/rf/J77083+Tw+GKjz98n4c//AEf/fhH7I976nREpyO1FdsnaoHWmKYjHz18n6cfPuTBF99kc35GHkdaKUy7HYerS+o8W6ORRz+cbbG0apqpOh8IJViAaCkII4d55qMPP+LNn/gW43bNuNlwfvcuV8/ucry+QqejCcj9oGrqCNo8I02NhxsCVStRYD8XYh4oxwNBgoXBqemNer20zsI6wHXxAlLNWWpuyoBptFpHLrE9pilMLnKfxfbCJNaQpaoM0t3/zAHQ1mFwMSHUUnn64Q1PP7wix+QTYSWKsh0C4wsP2IbG4dml738GntRg72FRpUb4xs98g5/6pW/T5j2/9Sv/hF/7r/+fXD98SKayieJW5v15uLYKMUqAKGWq1FYIq63tMcdrju0RT29+m6tnz6h745FH+QpvfP1bvPTGHWJKqCohZdZnke/81NfYrAf+4A/e5uP3H5PbNfdXQh4DUzO6Sh5HVBtz8Rpsmlmvt5y/+DIxDybCdlvypQtwdVmtE6vthnsvPuBsu3LeTkdacMimH74F4QD1PUO485dRWYN/hd31/ZS61WL4vSDgFFq/V0OfxfsUPdh3zQ10ZUVCLZa/0poaP30ullNUCtM8Qa0LqGSp1s3zFj6HD59M3EZT0zCyvfsC4/acJpW5zsx6pOjRQJ5FV+kFmXKij0yFw7EwDGuKJDs1tBndsjTfh+2sD8HAyuAtcqweIlzd8bGpTyeVOs8Mq7XnZ0VSTpYB0QSZsTOg1yLVAUunFhhoaZ/3/5rOppuBNCIGlMZgdUzoYKOcapHeiCDmTlnVznz13LDiGWVWTIEUIUYlhkaO3VjGmoicI0MOjFGYkqH5Sw5Yp/T0sZG4XmUcrNjFdXkxut2/AaA1WS0SN1tqFa4u91w+veLZo6fsD0fb36olfNdmBbWlX5/ME+xldzvY6HbgZmkf2gxS7RoliDKS12uGDFCZF61ug1UibjKXdWZXJqiNjDAMiYQwCIwxMsZEDtGaFYEhDQzj2moRsQ/1WqQ2LIuHSi2FNDSjcy11a/MolRNXobnzovUV1ZqMsLYGodciuBW+HwYS7b2pjcW6th8Uzn7yesT23R4xIWo1kdHIjUFRJRG0gib7JrfgpQOeC7W7TzX+7Y8/txyN5R7z12jkBN9OnRsWvCPqAoie02AWorZwtessvF3ydgXBCthI6GY9JnSix3OdXHroC05PWgtL9vZmAqPv4KKsJi629YsvfdpiiX4+Ym3L5ODTtK/+uhN22Ed/XsGLgoZSvMFpYhQHcXeAFq1gtfR0NWHWBGkSazRy4JgChygMCXLEKQHiDZrTK5a31eEwO9W96XCBdLTkx+IogjUathimCpNak2ECQm8yFHftkmU0rCquB7FmoB/KUW06ZcIrCyoco00l+hTB8pl9gdWCSkVDJUolU/FoPwawJkOElTcaK0msQmYgk0lEcRQAb4pUKaUxhcIcoLrTFrkhqRGyoVYSM8RkInhp1oRoWjr126PrXgsuf7E8umfLrfutvxVya7EHwK9XqCyOVM03Ta3WyFECOjtP1vVNQU/roxHct1o46Tc+f4+kZu8sQNPAi29+hV/6L/8vfPWv/TIF5aOHP+adP/4+H7/7DmV/oLXiAWyzH8IT0szCUyRyefmcD97+E77+8z/P2Z07bM/POLt7zu76GeU4elGi6Awxn0HO1OORJtaAtOOekC30bZ4L9fqalDMfPHyXOs+Mq5HVZsO42TJuzgirNfM80VqDGA2lq81CJZ1WF50eWUtjHU1wOh0NbQspE0SYdzae95glEo1tEnIQysFfqqppn7RxnhMqdmiJ2p4XxA6lWdUFe7YvZglEbRwRYhOyNEaxQzMGd6IBsghnYiuuOF2xo+nUwvz0GVc06tE843vGSz8QZ4WwWvHS6/d4+L3f5x//3/6/fP/X/yXXH77v1pxmQd1iRGuzRPRhxebsnNW45nhzTbl+SmsTNQI1omVm2GwpsuHxj99Hy9Eak7sXzLJhs4lszgfCYOtVYiKGibsP7vHNHFhtV/zmr/8Blw8fcbx5jl4M1FnY3Vyz3mwRoIbETCXkzPlLr7I6u8CsO6pdn2XXPmXitDqhCk+ePONyMu/9+XBkPTReef0lYhrBfwb6FLhG9ApaocwPePr0mqll1us1qzEvU+lFWyftRMnF6RG+x3SgTRVyXHYdcjxdj5Y5BX02mGqkNDgeK7vdwHSc0VppzNR5Zm5m7fl5fCxgH4Bak3F27wHj2bmxK8rEXA5UnQipuSbrFtPC6Ucau9lJpRxmhm0wBFwaUSyoT5bC2cBMo4UbTTloWDj8Mfj5pw1aMbrTPNmUv+sfkrkxhRZoWqxKToKYHwTU5g6apzJOOouiqYeH+osWaz6DeOMobclU6G9Q6D/HeJcemaVULxbUQQVrQow+LcFMTIwYoKRZSKmRcmDIlSkGjh46mp1tkOLJGKXXIr1YklROE/4oqLMOWoi0GCjedKzjSPn4KbubiaurnVncq2lQilpG1yKXUUsSjwTPSCs28ZZAkkBEjYaswjxNSIKQhSElcoR1ruRsoMmiXWjNGBCbhOpAq0fmYyU0o6cliaTWyCJkAoMkM+mRwDqtGWKmhzg0telLbY05FtP9RCj7A4TM8XrHPFWbaBAIKZLH1ULdFKyhNPzcXZ600ooiGpcmt9//S43q9LvFffVTtYh4LUKTBQjXZPrnPkFpKhS3edbenbSI1kRrhdZ1q+oB27ea/X/T49+50bhN6RJh2ThtEzWnJA22EIIjYepwb5PgLgpOmervjj+aq71c+2IFLEvtduure1eqdLvQ7tAjTnnqgkucunXShXvDsfAeT83FwuHs41AvLTs6Il5kGgLl4XvqaALd7o3F4s5wJBP+SpAuDTCb3mDZECqGErYEdaqUFJhTYAo2JYjJHHeCJ0wjwRf5rUI3CJKNmtMbjU6haikw+wKfCczaLWet0TAXPsPnap9edL2CT2b6hpKkC8ftd1ZOtLUYTJSaopCS6WUauHe9dfhJG7XZuD+5IC4IC9o7RGtUxhQYU2RMfaIRLfxKxJsX98Nu4sIym2YUmWkxo3mGVAh5hjQQciHkTEiJEAYkpKURMk/rT08E1SdheML4SbvTw/dqczG8w2TLPef3pbivuKR+n7GMRmsV2mxhSpKCbcjBLCoLneLWP/hce8WY7tUIiJt79/m5//V/xV/65b9H3Kx56w9/m7f+4Hf56J0fcf38GTEl5v2OeX9jVoU0QhpQiUa7Qzjud/zR7/0WP/O3f5ntgxc4v3uH83t3uXz6mDIdCWlgunzGsNrQxMKf5hCZJuPihlZNlyAwzxNaYWgzjz56n5vnl2zu3mV99y7xow9J42hOVSGQV4l7dyJlKjx9WphLYqoFlcCQBoTArJVzn5Qc9zvGZHzqafbmXVvPy0QcQBkjzKPydOo4iDC1xtyUHG0u6rUOYO5rfV+xqDqcm28/OKlNNibpETNCbspQlTrbXlnVUJscheh75wSI3KBqFBKbpJxsNroO73hzza/8P/4H/n//9/+BOE3EBHmzZio7ECFtz9muzqmHiRQTw2ZDbJX9/ob9jdnPFoXdYUb3OwtWu/cSjz96xvU8sR4GUoL1dsN2O/Digw0hdNQXtB4JAsNqzbnAV759Tg1bfvef/ibPb54SrmfC6gI9zgSZ2Fy8gKQ1Go9c3HuBV776Lcb12tYzQMhe4JkziwSh7Cfq7obdzZ7f+af/jKM7vmitvHCeOBu+yfnL3yTQmJ+9Q718SBr3pJdeh3RBm+Dq6TOuDpHN+V3G1ZaQGikFCz1zECklK1jTadhhwFi/R8TAtZ7M289Ga4uM9ikA0Si2qsqcE+sxstsPTFNhf7Oj1EKtOJDx+Xvo8n8QUmJz9wVWF3cJMVjy97wHnQix2L2qoL5rKs41DqbBqATjte/3phkcMi1a0EQrZm4CavtN8IlfB9ocDV4ceMTWtNFbGqVNNDcziNlyW2J0qm0ASQae6hwoPnFSPYGh6vVIVG5RhNwxqNckt75eXL/VbfDNxEYXavnJ1t3rGz9PLE8hUGszUMzP1SZKCdZQlFkoSexM77WI27anpQgMi/7sE7VIxGqRTiUKJ1pRiYE5CM+uZ4qaxqAqFAmUZnwEDcGuU7VzWESMttAKrTnbRKxEz1i9EEOEVkih2DTJ9RRDNk2FRAuN1WrCezPtMZH+hoGmW26uzO4fZXF3SwJDzgx5IAZYDZnNekMOBndXXLdaK0Vsj60Cs86Uqx21RqbpEaQMKSMxMYyZs4sNaTw3zbAe3XQm0tKIigFhrVa0NqIYJGsU7ga1IUURQ4jdtaxT252lcwsc70nmffIWsbNGqwG2Wq12jDlQqxCqV7Pu1FlbWGrEzzoT/XdqNAJLNhtxQebt74J0sawj/0sxHOhOUCqWRdHzIPC/0w6ZKVZ1ejUvYgeAaTmUFtV5dNzq5JrrNtSH3oYFI92RwcLRvIdZtOLNJxg9zEcXOtanhOt64kAaT9MWcXQ3iU6xWSAXLwhUg7uL2AoMnagbsJXlTUbXjNRoGxFJ3LHAHDE6OiLZoEftnP+Oqt/axMi2mGuyxV0lUWNgjpHZKVzFkfLiRW3Fmg2fDXn/5Y0GLI1GDLYB2CTGio8UxFFA15AYu4RkzCa7KSO04tdfT8V5Nz6g2s/KMZguY0jkIZo2YwgMObrwzDY3Q/AapZhd3lSwFHP1TAKJaMw2JsoDks0NIg8DKQ+kXElpMJvkGKyIIS73o/XvHrLYN3xvKrRaZ6YWQ2ANg3cp4hWf+CchNKPHGVRt3++5GlqEkO1DJk56Hk66jN5k/NlM5f7DexS/P4btBT/xd/43/NR/+l+wfXDBuz/6Me/98E94+PZb7J89p5SZue7oHhgxBFIaCNszSoyIHwA05f0f/5APfvw233ztFTZ377HanrE9O+e425NChvUEMTId9yDRplpHs6hVMc6wHeRmIzq3meePH/Po4UO+9uKLPHjlZZ4/ecK9549ZTeccxgN3gvLVVyuHeM5v/I5yUw7obMFMtIa0xlwrpQUX5lpTrsBhrrSKUbqYUeBYzdc9i3IehZbgZjaubQFuSiEVayqimIw30qm5dk8E0WVComKTxwocxZpjwdDNQQKTKjsaz1EyQmqeVQNeuIjrBIInLliDE8QzZsTu09qU46PnIDAiEAN6VJgLeTVwZ32XOG4px2cc9zv2V8+opZhFZbPiQZu5hEVVCiPP3v+A6bhjc3HOehjIbWK12vD6a/c4v78iJIGQ3NnOUGiVTBwvyA2+9e015wN8/w/f5sdvPySES+4/uM8kA1kSpYJo5OLui9x75WUrXJoS8ooQEtpmVAMhmFjzePOUw9UTVgqXH37Evs6UeaJMlYexIlfv8vN/t3L24ktMl+9xeLJj8+CCxBkihTxsuPPCHa7ev2GuDZ1mpM7EOUMIdlYFQ4azu+rFaPtmn2D3/wVZ1IjAiQKE3wcRB2yw65OyWXGaRikzl4F5mihzsQbzc/hQOlIbWZ3fZX1xh5QitUy0ckTLkRDcNlrNQqM7S0qwjluD5UmII/k6m4PcuBogJaQUSObapM2oRiygo1PYavV/C8ZM6Egyps+pdaKUo2kYhshcI7lCHGw/D1HJomgOXBULsw2YZku8FjGNDZ7Q3AFOlmbDjmZd6iXDUi3z4XZZRL9PcI6/n+sRZ5ZIc5agLN/Yy5jaKSrRGBklwBzsvA9u+iLebIRbtQiOpovrETUGy5wK0ZyWgjcaIhSpC1BZVazxUbUk62w1Yy11Afiav2YzzMCnC5itfouE6WhUqRyWeiHlwGqdGEafuqh4QK+j5ChqeQmcoQyxMR1mzwrBdFk5kXIkJYseGMeBcZUJ0c9nhapejzRh0kiRymGu7J5fEUuk7oo1s9GscFNO1N2O83vVALHWULXFH4imBRazDS4Np9iZa6M29XT5hsxWj7QKWqDV5gZGujQcYLVIULVaJzlwGr0WqaYBbkkIM06Hc3kDph9pYvfqpxQL/8bHv1uORp9geHMhzv0NwtJg9ILNXEys07dgM+Pn4hMPm0TgQm1d1nTno4n/nP6Xik9LMFdgWfAJv9oii+itedmsNIJ4AJr/4OZfL+rdYdOec8Lthd0pud72LLSwTmRZdAfevXS3ItNvSMcO6PLH0EXmzd0RFsTR6WDBOIUScTvcYAYE0ZAFZhc8d51A12oI9ncVqEJLgToHt16tFImG6IbA3JECbEzWrYN7w9LfgX4eqaNpnV8RQqPEQFK/+bDrHp0PnhbRlW82YB07wZo551tWtUJMxMYKQYQhRhOMjpFxjORVJI2BONgIWqI/X7URZWkwl8ZxVvazcigubNdAkwzRG41hIA4jwziTx8IwNNoAYQyIZ3GI9IR4PEOgLdx+s5V03qzrd06zC0da3X5SxKhZiGtCYvP7xfizvdGigM5G9YrRclWCa5bUv6MXGn1W93l9lCaM6xXf+Kt/l7/yv/uvePCV1/n44ye8/Qf/ikfvf8j++ooyT6ZpaI1hfYdWZg7XR6P+uUAzgNHRUuDq+oo//le/w5d+4qdZbc84u3ufi3uXPHn8iOtnj0GU+eoZ9Xi03qRW2mSJzpJXNInmShKE41TZzQceffQRb33/u3zx61/n/GLLSy8/YPNkxya8R3wt0+ZImp5wsQ28/srAux9eUmflcNwxHa4N3FBrENYhU4DdcaLMpuloBEso9wnZ1ISpNlbB7JwlWwDm1JxK1ydp2F4TBaM9qA3sve8G9aB73yOdXc4cHN3EtBXF76IgzjOmkfx3NQdD+vatCiFaLo41K37vqqvTrPJZ9lk5VEP7SmX/47cJEoitklcDklfMam5MCVsjQToNtDHfXNEE4jCiVKQVcgycX5xz/8Uzc+wJa2LKnp4bIY6Um0u0PKccd4T9gZfubwk/+VUOKrz9J28jz64IaUM8FgjCOAy89sUvsBoM2SZEJCYP3xWbfKYBlcDN1RWtVqYaePzoEc+ffsh82DGXxp7Kj3/7imff/Sf84t/5aV789k9z9xvfQvIDWj0Q2jXETB7W3L3nDVHKFmqKLOhjqY1ShcNkO4kgxBQZs7AZA8MQ3btfnbZKbykBv0695fxkrQcIY1baHFjlgToMzPPM3D6ns1EFQmDcnrO9+wJpHGilMB/3tDqDOsE02pkYYqBH1RlzImA1iVGPCKBamI87VmdbUhI0RxrmQtS0+JlaOWGgfk5Gr2uCF/w0UKG1hszCdLhhWGVShFUWSpkJejAK7ay0uUAM9m979Ql5hVoIrbkfjS7X10YsS4FCnzCePtdORjekeqlYdGk0AtZkdAquNF10A3jIaNTTfWYaFJapP70W8WkFyQpAZzKf3BWt3LGipkLzMF1zbmxUCRSxOqSE4FQcs3JVcftmaRC7/qlT2TxrxD9vweg/Ldikz/IvG5Kjgy9mTZtzYhyiZ1tZg2/aTZv+tVIIoRJkJsVKXGeGMTEfiwVeJiUNkZADMdt0Z3U2EobgV17cWKdRarNGozampuz2R/bXO6SNTHqgOigT0kAcErtnkenykjv37zJc3EXGEeJgoJWYFbsm380VqxvqiWHhyZ00NbezWitaKlKq6YfUqzs5AZ/igdJ9shFUrQgtn65FfM34ex+lNxunfI9/2+PfjToVfIrRi93wqaL81jnUb7zeRJhSyQr+7vO7/HuQRXAc/NDrBVezHs9//2nKgFrn1i3JFq5gHxtJnxrY2F+lZ3EYIuG38UKZgr50dTnAl6UtcnKdWFwo1BsMT+/Efp/7z3gxYBoT0eD/jY4o2JJP9IA/K9bFOf0EQaONblsSF0Sp5wWIBVLZjmBJ1XpyBmjNpkYtWHFRaMzSmEJk8pul25X1iyVOixDpr/fUuSr+fNTQiaZKjWrWxBqW9yUiJCBj9I7Qu3JxL/AaCNFv7GaXskWBZqPfIQU2ObIZA6sxMI7CMAp5MBu+7rag1e6ZhqGi01w5TpZWPhWYS6BSIBRIBcmFODSmsTGuoK6Fug4kt5QDs4GLi6VXsxvcR9GyNNU+IeuiK7+/lgY7VHD9icTqkzCfdkTb3LULyKP9uQZ1yfcppTz04oHb6+Dz22hoCLz01W/zC3/v/8ib3/46Uyl88ON3ePftt3j00QeUudj6ixGJkSKKDCNxtTEUbHeDRBPsxiikFJlK5a0//H0evfcu97/4JVbn5+TNmu3FBVePH1GOB2hKTIYgz2VC2oBEbxBrNZBBjSJRS+Xy6VN++L3v8pM///O89pWvcPfOlpSeIIfH1CrE81eQ4VXSIHztK2u++8NLrj/Y0xqMqy3b9RnHcm2HjiqlNTIGZgQBicrRU4IRgyEmp0dEYB2F86zsDj0DSBdQRMXDI9UpEuIhnk476LDLYl6BAzZyIqf2O0jtvGLCQR5sbTVvJPp6TirL13fNQF32u/57bQ9MAqOERUkU6kxWS33XVkFnhmRhc61zNH2Haf5zRCuURhTYbC+4e3HB2dlo9E0ZyMMGbY15f4WW58y7KyRZhorERB4DF1v4yhdf4+H7H3J1fcnZCy8zxjVSJ159/XXe+MqX0GrUrZSNgioiEAYkjrZQUXaXl+SzOzx5/JT33vo+dTqAwqTKfjrw+MlH/HdvPebt3/ktfuFv/QSv/dQvsn71p4nrB2zuvMjmxYH1diSvN9Sq5mAk3YTDCqMyN5vyFAuQ0walFuajcjhE8pBMiDuYINdrO5Jz7KG//8st5dfZ7oDkzIMhR6YhE6ZkE9nP4UNFyOOK7Z37DOvRKGLFUtpVZ7q7uGldvDATB2xUTOAd3QEJK54V5XjYsSpH4moF2UGvITK3grZm+gUAL4abcKpFxADDhQnRoM4zx90Nm/WKtBrJAc+WKIZEB7NepSqbVWTazUyTFdjJgUGluuDZKyBf5wGsnulYLsG1pSzAaXfFbGpr+3bWWRJ3gyQsxaaACYVxwHOpRey8YqkxmjUb0RqW5oVqFyKHYOCoiC61CB14dTC5p3bNEpglMknzWqRZHUFvEkGqP0cvzq0Yc/DvJEqhc08sRsEnhWqvxTIwku07PvlIIsTaCMX4Ak0KGoze3MQ0CzRFh4F6NH1UHoQ8BGKG1XpgdbYyGjxOSRNQsVDYuTrDojT2N0eOB2WedxznYi8sJUIqhJxIIVCu9+yvD1y8sGe4cyRs7hDSmjSsSIOD+DEtgcshWI1ncmN3U9NbOg2n3qlagK1odVfPZuHPXpgGf5O0+kWPBmhYbylL8HafZJs1v+1hf7GNhneq4nSpLpyQXnT1BmtZAFa0qXP/+mLsiL/2ReNI+iJs7qJxl7/ogryfevjOVTRyn/itVr1QPmHA9rxtNfWi97boV8ERw5M+w57mbZGNv/6l6rafrc3ideyimlymidNuuvASIAjRxhJYxJv6a2tEFbODxTYvUb3163ThTLYmFvjV3Rj8edskxYtvF52bna7RxerSaARmbzZmMevU27iIoYuOaghexDh6g080ULM9U6NHBTHqRVITTg0qZHW+JCYYj/4zqlha7RwbuRlXMORGFkMC8OcwBmEzCOtRWI+wHmEcIQ+2kTVHUQNe9NMorTJXCxI8HBuHSZlnobSASoVYkdyIg5JHmGah1EBpkag2powEG7diCK4uCI29L7aJ4h7hIElc2O3rIbEgDdr83ukTEPo6EXcdw90/FMsrN55opOeInMhTPc3zdPN9Ph/bF1/l5/6z/wNf/bmfJ68yP/7jH/DuW29xc3XFNB3QEJEs1DZTykTMCfJI3AZiU6br57S5EFaJlAZSmpnnHR+++2Pe+v3f5qUvf9UoNxcXbM7Oubhzj2las9/fLAVtOSgyT0gplp1RCzInWp8khcBhv+e9H73N937v99i+8IB5PjAMa9r913jnBx9zeHzkxXuNMj/n4fU5RdaMFytSa4Szu5Q4sHr0oaHhrXIs5uICuGNUY5qKF+5uZKCmj0q+8rcRzqMy1RPDvAM3difYPtr6dNb3DDPi8LWhZrsaVFzQbS5W4bRTnmw0nIpkZ1Rd7CO7RsB7lU9+ov56pC1UnOBQaB4yZ3fuUI8HOO5N1B+LrR2fzlL8fk82USguoqVWYgwk1AT+FxtSiuRhJMZIm2fqtKNMN+hcPUeoGXUiRyjKEAIv3Nvw4ksv8P0//AFPnz9hvP8yY0i89vVvMI6RVutyaAZJ1JCJMSNxcCRPuLm8ZHX3Ae9+/BHPP36XYRgJaSCExBgisj3j+vLIb/9ox7v/7Q947ff2fOFnGq988xd48MY5b6wnzi9GhvRJI4cOBCnQWqC0wGGKHA6JUgyprKU4eFIJAXsP3OZ7zAbCDNE56su94cU14npFsziuox2T+RjJMXIM5S9ghf/FP2LKbO/cZ9xukSBM05G5TCjVWRJ+D3aqc1NUDE3nVtPufhzLZHw/TeT9ju16TYuBli1nSXJEmxkaaC9+FkTZinEDVpvXCJ4U1irzYc9hd8MmWiUXAFJimmdasX1eS6FOVvKnGInJbEXDYA50tRU7X9RqCvWplqrla1jp7YVlbVTnSmnrBtxOnZTT/iC90WgGoll15VWWupukA6XSei3id5e/r82L2yo2eema9iAsFKzmJ6CxGNQMM0RMV0lw4FMpcppmgEUXJBFzRUph0RlIF7bb22xgbjuFEcZghiNJDbQdek0SI6sYWWEsC5yBkTD2SJSKBiXERhJr/p3CQdBAjUaLTbEyDMI4CNuLkWE41ZGhWt1m+SVQmgUTT5Oy2x2ZZuXmZs9xOiLJadxZSXkk5kitiblN3JQbxp2wuieM28CqJVahkHOnpp20ytogNkGzA0wSHITt76VXIM2eVcMdEl2LLJjJh9GzPlmLNBSPWlzqkCjNGin5s8Gdf7ZG4xYcdrvBuCVOR6zmckpLP6FOI90uHmmOsi+0R/wODfiNbE1C5y3aqK8j2Y5W9Oe1bCY+0eggzyegO3tSxmRRpKp1q9qdHrygUw8+aqdNCrUD+6S78G7XO8bm3xe0F4TeMToXLrkmxA53owgEjV5MhgW9tinAEj/ozZgsFm42MbExcP/7RZxcT89Lg98WijUawQVv0psNsxpuTiPr7+ZC0PGO1cZmFgpo76dzXTGBXYz4AjcUM0cL/EnFcgJyDbbImxCbdc4tQAl4PoCisSFazY7OHVWCYAF9GW80bKIxrgLZ0sgoCMW6LDRaM1WoHLVwrJXDbI3GYYJSLZiH0GBuxEnJRRjV8hwmCeQQiMGcspKXaUogxT5i7ViW2CYV1CCGqMRklm9BTwt8uTv9xhdvAoM7hfXOuutfTh99QViTIq7Q8FXFqSz8fD5+5m//Pf7S3/hltnfPud7t+ODdd/ngnR+y398w5IEWIuW4X5xAyuEAdabOZXnvtDbaYfJ8DNsXdvsd7/3oT2hl4s69e+xefMDVk8dMVzfsbq6ZS+FwfA6qNE+yj2q2k7VMlP0ejYkahTJPTPsbPnr4Dr/9m/+cOQS+sN3x2mbF/nDGXN8jcM3l1cwf/eAp70wjB845e3FLGkaaKus791mt11w+e8qjD97nMDW2ox/i3mjEoGS//FmMulW1gxSGVt8ZhOvSmDuQgLeatgzNUU/61vmpRsN5y2MMjLkXo4aGG0Mospsbu2Mx+2qfloQgJI1+O9q9Vpv6pPi0FxjNol9ZR7u6gQSObkZvqIODH2Ljj+wjeaONmrA7empzmO0nptYYUmA9jmy2a8puz/F4w5QwA4c8+B4MtLAIIA0kqqw3GVkPvP7Gi3z3ez/i8tkTXqqF9dk5L37piwybxs3T576XJdrgZ000agjOu3786BEpJhJQDwcKyhCEnDLD6pzN9g6H9RltuiHcucu8eZXLcs7mpiCPLgn5fb7wlS+w2W6s2HMqgqKLQQrBwKghR7ZrE2XOBY5TZjpW9oeJMs+UUtkfZ/P2z4nVamAzRjYrGFxFvuwvfptUv1wpQnLKx5AzYZr//Bf4v4fH+vwOq/MLQgo2ya42zRBs6iAp0EJbmBWtOamv4oG5GNWvqAmSxUS82hq745FBFXKyPUgLtIRUg3la7Vx3a2TiUol4YS+91BBUG0dtXF9dGg00NoZO82nWpbTWON4UDlMEFWJMgP3c0CAUpTSltHnRcgZtXg85Mar6C8UKxeIUXqSZplVseqAOfnbgQb3ADGoQW6I3HAYMLrWInAYH2uu9oJagHn3CulB4DAAlyKITa+oS9qaor/Ha3e4I7vopSy3SCecd1BQ5TV1CB7OX/4ibD+F7pn9Ur0WSmM2+RoYQSFWJcyWEYpkT/r7h9ahoJdKw6Ahdmr82wHxopNjIGcZVYnM2klJg7nWIqoOHzhzRxtQax6LsDselJtkdJiQ2QmnEAqlFBg8ObBXLnKuCTg3NMxImEOM55OROeOLTSrHJnFE/cWp3JEl10X2lTk5zmu12Nn2HOa/Vag2zeHTBp2sR0dNfmKGAvVf2Z5+cfIbH/7xGI5xuuOKajIU32hcadvNpb3NvI/RiBWfrwpbQi3k/NPz3WIOhdBZ8885KJdATOntxTO8DVJwmcMsJwiFAqdq9W12h39DSaNVyHPqH6Qd0sZjEJwbSxES+VToU+IliMJx8Xzhx99VRpW4/aeO8hJK1kfB0cw2nQr+/U2qHuXbuIULvdyS4xZ6HYQFOVRMI3iAlo6FpbK6t6LxGn2GIc3ydPhVVPfbBEQVMZ7EIy/pz8kfAUIOM0TRTUeKsLhADyf5eS+eQd1paz930HtspdAGbmMSI5YW4f3fMwYIMs6OVIdKaNTtEa1pnaUxUjq1yrIVDreznxmHu9CmnMZVGTDD41EddkGaCscCQAqO/H6iF1kgSosQut1iWwjKjdyRYW7CRu/bkzLCsBZrfP/iS7Q4bVajFQ3WqNcKhuU0yParPJLnRcl4/143GX/5b/0vO7t9nKpXD1Z4cEzEl85zPo+llUmJYrbiqlePNzvRPKUFMthbagYgy0pgkMOeBqTT+6Lt/wLt/9D2+8rM/y/bigvX5OWm9pt1cmsNPjEyHCZ1nqJUWM2GwLbDOsyHILdCmGZ1npjLz1h/8Pu/+8Ad8/Z7yS3/5JQaeMT15yAcfXPLDD4+8V18l3m1szlywPm5J45pG4Ppmx34u1CDsjjP3cmZhiQZYJ+HBOhkaHwLR9w63IwARhggXg3BzhD7N6rx8FJIEBgC1qVkUc2zLAtsMF0Ng8PFGRyjxwkoS3NkkdlPgydXEfm6ghSFHghh61ghOSTVaVZCw0FIDbQE7wJtwHPdUC/Ys09F41Cm68UMjiSO+tYJAEaEUJbTZ9idYAJphTKy3A/HwmJuHB1YX5xAicb1lICA5U3Z7YsjE0bIqWlPELSNTXHHn/lOGITEfDhyePSGfrxhCQJxv3aYDxwZxfYdQm9cdgsTIdDjy5MOHbIaV4a91Zj5CCgNk2yslD2zyC4zjK7z8+pvcefEV1nfuGXI9TTz64CNU4eVXX2XcrBhXo2UuyKlYEmx/DGJNJxFaFsoQmNeB3SGw2yX2x4lSCqU05rlwPM7sc+JmFdmuM2djIuc++XJxsaPHKupTV2uwYzxNVz5Pj/XZHWJyU3vXfBKF0tRNSsRDYwO1zFR3ENMO7nRKt59H3dGvNeVmv2d1ODCebawoDu4C2KyoMqaFLlRYlWh/18W2vdh2MCEo3Nxcs9/vGBNsNwnRynw8UA6V46Exz8nATxXMsdCAPgmdzocHyzno1xRxoDM0c7vsR0JnYIjURfxrlKu2aLeWMs6pzhElq5IcEAuEhS6TxNwwxWsFm5LZmvVSkMHpUtAoVZci0IKYxcJt+3kb9ZamxaehzRseB/Hw59TlHZHqAcV+5mNZFHYW+4RDueX4aXtHLEqYIY42vZG50FDyEJGkdv/3erU1kjabsjqQarVIIKdMi2IuhQEkNHIyDVXMiUolzNaIVhFrMqhMqsytcaiFm/2OuQjHWdhPEwSzzk0tMBD9PouIepBgTMwosRbiPFtd20BXa4s3INBjcIxGZ01H8ntfNeDqeKsgJFpIogRbM+4kWhu0YgCsTizWo9pBeT3VIqHXItII0lyL+xfRaCjLuAo5pYEH12d05LuHn1W/8a1Qtw5dgvMHO5exV2Lai3oWlpIdym4fp7aArAQ0qpEVg/3JNbM/EysGxQt8X7v2HLp32qQwszQaWpp5jLeKeviWjQbteYXmslwfKS7NzLK0rQ1IfjF6oxGqjfOTqPsvCwPK0JShRTJ2AU9LVhYce2FZe2Bec5FmF4Sqd9yidsFtFNxPrmYUn6qoqUaNgyeBEKJPiaphFz6lELGNJiEkNW507uhA9wt3mNIobArNXE4GIBdb3CkoITWkCDLTs/S80MbGtHrKuo6oW8uZww5iI9MuJI8hEmMkpoQk4zV2LygNaoGIYoFlRxrHVjm0yqEWDqVyKMpUhEJAJRFqIzXbRCQLMkVz55oskCgko09lujieJdlc1DagZYOjj7I5BeKogI8xm6MNpfM9XVC3DC6aeNMqhFmIRYjFksFz605TnZ0qt+62z7a4/0N83Hn1ZVDleKwc58LueGB9dpeLFw4cnl9Ca6RhTRpG4jASaiXWYvZ9OUEK6FyJ6xVJ1ITWsmOaL/nwnR/wu7/2j/jyd/4SF3fvcn7vHo8fPjTP9ZgN9QmBMIy2lcWBOu3RYtZhIkYj1Gb2EtTK9ZNn7D78iB99/8Bv/e4fsC5XPHv0jI9vGk/nyNkLI69wbvbRouz3R0JITMcd83Fmf3PF4XDkkH1dq9JsLk8SYZN04WC3k1TB6B8YJfHOIFwWC/Mztxn/EkfDa7P7MAVhFYRNFsYAq+RBfQFvZrB92+/fNplW4u46MYaBj68rV4dKKcqQ3csdlskDYuuh0LGhE6pqrwAMVV0Ig8ZDF9A6E0VYDYmLzZqLOyvONiPjes2z6x0fffSMp0+uyTGRckJqISfYnm25uLhge2cgi5kBSBoM+cMK/WG9RsYRGSytW2NCZ0Nyrx89pux2tFLRqdKePSa8sOF4+ZhdXBOHxGqzZpqU49EoDUOwIi+mzOXTD/nohz/glTe/wtNHT5mnidiUQ9wjQ0ZTIsZAHNfk83PGuw9Y33uR9XptKcEK03Hm4/c/ZNpNhCGx2mzJqzXb7Yrt2YZhTOYs5SBOnxIFsCTiaNdjvYrc7BOH/cw8N6Z5otRKqZXjJOwOhf1qZLvJrEdITqkSLMAUjP5pZhqJFPNf3EL/C3zEnK1eoFPE1NKYNVGlOnUqoO7UWF0nsDAD+nTaqZJRZLHSL8cju6srhs3Kk99PpiMdseyMCTMsspA+t3+iq6KaNqOrNNBSmWnsUS6vlNAKbZ6ZZ3XKVCaL5TAYkKm00milUNvMXCfmVux+b5aRgxfW5hzFgizbBLIuFFx7UkaTKe5yk3xakaimnWonI5ogbssvnd2ATxbCEizXPG/hpGe1Ke3gT6PU5i6jsjQ52pwurDbhrM1o5d7zGdApoFSQ4DpFd8MLSlar+5IEN5qB4A2zRMuMabUR6qJNt49Oq2qnSa+xT2ziZEwTz0GJwVwhg6Wlo0IMAWn19N706UrokxzQkJBszcpcrLScsSZjorGfjtzsbmgycHOs7MsEkohqtC4N1hRISUS3+zdXy0abC01mKvZzpUINMynEWw2hNVhLLdLLyXhLqytCi24AJNGp3a5xVa8VZ6VNSjgqTGJJ8c30eRmroVqvUX2P/6xQxWdvNDop7NRmWvHqvtB0jYYfZp/UiPhFWbiA8OljqvPhevPR0Zjug9278C7wsc+boccY1arPFrrzAr0AxxdEa1gCTLPTslrj0VrfFCrda1Wliy/x5sJRhFtam9NLtE6vl8C+BVoToPb3GbXpBXhnCKdL1SOigr8fxrrs+ERVD6TriAKnjbN5bkgLRkswxMVunJ7poJ2iE0+Csib+W8Q3TXH6Ez6hEFvgSRo5GFIagqMa3mQitlnH4MFBQQ1J8SYIojePdogKHY1t9C25IyidLmZFdfTxoKM60aYYGjMtJJokq88VSqzMoTJJX+CN2bUaUyscmyctN/vpMUAg0tJMLUabqSUR50SbJ9oUbawrPSDPGiUbo/vzVLu2YXkdjnYF0NBMJJ50sQpGhdJDD6ucNE2YZkdaoLWA1GABfs07l2W1nBQb9TTv+lw+8mqFpMjheOTD99/j/R/8MR+/9x4ikd3ukno8stqcA8q4Ped4c8V82BMkotXG7uRk7msakfUaPR5ptVCmA9/97X/BX3/7LV755je59+JLPLn/AU8/+IBSKvV4NGF4SqRxbcFmN1dwPNhEYHNmVsiO0temHA9X3Nzs2E8TDz+e2R0OXN9UiipjCqTjkavdJZIj8/FgDmhzodbCtN9xuLmh1cpRArO2BUU1vYTvd77Wg+85HYPp62UMcDcLBw/VVOl7oUMTooxR2ARhnYWzDGOSpQgjRHI0V5EQo2dGNA8UVUItbBLcWwlzFXZTRcWmmcGfn7MYvFFpC9ghQWxfxNeIuMaMwDQ3bq53DKExirIeBl544S5ffPMBLz3YmiNdSuwPEw/vnvE7f/gOHz264XyT2awGclDWmws2Z2fkdSSEtU2/VEkxWpE4jEZ11YbMBdZrRBKtTQDoNDHtd0zzTGqVMF0S9s+QMpHjBZuLuxbESOBwKKh6VsCQkSHz8fvvc/3kKfsvn/HxR99lng9UdWpFjKhEkgikbAFdpVBrpao5v4RSzAzgeCAEYXd1TZmPxGFgc3GHuy+9xp0H97k437JeZXLyED8v8rwyZhDIgzLmwLQZ2R+V6ThwmArTPFsS+HFinis3x8RmldmuMuMYDO1XG+arWoE2rjKlrv69rfs/z0e3fW+izM3C+UqdIZq1aE/RFgKk6OGRjRP1V+n5T4DB6opBOAqHm2vK8YK8XpNipkU39qC6pRvgk72gmHtdr1+C6Tr6/uGIEk39ntDm1M1q037XNrbQiM3Oy1YaOldrlkth1sLsNrfJifnRewgzpLkFPIlRx7vez18VgqkxW+t1Sj9zdWFiBDGTmiBtMZjoCsHg9CajahtlzbYRA9AU67y6FrFWR2j7FEnVGBUqBn4GL4GdShi0F8j2nKL0OqSRtJJpJBGGYPTC1ZhIydZfi5bFVmtjmqoZQkhAQlt0lSECTq0L0teW1yAB+3qtZkpjVj12mdWnHgq9UffdzvKFYraLokYBVZ0pc6OKmC5WlcPhyHE+0nJmPx2Y5kq3VRYiMUVzBs2ZWrJN18tMmxM12CRClCV1vmhgbgayZAmkYGLy2Cw3SbwWocsJ4mJCiqiFNFutGa0hrhWd3BCoitGrZoVZzUOnGcTfXcEa5jxVg5kbfZbHZ280Bk6Nxu2GI7G0w9q5/OEW1Qb8ROzdY18ct4TaqsZXlH4JvcWQE52o/8TbtAHxKYilVbNAxXaM6jLVMIeW5va11VyaFjJxRx9OtJ7u1tBfQFPclQYvmhdJWP+lxE9MNHox3UW9erKt9dfTiWC6tA3Lm4VHRdHL8kqfZjRDZ7o+oz+lgC/+U2BXg4Vm1Wovh+19suvkgjJkEV5ln7YNAlmUFJppFoKlmYdgBUQVoTrSIUGJURmikqJa6FQyelKfdEnwgMFgDU3ERssBHCHoTZeNW83q0pqMPr4mmpWlxD53EQimhUE+6cRktrGN6ht68YwLUKM4BafJVZtkUU4fWsydqtViG1iT5VDqy6qPaCM2QuwaitZpYOGWMA4beUoyfi+3pn/dc7y5tqb1UaCe7ni7w27navR36vP5GM+2tCg8evgBH7z7Y66ePmF/9ZzV2sKKynHHsTXmwxUxjqadqKBRLRQpBlAlVIxuFxNpzIRoOqT3fvRD/tmv/Pf852++yQsvvsDTV1/l0fvvMR0O7J58jM6TN+8z8/6aeTois5NX90qNyehywH4+cvn8Obv9wQq52iit9BaaGKCUI9eXzyilMKxWlgkxz2ZZWg5M8xEIzGriwNGnEElcEO17iTq4omoNdGy6UA2rCmOEMXjD6nd7BEasyThLwjbCkGxdJ4MHbb8QZRgSrVbSEIki5klfDHnUEIhB2AyFu9XME6babFog3VSj71K6NEFLoKp6sYDl8aiYHmC7XjOsBoayYx0jL778Et/86ms8uLcyrZVUUjBh8zBm2tz4p9dv8exqzxg3yJiJw4aQB1orzmk/EmK2fKAGejjCPMM4WLjUdkRJ1DrTygFBOExGNRqBUY+sI4xn54ybNatxbdqVlNmmkVIgr0byylLln330IeOdc65JPL++ZCoV1dkOzmjuDwloIROHzP76kpvNFoA2VuZ5QrA8h3GVGTYr9h9fc/n0MY8+esiTx4+59/Ir3H/pVe7ce4H1dsUqR4Zs72HwwsjOJbF9OQurHCjryGGOHI4D+/206Dh2u5lpmtjvB1argXFtbmvH5vebwLCONBn/fS79P7dHWJmGppSZWSeai1xDCBYM60W51GqajFu07Q6GKrfZBE4xblaI1+OR3fNL7gwjKWY0WdFskzqfEODvZa1LVoE6hanXJDTTLbRSUDUnogJUrXYWtOr19kyrlaA+NShKK72pqdY8iZ5oigudW0w7Sj8rOn5d3Z62A2En8n23vY3UpRaxyUVY0P0gEcUaM7Q5uGn3Xz+i7Mztlc6t+stPPcX2sf5Q3xcsvV5uf+lCm1K/GtHpWkMwfZlRQdU+HyLbdWLI4uwZj0NA0BQpKXA8ztDpVlG9FtFTcxNcJ+U3RXUQWjCATxYhiNUWlmtVbb8LwWh5PvEMKSNEm9BEMQv7UE135ut2niZUxCYc80QtjlZroIWZVhK1VFopNsGYZ9o0UVOixUhxV9QqzQ0yzDFOW6UoINFCIcU80ILYPdpr2BZOd0ZzajZR0QzBA/rIEY3FmB/N9EutKKEoWp3GCpa1pq7hCVaPfJbHn73R6BXQranGJ21OoDN4+oU0RXtditvgiFfQRusTCawbbm471XXuwqmjPGkXbK13S2kHMdzy1e8PnI7gTUPlJO6W1pDavMFp/n26IGNBTw2QOBNqCTxxyPGTb68RWhYfeTxrYbm8t4lRffUFP7B7C+B203Kbx8/y1XrrKxtmaWYNhXjhhLlRqYvNMFcI2q3f0NEE7Q2A/UvEkQJvNsYAg/SUWqM1mTWvNQRVhSL2+8ytxZoRC5e69RHsI/efI6Biyd0qzaxLfSH3cbb4YuZWg0GKSEqEFM0VB3NWiK2PM/v4sFOb/Fq2apSJoraYANSTSWtCa6HVSm3VUzcLNBNMLNOtVn1K441x54PSeaS9ULQr1ac9tvl6MRmsKF7WzrKO/P1f7svlDFnWREFJdKrZpxr4z+EjbrZcX93w9PFz41SPa8btOSEmQh4JqxWlVMrlM0KzUKcQsNyLY0BitmvTG89WWa/W7NcbdrsbDtOB3/sXv8Ff+sW/wjd/8Rd58fVXef/t+1w9fcq4XjPfXDHPR0MVd9dGmewgxDQhoRHzgKhyfXPD1e6aw2G2NGVl4WKHYPvSYT5SL5+yO+zIeSQEMQ/z1mhtps4z682K7KJoieouUXIai+qtvRK7h5qyaN9qM5RvjMLeC5mA2UYPUVgFa0Jy9O9vXb+mJBddV3WxtULKkfUQmQ82ku9pv60JqyzcWQtP95WpNnLs+zGAOqe7Nx/QN1vbb2zJZJSzUXj5pfsgkfrswN0XXuArX3yFl+9vyGM0OGUutgfVQpz3vHp/5JUXLvju5Z7ryx3nd8+JaQS1sC6JgtTGcLYx2ss4mEg92Wo8HgpymIjMSCuElNCQaZINxVSb6py98gab841RU2pFYnSNlevCViMhJQ6HA88++IDzey/y8KMPOex3lGJFYvWzpmrwoEILAr25vCQNa3vdpRDFaSUpksf7fO2nfpLpWLl8+oynT55wOBw4HHc8efyIUmF7vGAYRwb3/B+HwGoQyyK6VRAKBuTEIIxZWI8r9ofMbj9xOMzUWtgfj0ylMh4LwzhYUKW6djIbx/xz+RiiTQhqde9S02O4b6mBjaI25arm1mVNfI+fvEVO9rFRdj1BwQq44/U10/ac1fkZMQ3MsRjSG5uHsiqx6SlArjOmVRf9aGvq94ufRV4h9FqE5vu8mmhbaqezqE0zaq9T2nLNVfsh0bwm4lZNAb2kbJy4D52+HtCF8tW/z840U/JELE/D/s3vDenlP94IuOg7GLq/4LtwokxqM+1jsxrEJiO9FoE+5aDrIQTLUsP2tSRWi6wCbIZEFghaGXJgOwbWSTzTxwHF2CsuTCzdEqo2pYli4XoxmONeCkIUJUejXjd//2tQCy7U6kL7W7WI9L27eV5IJK1WxJy8dhGn0dm+eKJYidlnT0eCBObDkTpPZuntAGMNgVqSNxvFzpnZAkFTSbTZGBbJgd2gjfV2ILRgGWxTQaoi6sApJq5HT25jjo93ye9SnPehQAjiBY0BwlWEqsFvM1tDZrRgDJdZleUIuz0Z/Dc8PnujkfoT5E9TqDp16nYV5H8On/jvaSR3q8cyiL2XVmpdr42ynCLkRe7yjnXI3nb6k46hyanRcD6iSrOtRWyRdnF3WGhFjjo0F2+rOhdSCYsiX5fph624Ty9tv5i4q8Py2rr13O2GgeVr+99asX8aM4rgNmn2Mk0vb1MN4/H2hsO1AI5019YsgE+bS9OdmtUFcP3JBIXoSb/NmoRBlZWo29FilrQoGSuoLd/DRoTFX1f1V2EuNSYMt4G1/8+RUvN7tzFof8aN1qUjp0YBfIrlqIITLSUGH4GGk0sLriHhRFmLGF9WvEFoxT7K3Gyi0elPYSbOkTgkUi3UOlNbRltBm/mcG3mxIjUiUk/P0bUa4hy1JR/DF7X5g3u6uvhko3NZfXJ2Suts/lztQ9UbG/WPxWDglskA+ol77/P2aBLYTUf280RTIeYVcVyRY2KjFqS3n24ohwNSKunOfVAPdcOoR0mVdjgQkqP0ObFZb9mvrjju9jx6+B6/9Y//EW9865vce/FFHrz+Gs8/fsR82LPb3cC1NxitoW2mS0WDWpEhZYJ5YnezY7efOM512R8WuMMLiWmamCnINBHkhhRP4lArzBvr1YrNeiQwIXI0GmmrBqJ8AhOSW641vp+qhVYF9Trq1mE8BhhDYIzKKuKHC0tmAsX3pGD+6takC/OxstpE4wXXRg4QU2ATBlRmNFRqE54flP1cGXMCd8IKTqdSxWnhHRlUK8AwfncWRXfPEI3cPb/Dm6+9xFYO7J8fmIdsLj6t0D3Ray2Eqtw7G0GEY7FCMsZEHjNpVIYx2+8fEu14ZBzOrDgrM5IzKzFBfT3sbFIZM2m9Ig8rQzsJzKtzzr/wVXKCVgvH/TXK1rM3RkJcEYcBCYGbqxuePHxI3t7h4fd/yHGaXb9jh/pUK6UBLSAhEfLAzc01eTUSYmA+jiRgnTNxs2ZYjdy/e4eYMq+8+oAyW2bG4TBxdXNgroFaG/vDkeNhZheFYRjYrAc2q8A4GKIp/S4U49sHYwgxDpHNesX1TeZmNzFNE6XMlHnmeJxZrUZSzgQJ1KnbZX8Omw2fDjenhYg700gUz7xyM5du4ZmS1SCqp5yH3mz4NBmxs0qbTevLPHFzdUVabQhpIKXCPDU0ZLvxq2Wd+JjB/lydGtTUMg2aWkBnsQBXlUZZIEhvGJamw5BTrRgw5hx9UQj1dP6GzsRwOsOfhjz7f+1/odcZordxjeWxtBBeeHbauXg9YvWHLk2ElX+WmRHcQcp/ggm/JbjVvn+/NmMFRKzO6+5G/RxvVosYg8UpU4pRLRHGVkzfGgObnBippFKJ7jNfscaMEE1jF2Dwya/RtV3cHoPnLhkgE43zZg6dYuL2KCb+boqB0cF1mSkhVN9TbHPNLso2gNGmQ0FNj9vBBVHQuVhQrArHw95ptfaPVudOhBhMG1oyqWTmksklU0uiRmuSrEEwfcggprNKBEJOhCpQG20q1mw0pTabhHUjBHBcfdHVmCVxNzDo9XIQWyNEA4+CKlVtiqs6o6GY85Tfv5+1GvnsjcZtJPbTFKpPNTUngQ9+NN/6XE43eg94km7Xpre+of9aceRYZKGsSNOeWLUgAK2K+76zFIA20ajezan3vJ1H2DG6U//S3zZBnRPH4gIU2v/0S+4/o/lnsqAJLIXnbYPSP31pTk2XBfmdphz9n1vrhYc1Dnhzof0XS2/Y7L8qzVyQpNGDDa1CaE70jNbgiJIlMHR6BoFRhRysi87NkIDohU/rxYV2v30b1eWopP4+KXSNjY3YfKLR6XxidDDTgYhNiINNulSMNhVDNN5hEqIZDhGT2gh0aXAaKSjRHRBsCmV6m+bam1rsY252MzWqj7sroRZSm4maSVooWsjqhgCtQDPPZqmBJbWRuGhe7L3oh0VHdZXFh0z7+3V668XHb+Iolp8s9jurheqgJ3epdstp6nQHf34frYGEyGqzYT8MDOMACLuba7brNfsQaPORut+Rk02ddJ4JTYl5hcZIUjgeTJFTypEhrtmu1+zWG+bjkcNhxw++94e8/9ZbfOsXfoHXv/wVnn/4MbvrK+Jqje53tGNxVw0hhkit1mQ2iUidKNOR43FmKs3EearLjmEFippjXR/HF0u6mKQDAeoAi9mgqhpSpGoWlq2Zp7554qvrNeNyGLQAqs4Jdm2HTQmFWpVVENbJCvqVyGLmEKMVMWWClKwpqq2RYqDUxnaT2e0L+6mRgllEm6OL1fybITmqaevgyd4O2FWKpGjTkVZKr6+suVZlYnHfpChcHip8fMn9i3Ne+dpL3N1MxJSYi1DqgaCVEIWcRk/FtsyIzSqZdsXpazFnhvWKtApICtaQF0sLD+OKiDBdXpFo5PWIREuJJsyEmBBt5CEyDglplXzvFbYvvWbZKX49Sq2EMpPHNSGPi23yzdUlu8trVi+/zuXz5zapUl+NapSCUnaWZxSElgfi6LSrIIzHgVVMxNWavMpUNR/9PCo5BVarkdVaOLvYcr9V5qIcjo3doXI4VqbDxFwKU5k5TCObMbFZK0O2oEbo56PTXwPkEXJM5BS5vonsDwemeWaeJ1qrZsk7DGau8RkdY/5DeygYlz8FWjGXHRoLfQq3aqY53UnV6X2nCQZ0coLSPRCRHr+n1NY47g7MhyPrzUhOI6RKKXVpUEJri3jb2CrqRZ43Gy7mtXyonkyOIc4ORHbqE6ruytaZFwaKhtZZFScjkqCdFdLBuVsYKLdqEcXAXd+5KqdjrF/5ZTrWP1+ak2ZnvLCwQvxpOsDgzzWcQM/FxAe1jC3fI4o6Dcc1E/Z81QDQaAhoN/uJBBMfO2gZVRmSaY7WUo084wWyNW+RLNF+h0DPDcJrNxPuB4LEk0A8eCCyQHMrb5t2QCNaX+YTLgkGmCZVUgqEJKQhk1aJ0DUoTRBpRgt3Joh4w1tKsWYTmKeZWiwg1NoTS++mFGSeiWUi1IFUZ6ZqE42aAlpkcaWiVWopFrLnqeYiIDEQxoSWSi0YkFO7DNljGyxVdalr461aZCkk1SrViGtNu6YJpWmhtkKlmBbVz7jP8vjsjca/pgnod3S/2XEEd/ny25OOYLexNDs8vcfozfZCG8FvfLPUsgMwykkKknshW9unEAXnWPawXbVpRlu2kV7Mqz9fXQ75RVDtny+ailuLUG4t7HjrbehN1akQ7ILwfjOdEO4+ALJtx7vxpS3pSEL1CccnGyFxpyv7jmgdN4IapMMy5+jcG+lbR/AXUI1nanGe3mzZxRFsZBZcmC0xmjNU82mEIx7QG0anITR7j6OK8dr9d+vSudn40MIm1VubLoi3wqgL2IP0KUBAQiSHyJAiYzR6SE4Qoy7hfEYhbUhohKhIOAn4l9ui9ULIk4vV0rdpjdAqWasX8oVGsYPAJxm0au9xc6soH/u27nbmu3XPW0GtWKzeUNC6S9VpCtWv5zL0E6WFhsZGjXZ9jNvZD4eTRXLrB9VnxhD+w3y0KqSYyJs1eW12pEGVw35nm+jxYFOePJo7lJz2j+JBRw2QLLTpQG6VJMIcAjmOpJTZ7w+89+47/Pav/kO+8LWv8fLLL3P1rW9w+fQpzz78EJEnoM2Qzlb8wHSPFhV0PjBPRpdqtae6327wLItGlia/+u3g4MAtqlEIgTwdWc0Dc7I7LafIYTI0rRcaS/vsa7kBc7ODy+4ZWfYkQ+38I8L5OjIXm7oMMVCqfW/yEX5rShoix3mmzIWzlTUdZW5UrVjKpDAXA3xCiAxZORsb8yzcFGUu1SmQFmzYanNxqwdw2hlmwmgU0cA4jrzy2n3unwG+DkWUPAxeWFTCag3HI8nNH1ZjpbnVbxpWpPWWmDIqlVIL43qDKhRthHkGohkMxIAW85vXotTSiBcDcZqo84TWmUFgfX7B9t5d8mpNq0fSMCKeXQB9wGKr7NlHHzLvr2iaub6+Ya4WCGeZAZFKRWqjtBuju4VoTjgpoihltYZxZfkwIjz68Am/8fTXyWPm3r37vPTaq5ydn3FxviGFSMzCmOHirHEscH2z4vpm4jgdKVWZjon9IbIaIptNZDX4biz9DLKdaUwQzoSUB8Z95Pr6uNzPh+ORuRTGYSDlz6fr1FIzBCsEqfZ5c6F2R/2L79VaWfYRRU8ez1iFLm6vb2BRoE9E5uPE/vkV67RhjJmYR6apeIBeJdXeBNw2Xum1SDOeezMaJXKqD26f7P1UMOfHfobZfm+3ot5i2p66ieDU8yinGYXVIqff0lWgt94221scMFwcijAgrbtz4Wi8qBfPWA0TMRCBpsQkdlaqU541QnM3yl4rNROtB2eaqARzoDRbUCuem5heIPb35XRmBjEGw5BhkOoNljdHEv2rdXm+Zg/dKzX/NwSRzrPwpHAx+pR2kxqFJAn1WADjVBj5LIREDJEZZaienzNEcg6WEdRB4aYuPvf7yWuRucw2XWjJHOJ8v2wOHrVq1KTYZnKdSPVIaZlSB0qdySXRQqKbFJXjxM18SZTIGAfGPJKiibOtd7PNQIK9ikhES6O2Yvb5rrkIxcF0vzeWwL6o1Gh1VYpKS0bdLQ26qL9SKa16/slne3z2RmPJw/jkR28SbnOMl1/uh2JvOHCP68UPlI7O+8eCNnTmu3eU/k/iBaw09d99C9+VExcN77j7Yut4sD0ld1rxu7Mvtv40QsAsvYJTeqJ6/kFfQLo8w1N5YG/OyffqVjF56+1q9MYjUOjip95onHj/t8oOfw3iExkXCauPGj198/R261LkWK17oqNJn5C7Qtyum1oBLW6f67edqnGPY3fyEhaBvIqPdftr1eqhfT3wz0r9vs0tyaBO/Vpehxh1Kvk1EJ9otBDAEbnTh409g3d4inpAZKNF9cGD6U9atJ+hwezcWjQ6QsU2UmumzEq3ilJFl4TY221Ab4a6bdztMfeJAesN5i1erh0yfkO1gGi0TVg7VcZs/iSBJmgZalI0KTUrmtXEgNXG00vj9Kn76PP6eP74Eflsw2q9Zr3dktcbhs2a4cY3U5zOM24I44rhfEudJ+rhaKm3ZYKYSKs1szQikTSsqNPEkDLJ+fbTdOQPfuu3+OZP/0t+6Zf/Lm98+Us8+uAjPnr/XQ43zx15vKK5YxUIYVyj80wtxddY49YOc2o2FBc/+yfq/7Z8oTfbYvbWc2nMpVKdORCDIYFzqxbYp7evq+0Yqja5aKH/Zr8vrQ5ynYTRaGo1E2REmJsdZHnphe17SzFXmf1hZtgkxhgo4hxqrZTZinMNgVKMMrnOwj4JN1U5NiVVmyCmmNBWzMkLlt1P/U1IUdisMi+/fI9XXtqyig0JBl7YOeHugCk6rGKTy6QQkxW/DdPjiAitVto0k1YDIZtmg1KsaHJKWKmVtj8goUBISMzOiS7M+wmqIZKb1UgK5scTYvJ3R6Ep83wg67mBlLXy7KOPabWx31d25chM82LUBL3VD47qghoJkZQzKVmQV0ao0fRlm4t7NBl49PAjajnycHyX9997jzv37vPSKy/z8ssP2Gw3FqQXApusrO5mtpvIs+vEfmfOUqVMHPbC/pA4OxvYbpLpaIBTUJ+SI5ythZwzEgKHfWa32zEXs8PVw4E0F2D957m8/7086lSQFLDsqcWb0gpUR22lQlDjSUnoBbAumgoTQLlOUhOi0fbubrSiVtjvrg6shz13LgaGvILcOE7FoGIB4/QbRx50oYZb+GWHiW7XIn1N9nJcOwaL13L0nONF0yp2NoaA0WTwc19szUU/u9R3kdtqzltbxydqs6VGcMCzuAFJn+kE8IyEW22RKl2BirpdLc1F7LfOQP9F1qzYC+rOn4J7KIRTS9QbvtBNUcSefRCjOoUo1vwhS51mtYgsE+D+eqMapSt422XNpTdeevvdwQrrXg8GIS50OyBE16BakG9TIUWrRXKyJqMvNxX7Pq0OWnvN2wLM1aZqRYQSoIbuICrLZGjGMtVmbeTmRXwtbl7UlmbTLG3FJiNaaFIoabYw0ZwtXNivE94xRrExjrYENDfBwaYbxah50dFzTVgAY1Ratq8Rn9ZR7AX14YcBuKaz/SyPP3uj0R+3G41e7+qp7u2d8SdpVqHfwbZ6bgmCFshh+WHcKqJPK6Vv9N0BidaWoKPgi/Q25mvX8rac6dRsqJ6QAnFuWlAIyZ+u+qhVvcSvpyajx7I3L6U78/LUIp0oVreMudzithcp/TkqXbbVOD3/hnrMgqVwdtbU8vN1uQzLi5VbP9P8kLyQ90XXdde3E78Xgb7tDKdGybUdTRYMf5Gq9IUdGmQ1b++kwdJF1bQHRhOyHbQnYBuPs0EIBHeysoBtv0LRCMe9wcj5FKYnMSz3jQItBWoKFgbmH5oiZPuQ1JBsz1Gq07083EmcT3r7juiu1EGiJShLtMRwsU01+OZgVspYQemTsOoF4O1rAXZw0YtCsTG/uVaI3xCCZqFlIQyKziDFn+8c/N7tGhZdltLn9fH7v/4P+Ilf+o85v3OPVmam/Z4cs9HbpiOSs9k4qkKIhGSOHLWpFearERDSuLLQuZCowdZozpnN5oxaLYTr6ZPH/Op/8//itS98gZe/8Q3e/NrXePTeOxyvroy3vtuTVmvqvpk71HRAy2yuGhjXttMFOxXh9hbYaXELmHD7FO9/VNsgLQcGaBOg5Cwc9s21Y6edydxpdBFbRy8q+vQ3qO19OQZyiiQqpTYTgvv7EB31KU1ZJfEDr7LK0RqcUonZ7qsohvUV9cM2GiXE9lNLnD6ocnWEQ1EyhVXO5BiXa9InPgHzW9+kwAv3Lnj1lbucb0bmeceQBy8eAuVoLizjamsHapmQlEjjgIYJ1Ar9sr9munpOa3f8UG/myDIXgipttfbmvlBv9nYwx0ocMnFtlLwyKfvjkdYqMSTazTX1+jly5wVCTH6QR/svfhFLZT4cePbhR4S8okTYvvgKjz94l1rmZaIyqzWESSBMhRD2hKsr0jAyDpFVSuj5GcN2w+tf/iKvfOGLPHn0mEcff8yzp495/vQpTz9+wntv/ZBXXnuVl157mVffeJ2LOxdG00DYDMJwd2C/ilzdzKYZmmaOpXKYK8d5xcUmMY4+jXZE1+tQQlLCWSQnAVbs9xO1Gp1nmqe/iCX+F/7YX16xPj8npgRB0WDnc+26KOTU/HswmX1uzYFRrYyKpyKgZp2NdLOPuKzJOheunz1jPYys1muGcUWbZ7NvbXbOSjQUT1v9BO1ZHKDj9BRuFUafbDb63+JnK8Frq3g676M3MZbirG6v2wvREx2rszf6edFrkf477GdZLRK7/rW33I70L7WI70WNDsgpLZyK7IXp4e+3DwQpemJviCiiQvECWLXXGyyMl/4+2bFoTIqYAkOOpHCiiC+1iIN7nVqK2uQlRaNRRf+gFijFED3fbFWjCe6DgawEp8F5vadeJMUUIScLftSZGIUcO21RLRgPq5E0BmpUBzehRQM7qzbLfyISVyNSj34zhhPwLva6jIWhqCOMNuy2WiHFxHo1sh43RrFzZ7JazcpfpiMpRcsdS580nRURcgqUZsCrlrDchlXd4EPsgkkCSYIkRZLVwpal0e+VSGiyTLeWKdu/5fHZG43bMGq/ozh1xnbxP1X4yq1/7FVtV7Z0dbfc+rn9LvWbuguNTqWgfWINgQu/lq711nSCU1cnzXIPPvGzejGtFhyzbAqhD156F28LTvobqreLyb6ptVsfuizqTrHqplxLPgWnpuP0M/rv6rOATyLZxW/EW7vX6Y++oTS8YdDT7xd/T2wiIcvbH/y/KcAQzDYuB3VdhnhIn5nIxu7k5LqQ0IV3/r5HIDcTqw0Kgypjg6EpqaoF4LRwQpHUnksIniCOL+7eQUUhDJAzDBmjTCUv9L3Z6q8dFTQFagzUGNGYIFVCLoQxEuZKUHMMDzOoWkBTiBbc1i+6zbcsIihIQiQRJBFCtI8UF8td+sbiGyZVl6vYrYdPfB8vHv16qdANtWgGltg9F4WYrAHSaAehcVk/6XCVsCCgz3Oj8dYf/h4iib/8N/8Oq+0Zm7t3OexuIECthbxaM9y5Q5kLbZqp05E2HVB3CGIuRAlMZUaqCS3n1qDORJQhJlIK1OOR6bjj7R/+gF/7+3+f//TByzx46SXe+PrX+eDHP+L62RMzK1itKdORetwh88GShJsSJbAZVzzfzb66TgBApxH2wuFPbbWnbh+CkIeBzXZDCg09HJySwGmjl1Nh1CeIpzwe26eWEsrRrRzFDpba3OWk7wf9zybEVH86TZW5mhuU1VnCVAJFDQUsIS5NSkyG4hEbd9TNJVpjPynH2oihknM2umQ7NWIJo25dbNfcvXeH7Wb0IsX3UeyGD+qIbymEmIzGJSb8Lk6xAt8upp3tNcE832stFqa32RCGNYfLa+phD3Umb0ZCGgjRaAQhRTRHdtNMa2p0g3GNqCWQa52XxaiYiUQrR4LA7vKKZx99wAtf/QJ/6T/5z/nCf/TX+G//r/81f/x7/5LWijcbzmFWOLYKZSIdDxx3O47brd1Hw8gwrtisV7zyygu8/sZLzPM3uLy85sP3P+Sdt9/m4Tvv8IPvfZcP3nmLq8u/zFe+8U3u3r9DznYthwh5E1kNgesx8uwqsN9PHI4TpTamaeDeuek9ok/il1tRhDFbYnYIIzEE5rkyl8I8lz/n1f3v53Hc7QFhfXGOSCSE5mG7oL52DaLVWxt1c6DLi7xbVGCCorEuANQJiDQq7WE6cnV1yTAM5JzQ1YrjNJkFrWcJmMMViDanxXgxHwKt1oWN8elapAN7+HP/U7VIsxUs0Z9XkFMRsuw9fW7Zm41TLdLrkU737p+bk6QxEZZ/68/Fn19vNvrPr2rnFuFUi2jvovxFmM7S9q9O5ctBFq1GWV65JXP3fSsGs9TPYrXImBJjTuRoNYh5DjmtCqHTsmnWYOPMg9Sspkxq7neDQq6V1ExnShMr5JPtRRLEmhGM9hTc/7gDkiELIRtoA2p7Y4yeEO6Aa9+/gzFDajAQ065CJZ+tOEtb2nZD/fAx8+XNUiNICAvgqX2v7OY9alcuhEyMiRQT42owlzyMvjofC8fjxHycqNMECGkYySmfaGa+boK7Rmip1GiUQlDLaGnWqPUoAhsGnGqREOxeGRBmhKYec/DZ+oz/mdSp/uj3/HJjfurQ7Z9UnyV5obac0L3a718sXfHQUVxZJhVd8BbURV3a+Xp22HXBN/h4Uo2J0cVTC6rfu3y7130fsj90cXQfvIh3e12EJW5t2VGLU2nQx5anV397gZ+ai1vuSrfepF629Mam+k89NRueXCq+0XDi5Yq/b8FvUNv0+vfZaLA6PBJ6EyGnBmMVTVi6CrCSYMnl4AnhQlCnaCFYEJEV6z3jJBHJiN+EsFIYVRlRBtwRSmykbDfu6b3vE5bg45IgEDLEQcmDNxrZGo2UzFVEg5PTxK9xtEZDo00xwhCJ/WOVFjqXRAgtEiURYyKkRAgJCZkgmRjsQ8Q+DyETgn0dKUJMZrfrnWzz+br4zdgb3NonGOD6fFmoYeLiKvMNvzWduH0CLAUjy716Owyy64c+r4+zl17gd//Zr/LCm1/kta99lfO7d9hfX3J2/wVzzFClzsXzTybGPFCnA6KFoI2y3xOGFTJP1P0N3Z4amm3GIfiBYsm6CvzOb/4Gb3z16/zk3/o7vPqlL/PiG6/x9J0fE1LguNv59UlWeLovfkoj9y8ueLY/Mu2ONj3htMdZfXlrvd8q7m4/QohGERtHK3DFaEymPxOqWx0qPi3kdDuACVlNwOn7g6+b4Ie8yi3NmELTihJcKxGYmrrOyW0PSeYoIqaPIkSmJrTWLIAw+Fg/OlWgKZshMZXCVBqHpuTaCFJtGtIBDLV9ZTsk7t69w/nZSEyG/Mc4IGJOW3OtRnELhio2qo+QA1NpXN0cmJplXoQUqWWPiOUhtOPBrr0kYh4RgqHIMdBT3Q099KlhsubkeDDv+rBNDOcXDOvRXIMCGJ2gmG2yVrQeaRK4evqUm6dPefWnfpKv/eTP8Hpt/Mmf/Igf/8mfcH311HQaOMUtGBU2ArMqk9oeHseBuy++yPnZmsfvvM33Q+DF117h/r17vPjgPvfu3eGNL77Gw/c+4Iff/WMevf8OD995l2Fzh1kT9+5sWa3MbU8EhiTcOUsMQ+DqJnF5NTHPM1c3R2prbOcV201mGExHAifr7xTgbA1RMocpM8/NRcqfv0cMkf3lFSkP5PV4AoRCorZuVHCiHgfphZvRoLXh5yhWSgcFjba3R49q8+m+JW03DjfXHFdrhosLxmGkjYPlIwSguLukmAa1VwQAGiOtNOYqC1gJXrfoiTbVy6FwqxYJveEQfPJoNtcS8bPndh3iUIT+a2oR3zP6PtF1CrfrkH7e2D7SUAn93eFENbJaRLBzWJxd0OmQdoibbqQ2cU0mC2Vs6M/KJ0d9ahyDNcJDVHObijYVXQcYwZ0vjcp98mf1E1QcBERJEon29EkY8DmiZCoZDx1WJThlJSQDdVA1FF9wbYiDNV6LSBTm2d5PE4MnY1j0i9dvn+hNRrAiS4MVj8NmRdqco+vG9bGwm4uJ4zGL9uBW7YhlhHWwUyQRYybnFSllWqsc5okcV6QciDkRhoG4HpiPE9Nuz3w8MteJFrBaR7pbJifNdBKi53bVam9Ya80nKX7fyomu3e/NiIPTdvtRVGj62aqRP9tEo9+7t+/OW5MNWIACRw+8MONTEK4jW/Sk5P7d7fQzhRNCL72wdAqO+si6V9Tq+4JdV3W+oDUK3YrRKCi3i7v+NfYRlaXRSP67+9OVKITq7iz+e6wI8CZgWdyfHFHe5tafHtZAFE4FhS7f58jBLWxiQcj9oyP/C7fQf4jixUfTBQXvjsRhUa168yPBpyy6TFoGlEwjI4YqYKPVZTvyJkOI9l9PRo3OYbRQPyFLIIcesuP5G0uPaV2ycTjFN5z+3ttCCBmSNxgp28KW3qklp48hLvQWWsTpUg3JEcmJMGTiSglNjIEqisyY97REUsjGaRwyMUf7SJEYIzkZctCbEaLRsTT6poajuMEdR0TNVpnbOJK90+qrVUPfmIOJ3b1RTP0ay62P4EWndGapHyD0xuPz3Whs793l3fd+zG//43/E+d17bO+dcX7vHhcvvsS83yNauXnsvHswak41tDgotFqobSa2ldFdYjTRWgsQEiFUxmHkOE8cyszN9RWlNX7jH/4KL33hy7z69a/xzZ/+OT78wQ847q9pcyXlAULieNUgFoIohcpmyNzZjuyniUPVT6xj7WOG/vmtEfLSdIhw584d7t17gXEciOUAYaA1S4mWEKhq7lMnymRf2V4kYdzlriHqEWOmMQuUxnLP2F/1AkqMCy2GxklT8hiNIB3E3LRqP+CDU1FNpZU8SRqJkCqijXUWtoPw7KAcarPAL3ehEszYYR3gYrPm7sUd7m5HVjkBldoaOY3E3KDYxCKI2UoGdDEHkRCZ5uZgi5oTWJ2sEQiD0wnMea7VaunJ05EwZurBXO9Qc3cZNrZ27USsCDAMZkIwnm0JOdtZZWmm5jSlmBVpO3D1+GOm/Q27/cRv/4//jGMVpssnvPnlL/Hxx2seffiRaXn8WkhMEEckDcQ8kFYrxvNzXn/zVV565XUevveQH/7mb3H/3h2+9NWv8errr3DnzgV379zh4vyCN958nfd+/C4P3/+Q3f7I02dXVBXOtivOt0KKTqULwnYVLWMjZx4/23GcjtzsGsepUuqG7VlysMocqpKjkVFgsxJCEqa5Z0V//h5BEtPhmt3lFecpErJRRmrM5vuPOyzh66ovjubFhfpfCo7qeJPRNY+3qcKoWWFLYXd5yXpYMa5XjKsNdXe0qYafYyJQuMVqUJv0F+nZGf25cMuhCeBUi9CBTWGpRXIMDCHa+eUUx+BgQy/2T26H//paJDj4ePuKi589xWlHvfEw/Zk3GbJE6VqDtoDFVqgakySYLeot+Dx6M7SIr9WmFYjTiXrNJsGn9fZaLT9DGP1jCGL1mBptxwBGS7FWWeYcXlp4YjXVBd9i9Ye/l1EiMbTlGhs46Bcknv6jwc7fmCFmQ/NjVKNtJUFyQHI0ZAXXp+C1yOLZ77aybod7KBOH0tAUGM/PCFOlFcv5iMnqkZjtXg4pElMi5UTKA6vVinGzNte649HCP9uGYcjEEAljZswWeno4HDgcJs9VM7dEo6J1QF4giDv4RaRa8rjCol8Sbzaq2BSrym2ds7lqBbWp0ane+Tc//myNhtz6WG7W0+e9I+yiNPW06qXhuEUnode+AdsVBKu+1dZ99Epdoy2G2hE8bwpCre4YoEsDIu5wgE8ylmnG8oQdKcBGIJ9ekJ3q1P2cg3c7snSBfMIerusVVE2Zj/ZRI8tm11+W423+Vt4aV3op3/mM9ixPpSXI8j8bVXqh7jBFt2E7NSGyaE1in4KIjzzFHBG6zVxY0BKbKiQx+8wYAlGccuSODVb+RHMxcGcoEU8Nl/5hTYeliQdzQ3A9gjgtCP+d6sKvGHRpKjWC9s4ng9gclR5ZrkkguL1sdZQqCZIhDBBGJa4hzBCqT2OkQlTCbG9cIpJDIqdEXkXGdWJcRcYxMIyRYQiMQyAPkei/W1OgxUhXeUm8hUw5PcXMvPy+1luD6258UAMtBEc8rFFrngvSglCTIyIR5ghTVEowm8VPNxyfz/LAHnkYORyv+f3/8R9z94V7/OTf/FtstlteeOkl6v7gIkrh2ZOP2e2vjS4lQDCx55Ai0/FI2e+QcSCOazQN6OFAPdwQRVit1hymIzfzNcfL5zSEt9/6I/7FP/j7/PKLL/Hql77Gd/7mf8xv/oMD0/Qu83yEZNejhGSNrDZiXnN3s+XmMFF2BxPnd+pkH8t96tGbjBQT9154gW9985uMeWQ67pE2QjmghyuKe8E2OdnCgh/+2oE7XfYMlq9p0EPbblG4FGtEe1ElPjmze0cYs63XWW36mb1hjyi1zEiMxHSyuAjO/djmRJ0E3cP5IOyLcKiQaQwO8hh4oYwJtmdnbLYrtttEczeukAKNXjRheyrNaIcSiEOkFOU4TWw3G1558S67R08ptSFhcJRSiWfnFtxXJ+J6Q0MYLy6IY6St10hKzIc9aCOECA0Tg5dCDEJOiSEPBshEs9S0iVGgaTXdh2tOrp8+RYaBb/+tv80Xf+YXeXS54+nv/Qu+8HM/gT74X/Ar/5//hnd/+MfWrMXIkDLDOLI623Lx0gNefP1LvHz/jK988WW++tO/wDcPM9/73g/44ff/hO/97nd570/e4sWXH/Dlb3+Lu/fvcXHnjM23v8Erb77Jk+d7yqwc90daabS65vwsWxqy3xE5wN3zSAhbHj0TDvsDh+mIXkKtK9abAUnWMJZiTlR4s7FKEHsz+Tl8CEZ/OVxfkVJkfXFOiJEcE9JMsJ+z6XwoM1aLxEVF6UwXO8A9WwZxsmJxdJtgDAbjV9tkjCPXz6+IaSDmNcOZTfi0HCzEzoHB5lRhUZtcDtKJRP3/oQMK4rVI/9sOklstIuQc2A4rogZa8VOlNUI11yKCgW4LbV2xBsBrkQ42/mnmuywmDoGTxkocyLpdQJ5A5ECnSy17T7Dvab1pc9BAvV4JURazGN+kXGuqi9OWBHFrWK9BUmSILroOQpBIULOZ7erWJkZ1VhFEbG+Loa+NBNlrfBFSt8oPmC4riP9ub+hytGlTOIndRUA6173rF2JwMNPqEaKDE/2cj4qkaPdPVkhCWI1stvfIcUR2M9fHiTgYKHHz/AqZC0NM5DEyrjLjKjGuEqvNwHqzYrNKbLcjZ3fOIQSO88xhLpTjkcNUyDkZiCX23MawQnJmmoqBJrVRm13f6HUYLdCqaUg0GZ2qxkiV3qi2hQVUAkzBBOuVUyZH10XHz7iH/NnsbT/dYPS/9w7ciqBOepIFvW10gc3t7sf/3BwdLHahRS1xU4KPCPExXrDus1OdLFRFzVmysbhfRQ1LIFrUjgx2pKI/YftZvk5pevpn8b/v8ybpdB/ncPXxUlMbD/aCufk04V8nwg+KcxPdMo0efnOiUp2mGr0dOk07TrSw04Sk9bdQ+tfJ8q6Knmhn3QEhuBsCoZkzU7SitwV3ehIPnYrJmosQiSS7gTuBp/VpVHQ3MBOPJhdJ5RDIMbg7Q7SU3SSn1NaeIC9+7U4vwZ5ntGaidYF0CrQolBTQHIjZmpzWbMMTFUJuhCESxkBcCWkS8iykGogkghRCrEi2kMaE+W4PKVqDsQq3PmC1ElYrS9tNgwkGW4xmxedqfOkCQ7u6/WoshwXIacKrdn8ShZqEOlvaNT7ulxh8sQdatq+Zs52PNbfFr/92o/F5fjx57230OPH8+XN+8x/9fc7uP+DrP/XTnN9/gWmeefTOjznsd+hUSGlkmvbLK1etpLgir6zJDMNIa5UUAmzWHHbPLW2aZnzUpszTzO7qmqaN3/utf86b3/gG3/lrf4OvfuenePb0MTdXey4//pAYIuu797m+vmS6uWY+HGlOQP3yK3f5WhKeXO549/EN+9mmELU1F6DaQ8Rcfs4vLvjyV77OT/z0T6G1cfXkKXFnUMJ0vKQ8c32CAwVzPdnYdsTTuMgm8Wxu69enB118Le6oYx7uIBqWQzJgk10RcSMFSyyXoOCao6jmqpdCoBabLMRkidbJkTmtkVUeSAISC1Ob+eimcFPE17KlxWaE7bDi4s4F52NiELP2La1ZyvZuz3ZMDDnbAV0bEmB2SmqdLfTqlfvn/I2f+QZPP/qIQRuvvHLOavSzoTXjUyIgwSeOUHZH0nqgtUaSQFgPIIqWmel4YJoLIkrKkWHITicySlJaJXdRAaVS20ytgcunTwnDyLEF3nn/I95/930GOSJcs7qz4m/+9Z/jh9uJZ0+e2GRg3DKc3+OlL3yJl7/4de4NM3/3P/k2b37j24xDZhxHfu7nv8PXvv4l3v7Bj3n4wx/xwXsfMlfl9S9/iZdfeZlxNXD/zpaL8zU3B+XZc8tyubw6UopydpZZjxYsBzYpvthGVFY8QdjtLTPj6tqS7jfbFbXa2ZT6dB4Dd2zq/fncTco0gTZqUW6uLolDYtxuiDGZm9w8oc1MQLpWo8/zrQ/3oDmx+6iDeYh4bo+d94JpKpDmJg0zu+sbhnHF9uyMYVyhq7UFOdZqGIBEA/a0LjSt0IRtyla4VWWuvWDzM70LyP28CCKkGFgPA9v12uqDqZp9asJagVZN++GT/Vq91mkdkLVapMcNLLCI9lKu0W1co58ufaphX+9U0caHpsQAAQAASURBVA5ecpoA9FrlFq62pIQLmOag11Rqk4bUxzRey8woTRrVtZetC7OjGYDEaLaywYP4okQXLVvj0c9iQrS9wOlOMQghByQPxNBYjYH1KpOzG10seQly0uS4AUSIp7oMd7Hs040afWqUAi1HNAevCRxI9Z8jDWSoyAzEQFqN6DhSW2RiIo4RjUrKmZwuYL8nAeMwsNpk1usVFxdbthdnnK8SLz7YsD1bk8eAxETcjOSmHI+F+TAzlUrlyJAzyd/LOATGGKkz1AlzE/TA2U5Vb1FoJdJChRRpOdFSpLqIVy2shBat2ajRtcPtZF0UYXFI+7c9/uwTDX/op/6gfoFMwHqaavRv6hqJExrfxwI+1nCxh7bm1qQ+YotAMFEvwmIJ1l0HgtOnLChOaNUWtn4iOVM8WEaXqPvbTtO9SbID2tEFX03SxwFetLdqaHqtrhXoC7ujJbTTeyKnBqIvYJf9OAVCl2nGLexyeS/9lS5b0vJn9e9UL259Phy8uzYNiSy2wwFHPHxea+y1W64LEo0TGKI5LoXkjkumvRBZBij2zAQk6iLi6s3GkIQxCTkLOZk1XXIruC4g671mF7d39NYaIns+vakjgCYx2zUPy6GPkMWF6i2YJ/RgU404KHGEOEOqEJu9v9WpTn3iFpIhFuayYM1k8FDAmCA6bYsonkzujUbzDdchItVl4LxcPF3+h/uEi/M3A9X/q92FylGiPlqqyb8mCW0Wn+jrQs/rdLzP6+OdP/w9sgTmpjx67x3+1a//Ki+//Cr3Xn+VzdkZcRjIqw2HqysLlAuBqRQkJiQlW7dzodIIYe02qzPVbZKZj4RhYDWObMcVZZ6oxwN1veLZs+f89q//Gi+88hpf+Oa3+Imf/6s8++hj/mh3zbTfUwXy2V2KBnbXl9RWePHemr/ynRf54ktrnu+P/Poffszb711ztsk8vpl45/HORLmlsl6v+M7P/Cy/+Nf/Bq+++UXCOPD4g4+p9S3nkCv74zVXHyaaGtLa3VY6Xd57Ut+THEIQpQdkLtNiv+dEEkbYsJ9jW6qjhBh9ox+AQWzSqJXF0jmq07CSIbq1VpbgqSQ0aZRiTvprhe0cWB8Dl1MzukMwiuUgwnZ9xmZ7Rsp2oOchEObKXGZSisylkQabKGpQQowMJMo82e9MkQfnK15brQhfukcKgWGdQWfq0fI1ctwQ1xv65mOIZEKAECOMA0EixEydZspc2R+OCIGUMpuzDcNq5d9jKCjeZFjcsXI87rl8/IjpeORXf+Uf8sF+QnTm1TsrjnXFs9//fV594YKf/NnvsH/8iDrNhIsHnL38BV780je5eOXLPMjP+NI3Xidt7xhGqkCr3Lt7ztlPfZvX3niVDx9+zGF/5Nnlnjhccu/+BetxIMXIxcYE/0+eB3a7ieubA6VU5u3AZh0Zsp1UISjnm4RIQJ4o1/sDcylc3xxQhdV2RFJgmhVJgRi9oBQbHH8eH/Nuh6idomWe2F1fGw12yC6uNchT8QAN+oZtZ07z86wFL+6lndypmgIVNC6Fv2J5M0GEeZ64ubwixcxqXLHabNHjxFQsdNV0knZvlToRmtGJt+tEToHa4PpYOZZizX8rHKpQqtl8SIDNZsX2fMsqZyvCp5kikxU5nuekdaYFgQqluijXBAdWl3gTYZpB2xv6JLzXOwW9Nc1oC7Wquyv2yc9p3/FWwqk05r7os5D+9U7zCMpy2BuoKwt7QrH3fgHjvEgREULMxJgtLTsEozETTePq7IzodZoSlskr6qHOyQDCYZWMobA2QDGaDMwnvR2gsR22M+oqp+eiMfg34HoF5SRwjQbWRJ+0VBerqxJqryfsPQ85cnXY82w3c3OcIdsZti9H1jmxzhvTkeTEerNmc7bl7Pyc7fmW81VmvR1JQ/Qayhq6lBIhDeShMk+W9TSrNQExdCqnLI6FTbCmwzXG1iQaw6QVq0WIAc2JNkW7r/z7Guao2QIWgozTCfnXyQL+px+fvdH4tz163+AvotGD7E+8de1X7dTMn/7sfHd6Xe+exlXFOvlejN0qu/sPEazJoAmhjxF98nHbfasF13fI6ff3UaX4CC7gMey9O+0bFZwKPbX+qDsELLQloHtAdfSg493d36OXpY0TDaY3Ef3Rx+PiCEz3p/ZugZ7hIM1nIf1JdR2KNxV2hsrSJHWUwYc1nLAcQ/gigYRZVA50nYa1T30gZWK05miqoZYxNVIKDAnGZA3HkHzKEYUQg4cr4eNJfCphaK306ZFTsqwos+BAicE/ZHGKCERSNN5nrEKInjjqjk095bGDHp1+q9iNEWkkbZY23ZTUGkOrlNbc9cbEawZ4iU+2nELmu2+f0DVpUKNdc6e2OXvPrqv7UhP+dM63iRNvWQGr6XNshCku2LW11D8qjc+nKaU9nj183xpAEdp84Ae/+z/y4kuv8lf/V/8F680ZL7z8KjEk6nHPtLtmXK1pU4GhEVqz3As9GEe/uR7reKDSqMejvachMQyJba3MZeJ6d2SaJnb7A2//8G3+5T/+R9x78UUevPQqX/vOT/Hog/eZ58rN7oY6TbSYWa0y2zHw1Ve2vLGdCc+fcFeEv/a1u3zzwYqLVeC9K/gX7zQ+enbN1dUV27Mzfu7/T92fPcuSZeed2G/tvd09Is4595x7c6isyqysQqEKBaBQAAgSI9kARzSaUsNEiU1Tm3U/qPtFD3rR/6L/QG2mVosPIiWBM0CQBEkABRBjgRhqHnK8w5kiwt333ksPa233uIkCkUUj25CeFhn3nBOj+x6+b61vfeuHf4y/9Nd/htQlnj57yniYOL+88gZeI+IgWOVIdm94xHSwjgeAtqUbybDN3jIPXQuSqBJSZx7o43EpEhdYZJHtdVrfmxRa0EGtiZRE+uRRVxeIa4WU3NUqBmZVi4CLLSK7vnLeB64nOFQ4ExgQayJ3tmVztqWLRxDIBXLJZi8dE1oLVaGUSuqSp/XNzjZGkwNt+8iw66FUs2lMaZEkalHqlKmDLqYggtASrSEmpHrJrKyGn3k2oJNSx3Y3ANVUMyLkbDU54nuL1sLxfs9UMh/+/h/glR/5KabYcf7gnN12y35/5JtvPeb67bd59uXfIzPRxZltPGMXdjBDmGeuLrdEMdFsRaj5yPU7bxK7HeeXL/DKKy9xefmAm9sj91PlkIGbiXoRrDt6EHabSAgDT5NwdzeyPxyZ58w4Jh48GNgOkSAmd73YRuILW+QJ3O0PzDlzf39AVdmdD4hEi+UFXZqvWWdw4YN25HleAaoq4+Ge/V3H2dUlIURi7IBA0cn5ha+nXt8oLQzUpNsVIxsI6noyMy1pk8ikU1nMMH7cH9nHG/qrQJcSw3ZDmY6UXGmOUKKBjogE6KOwEWCeiSJc9okpCSEpU4UwBqYApWZCFC7Pz7m4vDJ3uDIzA1K8YFfUGmYmWTFOtXFel1pO+9h10U7YIbqqJ1oNi9UGWvPdRkRa0MJDGY4OHOAtGq0G2yyjaqBNXbbuug2XJymeGWpjLRp2yvZmRh7AovEhmEUr7gOphkGaG+aKX1qxfF2CpxIgxeoSSaHvVnv8FCwYGlyJ0VwdEXxcRD+39rsgEQ3R1gVxuWqAEM1q3zytBSnBJOjRsYhnbpSKBujOduxkQxkyKcNYKsepMI0zOpmtuqh1Yc+uksmlmFGDmIS3Ov5ClFJmFEFiRxcSsevJc/bsejbJr593/Pq2OttcFRVrQiwlQz0JiRrAXPyaCgYpi1o/L7vWrRZ17Y/2fn3rvj3p1On9t3yMyaWcErKGsNti1hAvz2t/FjBvj9dogEt9UTAdrYEKPJUlJx+kOS5JDUuypEUiGuC3HhhOFUQ9SmEPVvXNGXES6zkKZyntmaecqHhhIm1tcT/eVvnRnlFZazVOvvFyO7XAlZPv48pRe38nYbauNmeIdbaLRxFE6+J6BI1oqLPXhn5Pz/nJ+6mRNFM4VZvYyurd7auUiDqg1xXcuwVc6ILZwSW7xWTpythSi4JnlkBD9WLt4K/rcqIYiNEabllaoYOQzBVo0WW2qFXrmK2LBWfWwlwqU6lMRZlzZZorY67UYvKpIvbMHAo1ZoiFEAshZWLKhFQgFjRahIBwknsKPn6lUsW7Y6o3J5Tg5MAmqFZPtTnkaXEAyzjZwLFeI9bsp0kCi5PJ1tgxqzkBZf95ft9xhD97Rx1HUg0MUZhq4Hh7w6//q3/Gh17/GN/7Ez/B1UsvkfNEf7YjDQM6z4Sus3OUJ3LNECJx2DiItM6r1ojIiqiqWrfVRGWXImWI3B/u2JfMu3XmNz8389rHPs6f/+mf4fVPfZpnz54goeOtb36T6fHbPLzo+OHPfg8vPIzIeE+8f5dnt3fM48xwJjxKI/PdgTO54pWXP0zaXfLk8WPmeeYPP/95Pvnpz/BdP/gDXF4p4+HAPB4JUXj2xteY9tdufxkotXj00QukPfhg+Ec47WnT1pRgLR+YtbLR4npjfMVgXX2ctLSmYZ70NEvDaCGMJIJqpaoQUjVbUK2epcPXFLWmmti8GVJg11W6AIeibNQ22l6U7W7Ldujp5B5xll8Vasl0oSOlHqtBUfN/H0e67Q6paiYNzZwhxaXreHIXqXIYSWdbwnaD1kqZRtBMTL1v9B2EgJZimUgJZjValClb4fpmtyMNnRVIqglZS8l0MRC96R21EpPwsR/+YbYf/z4evf6d3Geli8IwbHgwFeL2RZ59/R3e/uI3CPdP2AwDkiaGuXI8zNzd3LLvZrSco/lAPdxC6hl2lWl6wrMncHH5iN22Z7PpOc7K45uJ/ZjRm5FSKuc7a8C16QMvXA7EELm+vmeaR3I2e1252rDpDAAlgfNNRB9uKKrs70fmXNjfH6AWzi+3VjwquNP4ur984I6qSx2iRVoL+7sbuqFnc3a2jplQvHWC2xw08OU7sngRuGpTP2gLaxuecBCO2Jpfc6EozFXY6y2b1JEuL0jDwHB2xlTFGqnlTJLI2VlHiph9ap0N6NVKDNCHiuZCj7BNgSCdNejUSj6M6GaiO9uh4vtyB7nO5Gmm1lUQ1bBIqxelNmiw0AOagLwRjNPrHll7bbSdKvKtsIhrLlr9q7S/O2HzPSm0ZsotdCoWJGkkpiIuu1YXtaxBWsEcxZKYc6CpESwwGGkkIawKfKmmnkquUoggXViwiCSL7IfOyEEQM7owl6rGpMSyqy6/wuWFeLAzBDNN0DDZ81JvDnUEROMSXERtrDQ8UFWJ2w0xdYQSHdhnC/oEyyAc53vq/cg22JjSmAldIU6FOE4MKbA520DOltFJva1xWNf5EE0tkkJASmXKQplniutlJLoiwgPVWoUyO2AtlVCK9Q/xK2/1puoBVLckrpYJqQWXmNrfDItU8vvEIt9eRuOUbDSi3DRBbUv8Y+5SzkH15DENsbfcHB56bo8Xi7LVukaiVSxiXFr1oe2iS1T+ef6NaZHVpo86oSgOSIWKSiFRDCQKJqlBDPyK40O/QNmbaOFyrZYebK5XPKfZb/kIu3jN2q2dtvfQLgqWOTDS0Z7bWgKePL6lI72mpTYtm1brXO7R0aDi+kXr8qveXbg4yRAVl5Z5VN4Bijhxp7FbsVqORujaJ2t+wxLFmX1A+ogMkdAH10cKNDmSZyCjZzRqEIq0jc4LigL+YHdc6BOh64hdT+ySTdZoGieztHML3xbNKWqe0rkwzoXjnDlMmeOYGcfMNGamuZKLLYQlKFqEXDPmyTBZLkdmJGaIGZVCCYXOi9Qso+YGxeLqecHGZSyWbZDVqaEGG7dtkbfshRGd1kxIXRyutS7Rea2rBt8AYiMdp9nBDy7RiN2GWKq79GTG+Ya33/gav/xPf44Pf/w7uPrIhxl2W/phS785Yz4+9XoIa05Uq9Jtd9D15GmyyLVm8jSa7G/YWLHvPNOlnrPdBSV15HJHnkf21094LMrn/uUv8InPfB8vfux1Pv7d38OzJ894dnNLfPwu3/Ew8pnXezo9spfCbd5yCDPv3t+ymW652EbmKtzMlfvDRJ5s7B2PB/7wd3+L7dDz8MVHvPapT9lsTpEY4fbNL3F/84R5znSKyyCcxGu73ngfhAYAnHx4QMSCJLYJtMAL0jKO9pzW1yL4StNqQVRsrhCjNYESZZorcxA2mNwppWhExmsnWhBGi/rr2Ka96yvT0dZWESGhnJ1fkAS6ZJO+lGzBmhjxgru1f02wDIOoknMmDj2SrLGOlmoRxgDaCrs90BRSItRqxKBWtGRCvzHFi/+MCJIMNEzzTJ5GM6noN8RugBCptRBSIKRuibo2PWQ3dLzwkVe5JvKVr36TURNXF+eEvvDuN9/gt/75P+Lrv/mr5JsnDKknpoH7qaK3exJPePv6hsNXnvL6i28zvJ64/sPfY/PiRzj/+CfY1IG33qrcvfmYl156xG43cDYIctnx9FY4HGbKzUjOlasHg0tSAw8fdATZcXOzZ55n9vvRttiLDZs+LIGcs23i4eWOWoTj8cjkXcAlwDZF0ibQRMPrvvnBOhZXt2CEuWghjxP319d0XU/sewuIuYSp2dcv0KO2cdgUAR4WrM2mJRhRrmpNYtv2rjY2i87MKLc31wybgW7o6IYtdarofKBS6BPseu8Z40EjlUouFdXZa0NtvIlWumqR5qKVcthzkMA2dWw2PRph7mxO3o8jtcy2Z/j+d4pF9D2i+bDkMNZCXjiRvahLyU4gTEMFKxZp2Mr/6NJMeyc13b54Na664LNJ1TQ4xloxR23YQ/yjV3UpcSByEiy2Rc6Ab4gE54FBLSOh3oegBvs5dNGwSB99bhvZIOqCRUSwDtrBAH91LFK903doEhdvFitRqNWy5DFFUuqt+aqkBT8tZ7dhEb+OKpExV273M3f7wjhXjr5n3F1fk++PRK1oShSNEDLEESWRq6A50w9CpSeo0m/P6XbniERKDZS5Wj8jCUg0LDNTyLMYPvR+Li22bPXGnumtihSztI3NaUoV9ecYmfBgrropje8Hzyk23uecff9Eo43fVqshJ39w0O8iMrstE3klD38cZn+rN9Dlp6jWZdp2SHWAx9KxO2AaY5PDNQ3g6pFkA7mazRdKkNYOryBaLI3kgNE+mQPJE21VqwUx+zhvNd8Y4gojv8W3CM7FSjPT+mNEA9YCrFZEHwgLMWmTO2CF7VKV1oLTJBB2MU4L0NWdZiqRIpUsQpZmVcdyzvDJLGrgNyzRHrPiy8FlKcGpW5M2eWdrSQKdIF1E+4j2idpHah9R87W1YirXFtrPnNi/iRX8e7rUuvdFJCVCl4hDT9ok4tARu85AiASKRpozRFUryM1Fybkyz040psJxLIx+m4+FPBc0e58LsaiHVkE0uGRsJkkmxUwIGUKhxkr1fiOtnj0s4zhYrYV63ZGvgi0VuRT7LZZxnlJnBYB2vtuI9OdJpQbLlqg0oVXrrNIqgT64Rzo7R+bKZtiR97dwd0spE1/6/d/lcz//j/krf/u/5fLRC3zkE5+kzJnpMBK6xO3jd5iPI/Qdc8kWkS6Z+Xiw5o/i5gdxgJqpeaYIpM2Os9hzPM5Mhz31eOT++hl/+Pu/xy/8vb/L3/4//1945SOv8onv/QyP332bJ298FWrm/t03CeMd9/f33NQzvvDGnjfeDbz6UPnwyw+5K/D1L97yxW9+zcfbkTJPJITf/NV/y4sfeoX/8uoRm7MNF+dn3J+fUfPE3f3eySXY/FaCwSXHQtIUCCi62DEKzU7a0tVVzXyi2Zi3SJSR90ZKrIDcek2pFy1Wklo0rNZKKYVpqhRNpMEkY9Nx9lHXiFDEelkIIZgEa9sF9mOlC0ofhWGzYXf5ANGZ1EfXa2dqnojdzslRJedM6iISOpNGipC63ogQgsREnkak6wliDmCSOkiZeb9ne3nhMiCl9TjQnIm9dQKvvk4GicTYM+ZMzoVBK12wTLvWinQ9XUreg8XJvUf3QkhElOvH7/LVN97mK3/0Jba7LVdXD7l/+pQ/+qV/xnjz2LTSW2GuhZAren8gH97mzXff4be+9ts8ekv4if9hz8NPfYaweRGJHzIHnf6OJ+9ecxjf5SMfeciDizN2XSQ+CDwOwn4/c303URUePujpUqCLwsPLjig7Hj87WE3A7RGtlYeXWzaDRfGjwMVZpOqWJ0+U43hkLsrt/ZEQAleyZTuYYLdFrz9wR7QODSLeG6bY6jkejtzf3HJx9QIx9HRdROuMarbIdLXAIiHZXqytcLr63PF12SVT6uMihOiZIHMkU888TPfK3ZPHvPDSh4ixJwwFOWY0ZJJWpGSkFvCO4aUUplpJogzRpDLTNDN5zZlqMfeqCsd95e4mEeML5gTZzFu0kktx6W1dglLQHIPse3Gyn4vY7hHEm2EKz2GGtqMpTVrVdpnWs6qFTj0TimVZiCwGOIazZGmsa9LypjgI3snAgozWXdw+mHj2o8m5U4iEql4TyaI6iWL7fnPLCuI4JGA9f9wwRjvDIiUJ0R0jl8Lu6KM+sljOq9eqNlepuNRMRgtCxICUQpyT1Zd1VkMSQ8Cq1Fa1S9GyYJGcLfh0OGZubo48fXrPcbJg5/E4cby+pZZi5hU9QEQkE8KE1Mg0FqbbO7qyR15NbC6uKCESNBHVDC1yhqzF3LmiycOIwbIOWSjVyQarQsdaDVjgUu1DG9nQdbwUvJeclcd5kL+YNKtmlNrKV943Fvn2iMbzXGDNbCxEIrB03XQtvWn1bCgVWdOX6+u9hxMFQNqJwWslGiXzCeR+1/b01R42OthoX97qMdTlRo3hmd5SxVNI4jzfo4ilFcv4d6tVKdV+X+uJS/XyPWTRecqSAmxVFO0L1efIxWnk4PSENDJy6i3UHiO+AImyfoYF0raoi0FSIxeQQzDHAIESWozCogyiYoSteYf7+xdgdl4XW2TBP070zERIFtXUxeotue1btAxHWuslNFjxc6sE08hS4N26YFsNh3X2Du4p3fcdadORhs56Y4RIlWDkANwaE5dRuZxN1boMV5sUuVqhVM0F5mLOZlVQieRimZ2ZyCiFJIUUCyllJBVIFU1KTSydwNv1XmI577FsbhGilr1Y0syN2Pkjg0tiLNXq5158YZZKsYoDT+lnbFmwW2v090E9+t0D6t091EzIMylUuhTY76/5lX/xT3np1df4c3/lr/Lowx9hf3fHdDxw9+wZXX/NnCJstuTDAZ1nI2959vGRqHlC5gPj8YDmyR0yDEr1KRI9zZ33dzx742v8i3/w93np1Y/xo3/9Z3j1tde4/exnefbWN3n85Se8cz3zwvmGtIv0JXDcF/KYefHRIzZDJNeO/fEJz57eMBXTzhaPMo618Av/9B8Suo6//F/9LJvzHWfnZ4ABbVE1a1HjEF4TZKOqA48y6lKjs6wo4kTEQYaokWf8Oeorh4EFNecnMW3ujPWRgLqk08GsJK1xlXA8FDYh0Q09TFY7ob5Gi5OWGIQuCL2I201CCj27yw9ZAfZ8jdRK7KxgMknPnCfCMBBi5HC7Z3O2I6RIiOYglGKwSHSw5qChS2iAnI+EuKVmozybhw9ojkEC5jIEJ2Aw0p31HgFN1FIIqQMx44h83FPyaN8lhNabyuNY1TuWm1ZcS+Xm8Q1f+/0/4Lf/1T9nvH6HbZfoQkDnTIoB+p4xjXDYQzdQ+gPKxPTsCW++85j/+R/ccBv+P/yFn77l0evfQ3p5S9x8hKsH59zvlWfPbnjjjaekkNid9fSd8MKFyctubg88uT6Si/DCVUff2fh9cJGYdcezZ/eUmrm7H1HgxYc7+s7Gehfg6jxSy8Djp9YBPJfCzd0eRAkPd5YF+c871f+zHSF4oTdYEAebFzUX9je3dN3A9uIhKSUj5BIcEFtfJQ2J4vNl0aa7hMZZObX65PQQrnj2pGUPzIWqcves0KeBBw8e0KeesN0iY7G6qWrSYw2KOTAY5uhSWGoMai3MJXvU3y1qRNCSub55BggPHjxwiB+oVcnVXISMIK8k4TkswkocWoizmdUs1131udd4LxZp8WPBT4vbbS+un6Wdw2ZboZSybnZV1cgFpyQDs3g/+VwW7BOS9PaGxQKq1Z8D1lA0eGCi1koiksT7WrhbpXTB7GVjWLDIEtRsGZQu2prqNZykuARApQtLfajGhMRk2CQHurmj68wCPAWTd4PhkbVhr6sc/HzlUpmmieP+nrubp+zvRuapUuaKZgug15CYdSZoIEpiDBkh089KDcobQElPeVgT2wcdQ9jQS2/y8mT1bppN6q7Y90wxmCNqwezAayUVw9PB1zeJJj8XsTFfa1k1NGLYRKLdVFr2rBGNjEq1Mfw+5+z7JhohRGN/p8RgQdwnnLhRZd+kotdOaPDi8EYWGsmQ9zxPbEArzcIWmj5QfOM9TZC0jTVKJVbxZnpNs+hpH62LB7AV13jEuZ158CY56t7qXlReofr6UJYFBhaob5h9iR62aEJLSTf9dThhvaeHLCdRFs52Up5DgxVLkVZjIv44WtxcQNXqAwowo8xU5mpN2YsGmt0dHi2tbsurXn9Qm54aaTkfmquDumSiWQJKCIsTEzF6AVe7ydKMTFou0qMHS5G2W91KgtDZoK/JdIuhC6Rk3vqpjxb9TN4500kr4JEIFm2WLRbqhdcVDcbCqxZLM5faus9YpCQKmcgcC1OsdKky5kIqpu+XUlAtPqksu1AlEqWa8YBfj3bOWsGqNPLWKtFd5Wq6TCdexsPNXS2IXSMweqHFxmgtFoFrUVZaCda6HXwQj+H8nMmj0YNecKaFcLjn2c0N7771TT73L36Bj37qe3jp9de4evkl8jxSNHM8PGAu2Zzogq0IMXV0Z+eEfqAc9pSSqfNEnidiMP2qdAlR6Ictm3nmeNwzHo0USD/wc//L/8Sw2fIDP/WTvPqJT7E9/yV+72vvojeFv/lTn+SFi4HtzT0/+kM78pTZ9bDf3/PVJzd84+0bDuPoGumyzO/jNPPOO+/wi//k51Ct/MW//tMMmw1CRWfrLVHUrQbdPQdvYmVzzOaaQSlZ/rP8cF2AgahFzjrXkrfkbxSTBzT9cIyBPkYnI/aYELA+NimZJTxWT2SFth2LGxoLtjLAbvzBLBIF9kUZq3W8L9NMjErn0kbF3qgPwpB65nnibLuh6xIxVoQEyRbZ2PXrGu8NS1JM1FI5znuGTUd/dkaMJn0KElAtxNRZPZcIpc5uGW3a6MiG0CceXl0Q7u4Ydh1nZ4ODPPG1jaXuTcQ6qQeJZhF5tuWFV17hY5/6NO/8UaXcPSFPR5+bps+u4xGVCJLoiMRh4Pxiw6c++R3s93v+8a/c85W3f4nv+1G4+njH1YdueP17vodXP/yAlAJ39yNvPt7zIRHOtok+CY8uAjX33N4dubnbI7rh0dXA0Nsa+/BCQHfc3BzI2WRU1zHw6GprFp5Yn5SHFz25VJ4+u6dkk+3c3Y/0fUefBlKTIH/AjtgIhAcjrY7fa/TmzP3tHd1wRtdvicnktjlbFlTrGgY0yZCfBBHrwRHKIrVuwL0FsqxGwSZDVZPgigrPHr9Lh3BxccEwDMzpjvF2ZhQYLgaiJCgT222lq9bgL5fCMWeOU2HOHvgUz16qR5GnzM2za8iVs/MHgGUxa2mEB8dKjhtkhWRKyxZAKwlflB6s9aZLcEza79tjWZqEtmxpEFmk4KfkZCENWk1WUzHpJOaGNVOtzlBNUbBgHQUR+31tbloNk7jBTrtG4pb6FZAYrTZHxGz4vXBfYlpwyKndrYjhH6I5RalFTE0W1WpM3VFKggVCDYuYMQ1Z6LPZx6YukXojINUbCLagZ8MiNRgWMYwjxCHSb3qO+4lmS+wd9ahArkIgEuJMiIkYOuIm0HcdU+h492ZmDDdc0rHVjl2F3fkFoU/oHJhLJc9KPGlqkQJLYLZmw7HNMl1DIHZCzYE6G4gumKxc/N9mOFKbUt6MS0znZvWQtZoj5/ucs++baDRG6ASTNrZY/tlGni6Ay4qGWgzOogKiDZCzPr69QosguCygiizSFHPhMdheRHyRtMFUNPhJBAiL1MkKCh1f1jX+X1U9YvjcemITsUW2KvYZqkU3agtrN20keKGYMeMKHkmw92wFVaeMb/nKJ/cBS1W1GEJTVLa/hmVpsMIocTrS4hLNgaZQqRqcaJijwyS2KNVoMqjo9STaVhKHrSvJWUlI8GtWW+8IjzwENf/9qGY6lzRZdEEjSQPJ5V/Bv71qew/PbMWwdPluE5Fkk1oaqUjROlc6+TDnhxMZHmC9A4SmuooJQoKQ1KrIQrGQS5PLabUZlF1nWCtZCjFVpq6SqjlRRTVZnYg93yQjxUCYVCLmP95Im2lQrVt6rZFarFo3aKH1/l5Ep6LmW90KV0KghkgOwSM/4m4Pdb21Mctqbft+nR7+LB7T4WiF0POEVGV3dknNmS5G9uORL//+7/Drv/jz/Bc/+7d44eVXiDGRp4lpfyRPI+PxwFwyUJkRk990HWGOhBxNLrU7p1QlH++R22vSsCEJDF1iPphEJlcllMpbb77BP/25/ze7Rw/ZPrzija99hbffueHu6chnPnnHpz4eoc48erjhm2/d8pXHI28/OfDbX77mG0+Oprlm9XaxJUwZx4mnT57yb3/xnyFReO3jrzOPB0IKaG4iBzuSCLPIomUOsq4Pra7Kf1iBhAdQqm/UUZQmymsPb9HRFMLinlbVCi2t+6uXAVYDEWkhFhYcWaO3trYHcWe6WOiTfc6DwqQFqvUvoWbQSJDeiPU8k9XS7RKwQE6t5sCTLIgRu0RRNT9/zcv7FTFXHxEhdj11zk40gkWLY0dM/eIEF2JHiLZKzqM5k734whV/7ad/nPnmhtc+9lFeeu1F0pAWD331WpSAfZZSCyF0dEPP5eXAh18N1OPEeP2EZ/snhGqAdlZMUz1nRCZU9pTY0YfA9uKc3UuPeDF1tqqfbXgaPsJ8Leznt3jw4ku88vprvPzSAyQeGMfCk+sRgLNdR58CVw86Sqnc3x+5uTsSAjy66ulSpI/Cw4seFG5uKiXP3N4e6FPk4qK3olgNdEm4ejCQs3Jzs6fWzJQLd3cHzoZI3H0wDW4bQEUbYUyUkg3oqjIfDhxub4lXHV3qjFhqs6R3iaI2g3nfdVvAswFxN/2wWojZotwNjHtmolYzha3jyJNnT4hRGGLHNI5MeaYodKM1gS1aqSEwlcI8V6Zc2E+Zw1TIGEBvgg/fOQ3Sl4mbfE3JlZQ6Si5LHZ84FgHDIurxLU/K0OBUhEWOeVrobU9kITdBcCKhLpNasUgLd/ppX0RDCxZZTp274lX1vcqwyOx7mEY9+Xx2jltNmUFHXQKu9QQ7ojgWXLGIqNtzq2UzDZME4oJRHLPgZIO4BP8I1rCu4Q+aY2Vq2ZC4qDC6lHjQXRDEJKKp7w10NNMMWQG5LCpwIXZC7IVuSPSb3vqAOSFTD3rauavMUgjRjGhib53N+74nbbbU3Za533AIEbRQy4Tmmc0Q0RQsO1cqkln6nqlGC05KAi1GOEpwshkhKCFVNLXO4GKycr/gLeCsqEncpeFD33eK9bfL4bnR9Cce75totMHRUumGn8QzC2rMv3Fk35xMTbWq2FpTOzzNQ3su6yBd7gm0LsGKzYLg7DiKkNSYb1twqoalqEWdZDSy0WQ1Sj2pt2AlGrj7glZ3X2qbrDflwjfHtumqZx2UBfypR8eahVzD8qtl3Eo6HDKfUCyfaDyfijKpzJLPQU/+vnoZn+ggMSu0goHRrM39yDI1QWWNHCzLBC5BUidOjTA2muTEQdeblEiokVDcmaEEYhVi9b9buAHV4DfP8rikrkqra2jh19Zx03olmNl7XLJgrqdjje5qqyddupknL04Pyd0nvHhHg8nl1hXNolJm8anMtXpzxya/s+Jci3pWklRmsYhTYXXoWNKQKs9916rROrfWaFNVWrTKHSm8KsfkbiYHKxLITjTqclHsGqg7UJnbFMx8sInG+OyZEYOSkVrpd1u2Zxdsj0em45Hbp+/wy//sH3B+dcmP/c3/DReXVzx8+UM8fect7p49oeZ7b0RnW7GI7awaOkLKzPvRxg8BUk+ZD0gthFLpYrRo+kFMu//sKWnY8gef/21+7n/5f/DiR1/jS//+33NzOPC4jPy//vnv870fveDhZeLtm4nf/9oN1/eFwzRzc8xMZY0mLto6MWlBLoX94chbb77Fv/35f8onP/0pNsMZH/nUp3j69a9xfPrMghdeH2VriddkaV0i7q3QEm3OUY0gmEXtsDkj5sLSqiZYOtzqsUzbHaMnxcUyhrXkRXsdRCilkmslsto3t5rS4gPS69UtYBEiMdhm2JpyJInEaBaqWSuhzGhV9ocDqU/kYtmHUooVlmOBhpisB8Z0mNjuNos8IhfLEEkI9H1vfVQkWeQ5RAsGBHOgw4NO6ucrJIVc0DLy8OqcD/3o97MddgxnD+gvLt315hRcAsGsJUuFDiV1A2cXAw9y4v6lW7YPHvFMBCpkJ4o6z+40Z009ZT6S6o7UdWwuX2B3dklKibPdljCcU0pl3B95/PY7vPTqR9gNiZde2PH0euIwzjy7nZAgnG07dkNEHm6RINzeHLm+m0idcHVhxLFLwoOLjmkeuL0rjHPmybN7QlTOzzduDCBs+8DV5cA8Fw4Hk+ocDjNPrw+kFNhuPnhCzJKz7RttoRTL+5s8ulDyzN3NM0JMnF2+gEgkBMhiBuO1NotoFixir9ZqNvT5N2zkGAF7BVQrs1ZCrtabZn9PADZdz2G/t89YYbzZ03cWEBuLmZTMuVA0k73h53uxSMCMX4IrFgqVPF87wIXQdZRpsr29yRzUQH3184GudQ/NM6JhjucgF0qU4DjCSEELVLSRYYHYVkpuTkxZT52kWPBQc7lrdgMNi5QTLGJrnsugo38SvxY43rMGxYaialVCtL2wdQc3U5sANRDU8AgZq7NQIWn0YEmT85u/p58VV2i4S2qLNEdp+nA3prC/xZgYUkcXzaAmxEjhxI3Loaw93etUvBg9dcmc9IZk0q4Fi7TeLV64XQtzLUgtZukrQh8jqevQvqf2HTUI2R8b8owMG8vARDtHFDNLCiIE/86GZ8piYlTV3Les7sIzPCFSxBVHdR0fbcRbY2Y/Z7gDZlVKqe4y+6cf75toaLWG9afZjIXtCjZTQgOqPvSkUrQNb20pjmWIr1i2vdiCsE7uPTVXm6NPsGJIEVqnlYr7LVerZbBNu0mm1jShyYNkYdCKOwFhLDuqEIudbLyYScWJycK0lJO5bbcmn+IEp7dIA4vJ7hL1bJP+lIS0gMBpZLQtBO05Hss/WRQbgTlh/sjy/yZFaDUvwcF0UHHbOCVhACNKef5VFimQRVSlmgSu3Sgmn1rIR8sqaaB5gRlI9jiryBI5Ci4bap2Na3DP6tgRvTu5eEdQES/QZy2G7VxCVwKMEYYoXjBpXcmjF0eJF5ybkb/fmrFABa3WuVhqJWq1jps+DjqFHjmRRa2Zn8bD/Nc0zqwra6PVwbTPrh6FwUVQ6lfAzklgsew9uWkjIRqeIxqrWcAH8JhGZq1eT2Uymc32ggePlCnP3D57xjtvfJVf+od/n49/16f5+Ge/n4cf+hAvPH2NeZyZp4nj3a2N++TjZzow398b8Jxn8jybqUDqQCslZ4Ikun5H6iZCuEdUmUbruDyXzG/8yr8mfi7x5O03GfNInjO//8Y1X33nlr4L7OfKOK9rCWL1ClV0ceMAFpCiqsx5ptaOZ48f86U/Ej768Y9z+aGPcLx+xvHZ9RIosA3aZrfSnMYgEhzU6Mn4WmIgXphkuc0YT1cFO2z+Q1tdtBUlxOTARk8eY1G/GKM/JKFaSV3P8X5vn9TBVghiDf2ExRxBzUubmBKxT+TpyP31HXOF836H1oJIR0oDpWTiYLVY1Z1lQpfM9CEm1x83Qw8LSgRlkWq29aEBIiMguBuPrechRjp6+hQZNlu6fiD1ve1jJ5kbwNBYCF7ACV3OhG1Hv9nS9zOb7Y40bNkfJnTOTLMZSCadlkCPihBSRz9PlDlTZ6sPs/oAyNNsy5Ao+9tb5mmm6zp2fYAHA9NTNYeau8msdPvEdhCuHvQcRtN6P7sZ6fvI+dbW9b4LXD7YMOfKfr83snJj0qhhcHsRgd0mcHW1BYX98Uipyu3dRIyBV1/54GU1tNm7ygpHrO7GO4OXQj5O3D19Rt/vGLYXaLCMV1GsQNwDnu0VzF68OBYx2YhthNLeFBZQ5RJsSwe6RKVSc6VD0Lkg2faYQy7IBJVK9oyL2Z+ySrjwgnRtXbhsD9LSgouBkidiLWacEDpU8rrunGARgkmDpdVqOK5qAZGGRQw3NKzi2GMNaDeEBjSCcpLlFDvfdXmcLNtq8L2rYEFFQYlEstYFi7AgBLAaW112xID17bEAsjkdBYRmK2+1pUYwBCMZUo1MWFWwWeA3XUWQEyyiZrrDicFNcGmclQYY8VBPS8RgQDyG5E0E0/J6wWWpSby3RIA5Wv1aDJYdTjERk/UDik2q5SS1Up474aUIlGS27N7Ta1IlKXQ+VkxiZsGeUgulqjUcDYokz5oViIsrqnjPkAjiupniUEgNNVYJixwkMy1GX6HVn/ockBisYa5GSnUsUtUyM+/jeP/SqeaUcsIbjEywZJCsqOKEbLSIVxva6pIR8SF6QlrcT/ZkeDfoffKzgjktCFnWThNVA0Grp8p846Ol4Oxl2r+L3xqvCU2ArP75/UK0Xxne1uZ8aIDTEWcjFYtoSywivhjC6RqPb8cpqWg/twkrJ78HlmZ+ayzF34e1kK9Z4janiJV4WOTBWLtHO8X+FjytmNRsKTuKS58qSQOdrulW2mc6Ab8qnm3wDIW0m/tOt2Y4jfLoEnEKC45WzzMWkjfHSe4UkwihI8VEiK15n9ljtleMUU3fGIUhQZ+gT5W+r/R9oet6ui6T+kzsApIC4sXdzQXKvphV7mSxYtmxSUOwZkudBnqiaa9pHt6yXKjW7Ega+gssg0K8cG41CFiJYlzIhlCcTEhzaxMv+iNSCBQiM8KEMPLBz2jI0NGlwUwAKpZnFhiGHRdXLzBNM4f7Pd/48hf5x//P/4m//cL/lQevvMgrr3+M4+HA9bPHdIc9WqpJQQ575ptrdDwSthdI36NzRkKizBMlj4Ai2w3d9oKuTKSbp2xSpBZlLDN6sMmec+Y4ji6VFHKF21JhXH3rJZjphI1r34LFqpr+2LFkVyv3+z1vv/kmDy62jPPaCaXFZ/zlMemnRYxarFWrml+5mtzTirkNHJU8u678JFChNv5icD13NVKvoaLZCJotRBapFTFHKkS894s5UqVo2mhECDGh2dxzRI3YOCdx97eZWorLY604+/zqAbVUa7gaEyqY9KdPBC/KbBHKbugc8EcDWjGxZBxa3VdKxH5nWQ9fSWsVNM+23ojYpp76pVhWykyZLdLI5tx7rGTMIrI6AEhUhLnMTLMS5mpZSgwsJHew0hCtP89s17rUSq4QijKrUCWRhj39ZsPx/pYYBB0GOqlInakxol0izzNNoioibHrl/Kzn+nZkfyz0XbEi/SBs+8iD854nTzOHY+Hx0wND2tF3Zlx6thGm84FxHJnzzHEs3N2NpLQlueQhiXBxFsnzQKkm65ty5dnNkVdfefCfcHb/r3NYsFtOZAFrCE5CpCGy+XDk5t3HPHy5J3YDXUzmtCbzujd5pNcIqHcSb7BDMLzhs1XEg2OVRWJdVcgesES8BqFUgzi1Uf+TuktZMYCtGv53ZdlHgnpNaMHkQg686wxVJ4IEalH7m79PU1L4J/VAplpEGwPtsD5mQVsNCMkaLF3wiD+3ScG11YNoM6nAJet2wswJtMndg/drsb0ueHrF6ioci/g62mROgUrS4j9X66cRIoFo64440goWSCREwyLRSUNbM9z1NHggU5wYWcF/QCR5zYd6wqPhyGj7sGMRIxbRnLBapiJaFrXlM4IoxIBqx6RCCkoKHTHhjYyVLs0k7w8kKaAxm0FAOFH+aEZrRrQQqzkDpmLNhFNVumK3VJQQ7dq3IIw0a16/djXbtY5+Xa0XWLBa3ZoppdJ5kKmRMQlrZqMF421+NBro5ztEMpGpZmtuXBow/g8f778YvA3MukJ/fIxaF5gG3k7IRmgg3hZuYhvFDfX64xpQa2kle6H1NRvJgIb8zQ2K4G+hHln3XZiw2LVWf5+mQWu3NqlaVH9ZGKog3haxyaHqScjglPr4p3yuHiMJJHXyIeKyoTWK0NavdnsvnYJ1op+e4ufjCyu98RLpE/Iirq/0iHGbYDQuJVZw1cyzvfAKf0Xx5wW3jiOwFFmXCOLN+Kygyq6pLrojuzWN4nLzz9CAuiwg3ezkWpPHINE7u4YlAiDRySm2CIjaOpKAqIVYA7ELpE5IA8SNkrZKGitxrsSxEmb3jG5jLGPjbenYbdmyjDBreP5WLaPQuqabjtZWZfFxbil7666qFcRdM7Rl66QFTXUhKBKEGqwwK4i5XTRvd5VAFZvQM4EZy2hY0z7l/U3tP5uHpsSwO7N/VyUEA7tpDpxtz5ivHlFzYZoO/Lt/8y+4ePEl/uZ/9z/w8KWXuLt5yvW77zCPE3WaORz2VoM0TEzTSDnsCV1Ccjaqny2ynEumEijTjE4jm36gSwk9jkzHGc2ZOglzKe4X7ht9+8z+v+AT1ZawtiatmcP3Si6CGAi1vUiYppHbZyN5nigxQG52ERaZqrW9n13judYlayB4HIcWn2xz1rMdvl7VFtwIuINe8EhjJbinPWpa3pgSuRbQalkCl02JAqWYM1Sw9SY7sBEHCkoxIN3SCqUwzyNVZmoODENH6BLzODHvD2gX2JxvjbA3IBLEABtWsL6EJiQYaUmWuUhdT+g60mZLiK2zd7Y1JQbm/RFELGOB7Td1PiL5gPYJwsbWm5KpRYnDBgnmdIMqIfbkKkz5YLLObmNzrlRrBolwdnHO5uIB0zwyHyeLiCvWZbcKfZjReCTu7+31U4Jg8t+IQJnN+e/8DOnMgz+XShdtbFzsAocxMh4qN3czQx842yVSEC7PEuNh4PZ+z/1+4vq248WrZL0BCJxtI7ebnnxXOI4jz66h7yMX5wMtp9qLsN0lDmPHPM/MRTmO83/i2f2/zmGN1Sx8p6cbZTUcEEOgZEVzZX9zQww9ly++TIyJFCKFppUXr720p6tWT1zoCdCxnVNRDxxAyzyoE5FSDYwHgcnKNzxYuQaZ7LOuWKR6tv8Ui7TsQ4vTqoo1wKvVATKUbAJpigVcT9ccwyCNQhkWidUDndLm6ml12CmaWNeV5RFKM/hcDvuLdbJuWfi2GgUPJ7bXNVt/3/9PUI/6uWiSam2R0Nok+q3I3xQK4gEdEZDO5FYahepS6VbY3fCHuHJWg3oLn7B09A6ulAienWpB1CWGLo1A2H0MqyVscEIjDrotuKrOedXk0gliB7FGs8UdhDhkwqaj2/bEbYdkby6Lk0lnigGTsM5amasyFsUNMI1oZCUlXbMNJykpCUpINgdqBS0VdQm41WOINcLOhpdVbW9B7LuRAjkaFimYhNRMCcyKxoKehlla076ilffJM76NjMYyGFd5z/OEQ9b799rYLumB6qhcTl7QZ1UjGY2an47ub/E+dn69gZ66js/1eOK1Cu311COBVSEvz1liDIuNq1R8Yren6vJeii4/+1v739bi9oY9lkIqbTDAPtN7yQS8J0F08u/T/E6kGd6uQqrg770Kc+zvreVQilB9wpWT92o2uVrNccH5lVvg4o4JOJK3ySvNZ9qb8ElSSNV/Fr9V99nXpSAqRiGKDd4oQmpZKEMTBrSd0GhQQqwEt1Qjqn2O6Av64mbmWkIFrcFuRaCHsKmkyW7dXOjnQposCpCrZ4RCtbRADY0RWQRXbDJVsT6kK5NfF8QWWTVNvW1GrVAKWHWjyU9i8Q0iRCsolybnCtTQskCN1Hm0zHyBTTZFJPskb9fpeSj7wTvKOHGcr4kpUmtleHBhURGBLibOdzvyxRk3z2bmPPGr//wf88JLr/AjP/0zvPzq6+TZets+fecdxjwiB9Pqx+0l+faaoiOp682tKheqJFQzqWUfxqOtB0AXlSFaI6yazV6uFiv2hefnJLLOPvX1rK0OVdfVthEOEaxmIZiTWMllqY1QFTKJqRYiJgWMTXvgUfx1zVKSNHDlKkD19wlYM0uLjCyfQbEUu4gN73ZE8F4S1gBRWrTrVGKA6fitz0Yh52p6aooDJbyPUSA5YUYM2JVcoK8QE1O2XgJaIXQ9UQJlP5oV8bDxyKdScyElb9YVkxuAVGIKdMPGrRitMHo+3gOB2G8QhHyciF1H6tISjNFamfZHpM70m4HYDbYCOwnTgK09tVJrJaYODWbmMBc7/2mzoQ47xF1hQko8fOUVhotL5PaamSNzzWgtBIEOgdmabfXHA4f7O3fzg2ZdWHPPph/YhAu67RlBItNUIRkpGFLgwa7j8WFimjJ398J2iFZg3AkPHnQcx8g4F57dHjnbJXYbazbYd4HL8y3TcbLeQXPm9n5ms+no0lrEu+mF3RCZjxbZn+cPqAhTq2UtHOSaVbHPRhHruRCse7IW4f7mhpQGdpcP6WKH9gqTZaQsw11YIlhqZcvGuesSxadFnkU8+2EyXJHq+oImoVyzDE3qsUAZxyLW6wqTuiy9MKzm4Y9hkYarLG1or+mWpNRWO2rXN+oJFmHFIvjnt/ltipJ68hgDk7qQhOfWvfYYv3kHkkXSiUTHIB6gbFhEbd2wRIYSPUDR7GoXyuEuU5X2lXSRRRexPkKxBeGWpmNqFvoBs18N1aQ93pivNQYLjk1ishqDgFhvNipR4nPkSoIFT1u9KmR//c4ZGxDx/h9tzzfXyBpdUVIrNVbofH2slThDHGe640B/cUa6uyO0gv4l6OkSYE/1FFXmonQV5mJZ6bIYE7lSwjOeTreRUA17qSxBEIoFfCGaIqmL1BwhF0ptzr9NQhZIKZKjWIG3iGErwoJFilhgtLWb0GUE/enHt5XROB18zxMZ8Ue0ELj/3KLmHilbIHRrduHsdSEZ4YRkPKfb8ecqy2u14skWSbbohIHodiKkFThXRcWa3BR0AQosP7Mg7lYMU5f3cB0164JTG5jg5ONWjyaoLPNhZVNtajWasNZnnBK4bzWxnzsFJ399Lspwcr6skDl4J8wmb1qv4UpY3BVCTW/X4ZM7CsUzEuIe1c3ONnjNg43Ndr0qLplcfP9DsOhq86uPEpr4iGabWR2kaBB3ezBsXkNFo9nTmsazYvrClZdWXVk1IVjHzj7RlY5+VxhyYZMrm1LZFCVXS3EjgRKLEZgSgQ5Sh8YODX4vHYTOGoo5s5Llu+C3ZgbgKXMfm1LFyJnXsKg/Yfmebk2hTgKL31e3/V3sf4MTntAiRrZBtLjQB/kIrQANsMhzRkuhThOlzgwpcXH5iGmaybc33N1c86//0d8nxcAP/pW/wisfex2A1HUmGzocmPM9sRsoQw+qDA8eoftr6uGIzhMhBKbxYOAyF5PaoHQhskuVQ1amYpt+0cqp7HSZh3IijvK1Qz33qEtRJsu9iBUC4tG8GKwuSmtZDCoyVmzdPPqrtFdskkh7LcMSaySySTSTr0NLdx8Rz160ZVcWIKLBDRg8dNf+FgmkobMC++RG3Nneq5SKSDTZUW2Wkkqt2UZkw0BV0VIQNe/4Wm3TFVFS19MNAzEG5mmyz58KISZzG0s2HprcodVtxZRsnGjxzEXn0oLsMVfLdtaaXeLV5miiqhJTQNKGkidUMzkkYrK1q8yZEkyeJSFSFeZcrLeJZvrzHecfegW5r1SPZG4uz/nal/+Ix4+fUbhjrLafCNbUlFkIIXM4HpF0z1wLNc9QCpILbDb0KdJtBobdOYpliaYpc5VM5rEbhLshcj9n9vuZ41nP2c7W3d0mMmw6pilzHDPXtxObviNGI1Fnu8ThbEvOStbC3X7m7CxzcWbPB+iDsNskjmNvzlnzB1OE2Wr+APiWc68ZE1QrgM3K3bMbILF78IAu9QDM82TgUNxGPKrDFzHXw+X1DRRUaxwB0kD2CurBGrZRgwcyxSVNLWzsDAIDmH8SFkknkcZWU9CgkynTW6AU7++FZ8080+rPX7GInmCRtosasXDOvUDGpY8CfwJ8NF5AYZV1F62+p9sDNJzAdzHCJj5GaUHG9gaOWxSrkS26mtjU4L03Ap61iATzsbWsgmCZJ1GXBvmXD9XXOl1gqNLWhrg459kYsiyROX6FEyzS9mGsj5a4Q5mW9kaImlxVlwbCJhEP0YrAuxTZRmFLYOcW4DPC4Xhkzt5kWDI1gFRPw7gUrDqoL9UbH7oCpSm+Q7RaOquHsX0oBDUMmpRQjOxWD64GaTjLMjsqLZtm66HX1Bve8z4kGloJidetuAzfSJnX5ta6EPw/7fi2iMbzQxUWl4YTonHiy+MD6nTXbqHfdZCdWC2c/H55wslzT/7hBKW6NFrVcwieZpR6IiWSugxIpZjkgQYQW6qxvaZF+vWEaLR5XziRrOi66VfRE4WXvauxeAcLvko00HD6Vb/VV36PeOz503Xy37LWNh7nbMfqJSrRgT9iXR4Rc+1KqisRat9RTyIKsDTKib55i8iSFrVG3+bI1C6LXYZAlvbaXhy2AO1ICMnlQWYbJxHboCNUl2IZsG65Gl8Aa33u/KoqpQRyMbvCFj1OUej7yCYnznYdU6nMtTKXVqgbkDAzp0KOGLPXDuIA3YB0AyENxK4n9YMBpNTTpY7YRbpO6JLQWQNeFteS4oPEszIS1aR3nm5t8ikJJhMiqEvNFE2VmhTt1Cq+OszL+6TpIdGkfOv1f78xhD+jR5kh9UjXG9HwAmMVIGc0RoZhy9nZJeM4Mk2Ft9/4Ov/6n/z/2F1e8r0//hO8+MpHmMcDh7tb30QD4/HAdAjUbFaRcXtBqYFYC/NhskZDapKc6sXiIoEOIUslt4Xaz/GaUVx3RsMWwnPT/U+4Gl2XuLi4QEtexrHOI0Ur85RtnWrSI4uTLGuMlTHqsna2uWmHjYQgRgTKnM2kTWzTQNVdlTxbob76VOvGW6neuyMs60eQ4I4w1Qq9u0SXEvM8W31FcMLvi2qIgSBlseG1ra6aZ72fktAkDx5okhCJfY9gQF+BGCKllIVcmIOYfQZKIeeDbYx9JoTWZyNQp9FsaLvO6ruqy7ySd8fuOqKlalzmJv69vSZF81IDpkCdZ+bDBGVGpNINOy7OL9ieBR5dnnE4zkylkPrEO2+/ydtvvkFxeZ1KRXMxLXcqTPMROUAtM7FkehEGEWLN6NU5Zw8f0W0vLAMfAneHyjYr2x66KOy2HcdjYc5GFnbbSJBIF+HivGO/H8mz/e3iPHO+taxGF4WLi4Hb+4k8GYnY34/2/JCWPaTvhb6LHMNKQD5oR3C9/mqg0HZY75eASV9CNKmgAnmeuL9+RoiR7fk5KfXLuF1k01LaFu63CGpmIWZz6x9A28Zpc1feg0UayGtZh+Zq9TwWaaXg6zwPjbQ00KHBekb45G/R6oK5VbXgw7IN+UapsBg9tAyDyQRZzlTFg50NvILzgLbireuc/2m5b3vRsiNZvM/+vgQZ1SVT1kW6ZRDMCObkPMo6Bi1mt2IRyy5YV/G4rCNGEiwm3dBmMwcwwF8wyVCBxeynyZXfazBjQVTDPCGCpmCZjRjQGE/qYm0NDx749M2AWl0lU/C9TEkR+tixjYEH6jWqKRH7AUTIuZirnlgzx1oiQmfBlNih0aUjixrCg7ViMvF+SN480M5fdluxJucNSUwi5UZG0QNLGkCTBTelETyx1IZ6DWsYgBEL/HrOoEnoCYZFmiOisEL6P+34tqRT4T3/Xie4+8hL23QMmq+POoHVcvJjQ+SNWjf0u9x4Hu17lMAquiu4N7BxFZvUovU5cGAnv9mVtsLNulwUgbUBGyuZUpXnPolp1Kp/f13AyClBaB83qKUY9T1U7JRQnJ6dduhz9yeAZpn666u001GCLzDiUgtRA+ti59TmpwGFgJAIJNS99C0zIagNeLE0ZBU3zG09KGjlQEqsStTqPtZ2dto5qmKpUbusViyqbl9rOspgm3sMi2919GuvmNxINVIstXFSbF+Xhb1qoZRAKeLdLwXUUqxdhKEXtjkylUguiVz6pZAspMDYFeZOyVOkaIeG3sjFpqfb9HS7nrRNpG1H3CS7DZEwWJObEP18K2jxDcbJaxD1BbbpWzyt6wSDqEisJpz1hj50isyKdBB6kF7QTqATJx2CFL8hJ+Pjg3nEYWfAL2fSsCFud5RphigksQhMnmeGvudss6GWA9M88c2vfoF/84//vzx48UW+87OfRfWjHG/uKHMm58z85DF0PXl/zc3bb9h6UhRRa3xYc7aIWSlQC7EE6BMVpQtYAXFQ7qe5xTGWOQYsJ/1PiuC0Oig8mt6laK5DxQp7S86oWjZjzkpxR7KK0krDiwNpcGkgYmYVNLAi7ldhm+hYgVJJTvyjO/xptves1dy9Oi/CVLHsXheCyxGwDJta0agWi3NaoyqLmrXMbewiXQhMpdKFRBoVZKbN/1pnC/gI9nreWVec7aiaLa5ZEXsAw0EYiH+eplc32UUp5qwz3VVEDqTthtTPKPY6krCsQZ4J0eo3mpzJXGOCS9kyVYV5mqhhot+cmUMRAS3KeNwz7W+RokjXsx8r3WjNBftdz8Wupypc/Nif4/E7/w1f+8IXuf3C76O11fspQTJhDpRarOnhttKnyDyPjNORfojsrh7wwqsfI/Zn1Kp0ve0rx6mw7S1Cud0kuiFxyDP7w8Rx6tltjDiebxLXQ+I2z4xT5ub2yG5o3xM2faDvE/M8UWvl/jDyYBws+ontBSlAlwIpRFJ439v/n6nDwKbvtWIZYFUs6lpXCB890FM88jpPB+5vnhC7yHB2BrFHRZnzhHX6VqwvUvEiV1vDVy7gZONEXm2bsAcua7QgZYFaDItYEGVFSrT5tGCRVZItImtQrZF4z14gsmQ0vB3UgkKeD4y0IKjti/IcFllRRcM69v62b8dGdNojpNVrtNJn/xb+eZqL5LJOismdRNQj4I6QXAsm4gY1tKDIwn1cKlaXc1uLYRIthkuC28QHrLDc7Pp5Dxbxr+2fp3pA0GzpvXWBBzqbXKiZkTQlSA3Rv6P3x/LeG6U6TK0WDgqY653Jmazeqs52LRvWjAk2QyBr8rVRSXJFyZmcZ+7CPSEpeY5UzPkp9MmDJta0OPR2L31A+mA45Wxjv0tO7LLVS7Rr0AyaVJRai9cPGRaJLgHT2LLrhRhcR5WsziOYqIOaIM+O4aIFPqWuZEOWCPeffrz/Php+3/gBy6A2YG/uhtUj0q1/gguFNZyMYI9yebT2ufA+nDxO1t3+tGCh/Wyo2s2qHIS1v4vnWGSJc9i/PZqwwHUfkSKsden+dwtWyFJ3oaJm2aa2jC32zx6CUFmLugrqTjKNgj1fgHWqt29kRU5+fu/vloWDJZ+xUjhZhBOe6vJnaCM4AXE3hYi7TCl0VemkGaxaFF58Mtdlanqxll9tIxrNt9reUIu6awe05tvRO7FnguszdQXWrc7D9B+u82jNdKI3vfNsjMcdGpGs1bSKpVgR0lxhrsEXf2um1wdl0ytzEUqJ1JJMkxmElALHrjB1yjxH5mpEQ1JPv+0YzhPdeaQ7i8SzQNpF0iaQNpE4RFIKJB8XjfjYZZaTmh8jGRKMUEhda05wDamcFK2FKKgX2Fsmw4rWYrLoRZwDJQdiDQ5OP9hH2p6h09EkCyWYXpRKHY9WND301FLou47NpmeulXyfmaaJL3z+d/jFv/t3ubh8yIuvf5iXX/8o9/f3VIVxv2cfOjaXl+T9PeNxj9VcTJbFyN7N1KVEaEVysaZvWsgG40nBFtFsIc7lc7+XXzxXhCkncyQENsOWvoscDkdabrVGD3BYDNV7+aw9foJYQal4OnvtCu7uMeCAwkbZTFjiM4XAVMXms3/kUiwzkGLwqJaDsWrklVApSzYuLbaUtVZyzuARyRgTpWYqlRQjm25DOU40SdhpfLPkDJh8YAmyeIZFXPqgs3XvbpIUESvepWYjB2LfVEOg23aUPCH+uNQn6yUgA7XMhNiZNaN3BxdMsqUtrqnJmltJQHNGymw9XCSBJHINaJ2YDndM+6fkuTKHDXdf/wZPxsCrH/84u81AH02FP+x2fO8P/TCf/v4/x1vf/DL7w+RFu8pcKnNpUrpMSjM7DMDNEtlePuC7fvBHuHzpNSeTmLNUrBwn6/cUBYYusO07jvuRccrc3U9sBivU75KwGXru9iNVlcNxZs6V0BuhijFwftZzPBzJZWaclJu7idr1nHe2hoZgtrh9n5jzB5NoaAgm9fO5ZXu0evbCJK61NeSLhlyMbBTGwz13TyOxS6RtT+p7k+s6uKUUW5NrNamM+lxvModTLAJL6N1s4G1+hfZ57NP6fu3BKE5kxw38hyVWBeJBugaeq/1SsaeoqxSsO/caxMSBNbhMeD1btq6+B4s0rAEr5jjFHbB+h2Y20yDW8ihxwA+omqzaUSDLJ/PIt7g+PWAmCZZ7iEtWOFW1+rNSLShZLfBRpXifj4L1vig09X2saiTD62EaFkFdNqSNcFgWKEggBQygp2CBvLhKtwkm8TbcF8g1GBbxsxDat2oBXSqlmIRtzpk51+V9S1EUC+gMCeomUKs18H0pX3G8vwPNjKmS50hWQ/ixS3SD4Y64FdI2IFshbCPdLnH28IL+bENMgZQsS5NRqvWwXbBhDXb9qnr2zCXvrdbW5ONOZA2CLVgkdVYYTqufFcBlV6FYvzSzp7e97/0c73ulWQ0eT1kvrDy6DV59jnAsjDbgX1TQpIssxALZslo3NYrbKHcr/q4r8EewegG1VFqb6Fa4whJNxuUE4idSvIhn+flk9jROFEQssiUuZVCAukwUIxl2b4NYnquDoJp2OeoawWiLUpvYp+evpTDfe7nCck6Xk+K/Xx8rbQGUlmmxmzlN2OasIfiUt6KtJGbfah003bta7fH2rsUBtMk6tBWpUiE4S1A7L7LoBy3SG3Bpk6+j1f+dpRG9Sg3FLeWeZ5bq2lPzJxfvf+KL6LJ4qBGMArnabUKYtC0Gxs67VNj0rYBK3M3KMEnfR+Ye5ikw144qPXQdadMxnCU2Z4nNWWTYBfqt0G2CkY1kTljWrsB0kHMTw7MMMLfAO7lk6pNn8RdujxFbcJulbXObCv4+MVpPELfYW/3FTsU7H7xjKiOSTatfppEwjdTeuhwHESsO3u6o4ch5eUDcnCMxcv3sKfeHe3733/0yw/98xs/+n/5HXvjwq1bjECP722fcPdtScrIIXRDm40jOo6XMAXys2yWpSFEjzZsNAMO8Z5cCcx+pkzI3/fd7TvfpXG0LrQU2DAgOfU/qomUIVAldh0ahaLY1J0Qn1yYhUvUIpUozX6G9aZu9HhPxLc/mngTbUau0fi8OvHzKlmINTgMKgtcyqGUxAsxTQRJAtLlX1JpLpYgZrJjNrdWYWF2UYBHWmqs7Ztr7rSYgFWK0PcCB3zxP9BIYthtrbKdq8rXePOq7obfHjiO1Qv/wihgitcwWQNhsSMNATD3TOFsHXcC6j1vvhForZT4Cana15WgZETFJbQwYce96JHZUD6SUXKjzkSRKKRPHKfPNL36Vwxfe5htff5uLq0seXmy4uuq4uHzEi7vA937yVe5/8Lt5450nvPGNd7g9HGkNFDu35JaUSDHSDxte/PBL/Njf+Bt8+vv/Ajd7CziE2HoCwZw9Um6JXja91WzkUjmO1mAuui59u0nEEMg5M02Vw2Fm6Ey7HkXYbRNdl5jrTFHh9lDQvpAuIttk+1rfC5ttz/QBrdFozXcjNL2NF983LGJrrYqDYLGAWCnmVnY43hCeBS43L5O2CcqAZNApux5dXaYEWstq688pFgGbVq1XQXBQ7Z2y8VoNDIco6v3fbC4+h0UW4tKouzse1QDF1qxmJ6stu9+y5408vAeLiJMicSzSgo/+IivRUMgn8GWtL23fDw++GqgPS8rF16YGVB2LKO372QtEFULrQSIB77DRdnZ/m8jaR4NlvbLvWlEytWL9umh1orp+0mb0oU5OSvE902vgnKBpCNbvQhUkLzJu9ayGfRhf3zCyWou1TVasiSqtJoVKBeZSyMWCM9kDDgXb544FSojkKlArXSycDUK9SLz4wpbIBYf7wmFfGHNAJSFdpNskhq3fdpFhm9ied1y9eMXZ1TkpmElESJbp7IswO/BfTn4IFJeo48FOcZwbYnBZ/Sp/MkdQu0ZdjORgNaI1BurczntzAAtLgCicGKH8h45vSzrlY++P3Z9ygwUeig/lliPzL9RAcZNK6UI4TkY7YuSBsOoWwS1Z23l0lwPPbFBXbZ9p+UwPuBZG4vo8S2FJo38tQxow4IE/p9pUyGopUFErOrfsCB55aBSLBeWHava2y4Stls7Vk3kOqwKsnUNbmlrxVstaLA7GJ+3dGpN08E6b1CsIUZrEw4vX1HpnBIROLfIftZLU6i6M3CvJI6LiixhS1/MkmF9/sEWiespyIQjVdIqlWhpZimVJgmc68rKaOozSFivxcxScSIhaR3NPU9swsshOLWoN1qq5SM1V3ULPPl/USkdli0mUQm/a1E6i6SY7YeyUOYkRjdJRZUDTQBh6ul3HsElsNpHNEBiGQD8EUm9EI7hzRai2yEixdKs6gWgNS0I8mR9L/ZgtdC2lEVyDaYDTiF/VtclQDGGZ/K1ATJfY9gcTIIDpWEOwCG2ZZgKVhDBiBcWRQNf1lGkChD51nJ9fMI1Hbu/23O1v+fVf+nl22x0/+bf+Fi9/+DVSl5jzyP3dLfuba0qeqWOArkePbu8ao0moAoBFZMxdKZLLbKnxEEkxsemsyVqds4Oa9VgEBGKoP0rgYhtN9lWh325NZwvWNsjSCAgduYp1KY/LToxgmdKWrVo2YSe0TZrg7ZaWGdQqxsQJgsTnl1ARK0gtrS9UdlIUKrlAyTPJgwalFJJ4FkJxWhP8ddr0t/9KMbnUMHSEcDRQoP55gjBXA0Jm59waAFptzOH+nr7rmY5HIkq3OUMEpvFgDQeLNb7jfs9ms6G5AZV5Rkuh3B/otjtqcsKQO4SO1jOo1Op1Fwqx1QAVA13RGuoROrIKmguqGZ2PCJl+s2MuhekQ+cIXv8ShRKZp4upi4PIjwgsf/gh9n9m+eM6P/vgnOe/ehu6M3/vc7/Av/+Uvc3+06x07MaCwGTg/3/Gd3/0J/vxP/TTf++d/nEpCdWLTJ4Y++T5iwZVSzSkQoLOgL1qUOVdKrsTepAqb3oDAnM0P/zDOXGhv9YBiDlT9MHAYJyrVmkZmZVbY2HAiJegHB8cfyMN2TMMdtaHhdc2tuCmHMQIRc0BUxMhGrdzf3yJPI+cvPKLbJKSDGitlbE5Q5m7nLcVXkK1qe2BtdRd4LxixwJsGl5Gb3Kayvkzbq5/DIlgwNAaPIqibudRl23CnIVNNWL1G9f4VrNFFWCS9rr70gOeJCsVrPFpwo51JhcWet/3OcIZjEW2ffc3OBAJo8ci24QVRgdBEnuseWIGkKxaxYHHwLK7Z9NrntN4/AZN7Ra/1sMCwghbHNSZ5rf4a1hunUIOdc2pAcqV0FWqgFEWyEkIlh2IZ3RoXRQvPYRHMha6qFWQrnt22MLN9bwsg5VqXDtlzmY1g1oKqkA/WuV26zpruSWW7C4xzoosR8hlbl3DfPRt5djOStUdTTxw6ul3HZtOx23Q8eLDh0YtXXFxdWLBExO5jJKpSoxGsgAd63BmTNqbadhMxTBYaMbYraVnnleJaPciCNn0PaI93DLJIM/6TEw0bOguxeO5vz98jp49Q1yU5vfaToc66npNPnRCNIIGgqzOCjQErGrUv7v+JRRIJutg++mywwOHph3OZDmKFkUtdRzViYZ2zW3rMFhX7vRLUmpygrS3eCnBV1khiCO3ruLZSfb3z3OTi4nvydf3ZSLvQJ5Ay+EWymLbJkGJYeNoCBJybLWy8oY4WzW0SsohaQbi2n915BgPl4VTo5y+u4I44zfHCCuTQSnASJroSDIrdR7dmq9XrKVS88M4KT63bOL5wG/HKKNllaupsTAtQlOpuDXMxn2kjJCZPaJ7RnY81Se38uK1dELqoTFGYo5DnyJQ7CgMlbZB+IA4DQ98xdB3bzu67lOiSRXlDaHZ9JtlrblyavORuAYtec1Ld/s5veN+MdrOie2to1GxstUkLfeP002lg1K9WfZ+T+8/iITER3Y0pYhKFMo/UaSb7ghzG0YCjGIxk2HL54JKcC/eHkbv9Hf/mF/8hcxn5ib/5X/PCa6/xse/+XsbDgTe+/GVua2Ha74GCaiUrxJCQUJBWfIzFHhVcLqSUKsSQ6FOhVlM2T7m6JfZz3wIQYhQ+9aELfuqHPsLFNvG1b17zzSdHjlV45/rI9T7TdT15nJmr0QUpmbjpzaxBLShjCiZZMq1BWCSbRddi0la8qYh9JuS5BbwBLHXRI7SMr5GO6oGFcZpBlTgEd4xSpBf3VXfZg8JcZsxz3m0VPcPTlnI5YTaNzGmZKeOIpEgarElaQNEUocyoFutnIVBzIXTuANMW66qM9/dI9TqTkiEl4m67rH/F5atotY6+aq4owdc6A4l21sxzHnOX8tevc0VjhlqQWui6DUig62buHu95/PgZISV2/cgnP/ERvvP1iX6bketfI8YLfuAHX+PTr/0Q8eIVvvbDf54X5Y6vfuFr3BdBzs8YHj7i6uwBH33lQ/zgX/lJXv/sjzFPkevrdxnOzulTJEUjwLUqUy5Mc2HoohGBGAx4ArkquVR6Nx/tO+j7xH40Y4HjbGtibEW4QUmdF7xqy/RM5JyYotBjvQH6BMPQ/+eb6P8ZDyGYpMN/WqL1DqIRbNP1rcz2R5OWqRiRqJq5v71GY+X8hYfE3UCfNtSgVstTFKlGNiQIVFv7vZuegcqV1dOUF8GvQSM4Tb7TwP/ykU9kFf0gXGw7osA8ZvJcrN6YQs223xePtIvvvR0tg2lnwWBFA+bPYxHU3ew8ot1uDcy9F4u03xjMdNtdxPGREwu1vE2M4sY3LKYzp4HPqvZ5gv++ZT6EFkVUV0NgTZdxhYe6lCo1sBsWYlwdm1W14IJY51dOGyWXXJhnsUB2hpCEWqMX6tv6FlpkWnUlHRhOqdWCnVlkMQaSijvT2ZpZqpCrZTSak6D6e5fjRAzQ9ULaDsQII0LUozVLfmHH5SZRcsfhCt598ymHEXIYkM2OtD1jc7bl/HzHw4dXnF9cEoPVeoRkRhYxGkmIYlltM+OwgVarpUdNkeLyePGsVxDLOocCIawyQ8cixf/NKRZRXaTxBav4db3V+5qz34ZIs6kBl7jBKS9YgfLpqHUAqOJXdaHzbSzX53fWE1bgGX6iBxZqg8u6svA2z6wwyAD6Mud9Ylt5iL1vkBN67+kv31ttQokxafEmYqrV65iUUBu45rn3sMBm+/ynpMjOkQc0ac2Dm6rr9DhNI7ZTc8q93vsznJxGWW9trrT6BlrkVIyAPX9pvH5F2iRnadhuKCDQbAcs/2PgRp1UBE6iPmq9LLRg3uUZQrFCfV38n+37B29tvHxnn8SlWnuLWa1xXvFNWDPUGcjVFo+8Eg1verwUoZeoVtAULU2dotDTFhbL9SSsE/c8JfrSkRkoYUC7gdj39F3PkDr6ZCQjuf1mc8Va+rNE9QIp+wBSfRwTLLLj1s4NkEkMEAM1ma9tjYHi6c0chCx+C5avmDHpTnag3DoltELHD+qRup48usY/JqpMlGzyJ4r7wodASD1pMzCNEylEdrszpnlEtXI8TtzePOPf/aufJ+eZv/y3/g4vv/phcv4+I8O1MN/fc3x6t8zZXIotN4Y6kWGD5Mw4HowEhA7pEkOXKOPIXJWNCF2yCNE4Z45TXgBFDIGPPNryt/7Sq/zkj34nuVSevvOMN994wpwLn/964p/+5jsc72fa8hA6RXKGnF366fJCjBCbDMsVwT5fq5rAqs3Ttv6WakYQnVi9R9awgAJYDSHUgURby0r22gtvJpe1kvCAj9pGWXMGsUhtKTMaxXpmiOda62xF2KyEo0XCcikcx8oubMjzTNclc5arM1EsotxtNwQJZjt9c8vZxTkhREq2a6fVeo6EfrBotJhluCSTMMQ0OGEdiGlg9oaxtRZaip9qtD2l3jbSkEzXXtW0l8UKTIcgdGlLng5A4vpQCV3kIy9f8UM/+B184jN/jj49pcYA+yMyvkXHDenwBYhPef0Hf5af/N/+l3z9N38VCZXu6pLthz/B+fYB59szLl/7CILwjS98kfv9Mz72fT/IZkhEUasxy9WkF9VMQz3Y66DKorW5LCJSgsBmiMidbf7Zs7xD5+NShO0Q6FLHccpIVaZxps6V2kfvmyt00WSkH8RDJHhjyrYZNyBg56DNccOl9aR4GXeqMrepUjP7+xs0KRfdI9J2YPDo3jwZ0Nec133W4zstGGQEt0USTSYkmAxlgewtItgsV30+tphn1wWuLjouznqoldIF6jgTipKPym2ZXSVQFxmz+Dhvss6KrlikabFOeNAixbTAvQX3LKr33GEdvd9zrlmxh/3csp6wJsT0BGe0x558f1gMIFYsoguUXLFIk4UamVMBbamWtj7hNq8eiCqqSMn00UG2Og4JihaQ4g2Giy6EqzpetAakLVLvn9MvZw6YsyW259aTInU8gJoL5FoXElgpZFWmyQrDu03kfOgJ2y1VsjfSU1QzaCV1hRICffcCQSOHw0wNAww70u4Bw3bHZrthu92RYqKWbGN5s4EUTS5YlBLC4uQlANXqlCQGUwEVR36u9BG34M0xQDElRWuaWNw4pPUHMeMBZarWTLBhEfW5JO8ZL3/S8W3WaDS+2wYRK+nxQxzQV1qkH1q/hefQsUd4aY48DRwvlGX9ddMoF7c+ax+lObK04qulPFFa8dI6cVoRTxvs7fGtUDwpS6RfPP1gVnW6Fjw7KG4EpgHkapXfbS4s0RbV9Rwoz5+C08mrJ7dWKbFWXehSqLUsX42srGvK8ujqdmrm+rBqx9TPu50XO+cS9USC1aJCuNbCwbJaYb99TyuqC0GI1dlyLWiBGCo1R0JMaFZChlgCsRSkRgN8tRXNyR9LeqnLr4rqGsUvUDKUqVLnSp4rk/c8yEUXWUvjRdUda2unlGQWvZYitmhnjGJAn2h9M0qHMoD0kAZCbxa30g1I54WmfqsxUjzKaFZ3FhHQaFp8xBrHiTY3EUvViEuhLBxkdnXaNPqtUaDYBC/RCZNYBKv5pXt+ZJHQfXDzGdgqHmwzaZaRpZojUagmyynz7J1cEzKOWKFrZNv11N3GO4fPXD97wu/8yr9m2Gz5a/+H/4bXvuMTxJToY2K8u6XkkSF11KfvUslULQQipA6C6WHzcWQuM9QMSaizkOdiaekuUaaZvktsh46ntwcAdqnjtZcu+a//0sf4qZ94lf39kV/7t39EF5SHW+XhSxv68w3/+ncfsz9Oi3ZXa2QrEMq8WrBWF1DqeudDdv03eN8Y9aJtmx9Vheyxk9b1viggkeJRbnOYDov14ml0QtRyOlPNnMXBXLJUPDisiBaXeARcsbFIQVA3KnHv+armqqVY5CtrJdVM1oqkRBhn0rBlGiezvu06dJpRsahkFyIa1XTHg/XFqSKk1EO1PithGCjZXKMsIifW06P1TFDQaB1IUhCPakdEElWie9FXChMiMCSIqUOwKPcxDVy9+lE+e/GIq6FwdR5I3YTqDaofgvQSHO+RMqG3z+D2jygP/wLfvCk8Pfson/z0p3j48gtsz15EQke3fQCbRzx++zFf/u1fY3O5JaQfoB+8y3Op5Fz8vK8L4ho4smtRfNFvAbOus87GVczmdMqVnTbpi9D3ga4LHEYPxpSZFCpJ4lLnI6ESowIfPLJxikWe0yNHWyuNV6hls5ORW48zmUsVDXRmSi0cDjeEW+FieES/6ZC4QQ4wqve2FkHybA4/bp1fde1xVJdsismR1SeviDtfARJtDy7VaqZSsMzU1UXH+bk1UDzej4RaGVQZEpRN5LifqFps3FpPUVq3PXWy0X5VHYsI3ufCycwikxJdFAStfqMtCf4IDyo2LIFjuYbL6hLoauOoMSdVk1nhuMRO8YpFaBLjRjZ8bEur342KSF3k4Kpe2O04Q5rXKtFqL0Nbo0zSPteKOF6LIRIVqCapCtXWmJwL0kWkVHe8Y1H4k1gWXMVUGBa0cmuJakt1yZZlytlJvhPA6s0XZ4RMIIYBQZ2YVIqYOYVK56ZXfr6YKD3U1KGbnn77gDickzZnpH5D2m2RfmOZzWmk23RoimiMFFv4KdLIgcu/pHqG2Cx0ZcEiXl8S1GTgwTFMkSU4XcXqGzUZ2SiijkVs/2gBL1s5VvORP+34Nlynnu9s3TJ/DTGfuh8srFgcaC+59hOisTBv8Stt8LsVQq10w6dAe+5Jyq+ltBqoXx67kuXlXly3dhJLN7xdlVStgDp5TUFLaZvEZwV8DdQu5MW/hmUM1ftMeORR/KPq6WMcLAruSrV8Yv9Kdl9Ofg/GKhew6d+9nbrlOvjnssfJiXhivRZ4L4cYlBiVFPwmlSjBajScmzTZlg9dIzDLSW0z0hwgWjGmVrO/DWqNALOaQxVkVMXTvSvZCH6CarXRVal+gj2qkLEMxuQkYzKpwOiko9ZToqGWJu2ATqhdoEQhi7ny1GrVLxoiGhNKh8SeiLnYtN4OsRuQ1EOyInG8cRjRiqN8GTLilMzDX4u56lCbj1DEit5aKjMQW/bOZYNBvAYjtLTyOub15JK19a/9/Nw1/QAe880t2nVYw7hi4HSaCNsdhdmUCdWb+M0jjAd08LlKZOg3bDYzcy0cc+XJk3f4lZ//B0zjgZ/57/9HXvvYJzk7f8D5w0f80W/+Os/eeYc3j3vm/d7GqwTisGGeM5NHigtmtyvFIlKEyO7iAUXh9viUm9t7m19V6Yctr3zoJX7se17kr/2lT/PCh1/kF/7xv+B3fvstLi42fOq1wKsffZHpfsS0rBigz5mbkild4DIIJSU0dZDLQv5bQyRosipMb1uVrEpWc5ZC1degFqnCrB+dWM+1raQu9AaLkAdrgFequz1pIEWzuS3u9NV0jEGAKNSs5k6F2EoUxEhaUmrdY8Wa0d6nTKQ+gSiHcVrqMZIXRteSvVO1A/6a2Wy3pM1gX6OY1I0E836yIEYXSf0AnREPKZCnI6nvgOAbKEjcmHerZiKVINE07eqSIkmUWhlzRiSRgumcu2EHNTPnM57sK3Ws5Lfe4Btv/gHf+eAtXvz4xwghcPOb/4LrL36Jhx+64sHrLxFe/jR1OiMfb7m+Gbn42A+RXv00L33i4+z3mfubZwxyxt3b9/zBr/wa7379D/noo8+w64U+mWxqnq0TvbnhRD/HwLKXnu6A66bap0RM0Sybi5JzafAagC6Zs1RUq+2ZcmaeMmXTEUNr1iZshv9Mk/w/81HLfDJX1jBdkwku0uel34GuC6fqQswtIKiUMnN/95QaC5cvvkTXJ0LYEmNkOuzRuXjzv2rz1KPzNTsgdtdB8YBZUQ9iBhuDRYsFoxz0hxjou8TFJnJ1PhC7yN31DdP9TO/7ed93jLUsigqqReizG6NYnyzDRZX1+7UAZpM4BQzIm2GLk5+68oEksjzHftfqwGwMloYzLFRKlVa32mRZssrbXf+Pv5btlrKQioWHOHgJmFulBjdrCEqkGFEQl4ljxeSxVkK03dCvsHmsaLVeI6LkWoxILo0aK8RCLJWokNWK0dX9X6PXmC4QNXhuxWWuTYteK5Qi5CrMjj3mWZmKrY3WDb6SKxyrZaBzHqk6UvOGjkQNlel4wzTN3itjgH6HlmLXMES6swvi5pJhd2F/D/a4WQPleEQ008eBEAOkaIY5Uo0YuAFHzXhG12b52sqxOBaxTG4K0bIsssqt8HHd+qaFJpPB502TmHEynf5TEw19788BA3Ynmh5xtLuQAvFnNnIR4bnq7hMIJWpWPa3RTNMVt86aC8iSVYfp6qeFXbfft8Fo/zph0T54W6IsaCVosEGsmKuBkxdzQDJf6CyVEnRh8tXfe1EmNQKB9adIzqGgpS1PQOIJiG9kWk/+3dJSp9/a57BJKNpjFXejcPLRzoETCgmuQQQrFMXfVxQJ1iMjBu9Y3AhH1Nby4rlC+pYRWaKZTomWgvOF+dh5qcFkRlkqIZhuTKQQGtGoZl8ntUKGGk3vWLC0qDW/EXKGKVeOc2GcKsexsh/NiWWcCiV7pslrbjSCdIL0AbqAdoHqrhI5mD1srpGZRA0Ja1wxEMKAtIxGP7gkozf3nS4Su245KVXNmXtZ/GOy940VKa2jeSsbOyXMK4hs/2pELjQ64qlIK7Cznid1ef56vPfnD9KRJNJtNozjntR3FBJlzi57sfNbD3u0zNY1erszoKmBOM+kDA/OL8hzJueRKReub6753L/8ea6fPeGv/53/nlc/9Z18/DPfQxo6fu9X/i1PvtEzHg4QB9PU3t0z18xYTY5XSzX7S4Szq0vGKbPf78lzNgIcAjkXNtsdH3v9owxJmIpSQ884Hnl0seP116yw+epqy4zwO3/0Lvu5kGKLGFfmCndTRULhvDciLrEjuGlDc0dpJEORxTHG1AQ+r12aUagelAhL0MWCKS6zcNhgS5FQqto5RTzSWqlqUr9chaSyKFEkRVLfMecjFNvMCRCCkqfqphu2AC9EpM6IdGy2g9UKigUj1NepISWIPXkaIVdCKZZlRJmOR3SawLPKDTDmXAhhpg6duWb5AqFlps6z9+nZWM+OWghazKBBcWIlZqZQrTYll0LsgBhIsSeFSAEOdeIrv/cFvvLvP8/+8TepeeKlDyc++uO3nD/6Lu6f/Tu++Llf56Pf/91sX3+Z7vJDsPsscf5OXv/UzPZDr/P6d3wcVHjy+Cn5OPPON77JV37j13jn63/I5tEZD154yNX51nooKEyzRTxTELp0IozTJVDMqebdWevzQQm1SK3ZaxtcDGIOWxKCEfYKh7HQF4uUg5Ov9xuO/DN3yJKlk5a9p5qMyc/B4sjoblB4kEi8QWgUsSCHgPoY3t89o9SZy0cv0Q0bNsNgNU3lnryAHA82FZMRL311Wt0AeP8ZDxZ4NqUFQ0OM9ENPDK12waLv2xChi8Sq9MFw1PFYqLVVVlowLSs0CCkxePhXnheLYFn3oL6XeIFZAZx3LPLvoOrVP88fLfQrNNJhu1kjK2t3cKuVCGqZ+Bb/UDWMKO7AKG7TK27wtMSYgylIwhJ8q8QQ6ZLJO1PwnhSt4NxVGmVJ09iLmXw0L5IoBQPTQSgUMsW6Z4tlTgoFs9NXbwosUJXq3dJqwyJe05GLMhUYp8w4V6bZsEnOLmPNlSlX7vdHjtORqjNEZV8KD+IZYbPleD9zvL0lnp0TzzbU0JPjhlLP6XYZunO67QUSB7JGiIlShHkaEZnpt4luszGL7xhtrwxQxAKdll0T+9AlkiUsRKJ6d/PwHBY5CWw4eF6xiAecQyALZlZTVwzT5qHK+1tD/uOMtMN7byuLpQF7fDQhJ6hK1781ZL1UWZaFIYt3+m56QJsc4tmRFfAuTDq4Dv+EDrV1RpAlvdO4W1JMT1nF78O6MPkCUTSYPk+qD9YTgiNGMuLpV/Ovm3CnB2mTdP26ygreW5DllGScHl6GhscRl9Nelu1kPaWn0YJGhNoLNm2pZSkad20Rn9ZJHCQ0pxiXW7icyhy3xPzBxYLCKixMxxZUA2lxmcjNbs/AkKg1CrNicayiamFi1k/BuhZbBCVXmIsyFxhz4ZgL+7lwPxXujoX9MXM4FqapuF91qwPC+lH0JnuRPkKyxjbaJWrE04ymyxSJpvVOHSH1xKEnDR1d39P3HX0X6Tqr07ACbll0stWZWG2M03Wk6qut2ZSu0aKGHpoFsCq0AhNbGMMyRkXFC/TDkhY1k4A/Tvg/aIeS6YcNaTOQs/XPGLbnlDJbenk6IHkixkTanDHXgrpDV4iJrhZSH7i6uKDWyt1xYsoVbm/5vc/9KtNU+Bt/+7/lte/6JB//ru82Ip3gj37j17l79wllnM32VN2WsFjXmCoWgazZLRJzsUaAtdhiHQIvv/wiQ+q5u33K7x3u+Nef+zJ/4fte5PIs8pd+/Du5vb5hM0RuD8pbb90QPaIpEgjFSuiKVu6nSpcLw2AWDFWdNIMXmcqyGRcPmli2QpsBGwrLZqs+1jL4hu1rhMse2kaumJwyWscrpmzBkU4M8JZSF8CipTKPs9d6mCyhFDNoCA6EQjCHnVxMYtAW3aqVISYEi0IGCeRxZkiDEa+uI08zFWUcJ3obGKj3wqHYElGL0qcI573VcB0OpL4npQQKpU5IjGaOWdyCXNyCGyw4oIFSK/M4MeWMipgDzpyJ8QIkUqg8efear3z+N/nmV79A8ULPf/e5L/BdP/JLfPovvcqHfvhn6K+2bK860tmOOh8p5QF3NxPnVx8mkHjr62/x9BtvUPKBm3ee8NXf/S3G/VOuPv4qVx/5KK9+/DvphwHB17fJZKj9xoBVO8yqGCdbYcnEtx1hSWs7K8lVF72+Ymt+581RrcEYjNNE1Z3VFbCuUR/MwwBndDmSSnUXHd+j1bvNSCAkazppy6uTDUfkiUhWa+ZnEfBi/Q2qcnn1Iv2wY+gG4s4s1Kf9wTrZA81e1s55e0173dYtp/VWqhUjxCL0nTnuaalMY+V4N3GxiQwS2Ow21Kl4B3thnlr03rtwWFc7LNSFG8O0MNZJ7YR9vCWu2/agRXrNGpSAFTqeYhE5ufdKTKz1gteOiRGQfBLgSNXJjGMREyisb2SGMY7JHJRV37sVdwMVlvvnAp4A1QLDqGEWq8WwtUrEMEoVd8RqBac+FjSIYZFaCN4M2OpUXG3jtTaL7Ny/tzV5tTWuYZFjNmXFcSzMRZgzTHNmf5i5ub5hmo+mLonC9Zg5Ssf2KkA4ow4Bjb01HUaoMdlH6AYkJcuITZnQCVoy8zSSEmzONwxnW7bbHTF2hnm1EWwL+NQavFecmJ26mAwuCO5quCLkZr28iFO8jlib9E+wgIZjET15dsPRCt+SpH6r4z+OaLRJ5Qj7lDusj9F1BD9Hok5+31bGaouCUmyzwJr9tRSXOGNeobdtojbhV82gvaKu92oDTbRFl2kNms3fuTR73JWYVLUixZm1AHf9+HUpL4ks9cDL6y5f74RPycmFbCUQ7ZTgr19P/n1KPtrN3rllNeyCt9LBlqlop7WCFfaAnzdroBXdCk6kgVsHLU13qcKyrLmbFNX0jaH60BIHNcUir8acHWhXXZMblcV9qrpbVIkWjW3fSvG0aRSTPYlYF1c1kDEVZSzK6JN6P1buxsLNmLk9ztwfZo7HbGC1eamLpaVDF4m9uRuFPhF6IQwFerUeLskWgRRMOhK6RBqsI283JLq+3UfTQ8do/uqiS783WHipnes2F04yfHidzKpN1ZPnrkYB6im5tX7Fb046TlUCbVP5oB4SoeTJbE9LhpLphzPmKlYErBVJkTjsrJZlOlIlofkIZUZqIabE9uyci+lALZnDbFmvYz3y+d/+DY7HIz/yV/8G3/8X/yKf+uwP8vDlVzi7esTnf/nf8MaXvsSsLWvWnEKgndlxv7eUvBfjmsQisNvt2PSJ25vHHO+PXOeZn/v53+JB+CSvPhSuHj1k+/AhX//qW/z6v3+Hd55ZZ+hAgmg9FnKuzNXIy3GcGYbE0EfbLUumZWF9OSQ6WKmwjIGquOOUjaEgbiFbWoZDXELiXbppkW5Zuh1Ll1CpzFOmxkDqkkfvqhH2qoTQm8tbVaKYxGCeZ8DWk1pyO3GuUS8sdXAoeTJ71SpmRplSopRC3u+tTqmGRXJQZuuNLrUSU2SeCjobGZTLizUYkhIMPbkWonc9l5BcJiCGSqLVQLVi2ZwLh8OecZ4QiUZUYmToktndxo77/cgf/Pbn+coX/5D7/T2VSK7K9e8/4+/93/8eP1t7vuMHfpKH3/NXme6+wjd/858zPbknvjjydPg0GjaMh5n52R03b7/F21/897z9lT9imve8+n2f4dXP/Dle+NCrvPzhj1omSeE4FaZcCCkwDIkornFTPcmwWWVeeC5q2OpuGvoSD4qJiyRsnem6QEqJOWcUZXLJh3aG3AKcFPN+wA4Ba/bYdkus8FWcbPr+JKH5Q3qF42K15GtqMFtVe4QblmjhuN+j5R3OLy7ZnV3Qb3q6+IAkkYPeo8fphNjpWovqZL7VQ1l20l4bXU0NNGcfm5W76wObOjCIkkJCu8R0nLjfz0xZqGrBpiYVCy510tY4WMxJTmoTFMlzSrHWEwzwPYZVRsWKN0TE9zN/DcHrDd+LRVxOhWGR1qk8tcedyGsIFngz+bi1KqBaJs0wnF9MX9dMLdDkx+2DmksgJRMkWfdwbK8051B/zVo9pWLpI10KPavXYdj1rcXqlsjQWh1oACZFg5o7pIO8RjSmrBxzYcyWzThOapgkK8dcGafK/jDz7OkNNzc3JgkWMVn07cjNWHj0cmXz4JI47JAR8v2BSiQMkRJ7QhhcA4GRyXwEhZA6NufnbB9csNluGDYbM5YRw1UtwyR+HhU/Bc8NAh+b1SVAYtmxenLNmmSl9U4TNU1GICxYxDtCnk5DwjIq/sPHt0805PlbaCgbQFui/oR5LKPcJ/tCPk4+oICIa9qltZR3cOsRdXnPG/twwzNedvL8Te1Htee53/XqutQ0eR5dd5bSJl+pWEdIXcvFAyb9NyLhyrcTsrF0FW+n4fQ8ORht9ratJrMdp0SjscT33pw2LFFLY5Lq9/aO8eScS7FBZY3hvDmf28OJ252t8rA2tVtUzLrqhjbYtBA8I0Jdz30ViwLbd3VAHTw1uph3K4RKEa/AUF2LgItQkw34EiyioJ7VyApT1YVstLqMw1TZT5m7ceb2OLE/ZqapWPMwT/BKEEIykhH7jtQrcROJc0fYVMJgdSRdZ4M3SjBg20fikOg2ka4PdH0wm8gYvVGNyRRw5t/qd8Q3nLCM45bVsfMinoNcXcoao8VqWvxHqe4B7na+au6bxGpjsvVUsW/53vzXB+cYHlyRx4nj9d5qFFBKnhh2Z5Q5I7tzi8jHgVpnW3pVqeOROu5BIrHr0XlkkxK5T4gW9rkw1sLhcOALv/+7XD97wuM3v8GP//Wf5sOvf4zup/4a2weX/Nov/jxv/MEfMO731ElRtboQHJRkVYjRxlEQi6AJnO225OPIYX/PNGXmUvn6k8wvfO4rfPaj55w/LDy9nfjaV97lS+8cGetA3wu964pLrsw5k/JMzCbhmcbC2RAZumgWu566rNrco2z5rJ71FZfclDZ/sb9FlzZm38hTMAcq28iNZlStThgs+rbpAkOXIEZCSkb0vVCwuZuEEBDNzHMxLbdYBqNUK0LWRYtua1IatiZ1qMWkcElc2gix76025nikZmU6TESKN+JLhC6Z5XUQk1vGmT5ADJF83NOf7UjDALE3ICdGVJY4XRDrPp4SImZjmeeJcTxyOOyZ8kxMPV0/sD2/5Gy3I3UdlcQ7bz7m87/xG7z7+LHNLA3MtTLPM7/4i5/n61/+v/F9P/iLvPiRj3G8fsrTz/8mF7sHfOKvvU7/8UqUapHuaDKHN770+8SN8LHv/yE+/N2f5cVXP8GHXn6F3W6LUJkLHEclJOFikzjbdpxyiVJPMkRiEpJTUJ2Exf62rb1mf71GGftk3b/HydcVxLtpswSZYktffcAOq4czl7HFHh/1ppJWh9VAMm51vET62t/FaolELYuPG9hUAdXMNN5zWydqHjk/v2ToNsTzHUGEPbdMx9HWJV0RBw2sy0r4avXIG94y1wv/220ucHszUqPZ75aiHI+Z46SOQyx8KE4oCGvQlVqJonRh1dO3QOdz+O/kGhuwtH94yQnenmwJujT5VYtif0ssoqYOWGScskq8o+svxYu4F3VZtCxoaCY1/lrqAZFKq1PDMALFyxoNy1jNRiMghu2CB/jMNSlADWi2DLgUIVaBGTSYDa5GyDPuPOVnRJWavMC8yb0cT+aqTMXsp4/Fgp5zhqkGJlUOubCfMtf3B95+es1hf7BvooHG5p/uJx5fj5xf3tKfnSMpUWshDVt2j87oduZP0okgyfp7zPPMsOnZnp+xvThn2G3phw0hJVNSOJZccYdh2oZFFFeliC5qltiwCB4bdslZdRAdGqv01+7U9pRSDIuExv9oxvDvH4v8xxMNj9xq+9m/3DKK/cGyPOmUhLSRt7KuKp4dUCcb7ZdLxXkwgEzw7IOnl+s6sbQN8BbloBWwaKPP/lwrrGoahCZj0SrUYrplgKCBRF1AvIgVJomsPSlOy1Tq+pLLguNkmqUYg+VarufsPadW/My1+1aQDWtKrwGI9hrtzAZ/jBVbh6XoGLcwq0EWKVQjVm4uhYj1y42UpU6g3WS56E7Uir17649RPNqSQyC1wntZTrsNfE8bmZNXRXOghkoJWGo5QBUjU7mqkY1cmbPdT3PhOFUOU+F+LNwdM+OYKdmL9USBYJ2Du0QaKl0vxJJItZC00qEm1RCIybpxm69xQPp2E7PSTIEaIlXiEkGuKrZvZDsH4qvzKklb5XF2gZr9QKtP4bkNofUfCVUJHkJRt3mNRYlONmL1NDP63Jj5oB3DcMakwv7JOxB70ubMbH/zTJd6Smcyn1yyuU+lDimzkTythNRZSjhnYurYDANBZvNFnqzB2agTb33jG/yrf/RzvPONr/Mz/8f/jo99z3fTb7ecX13xqz//T/jC7/wW49Obhfji60KbY9R2LRugg8PxyPE4URws7Cf45T94wh9+5ZoY36Bka0ZI6EldB31H6DqCWAfqMI6ESZy0TsxzpkQhxUiXlFoz1QuxU5vrbX1zIGHrywoQtZrkqf2tOJEN1deA6HO76hq1VJMLpE6aC7OBolKWpqACUAqhVKtVcRcuBOZiz+9TYuiV4PIDCR0xVTQfSZ1rg+difWZy8WsW0Wq669V5TUhiPWkIQuojtQxQZnOVKr5mIUiIhNgbMdRKKVbcHaN57Ve1czIfjxwON8xz5ng8MI0zw1ZJl5eE1FNqZDOcsR8LX/7GY77+5pvc7Y8mMRMD5zkXqhZ++/fe5AtfeszmbMum33J5ecUnX/skLw2PuJhmUqzUkqklc/nyS7z6me/l6tVXeOljn6LbXnB2dsHloyv6zqQR42TSrLNdx24b6WJolxewqCsEJCRiFwknsipowYwWNnPM1gJjvuZIDFbT0q6l6qK71tNo8AfwCBKpUtHqdtPNyhnLPtpaIbTGaitHW3GB+jyxZLMY2XBJmqEPywDd3T6hTEeurl5gM+ysSDwF7q5v2d8f16CR419Y935nrSwF06poze5g2YIGyv0kzB7WtL+Jm68Ej9VG7+9VidrMI2xzFTXHTFNWiCtCTt765PMs/34vFvFz08af7dXth7X+gxMs0lBW9ZMbfU1q7+F+i/Za1TFNwyINw/n3WGJvLaIuFs6MEszYwfFIxH5uMhrL9hojqMXXRQ3eKyKYU2Q2m+Miinjy2GpT2uc1VK1F0KjmIBptPSuqzC6xHXM1U4ViBDAXm8dThv1UeXo38vTuwHScTI3j87DJ9+7GwrP7Qtoe6bY7+t2Os24glAizZSm1s8+Whp6wSWzOz9icnZO6DdJ1SNdRQ/R9oVKq11Q4oRMn0wInPegsYJY8KNTQpUlq7afo90F16aReqwXfU/UMeguS+wDxnN37Dnn+xxONdRyu3OH034Z2F7ZlpKRBbFkf02bDyWIgeCS4ae2WiREWyt0yEEDLBq332HtL0KUIiSWNaZ7IweUHoYUxljySNQq0oLyVXYEzRm0aZnVQ7kRDPDKgzXaSNToi60mSun7HU8AoJ/dNCmXAdT3Rq2js5Nx/i0sTT/+mnHK59Xn+3Wl6XWxAimCF4kGsKEsKreHdKv1Rm8yK1VaoUqXVXoDMWA8Xjw4E4zj2PHfuqJ2g2aILGsQ6W/qJLJ6ynBXmWhaCMXmx1TQVjlPhMBYOTjTyPBtxQc3OLURCp6RZSBsjGb0WOqn2WQW3v/SzKpaJaYU3EoIJRMWIiBWGOUirFrENGtYIwAISll6a61SQRorDOiB0vVbturSsWNNmqwPg2ia5E5Zl2nxAj5xnQtcR+8Q8zeSS0f0dXYx0w5YCjOPRx6PJYOo42hyLpreu42wgo+vZDWd04x65v0V04q547YUq18+u+e3P/TK31zf8lf/93+GTP/D9fPozf47t7pwHL77MH/7W7/D07bc53N4yHY8mIhS/9gpd6FGZrelZNuIzzbNn/ky2VKvwuGZzSkmJPiTrv9L3hL6n324JEih5NhAkRiJDNECbBTYxsO0ClMBcrIdFbzgJM/xtY6aRHl3WuuhWU1WVTlxuVdc1qAVmzFHFwL2ouKVwMImYj+GKR75SorhXf8XliDESUuRst+NwnJiOt5xv4EUN3N1V5rFw+/gtHrz6gjlCxVZfZ4BwPtwjFOJmAwj9kAh9Z5aMVZkPR4uqbXqSWHS3qpA2OwJidpOlEvKMRKUWIUSrB4m+oYPJVg6319TjHZXCPAem40yZRmqEEDpub65JEugePOLN+4k//NpbPLm5Y5ozLetuhZWAWKF27Dr6s0vOXnyFR69+B+evfjdz6JjyZJIEJ2Rp2PCJH/4x+rMLYhjYDluuHj5it9sgooxZOM5K6iPdYIQmiZr1NRZMKNkuoBAIvh61SDPgEhBrfCiho5ntNWVqAwBVbN2qba9xEOLxuPftGPNn7TDyIB6dbcDI9+bQApHrxuc5vTVr5PohdY1z8Po7JDuIqouMqJbK8XjL08eFy6tHbDZnbHYbl+l1HO5HpjFTi6JSLWEi+N6yAhvBrmnVhhUasTDiPykWfV+ydFbbZe5RDTHUFVPUVr1lNVlJLILtJ8jNIWTFInACfhv59P+dkNxGX09Di+tu1paK9hlZHreGPf11ZJXVVBopMpwRY/AajyZdslepCiV7/5wgVjcazCUpULxgG5NQ4tdOIhkPzmm1LE0Q61lWIGRMVlcCdQaJWK1LLYZjqlg0JwXUMx4a8brTaj2tKkYy5sJclVmF41QYjzPHGrg7Fm7ujtzvJ+ZpMrWDYxEjGkoqQqbSR9A+EmRD0YF5FrpkJGPBvynQbXd02y0hdoQUrY40RsxqtzV5dUcpDdbn7TkswlL4HYDWl2mpB11wryGKpVEiDcfaGEooqbqrqJNjEflj1/tPO749oiHvuX2rv+nzf9MGTm32rQ9WVh/XJh0TGySNQUuoCHFxlwrLSVTPEiy7qbNoy16YrVv1vhWtlOqkLNcXIi2g3p3aejwY001+Dy1CFJYF2sZOXWpTgv++TaQG7tfzYh96aW7SFr5Sl+/y/CS3fz1PK1pe4/R3uvxfl1dpl9//tvQoYflQTX+5guFWbLZeWEWaSgoRY/niFsVVvHO3erFUte7CFJMkUYxs1GCEo2mJa23pPksna8QiB0GoSRYHs9awrjWKGXOLJhSmuTLNlXmqzFNhPBbLaEwVLWVdOM3gnzmbLV6kkmNlkyoxVrQzYtTqdZJYQ7IU2i1YhFUihWiysHZWG5EJxUCaM6m6SKRWPW27ro1eLwEB19kiRrTEC8nxsa8LsbOlXk4KP9RFVB/UI2wHxqfPGM4v4TAStwOHuwPzNCM527nO1SLZIVLLDNMIeTTyv91RQiKPtzZ2O6PWfd9xljO1K9znyqxKKIXDofAHv/vbvPnNr/Ejf/lv8F/87P+Oj37nd/Hg0SNeevWjfP5Xf5k3vvJV9nd3zNPMNB4JXcc8z8zTZNmOar01yjxTaqG4JSlirh8B61QcQkBSIg4DaRhIw4ZhuzX3k5JBAnPN5Gmii4nNgwvOL88J8z2bciSEwOHe9fnV6iOyD7y29rU1x/YIt9J0GUYSJUmkGWeo+IaRK100AB1aj5cKqtH+KZgxRt8tEb8oYr0+xkyuJhORqnSp4+ylSwKJUkZe1MrhfkSPmW135HyYkdiTSyFIpe96Uj8Y0EeQYtKsEALqPS6UStj21FLJ00hASefnpBSJMRk5DVYM3tVKGDZULEPbhQ6CddTOOXO4fsL+nW/QbwfK5oI8TeTDnpInussLYrclS4DNlncPlW8+2XO933PMlfvZfPytWN5OdgqRruvoN+fsLq44v3yB3YMriIn5eKR0G+ii2zHPiCS26ZyahW7bc/XCC7zw6JIUI+Os3I+VNAS6AWpWDsfCcGYuRYgFMsa5MJdCQW0hdQrYVvmcmxtXIyG20jSzCItW6pqVc5I6zdZczJYa+QB20PAjCFqK185V61GhRrBFvHS5RW0W3OGCD8HsPwVWVmCSprAwNQ/ptHW8wjjuefp45uz8ivMHDxm2G0LsSd2B+9s9x3Gizo4rWsautqvRQKARjuaKBBgRVCW0btUL7hACcZXg+iJQxSPLomiIxCSEDkSzBUYraJEFKKIr3QmykmepJ+SiruepYYJTLIKfFpyonHoXnaKWugQ0VlTT1qsi6q5gHujroqkDAkt38RTCsu21XmhVsesbg/XFCtA6fah4wbNavwc7uwJZqbEiNSHesG4uELPAaGtf7Y1MqEZIdg7Ea+nqVKh1pkZTaOQKc86MuVA0kFHmDHMNprA4Zg96FubRQv/tehOAZLUUVUD7gJRAV8QalObqzheubHD40oXocqdIn3r61LmyIti6IIEQFalWom8yVyM2RuLWfiin16OFuEsjE2JXs2JQxggeKxZRJ6Y+T1a9EKzdvf704/0TjfeSjPeSjfbv8C1+5x/Lwy2rh2tDXw7gjfjaoGqevvYa1XTy2MWoEpaai6b/A4xktFsjG8E6dkaXQFnpgPVwCMXlPMWeazUdSllOoSxGWfZ+K+Fo309CK5g6IRpNHoMBhObE0L5O0y2jz52C90D99pOnGlklOGvZNpRFLbdSDuNGXuTkgyfIidmqp9qMulvUWIt1qs4aEQ1WLL98FicayKIFzhizrqEuUYE6m8ZbxQiDFbTawl2rPS474dBk11iTRSs5IRolQBaYq2UxjrlyKJVDrRxLMeIxV3KulEnRSVnsLwxN+eRWcw1LBfpCyIWuVPe+ttNlbk5mJduL0Eukk0gU+61I9MHpEaE26U6IxZqxM91jG+2wTuxWwN/GeKvdEDEsYY1yIAfveIrfi1AIfotkAvPzE+sDdXSbLcd0Rx4z3dnONr4AEjvmycB2DIrERJlHmP7/1P35r2xZlt+HffZwzonhDm/MfDln1pBZVVnV1dWlHqvJbpISSZEyDEOyf7EBQzBgGDbgH/1H+HfDgCVDo0UbEjRZICSSUIt2N4furqoeqqpryMo5871887tDRJyzh+Uf1ton4mW3xGqaIphRiLo377s3hhPn7L2+a32HREk7Ewp3xBA1jTUMkLaU8yfkaYcDuq5n5RyMmV3WoqrWQqnCw/v3+Z2/819x795d/sLf+Ne49eorfOnr3+D0yhV+9Ed/xJ0P3ufex7c5e/iQUgopZdUC2Ly4SlXefrEQz4NsoAjgNETNmztWCJ1mVNj7dl67UiFEnRL6wDPPvcitV15ie/6Q8ewecXgCzrG53FKLjd+NHlDFzXxbfT49w7ZF6SOdMyMFV+l9mIHJHrSia4A3cXG0EbxoERvNqamIOsP42Ew2dA3yna6/43bDsFhw4+ZVdpsLkMrVVU/vhKP1QsGXUx1JKUKZNizwdF0/A+Y5myhXvGuJ4SaeNf3HtNvRLwZdN0pWkO69gaiAD5oKLj5QUqYUjTkOAdwQmSpMZxfsxmxAxdMPS2rJ9KtjcnfE5Vh55oXn+dyXvsrv/nd/j+nsTEv6GohBQYaguTtqJ6nd8loKaRrZbC6JIdIPg/rh54SrkbpcMixWrI/WXL9xlb4PpKnyZFMIvVN73QrTLiu111mHVjQ3aJxUieed0PfBQC20TaOIjrO8DzgfzXFJ1+dGc22CcdeaL06nWLWAC9rX+FmtKf9FuzV6lDgxYSy2v5qOrmnkvNJraNcrzJP7mfRRilGwZN88dAbeEaXoKQ+RnIWLsweUNHF0cpUuLFivF9qYutgybScySbVmohNpZ7Noj1IidXLdqLbMxh+zO1Q1NysrpFpzKlgzQB/JutIIfd/TDZEqE0iiFG2EYHRKlHEKtP2LeYvUH+rP9f3a+7eJ0VO1SANkrRZxWmg6O5LawDQN0Lzy2N/a0FTF1nr+Rgl0US+E4NVBrPfBqJVqcNBC+mpR1oQP+tjOtfmOHt2C1RQ28aGAZA9TVf2S1aTBuv+NhFzY788U5ShXPdCUqjSi7IQkQrJJeXWeqVYmhFFglyriIrEbqMVRk+wF6LbPa80KOQguVUKupFxIuWgDaygzfdeZdiQ66L2Gzw5dR/BRQY6YLsZblpewn+5ZY13aOzQ6S3WOoh+yfg6ik/LsUIqZN0p91c9IHOq0aj+vB7WIBhl6igtmGvyzrSH/9EDj8HbYkv/078t/z+82zzT7ahplS98sioy9R3yTZCt6Eyqmhcc5N4fWaGGvJ7e6MGm136xd2yXi7aJ21dbmCq6wb4DIvIfvaUzeZhqBGWwoBhAkSBPsayF5ACOVnmVLgnl8OwEJuqmI8eEOD9PBzGeeYcjBV3sU+53WZmjTkWoQpC2odlHO0wzseJh+wzQcrhgSzqqPAGZ5jJv7BDbad6ahsONV7SKSCr4IpKqONpad0QarGmSk48gqgVpVGyFVtRBSnFrQBajBLnCEscJOhE0VdlXYiTBKJVHN+lOe5qzBzLUlFk3lLFowxqqUGk3abW8w4F0k+kjvIr3riD4SXQcu2ibv9LO0gk3rSz1RxNVZP9A4knt5fftv7XLpQtKE+Owt5RrVxb4WMECn94ymjerdfaaBxvGVq5RpZPO4kHZb+uUROY6UoueRE8F3kZITUovaNy5WWpiWrGtD1caDhAhpxElFuoFheUTME+Fyg99tGXOmVJikMhXh8ZMn/ME/+m0e3L3DN771F3n9F77BrZdfJQ4Ljq9eY7Facfv9jgef3CEGx1StK+T25/DsnS/KB/dWqGsw3L7YqWLaiVRIriBVmKZRrXWNEjfuRlzsef6Lb1LGDRcP73D//fd4fPcTtmcXyJRt+moHT/bFgjMkUaxb4T1MOHNVKQxBswKqdbVdUHYztVp+gnW+qlJ1SlSbWA8KzvJ+K2586EZL2Z49oesiyy7i/YDUQB8cfb8EHwj9Aj940m7H7uwJIhe44yN1eRIIXW+0F4f3UZsxSSlq3gU9RttpdhjzMSIh4rueGnpEguYYjAlfVQzbxQ7peuowEPol24sLxu1IFc/RyRGr41OGoysQAlNY8OHDSx589FNOr17l7NE5qRQmoyniEp0ElsETg22seFIujOPIOG6ZthvGrmfjAikndcPJGRcj65Njrlw74cYzN1kse7YTbCfB955+oYXuuNPJ7OlRnDVdVWA3ZqYpa2hbFzlZ95rLBGBlXcoVqRr2GbuO0IW5idR+U+wcUQMBMT2LWuH6YCDykI/1GbqFGBTQ2lrrXJgL5dbga7SqPYDwe1pq6zYDYAgdAdFGgdKxbA2XAlUF91XTRNmVJ9QxsVwdMyzWLPuAP1qwc47RQ0IoKaG20MBci9gnZKJ8N2s37Omt2dmm3djnrgV84x3IrG8QHF2F3gXCYoW4Si46iXU54VIlN/q67UMKT0TPDTFQYF9b8021wU0HZDURbg60czQY0aZn7eXuwUY2nYITMRq8m/dMQINuM8ToiejaE53HSwQxVzrvLdleKK7q9MbAjXOWXA1m8+os+FfrNCkVSRmc5RXhUJepiviiYM1hdGhbE2tQXYz9TS5FMzicpmWX0JHEM4owiuM8Fc42G8ZJGRfVkskput87Z3azCHS6uZdSmUqhK4VUDbwUc7Osdk6IoyOw6AaGYUHvdc2rzmNxOzOYAA1gVjBj+1M1apgWHHivmtj2Ac+p60bjnhPujdlTD8yRtK51c0P8sC4pONLPeM3++alT7SYH90///M9auwxd/w/9XhMle3Mucr45ROz5gkr4F51PSMtFaIV6K8FbOX7IRYTDpVgv9NZRMODRwIb9e+OtzbkYDnNVchB18tIERJpSqSJMXzlIFN+jyPmi1jWNevB8h0CjXchwSJlqoyJzgnCtrpb5LypKO2qTiOiaMIi54BBtu88Aq3U7VT/nKEUfoGLjX+sgOGcLhmuUKRvPNZF5wU5o4xj7rODKVcQFxBWqC4hTeb3SNjxSjTYQlCfbxPTFO0ZglMoI7JzeR++YgiMHpVypBYtTa7u5KmtvroDL4DLVFaV8GVqv3mmaZowQIsFHgtfOQXQdwfz4BWfcRXkqlV3QLncDGM5Gn87Qggre9SXUDFIcPjtIDpc8NWmyrEsgGSTbsSsKyIpUsiigS6Lgot1/1i7Cv4i3V7/yFe4eHfHo7l0e3flIBdQIYYhkv0CmURdF9PwO/YoQPN4LZdwi3nzgStJzLwR83yNxoNSKlEyMjn7owDnGXAhZi+9cHGV7yVt/8j3u3f6Yd3/yI775m3+ZZ198gcVqzWq9out7Qt9x96OPyecXeLOEbeCgVJnPUaS5hjX3Nr02fK2QJt2sG90qZaZpZBq3pJyZ0sQ7b/+Ex5fnfP5LX+G1N77E6Y1nGdanrK9+yKOPPuT+7U8QmYA2RdFjKDDT8xp4rRUmL7T9RFDefod2tnMV63Zrs6WI0WeCNhtK0eC3EJSKkwU6G8e2SR5mM1tLYTPuiMdHmgTuVcNRRE0N0mQ5KH3P8uQUV7QAb7kyoe91E8uVGPVzGlYdaUqk7YY6TiqRWgbwEfERiT2uX1J9VHvQaSJ2GT8FXBcIq2PKbiKlLXkaNT3cCSfXn8HHXlOFYySHyO37T/je999m8+ATjq9c5c7tO5Rc1C/f1smKhpr6qh3IMBXimNTFanPJ5fmZTbyFPPZqEpITfrkg+Js8/8ItlkdHbCe43GX6pbrZqeEJ5CkTg7pDtZZRrZVxVJ2A94FhiCyHxpzWtbdWR8qm2PKeELxmZviDDqA1saoVO1D3lqsVxCxP/WcQZAD0yyU5BXJNlJJm6pgK+T2zw1S72URI2UE22ahODURaDdMExhVrDtk1Vu2fZm637r9puqTuJvKwZXl0hSH0hFUg+sBOdOqcZULqYSKWbrTSGl0HN2VU+Bn/uBlE7cnNXqyH75u+RJA8kaeCjwP9aqAPHWOKxGlkGhPTlChFLeDnWgQUXPl9LSJlz64Qq3eKAVEjsBt6tWMl6LFG1E5V9JppQK+if++9vn71ejFLayt0q1T9bNpAznv96KpYGjdI9Lig7AyxBp93gg8Ku1SroM0A8Wr4X6zpKWgj2AUFNcrh0veqjcCMSESqWtjT2fFwSknNiIKWLlKcI0klORid4yJnznY7LtNOgUad9Hf3XHqaKYF3BZFCJeMkUySryLwWsu31BatNxFgWPrDoB/rYAwqAvFG723nbAGuwRpAdPCjVtMcKLCN2fJt7lNUiITukeCR7bba3Y9MMaawWqQe1iFLmrQFq58bPcvvZgYZ86s6nvudT3/8P/e2nAYoc/JpToEHQot77fR6asypdtRQyU5qyFY/SqvQDZG178b4IEMzZwJB+ZkZ27SJpoCagutAQ9O6jw3WCi2iB2zksP0ZDv4RZna8+/Xbn4CuGFIP9zBoq7XDsQcZ+eWppjTh7Ptsg9OJuJ5m9D/bgonVwWkHUVhGHnlTeQZgXH7MscyC+4oOicaehI8oH1HVFi19nF7nbT1q06KmzOK9a8Fn1wehw0cbQASTiarT3aatIa91VT3FKYcu0MZ8nBb2XECgxILGgUebVBLz2pht10NfZsklCVVAYoERH6Tyl89Q+UrtIjR1KdtVJhnPK5WoPQ3UGHJxekNnZz9z8M1/UOcrZ72kgkEOSU1rZpHeZHCU56uSo2SEGNmptdnP63lsw02EnYe9z9tm83Xr1cyyOjhhOTgmLgbvvvEOtQtcPYB382AVwkVKUGpGnEaTiu55ufYSfJuo0sUsJ+gWdC0zTSB531DSCD3QhEhYBnwt+yrgkTBXddEvl4YN7fOd3/j63P3yfN7/5y3ztV36F1978KsPxim61oJaK8/fYXlySciLnad5AK02EKjad0s8s54LzuqPlXMCNOskrmTwlUlbHqpw1Q2EqEx+/9y5PHjzg9rvv8sLLL7NcL/FhTb88pu/PGKeKM4tO3biYp796uc4zQy1EESaBlKGvsIyaLi6lmv4IpFS8r3RELTiDriE5Z7Nyxiainlyy8oh9sPdZlBo2dLpVl0wXAz4O1KoUJhkh+EwcevrFQgO1fFQesYNclJzarxbE5VJdrUoxmqrH9QtiF5GgLis1V5zLTGWrE6OqBUzOha5fAD0yJSqJmicAhtUR3XCEd55xe0FcHVOd4+HO8+0/+B6333mL5dCzODlR+mYIJNTpTptMtodU0VCvaSTutmw3W/qLczUCSCN12jL0C7UZdRoOqTaakbNLtcMcFo71oNPggDBNBcmV1VGHn9O5lZozTcXoP57lEIhzhaxLfKoaHuZsil9ztuomHNSutg4aL9Hh8dGzWHVKP2l7Q1OPfsZuXdfr/pQDruj6IBUTMslBmxFmPdvsHKP0QarMOhZpAXBmwNG6f4IGy7kquhfS6hCASimJ3XRO2WX61RHD8pjFcqnXkOl8asogLbldrGOu+7Wn1SLog5pz0h78WPHYPk+0i+mcuRSZzlFqIaWE7Ea6oSMGhx9U2+edJycxbeS+FhGssdtOlbqvTea93I5YO0WVHt6owk6LDL8/N3VdrFanHWhBrds+d3JbvWJAQWuRvdGJiGjTyGsiuI9BQ/RMPzD7qgDVearz6n5J41/YfunAU+f8DMlKpVbRf/MMLTjpTM9rUx6z6hev1vaCTiKy8yQ8o8DZOLFJo+atBWNlhP3rbGYA7bXiKt4Vqss4p5OSJIVEZnKFHp0+Fe8oXmslfEcRJfx7szDO5vJZzfUyisMZHd1V/TlZ8KXiKkRxxGZ2VBySHcVqEpc9krT+cMmpk6gJZOfoA5lTTYy+uqer/Y+j0TgECIbynwIcnwINCK21/vTf14Pv4el2vp2LrhjYiNiJ1WwYDzsDzKJI79uwxNkJLqZLUE5zAxut7kb0Q2m6sadeuKHA4A6SKSOE3hGj4K0e9RFcdIpiHTa9sGKxqPgpF9GxmzQ6jOV0WKMEd3BhHxyOZg0HBxOY+SLTC3w/hdTfkDYOqvpe9LyyLID5+Mt+nCnVOpsNnepGFbxTnmJwVnM7XFQPZuf1JM/VOutGLdljGF0YpWqKcHGV4jzVZw1fa6Qg6XBVFMBhtDivndbGB21c2baWeetkOLv4vTk6QBuBwTyaauf/HHaChgRFxRF0QO+RwSOdR3oNSqoxIMHQbTvXqlHgsigoTeCynTvZUQ1oNFDhqgVBHgCQmtsC4HSCkaAmR8me3B7DmhEihxeHzLqe5mYVZhj82byNY+HqjWeU845w8egJdcqM446SJqTCsD4hiRbCaRpJZYKUGKJHahPdasaL6xYgQsmXWij4qCnvUvFFnYbU6qPgSmZEU5kphe1mwzs//iGffPgBH7/zU37zf/Y/57XXf47rN26wWC354Kfv8OjeAzbnFzy6d5ea6yycEyv4K7YYVy26ZdI1wBs/vJRKShM5J3JVamOt6mZSq7oKRUae3H6H7f27HJ2c8MoNzxtXPf1lx9uboBPSAEWy5lew36hpDQIxmqhXcWmqQirK5x3A4gT0fHZRr/s8O+OoI0+tquPwQdPDs01enEDNmllQ+w5nHfTiMCqbx2edmBQDYOCoUyIVPRZjyfjlgn5Y6pozFeoSaxwVUpoUUMSIt9C9lDU/pagaF+cCaZzwPrA8PsYVwYeOPgQNyRKhpozDsTw5peTC7vwhcXWM6wfOa88f/OhdPvrgfRyFa88/w5e/+XVeF8f7H77Hhw8eUIwMIFWPoc8V57O+h3Gk22zY9j1eII87pt2O9XJF33Ush4FFzsRhyeUOxpJYLiNHy27eCqXAlGBYdiwGJQHrPlBVTJoy1XlCdKwX3TzNB10b0iSoQFxJsq4Fsf6pDrlRNNEGUYw9OKVYed+KwM/mTSqEEG3CINRsJFor5nE6EWprqVRto+l66ueJs576BtqqPXDbmMUZQ6EV9UZzOqgltPEgjGVHmhLjbmJ95RrDcjm7BJVpp0YQtVg+TZ0foNXbrlX9Du0mm8PPnpKk+5pSniouQggCUbQZGx06GJwg67m6CBAXwhbYCpQM2alIfG5eWWO2LSVPhdHOB1v3m0ZPnxu5XmsSH2zb5UBX6vYIZra8cU6zG5A58A+ne2sLBi7VE4KQ26bn3DzFcBGtEQLEqM+hcRpNQ6B6MwGl3Nt1I0Z/KqLsi8bAIAb80OMkqgFQ5wnZaFlewHR0qn3I6rqHQ2pgN+7IKYP3xH6gGyIh9IznI2ljZKKmh2j1p8McL62l6wriiukcCtkXihdKUFteiZGiFll0QbN0Wm5GyQLZJhPi5sZmPfjqitJ6Z6BRtDSqxc0CDZ9F2RStXsmOZGwXWi0y16e6jpeyd9bcw/l/8u3Pp9F46gxk34L/s57L/Rm/dwg2Dm+HIAYruAzh28CXWdA44yixh7avVn8pF28PMuYOhDt4udXNtagT0c5AQyHu4GLzbi+oDgoyul4v6hgxVyU56AzYyA/lwqaqNq3ZvjZNiFh3XMrTPsT6VO6pbI75EB4ca4dvPDJaiJdyDO3ANT5WcAbS3Py+9K26WUgl7A9Q9c4mGQ4X1Nc+dLoxNaGcVGUpFSc2ddA04tJ+XrTYmAXjzqvLC228Izpk6KDD0/lIFAtADI4QPa7zEBVchKKDjlgCMRTlaYb2Opst4X5hoh0bA0uYbW2ImhsQekccHH4A3ztc76Hz1KgXeA1OLe6cnQ86A1beZa6aeJ6FFh0v5QBs2NiscW69dRFaTobUT9GvRAuCw0u2nQNtiuVRgKV4ad+1+azefus/+n/wi3/lX+b0+Vs89zKUKfFJF3nw0fu6CeXE5vycru/IuwuyZTtUB+nygjyOKpQet4Qu4kIkpRGHEKNH+pVOQLyDLIRaKS4wLAaYbFGRonQmUfrOxfkZf/i7/4CP3n+PX//rf5Nf/at/jV/8zVNe+cL7vPPjH/LBW2/jguPJ/ftU4HK7s86jdt7ap1HE42thKsWya9DxeErkWlRo7RxDDATvOVoIf/VXv8Bf/JXXkFr445884tHHD/lXf+kmL754yp0HW/7W3/4T/uStJ5TqWHhHrpVdqXMRlQ34tM3ei2iXFFHXtqL0iw7ULtmpUNtHzQFS2p+n6xRg6CUquE6LWJwnS8YBg/fkWumqzIDLdZaFYboU5zSITsHcROwqse+oueCdo1ss5ubyeH5JHRMuBKXJ+6A5JLN6tCjA8QCVkmC3m+j6gbqZ6BcDoZgZRRUkZ+qUGC8uKRnVOtBRc4cUz+NNIXbwlW98hdOjI37lN36T559/kWlK/Pitd/j9b3+XcXo0F5BTLbji8Fm5+2EccReXqisBsIRnakWGQbOHusDRjefww8DCCash7BtdpbLZVIbesRyUEtz0cznD5eWkBgbes151DH0wYbCdYQK1aKI7IvgQ6Bcdw9BMB/R3m2ZQu9dFLZVFKFnwCy1S1WHpswk1zh89ZHVyTOg7un7QAjxDLpMBCDWBcKheSg6KFrFsDRXDaRgw7FkBuhV6fRycgRS7hRbkOx9pW7srtUDeXDBOE8vjK6yPTwmnJ9S0IE9b0rijJNTYwPZBrUVs7ffQKvBqj962tfa6nGsgCnynxXGMwtXTnpPjHucrm1Gnp8crT4yBcazce7DlYiPkrE+R0HpE9zcr2Ot+V9mXGvv8D9iXFk8noXttfCpqYD6nGnVtpjIr66Q6fa8ZiKK04Go6SH2rpkHxjuxtT3RO9XABgpPGhNO1rBbVEEigoIEEyhSpKoKmGrjS58mopa0zfWzotQ7pfSR63S+U7qXddAGjV9v7Ko4YPOvjJW4x4MKCkmC7mdiebNk8uaC6MutbqtWgzeq/Op3SOCe4UPFRkFjBLP4loHSxYaBG1YjN1uSi50jNuuYEMOG7HmIpjpTM8EGYwQBWZzRulqtKjfIHSMgZYNvrfvc16Fwrs9dAz1bJ/6MADf+pu/vU/fB3D1+H/Bk/+/Rj2+/ZuU9mnwnx1MTDXrTMjF8TOFUtoD3mKU0zMtovMvozN1OxAhhq1gAjYLaIUh3E3FLAOUfwylvuvdD5SvSYTWOlYps0QvaQvD2KMFPn9jkKpguxYqE9tR7i1rluh1gL6Wr80Bkx0S7AvTwL52ZBMk4pEQoSvI5sTU7mnAEA9iOw6hydb645yrkOQcFHsIJeBXWB7Lx2R5wtXFLV8q1YDV4hGc87i6PUQCkFYsQViNXRiWegsgiVXio91jmKXjnXEfAyA5tYRMHGFCzEKqgfd/sgZ7C4BxeKULx2fIKji4Gu88TO08VAHwN954nRE2LARX3vrs2Ka9PXWP5HrbhScKVALkguamtZ6sxrbJ3l/eRO5mmxng/6+UhDG25/ch8CjsP7PhxSO0Tu4Jz+rN2+8/f/Nvff+ym//Nf+Ji+9+RU+99Wvsj49YlgvePDuu2yfPEFwlGmENELOpDQBDt+bc1FNmsfQL0nThrzbEGKH1EzZbcwmP88UFF8qMfZ0y54NlzgqOaur2WjjiWmqfPT+2/wX//6/zfd+73f5+d/4S3z5m7/A1VvPcfO557n30cfc+eB93n/nbW5/fJvzJ5cUMZqLXffUZs+oz4uDWgqlZJJoBzog9N2CKoXPvXST/93/6jd46SY8vHOHr75yyu13Is8/dwUXAs+fnPGXf+01PrrzA7ZjoXMdqWTEqaCwaErVDFbblIV5bYOpioJgtCAqRnkMU5mNLmIMliq+R8BVEn0MxNiTclFqgu/UjQWnov3gqblSXNH1NKjgttiL8CESh0HpE8EhLjDuEjFE7URWA2RFjxM+6GM67SLWnJACXpT7nqTiuw6JEdf1hH6J85FSEi46xmnkwe37fPzBHaZUif2S4eSU5ZXKcKUnnma+8Mrn2Ww2ZBFuf/iQ2+895O7tj7j91rt0Wn3PTSNcZaoFXzKdZZyM04i/PMORoRyBXZfeCcNi4NqtW5w88wyLRZj7HKAi/YvzgovCcujmBlj73C4uMrtxQoAuBtaLqAnLDUKI6oOmqVrqeqQbOvpeHbJc2z9hLkrUFEWUO+9sQm/Pt2+lf/aaFpuLJ+Q8sr5ySrdaMKyX+BRwyZPTpInhtI5sa1XKvknXahKLlVbwUZm59Xa8RExgSyNwOAUhosGtoB35w9ZPKSNn4z12FxvWx8ccrVfQR0oXKVlzFqZppKSML9WYR3IQIEcbIpj7rsJeFUAz34N3dN6xXgReuHHCshdqmbiyCEyTUr5EoIuFejyQd1t2TszJyUCVNFCA7ls0B6lPAY124G19KTZB8/O6Y3VGK6DBgJQ2OXBhr/EMOlXAa/3hvblGSdsydRpRm0NecMQY9f1YLeNoID0oY8T+voiQRZ2jcrX/dkLy+nkVqeTqKcYg8Hg6V+l8JfvCIlRCLbhUkQyuFPwQCS4glmcTcaxWS8ouMNXEVIXtbuLy/FIt2q0eEfsgG9ULY6NoKLqxM+zeeqLRa7O1XwzEoScGnWw2sCkCJWst4hHV/1Q1vJFSKalQcrGcOCs1q06uwkEtUu2zETunDE0yi0/n8/npz9+hLqKNZt/+97Pcfnag0TRpnwYYh7f273zqd2E/xTgEH5++2QLYwFfLG2gHGhQ0q5OTFtX6NN4WAqU2hKoHZEaO9pwNfETxxOoItiHOHX+nJ4OI5kW0C0/TI3UxCIKlSzsidQ7JqaiYJxt1pyHZgI4K1VLXnlNaiAoEaR/5frbRissDaDAfuLkctSZAcK3TIeCddWj0sbyd2E3QpYnnulI1ela1Z6lOU7Bj0Dsh2FTDaaiWWUtWe0V6jBxZnIbriTABU4HRCamo13SOjhygRJCuatFXKwuqeaBXfKcoOTp9zcErp9h7Ld6KOKYCfRG6rhJjIUS1wivRz1Sv+RA2YY9x34IP9CEwhMAiRBYhsgyRVYgsfWTpAsNsa9vOpgPXErugpWakZELJOosuGW+Ao+rKBjaKFEuab2TS+Rw+0AO1b1onesYdwrwx4qp1NRW9VCplDqD57N1S2vLhuz9k959f8Oadb/H6L/8qz7z4MovFkuVqzb0P3mfz5Izx7Ak+RLoQyZjI3kUT2Vu3shby5gKXCvHoVOlKl2fWxd+nzwpCTQm8UgAXfUcOHj+NiKgAWKwbv91d8id/+Hvcfv9t7rzzLr/wG3+RVz7/Ja7fvMW1W89w65WXeP/td/jjb/8Bjx48REwop74V1YoZXYkAsA6qVLE1xvFkt7OOmsO5gX7o6fiIdS/cuHmCjwNhGNhtHjOlkcEHameput6zIOF9YJc1ObvpNXQAd9CVctqMqIjaItrG4gVKUpJQFx05VJzxoGtpuciQrexQUaAWuX0fyKUi3kMuM6XAGS3MC2SndgXVwW7KDP2gwmOnCengka6znBTrHDpztUuTurewb9SklJlSYipqDhIDpCkRYmJYdOzGifsf3ee9t9/n3p17pCws1ifcvHWVqzeeZzi+wtGVaxxfPyJT2D644OzREx7cvsvj83Pu3f6Q27c/5OR4zcX2krTbWc1pLi4miDQlNbVMpCkwhUDsA2GKxK5jWC945UtvcHR8Yk6HSuOtqbIbdYVfDUr5aSW+JoVXLi9GchWIgcWyZ9XHp7ZXQdiNle1WdUx4bbjEaIFu856qQtE8O9/oz6PXokX8flL62YMYehNfmdKOelZY1iOGozXd0OueEfdgo1bNyXC42d4W2x7Fi+2VgmRdT53ZUddazBL2wHjFOQMVbRl3ZmPf1m19fJ2+CnlzwWbc4ccTjo7XDN2gSdUhkLtIniamzUbtTmtrPO7zq7RpYD1kp41HsWtYtSRAgU48HZHeC7UmBAgxgjMjRq/qvuAdGjBvOgZhfiKH1RI2CeWpWuTQ5v6g7LP1RqrTsFunNM1WQOPa78v8SAqkHBJa93yvQa00216rVZy6UAUfVC/pAyFA9YHiPMF5amsMVD9buGZUh5cQEjA5IXshFyjZkXylhgCd4Gulk8rCC+IKuYwK5IKj6zv64DVHZ9CsnNo+B1fYTfqZT7uRzWbHdntBqROhC5TkzdoYbfIGbbTgNRyy814b1s7ROU/vPIN9XYTI0XJFHzs9nu3oGz1XzBBAqjY5Q1G3GckZSRlXlHXh0ZpTtJA2ar2u5U32g7S59NNgwu83TttDDaTrmMSAitas5U/Rk/7s288ONA7nKH8W4Pjvm3I0w2ZBYVUjCLY3e3g7eHO45q6z7/HqwWtOUIIO2W0sJ3oSO/EGKBqnX9pUzkKKVBwZD2zkNAtBL+g2rxSYBUxapKuLkKrzBe+rjjBFrBNSdLN0IE5UfBwxy7KGBtuxMHcqgXDgBqGHQL9rl5xuVh61UlUqVxNrGsCf30cDETPac/vio9LE24fdir1NmZqrB+VId1EtEzvr8kdvnuyqQdD8COUKqjBcGKuKUNV+FqYsJA8lQAmVHB2SCr4LREPlSCX4SoyVzi4AUbSHk6DHx+koMwT1hg9e8K7gnAagKVqzuxjlwoTn+IALCki6GOljZAgdC9+x9B0rF1kRWRDpDXx21c2dQKmCq0V56CXjZoCR5u9dKfhSTHwDLjujS9lGRHtPhyI/Y8a3l+xkT3Vo4NZB9bL/d9fcKXR69Jm9ee083/3oXXZ/74x7H37El37lV3nh9S+y+NqKoyvX+PAnP+J+zkTvSNsNIXTa7hGY0qXSBWuGxGyFXYsGN7p+SZhG6jTifNRrTTQIMMRIGCvedeDsM6yFyZoBKvB21FJ4dP8uv/Pf/L/56Z/8Ea+88SVeeeNLvPr6V/j8G1/hxvPPMyx6vvedP+DuJ/dJU9JhQOtQOo+qMKyQEV2fvFUppVSeu7LiF958lkAiDs9y44u/xIfvfcB7737AIJ/w/OduwXCNy4sz+m7QSZ/zxJyJzjFUIXrHWVW3KNg3Zto0ozUkWtfUNdABFDyTuXthwuoSAp0VrsHr9FJpKBXvPaVWcnIEPK5TDZoKPzOuC0gVgqpyVdTtNUSv7xYUMe55UAcXSZXgNZRs7xoE1Oap5ua8m1wqU848udgypcTVK6cMw0AIcFYqP/7ph/z4rXe5vLjEO8dytaY/hq988/O8+Zt/nVocXX3MyZVA7p7lrR+cUH74Lvfv3mbcnjNJ4uTqMX/5y/8Kd+494Hd/+x/w6P59YO80VmolVwX6zZhEaXGVHBOxj7z85S9x86VXiQa+vEfpXqNy6ZfrwNDt20agj31+mRlL1kZR9KyGMAcs6m9pr2McKzlnqlRCiHSdZ4ja3W7Lf3P1SVO1pHMtPBfLaFlKzE2qP90p/IzcvDb/cp64vHhCKonF0Zp+OeC7FT5FUtohCVt3tayd6TnOJhZNp3Ew4RHQ/UMdTTgslzWvQJ2RHM4G6aYjpMmQG71KcEnYPnqEXF4wLAeG5YLFcsD1AymO6kx1uUXSPtW5jSQVYEArrtQgsgnKtRbpOs9qGNTzhI44RDPFuEQouC5C6LQxFX3rReKLudHZx+8sYK7uN6i2cun3znJAcDinBN5WMymgaOeRga72uAfnmB0RXWdNC6JljVGYBNNR2AfsvAI/00262KluNBplGtVatIDcYnrYLKLuUAKTwChqk58dZK/fJ18IA4TOkaun1sDmMuOcMPRBP6MQ6XAsVkvWV64YHTGTqPjeMZZAvwMvSddIHKGLHF89IQ0Dl0/OKVmvaZyG/mJskRDUrKQLkd4FehcY8Cxc5GSxZtUt6MXTiTbNqeoA5WshUilWk2gDNEMp1Jy1AVcrXjQ7zs8Oo26vw7dgyNqan7YmNFevVosIzE6LVpJpJzgJ4rQOUbOaf9YTDfv8/0xAsecpHYAQx1PzYezVZzkgkPL0hd6EWPOioD7JHjc/lE7oWiCfuYPQeJMNobv59MZsIb1z+wVB9ou9YZq5Rq3tceznwV5KbGCmNbaqV+qhTTB0i9eFqZh7QPVQI3tep60m2rVWoFTt4mz0mtaBhTqPSJ0vZizi5uPcxHzzJkP7+/3BbuCr1D2+a4clAM5rMI6IVx9rHyF2hK4j9lHH8r0ndGafKCiFIgs+6fspVJJZ0G5F2BbHWEW1KWjnqIENosN1mZo9rmSlRLhA5yNdrMRQif5gMY2myNHWDIif8z9cs52YLXj8wfk424ThfUcIeu9CTx96htDTh47BdQwuMoinqwo0YrHzxAqjWgpzqJNNNVzJmIoKJ2Y4K3qEdeG0cbp7+tza3+XAm7qJ88RyQfYMO11v2ypcZ0D62e1Fwip4kgVKXT6+z4+/8w+4++G7vPmtv8Qbv/iLPPvq5whDR7de8eT2HTYP7qvNotdCduGOcFRdxF1AVkeUMcGg1riI9sZUHAwIs5d7CD2wo5ZCrZXgPDFU7fIW2dvpAyKV3e6C9378A+5+/D5v/eCP+da//Dd485d+hc9/6Rs8c+tFXv7iF/n+d77LD//wj7k4uyClRJ0/ZZivwcZxFv2c18ue/+2/8cv8G//6X+C0S9TdI2o85ff/4ff5/h/d58YJrJeRo9OBX/j68/zg7ZH757ru1Jzou6iah2ki1axOViII6jvfmg9tOoZXB7lgS684R7aN34HyfRunWLSA6ILQOxOWF20IiHjtupdC6JTb7WrFdaLCwloIInQCvuvoXKTgGXMlBk/selzXa+p1mkAcLkSWfU+RjEg5OHpalKRcGKfE5Zg53yVKGlntRryHi3P4yXvv8L0/eYdxSvRdxzAMRBdZHA/8/G/+Is+9+RWcjNRxg3vyA1htufXKLe7e35B2G66/8Cxf+Ma/zvroiNMrVzg7u+Bv/Qf/Af/pf/jv8uDxk/kzq6axUoqHdlOrAbdFH3n5tZf43BtfZbk8JtpmVXJlN+n0J0bHonfqomPvUIDtNnN5udVMjBgZFh2rIVgRuEcaU4ZxTGaXKipeNfpMIxHMNysk2r4zLAb6oaMJdveU3H+ml/Y/t5uGNloTUDLj7oJcRpb1mOF4TbcccL3DTZ5Skl7vqiqemwkgKp6sTq3Vi6DajDqvGXJQ+DswsrYHd0BlErTpKK38KXOuQ+NNT7tMSSPTboOUU1ZHRyz7FcvQUboFebNj3OwoxUwZ2p5Rmdd752T+3IIDnOP66RE3r63pY5vyejYXOzbbggtCR6Z4WKx7wtZ2ngPKTmMdN1pvsVoEmJcwoVGgPMFXdYfyHgJ48/2f9bCtkwIG2ozSh+ydrqTtbzJ3zgO6vVfRQDgnOh3pgmbo+C4SYlRNSh+Urm4c+5oFV3XBq7mSpc4AY6wwFmbGRUGBRvEQSyH0iVo820u1SB4WHawGQhBiJ1BgOSzpwgICZCnU6ZLg1Pks+kR0HcteWNxYqxFFgbJLPIz3efzwAVlsQXYB56Lqu0Ik+o7Od3Sho/ORwXccLZYcDSsGotYi1qSmqn2+SCWIuhDWA7BRS6YWtc71lhbtPbi8r0X2t2bWoeeQWAO7fdaNaPjpWqS545UDpPjnqUX+fBONTwOKdg8H9/Y7B9OBRl0SsX8r7D1dDyccjjaasOfUvxezlmuc4iAzgWfuzjsr/ivVxJAGOgxktIdUVF9tpOznomJOP/TeLL304g72XoPAJEJfoSsqhPb66ZjzlNmxSjux1V2qOChebVUrKtRUoCAzgGlJ4u016qHQoBXv68xtlE6Mp2gXsGsArHXLD5CrwagGMoroa2Yee6Gi+OrwoqnTxamlWuwGFoOKDLvBE3pnXSRI1SFJmJKAL2RgFLiswkYq2yJMRUf3ezTsKF7UJaMTStbP32FJts6braZ2UUt1xCzUqKmeo1SmSbt0KRsP0bQRtbTqCeaTzQcDGxEXOnzs8J0CqK6LdF00/nkg2mbdg4rSpe6dpqpSvfagIiOS1TGCgrisVsC+4IIiUB8KvhZ8qLhQwO4SigYFeaWMVV8oTr8X+6qZI2LTK2kjL31sb9XDZxpmwPF6zZYtuTpynkjbS+58+FMe/e0nvP+jP+Gr3/p1nvviF1idnHLn9G3uvDNQ7zim7U7hWb8gT5do+NFOi+jYEfsFlUq+OCP0AyknxBKhcxYomWlzjqSk51sVQhwYfNCgtbmTrgup6uaUpLnbbLn7wXv8nf/kb/Gd3/ltXnj9S3zh577Gl7/567z6pS/z2pd+n7d/8EM+fPsdnjx5zDhOeKed+nG7s+6dI3pPrcLVowV/9S/8Ai/fusr5nT/h/MFdyvoFPrz9gLv3z3jp1vMMxyccnfb065dYrB8ylGqdWaHmNdNuxxA2HEul83C5mxhtwijiGBz0UTUhLU8nOk/12pxAywd2tVKzp4/6M5UmaGe2691+woYjxMCYK9OY6fuO2AVKzkhypFRwouFRRF2TatXQwGlKRAfFO45DTxQ1zNjuNlArwzWbmAZ1k8ulqLWx77nYnTFOiWSAret1y0pT5u0P7/GdH77P+cVIb/oqLxVSYcTRX7mGc2tq2VCzIxy9ihsi129kXn71Cky3KGnHqjtmWFxjc5n45JPHvPHGF/nrf/03+fbvfYc7t++xm7I2hGxDLtZNG7rIczeP+NrXvsTLX/kqi9WxbXnCuBN2O20Qrdb6Wcwlq1Vzu23m8ZMt05jww4CPnvUiMJjNt9ZoRltLhSlPVCl0iyXLda/GJEH2G2yDaVbcifm9lypcXiaWpwP71OnP7jrio+7zzNPgSi0j5bwwlR2LkyO61YAfAimPav2aVbNlcbszrUqKFqwqqdIqX7LZpudCEzWLcdAq2UqhNvnbBwS3esDTahGsFvHqfrTLlJzZnl+wGBasl0tWizVuWDD2O7a7HeMuqYtWVVMA1azrnhBMk5lFX89qtSSGQM1bUkr4LrIbC9NU6JdBc6s84DtqyMqywLQoXs8TL5VYQAJmgz2/ZX0fTulaWosI3lW1qo8Ccy2i18Z8DO19O2lTVMyZUwFUNjpiwCvtrwquqOaz80rHLi5QzUGw6zq6Luj5Pqg2U9A6o6ZKKs6Mg4Qknh3CtlbGIkzVMU2F0owwsBqqFkpRoJ9qJfbRzCw8LkScD8S+kLLD74QaCgVhkk6NLqTgowIiZ7WHSEByJqfCYrHg5PSEzagWuBKiWnw38BQjMWotslp0nJysOFqt6GOkAyKCs4mzE/38XdU8qChqwSNk1Qla41P1ukrnDyL4UPGid+cL1RfEZ2pQIKpaPMH/D9Qi8/+8UMv+71pX7mddQ/58QMMsZ2e9huNp8PHU93ugIW1xFfvaiqhqv9u8Xw9b7oD63DKDFk1NBFNW71/bPAmpUL12L9pDAM0Wty0QiuQUuWUbS+7Tl+WplxLnxxFirexEsxLETtqguA9xipYnhEk0tj6j9+LmCRaNR2VGTk9htsN3791es+CCo3YOOqhBx4p6fI2jaPw99eFurYg9JatUS/JGmk6cmfEVtCAQoysFHxlix7LrWQ6BYenxC4dEPbdCBUlCN+qibfs6u1K5EM+2VlILqWu0MIfqKFLFZe1+1iIm4EKD1IojZ1hO0I2F0AeInhx0BLrJhc2U2G0TacykqVBS3afINHKrjbcJQa3BYoeLPb7r8H3E9doh8TEqLcx768boZxlpaa6qC6hSdQGWSqSaOFAMLFSClKa00rNGqtquSsb7DL4gIUPIEDSVFK9+2uJsCuKKUfyM6md3Wo5J+5mTmYb3Wb0NocMNhXHSDlxNiZQruwf3+OGTxzy48yFf/4t/hS/+4i/xuZ/7BteeeYYPfvJDLh484vzRE9LlBWXaEhdLXNqp/SpCzRNpHA0niHaQvFL0nNO2ROOlO6lEgTwlXVztWog2HW3XZDYaELVSknD26AFPHj3gnZ/8gB/+we/z5a//S3z5F/8lXvvSz/PSK1/gzgfv8NHb7/DB22+zGyd2u5GH+YFmS2DrkBN228xPfvQxb3z5NeLRLcI24aLn1771OtfkO7x6q7A+XTGtb/E73/6EyymwOFoTzaRhGkd48oRSKzFPnPSauXB+ueNiUlMGOrNFBAYfjKYEmAYqRKWU5OootTImLaD7PhDFU3DsLP0vV+3i9/2C4hKb3cijzY7VoKBM6cca+td3Hl8rsZjbjyuWWg4+V1aSefbFa7z8818ms+Ttf/x7bB5fUqsjxo5uiGTxpFooVRizkKqzIgC62EEpXGwmfvjOJ9x+ssGLTmicBXNu60hxmdCtqAVuf/f7PPnRd3npl3+N49deZn3ykDe++jx1hLd/8BP+4d/+r/nx7dvce3CPhw/ucXrliBeeu8Ff/cu/xOaTd/jw3gUXFzvK4wscwslpx7PPnfLaay/whTe/wvVXfp4croAESkG1FJsMrjIMvdLR/H69RyCVysX5xDgmnNGkln1gPQQL0pthL7UI465Si8PHjm7oETxDQIvPp64wo+qVQq0ZH7wKSHPGuWEGS5/lVcRbgSvGpW6S1OIyu3RJPp9YuhMWx2uG5YpYCtM4auJ8UX47xcTJzv672v6YGlKwQlpaQSVzGJsz1oSv0MiuTdOjGE9rESetFlGmg0Npk9OYqJeX1G6grtes18d0/aAGB8MIY6LuJg3FrUKyHJ0KpusSxlI42+1YriKdDzgp+Cr0y55SJ5xXVsXkIo8vJpIocHHO2/vQYpmCBj96pfcdBvtpE1Brps6ZLbL3SOcssDjMtVSj4LTzT2nDosYOtn/qUQxP0RGD8zMVMXgt+Yp4pHq8C8QQGWJk0VvTc2EMiy5wtFiwy46zRxecX2ZKEVKujM6xEW2iNK1oe18VgeB0TU6VTc5UB32uai5ZPbV6Una40HF5mZjqSBovmaYNbn1ECpEpJ1rWUJoym4sLNhdb8m5HHpPSo/rIyUlH9UKKEfqeoe8ZushiEVmue05PV5xePWF1ckLoBqtXFVR4b9MJZxO2AwqQswmNehQXnNe6I3gL6GvGNEFdFp0FGDuvTVCiWL5RmesQEJyrBlgM3PiKDzrJcE4Bh/PMrl3/7IFGZ7/9aaBxKBJvQGP+99aWcXbxtZ8Xm5XVfUXvULAxv3KZn6Mp81VQ3ehPc+Nmnsm5Yh9Q9fOfqwuVaTNQqlVLRFXLM9FJBs5cCxRRNwzkvGoQghMmV4lFhegCZJS76KQivlIMbBSRObBPLzJ7OwfgZz5chrna+HvGbt5ZYeGVpxg9xKgey96CYVShYheu2sxKqQ36cDDeQMwtpmlGpGGVuveXVm61pmT3XcdiiCyWnrB0SKebuS+CpEoOhSA6nitJSElB1k7UdapW1BK2ane+FmiBJ76YWLxUplxJSchJJxa7sTAMSt2SzlOCY3KOXRE2KbMdM7tdIU9VsykqBjLs6DWQYffWPfDmz++Dak5cNHcpw23OzjMdkLfzysaMFu7k7b+bN/j8ebYphMXCO1dMR1LAZ1y7u0x1CVwCZ9DW6bgzumrnohgdr4DXDkMT9DgbN/8pqsRn6OZrpR8Gqow4F9XQIesimvKWOx/8lLP/8gF3P/6Qr//6b/DsSy9yfPUqt999h4/ffpsnd1E+qkApE84rXahMo6ZiO+1WCR4XBkrZ4ErCxV71R0lD9JzXNUFKVT6rUe90yiZ4KaphMr51sUTfUoU8jWx+8kM++eh9fvy973Lj2Vv8/C//Ci99/is88+wLvPTqa3z80fvc/ugjvHPsthvG3ciUdCIx5cK/85//Dv3JES+/eJW+VK5crbz60jWO/qUXmMYtf/SDj/n+e+/z0QMhnjzL8ckp3bDAh8Dm/IluaNNE8AOpAn3PGk8XR7aTZnrskhCCtkJ69D27qjznZQdXjpfcfPaUB49HPrlzDgI1O7JTS1RJAMqbzlIZs+Z4xNhRa2Wzm+i8o7qqzyOQq2M7FZZOOFr2rIaOUivL9cD1G9eJjLzx8y/z2q9+HVavcfX5z/H3/4P/iPPHZ6S8NZtbXYtSTtRaKKVq5w4N/ivDwAcPHvPeg3MuUyE4odSAx1PIpFQ4uzxjd3HG6XXl8j/+5AOu3XuX9UvXtDMbT1guH7BcdJC23Hn3J9x99JDttOPBvdvcv/Mxv/gLX+Jzb77Jl45usNp+wuM//jaVjtNXX+f0pddY3XiB7vRVRndMCAMlVbbnI64f6Hphtexx0ROcUz2hFaNVhM2msNmpPz/R03WB02VH9A3mghZtwm7UiUaIET9EFgtv5noGitXxwzrRnlwqKakjmgvOprjdvO/JvMd+RsFGNMczX5W6Yz3MatqNVEfKxSOym1ieHNMtBvzQaSbPNFEm0xdUgAlKC9ETm9zrv0mbkpt6VrO5sC6xAh5/UHA5jBZdxRgWhVC9Nfe0iRHcnuqWc+Zy3JEuNviuZzg6InQDi9BB7GBKlClbIaHAPYum1U8V7jw4IwTH0SIQfaVzIMERFoEshcvNxPm4YzdBddGCObWwL9WCFUz/CQooogqlbHhutupBfx687psEj4sRoune+kAqjilZlo0xQqjKLlEIpzWTmqSITXm0PmpNPheMPmV3UFr1ou9Z9IHFKtAfRYjQrwfccs2idrhhweVH96mpMiJsUmWThK3VFtXs6asdQyfavB1TZjNNiHekUklZ3QhLhnHSidnp40sWKTCNW3bbC3wS6mLJLmfGCXLSKVDNlbTbkXcTtVRyKuRaWQ9rhnXPYrViWES6ICyPFpxcOTKAcUxcHiEh7hk8BsyccwRn3qs6HrMC30CE0ZhUO6NnWOfs31stUivONYJ2Vppf0H/LPiMug9UqGihYCU7dulxrnvqCDwoOHU10bDXRz3rJ/swX96eBxqfb8Yf6jNaub2CjeS7K4QM2rpRV2rAHDbA/+R0WX3+wsLaiXY+zWiDaVESnPk2HsXczmuUNrg2OBdhPNpqU6ymthLOuuxcmtLPt7EJKAlGqLjQ22myjuSI8lRLeXiPVXp+99vlQOWaRu3dogm/wxBAIIehmFCISgobKeXVp0QAebeprkd14jmILE7M4sFazkDMBp04aBIKQi4Z3ZXFzuKDy8jyxC8TOQQ/eKXAoXuiqIyanWRQTyKTC7ya4qkputmlD+9AqJKGESo1CmTSAKk9C3hXSmNntMv2iU4pEp65SyTtGgTFXdqkwTUKeHJI9lHaqWwfKjpWPkdB1OooMgc4H+oN755XjPO/rNqlox83ZrFeaHCPr80n2uOTx5izlq5sv/GoftJOClwySZrqVkww2M3MUnXpY/jfoZxGcmPhd6VLOG+3K78GGipsPpnmfsVstE31Y4ldLpslbNzxDLppoXQpnjx/wh/+fv8sHP/4hP/fL3+IL3/wmL3z+DU6uXOfjd3/K/ffe4/LRE3LaEPAUm3wG75DscKEnlzNSnmwFsKC9oqLpKhCHgVIzslWD52L87c6rT3LK6vblbEhdbYMSW+xFEpuzJ/z4+3/Euz/5Ie//+Mc88+JL3HrheW4+9yxf+No3eO7FV3n84B7v/OTHPLh7n+12x7TdEkT49lu3+T/9n/+fvHB1wb/2S8/yN/7mr3H9mRdYffM6//B3f8Df+Z3vcJkWdCfXWS8WHJ1eYXl0TM6JcXuJ85Z34zzjJJxNCedg6DqGKHTF402LMtXCVM1awmWWHp45Hfhrv/IMv/qXvsEdeYF/7//yX/Lo4c447RNU7diFEPB9h3NwsUtaxNZKzpXOO05WGlilHHJv/GnHbpy4jDucCNdvHPOr/5Pf4NYbv0B+/C6nRyP+8dvI4x9x7YVf4frLt5Ag3P3kISkLw7Aw0JNoQWXJB+pwgl8u2XUL3nr4MY92IyVX47QXyJ6JiVSFP/6j9/n7/+nf4l/7N5/j+W/8Gs987jlCP+LIXHx8m0eXE3fu3AUXObpyldPTK3xy9og0jpTtBZcy8dP37lL7L3CcPC9dfYmjrw1QPFO4xp2LY04Xx1w9Goji2J0/Yre54PjqCSfHC4bFQIy65jaaTdvgdrvC+fmISNVjFzzH64Gha405vWlae+X8ctTpVd+xOO5ZdLpBNQqcFsT62IJmcmQLLuy6yMm1BVKDTj/+1ATkM3gLgus0S0npHdqkUZVkYxtkNpszpjyyPD5mWB/Rr5aErid1I3mcqKlQJNo6bBt/EGscOeZEb+eMcm00Ip4mbfjWvLO93ltAmq/a4GtOkA6jSs/sCoFSGPOG6ka22wnXdWDTjaHvcL4QYyZNO51KmedgKsKjzcTuo/sse8+148DVq2viEJFuzcVmx4NHF6TqNcQ0KDXRmdYNqRzaYtNYEaJTst5OxeDUqS94DfFs2TrOq0X86UnP6mTNzvXc++QJY67kUimSZwtgRCfytarDXy5OpbpZNR8xyJwj0oL7NFC0qrZChNgHTm+csjhdgx+RUMmSqHXLsF4yrDtiKjBlqlHV1axGWQnq/AeIqnqRwG67Y0oJvJ+bpSVDHiv9mBinTBc/4votwfcDtT9iykK+HNntRi4nx2aTyMnh6QiuI7mWAl+pwJgFh+rVQrekX0aG1YoYlyAdTjq8U/MIpXMlRMresMHJ7G6m2WsYsHHkCUgm+hZPdEIwYmeV9hkrvaQUrUWcKzop8epsVFBKrlgjJ1o13PRG3kISW81Yc2NXoI25xrP7J9x+dqAReRpo/Jmpcu1n7k/fpdnMCfvqziruoCd4M0wy7IsHoqtPPfX8lAa2yHavOijx1bp2wpyZEW3sp3ay6sGs1l77Trh9pjPQcfNERWaUnmQvYCpVCFUt0lrCuP55U0CwZ3jNop4GhPbP1bBYGwZ1HvrQgIY6FHjjHxPUyrV6XUwzqgUZDbN5Z0J0tJhylvJYbQSbq00W0GLVO52EUCpTFaZS9V4rqYoJRrEAP6cOUVVzMGLUEDy9e3wn+KRdn1lEZ4F1M4Jr/FAHEiolFmoy/+epkFNWUefYE/sIfaRGTw6BhCNVvXBzEmpykD2attiQmoKy0EW62NPHjqHrWMaOoxBZeb0vfWDhPQvvGLx2AQJmsCdeJxeWiyGlKtUrAcnpPTtc8SCeYJ9lbYbVtSjfvyrgcKIi8nYPou5R7WypNo70vqqjVhB8rLhYIRZcNo1GqBC1I+5/xov7X8RbWJ/i+wE5e0x0AT8sCH2F7c6ubVFAudtw5/23OH90j4/ee4uv/NK3eP7zr/HGN3+RZ19+hTvvvcvtt37M5skZbrsBFyk5U8cNu8tLpcT5QCrj7GqCoPxbUYcOaTxt2229U/Apop1HpJVupnhy6jQn4mbHJZHCuNty+4N3uHPnI9764RHPPPccL772Kteu3+TF177AydVr3Lt9m/t3P+Hexx/z4PZdpmnikwcTDx6d40oi99/nc2+MPLkY+e/+7g/45P6O9ZVjuuEIWu6ECGm7Y3dxSR4npt3INE2UlEhJszU2Zml9uhy4fhqoeeLJxcSTXWXZO/7Kr3+JL3z+Bdb5Pl+4megfvMPPf+tX+ORf/hx/9L1H/PSte+TSk9KOKknNMECbHU6nwlWESSrn28KUCutlx6IP9FFYRt1SqlTOtxvGvOObf+VrvP6LX6c7eQ554SWo58i9H8LmfRbuMd/8pc9xmV7jD3/vR/zoD97iwcU5VRxdH+m6gX61phLJriM5zycPtnx45xFjUgAYTZPnshU4wKMnif/w3/uv2V4mvv5rv8lLn3uZ5ckpj594fvzbPyUPGy6lI4dIWC44Oj2m/9hz9XTNyUvPMiwWLJYrUhJuf3yPex9mYsn0KbHsLzi59Txdf8zu8Y8hJcQXnn39CyyOIsulVQmyN8Rr04lxrFxcTuSS6RaR5bJnuehQ19sDExM9JRknYZp0OuG7XjUwOHqzK50psBgwKcLl5cSUMt57hmHAVegseLVdY5/ZaQaA0Wohq7WqV1vVKpYfIHtb+pQmytkTUsosjo7ohgWL7ojSZ9JuJO121KRdXUSbi6Sq4moflK1QNYCtw/Zpp86V/qBeQJgp4M6+Dy1l+QBsHoI9Z51oqVoLpTJSxkT1o05g+wEXO4ZuoPN6LdeSkDKSc4JaqRXGlMklMIljWA2UWjk/2zIm0SytaCb57bWWqkJ4ox1La5aKXtvNTGeInlVznHTenPs8p6crFusF+MLQQ5SR1eoIrvQ8uSxcbieKaDZPqUpJcrN+VCmbtYjZildyLUQCIVSbMAupVlLRKeouB64tjxnWS7pBj0txGZm2hJLoQuX4ZEHykYvqeJK2lJS16escLeW7impkpQh5zEybpAwQX5FUkSyaC5QqyWqRWjKbzcTq6ilxtUC6jql6Ls4umSQyJahF6xDvOzya6RP6SOgise81lNgo5xI9LoGfiup9Bfw06TkhQuh7YrCGY6tFlLZCc59igjoJJNQcRwLeKbVfQYZOvRSR2LlcNdnPW6NSNTKNJqcnRnXNLEARs3NWj6CmPz7quYK3WiTvjS3+Sbc/vxj8kB713zc3aUjABM8NwQMasFYxJx6dOiiXTBdAdXJoXGmhwxER1R4dPOXhRAM7pi5DUzLNprg2/fCNMmWgZ55a0DIm3H6a0UQw5qbQHIHyDDS0qx/sJGgMsQadmN+XdTlkPhwzQJLKHFJzaM7VciSi83PXPXpPMC/m6u2Ois29dSO8M79oa3YbnlB3hjbOrGLTD53MiJ2Q1exb+xzZpMIiFYac6Uugqx5XPb5iLisobasJwvqA6wU/YYs+umibfkQXYHuz84EAM9xHSiHXoF9LZsyFLmXi0EMfqDFSY7CAQU+qjpIFyQZkbOt0Hs1diGEGGEPXs+h6Vn3Puu856jrWXWQdA8voGaKjD6KJoKjeIoqbL26pzEngkqDanbwHi646S2PWMSWlGtCwsaUBDpH9FCOgAq322Xgq3h2IyoNyIyVUaqhI1AW4new/axfhX8jb8opeqCVpx3WxZH10Sjx/zObsMWHUCccuZVKeOHv8gJ989x/zyfvv8fk3f56v/fqvc/OlFzm9fp1rzz/Po0/ucO+jD3ly7yFnD+8x7raUcQtS6WKPWyzJ2y3F2yZDRMLeREJdU7xOKs2+VExo6qpqD0CT3cEZMNSLrNg0qzgVl+Zxy27acX72mDsfvs/Jlas8/9JLPPfCS7zw4mt8/ktv8pOf/IB/+Hf+HjKNCGj3/f0nfPSff5ejox/iSyFvRqUuViH0EXHCuNuRxonLJ484P3vEdnPBbrchpZGpJKY0MeW6LzprZejUv38nBRciX3zxCv/H/8P/lOde/xKPfvRdHv34u1w+uUf3R7/Ft752yktf/gb/8b/zd3nwcEPtF0xpS807Sh31WAQd4+vgUMXhqQiPz7eIaPDfepkYukBnOTehCxy/9CLd0XXc7jZu8Sy1f4m63irFKASu+ttcf/YU9xu/yI9/coc7jxM1LonSsfJLnj2+Qu8iDx+ec//xJQ8fPOLxxQVJ1H6xOuYNsNp6HL3jw/sb/tZ//N/y+//4h7zx+ue4eesFaneVlAqnz92kSIZJO/9f/sqbHD9zg4uzJ6SUOD97QkmZszufwDSRqSz7juXVqwzOs7v9Me9+8CF5d8Hi+jVe+YVf4MXXv8iwPqIUR4y65zTXQkR1Fg+fjKSciJ1mb3S9Wt76T00aBDXAuLxUm+TQRfpFmCfg+rif/hsFJtvNjpwzznvGVJnKxM3rYf4tB59pnKGOgtB0FC461dwVNQmZO/Tocawls9tekPPIYnHEan3E0A0mxu3IKZHGiTJmzaIwVyZtAipodFIsNFVBRtNTA1ZIGOqzxp43sxulVe2t+X3rs7YdX1pDwwgACDkX6rSjbhPEQOw7ul73s7AYSJNnPE86cbd9/Wxb2eRCeLzDWXHhHISI7mkeY2hkajY71FyQrGGzdd6L9DEBRBRceNfsqj1HQ8dLt67Sr1ektCNNWxUjj+dcXQW6YYncfcIoQpCgJg4UbXLa9t+c+Fq7rYowlYyfYHKe2k06sZo8YQqEFLTZ6AK+JHztqGGg+op0AJ4QMv3Ksb52jLvIGtTnPMkJzimDwYmQUyanrEBkVIMAZXZoIK9UdR5LJRJLR65Va6InF/SrFWExUHxHFodEb7WI4KpjuVgRQqf1VFB77y4EeoEex4C6Lq6HgXXXM0gljFutLkOlWy9YLnuid3ipVie0yZjWIjUJdRRIgjcb/dZQd7KvRRRgVLO+1f/2ogAGq0WgEJxNNKwOr/OZqPpSgjZbs43oJFq4JX++WuTPZ2/bXsMhkj/8t/l7bbM08aU39O/ml4eF5InlM+gPXRPMzeBABZpRZM9x9Vavequ7Dp5/P0LeSz9AF/yWaYAV9aadpjUdNKaeWfNQYUZ1isSNQ99EOvb83u9Bwh5oHLDBqrPXaQKrBjjK/njOh66NdGz646tt6OiYPDinoVpO701+5TyqX7FGVXXtv9tr18+kibzUmUupPs6ABqUQciamTBwzYYz4XUYGT+qcXaiOjCNVIwA5Z2F5qANDYE5dnyPlGqJrqLyBjWYCYCdtqZVijlVBpQ24KSJdRWJEQjRZj7cPTKdSuJb07tQmN0QWsWPRDSy7Bct+YNUvWPUD675nFXsWXWCInt5D9EJE3aaiKNjQiQY6yrWJhrdOR80yA43WZdjrOOziTjKL3n1BgUoRTfQsDdxZd8D4der0U2muCNKoUl4OqFM66ZDy2QUay5NTpof3GI6vkKadpqmeXTDEjtoPOravEb/ZspFCkspu3LG7/SFnT57w8Ttv87Vv/QW+9mvf4vlXvsjVm7e4eus57r73AR+//WPubM7VKcVFusUKSqaOE8vjK0xJk3mba1sdK8EHG7ZpyFOtamJZAe+FiI7w60EzoDtg6wXXFgJ0oa6VmhKbszM2Fxfcuf0xy9UPeO6FF/jS177GzWeeY3V0wuZ8M2/oUyk8eLLh8cWORQwsvYZV5lzI00hNmTTumKaJzZPH7C4u2G02jOPIlDOpFHJWMWTjQqSSSSkxdB3RR/q+48rxwK3nbnB8/RbT9Vvc6444v3zAw2//EV/9q7/BM9c+z7Vnv0fiHBFI20suL+6zG9XhTYwCW2wtCdbwUBG0UiLONxNjp6BD8FxsCz/63sd8/TeusFivKFPig2//Fru7t3n2pRNOXzzh8tGHrIeR1clXObn+EqsnkUepUF3Hdle4//5DLjcjl5st0XsePXrEOE3m+697ScK6Ns7cbLwCo83k+fD+lol73HwcOLqaOL1+E84ucDlpplKM9MOS2C0Zp0dcPr5g2k1QM0EKx8GzPj3l6NozuCQ8ePsHbB9+hD8+Ybj1LKtnbxKvPINI1AaIU5pvaNN5gd1UefxkxzhOGqjWR0rQ9attp+5gB6nFcXmpwnu801DHqAJ/MwH8U1hBBC4vsh6bqpqi3gmrZbS9Yg+wP8sEKh+C0lFdRKi6jhal4eDdnHOBaNtAefmFkoRdPkN2I8ujYxbrI0K/IMSOEDtKmMhOhfriqwb0uqYlFbrg1FGwak1BMIqKWb8bwcSaePZZGvKvVpuogYp7qlbQBgjMrHjRxmZ1Qp4yuzThtrDsO9arJTFGQLMjXK1zTVSrmqY3qrm3pq6XSgvNKFUUaJRWiNqeJuh0o70mp7b4Uyqq8wkQg6f3nqGPdF2PpyB5UqrUZsdwcoR0Cy77LU4cyRzOSgVPUcpp3Tc+FZepbXYDOrUWyAU3JfzkcTvVaZ482bK4BqvOE3IlXZ6TclJht/OWcePx3ZJuWBI7cFPBOaFY3k2dMnXKuFrJKSPJqMsOC7Sr+npFKMUcO8UzSWZXJsLkiAvBdRXfD5D0PTUHTec7swlPGs7sHb3XkOBV7FkulqxWxyz7BZ1UfEr4RUfXLeh6daEKQKjqFKjm4PuJRi4VP1W6VKjZtL/lgFxk9R4Vy30T8lSRXPFF7c291Z0iMk+zlEknM99fsgUCik5SMfqUuoi2Dqsa1dT6zxpotOLYoZyd9rPDK2autg8CXlp3vy1xFqh3eGvhc23g0EBJG08eCqfBpiHCXvrhDi5a+3/HPgRNaLQrfX5HK+ec+SvT+ph7lI3y7JoIODTkay411aYy1TpLEfdUQV8P2xSCAa/G52f++tRxEAvCYw+CDlg2zDiqUdHcfsAU7anm7aONZ1ohbA9S0fTM5vxAqepKMmnolhsT7CJsEqXzpM6z9TBIIHS6MebqGJO6RYlNFbyrdM7TuUpyXt185jdmL9xeD60oUF9AvQsqyiuZnJ1SlAZUG2QuF/Pu2tJlnJ5LPjhN8IwqYh+6nkU/sBwWrBYLVoMCjUXX03eRLkadEPlGVLCWgdgmInUGGs4Wc1cUJNRczPbQxpK5zECh2mhTCpD0LgkbdVbqpBzHmqta9KZCSQVJluxZsiXa6uZZq02iRBmf4nTk+VkO7BuGjkkSYVgaNeECXEbGSh8CnoEeHYqFqg5uuyqkmrm4vGB850fcu/shP/jO7/HmL/0qX/za13nmhVcYFkdcuXGNa88+wzs//AGbsyfk3aRajEXHOG7N1SPp5opSkWLXISkBNg1ozm1WPEQc4rytDnqq6s/qbD8Z0IJbf27XvlkRlpzYjRNnZ4/54J13uPHMTbbnlzP+tlaBrjZiwXDeGQ87s7m4xIeenDPjuGF7cc7ucsO025FrYSx6bzVNtakwptWSigo4nePxxcj5/fsMxw/4we/9iD/47Q/YPbrPNz5XGK4+x9mdM9Ynz3Gtv0nJmfHiCaHzhCeOPJ3PGQMVDY+SYkUMjhAUHIlUOhcYk3D3Yst2rPxb/9Z/Qaqe/8X/5n+Ji6e88+3fZ3ycID3H8a0bnLzxG9Q+cvf9idObn+OLecFPP3qXt+7c4+H5xsCMUFPCA08ePyKXrHoZ5ywB280LoA/opu/VejLXwCYJ52OGccSfnVNyIeLoYqQbBt5+5x3efvstfC7EEBi6wGK14sr1a9y4eYt0seHjn/yYx3feQ2RHWC1YXLvOi1/5Bs889wrXrlxjvVqxGKLSSYObm+7bqfD4yY7dVAidij4djqMhsOj2uyS0Nb5ycZk5uxzxfaQbeharoJNuFMQ0gKLbra4H44RaeZZsQWa290WlWQXfxJtu/pu9C9Vn5+ZQ+ouL1myqukkKuoe2vRGwQtz2GyqCJsznNLK9uGCxOqJfLhm6noI3LV/PtNkguej678M8rZ51Gq2Ta9MJMZ3m07WI1j46QWq5Vo2m6+b9vNUiZncwv5eWgzKHXZaJvNsw9AHJiVAz4q1gFwVY3h2ASIdmQBVHCHpsatXOfYsYkAYwWpGKrUv2vclNNC+1qmtWSZmQM9vLkcvLRCmFYSEarDoVutBRem/BbpmQLTyZbMdjTzAv4qhUNaOxfc+lrLXGmJm8ZweUDx+Soue5l56hX3Tszi6oVQh9B0NEumNAHaZiN7DuYdpuGHNiTAmZqtpjWi5WyVnXMw7fNLSOtKseEaViSvVUCUQpFMmEGggl4b0CKYdOL9Iuk9NIcJ7QK7Ni2fesVkuOTo4Ylp3WsNOIXw5KrxoG+vWafrEixGjaDEF1nMxNz5orTFqHRJvkSjH7Wurc5JyZFCLkVJFJcEWp3q6KUuZSRUwkX62mqS02IOm0qxad9lSpJt7f06yk1SK1asbVz3D78wGNNpLYV+r7yrZ9tWLQGRLz7uDfwLZkp45F7Wey77K0TrxGBziCuD1Lyz39dHNioT3H4RTDZgPoR6aXbuOnqlbEaSHfDqBd9fvphI4RtS+nH2jL70CgGlpq9m9ZsG6F2JRCZoDQguTtlIT5Ymu/os9WcBZEZ4U0WCq0+tOH9ualCc8tsVzMjaDa8WlZJOa2QJEZ2Igdi4IWNVKUn0io2gEYM2wmanCk4EgOtqWymAJ9H/HeU3FMGVISZNLpQ6zoiNC5JmOgtA+hzgd1fy6B/sLhKOhPKegPeGdglD39Ax880XticCaa167tsOiM97xgtVywWixZDUuWw4KhH+hip7oXr8VXdTqJKJItV0Q7t6qVMqBWVfRPqYQDvYWUosevVKp1h8gKJkqbfExCHStlJ5SxUsdKHhVgKNDI1KQd6ZxsrF2LbixyADQMGGbRTstn9TZutizXVwmdZ3f+iFoFL0mvAanEEEEqiz4CC+I4ocbTwlQmpuIoZeLt73+Xj979KT/5g+/wtV/+VZ77wmvcePYGz16pfPUrz/OTtz7i7R++zXa7hQ7S+TkxBoqly1Z0yllzxtnCrb7vYvome8HezWuZnqu6Aak7FbQVRZqJgK0HQus0WShSLYybcz5+91w/V9N+7U0hDfwLVLy635VCmiZ2lxf4cUtOE9N2Qxq35JI0+E7UEcsbk1EaFcOrY4lTUYmG+qXE7uySPG01PEwCL3/9q7z5V7/Jk90x7//BT1gNK/zVK+oq9fiBblo4yhhxPpOqI+ZKn0YYt+YQo4F8zjaIMQv3H43cvUxaaN97wr/1f/t/8XOf7/iFf/V/zZv/yr/Cxd2PuX7tGH9+D398zFn8HGcX91nefI7r/ZopV+7ee8gnFxdUH/AxqGbNOZ0IgDZ19COY+2DBeXBR1/2incndOHG53TJcnOO9x1UoedJCYLFAnGPablj0C3xfWS16jk5PGfqBiOP++7e5+9Yfc/nkE9x6wfrWC1x/5Yv0x1d45Qtf5pmbL3H19Jjj0yMWgzf6r762cao8ebxlt50I/YDvIhVhMUSWnb4f63cYJQF2k3B+MSEOFoulFjEZahG6pXbjPr2UVoHNWEg5a8ERIi5EShG6qDq2Ji5tm3kDap+1m1TB+2j7RrGhuMz7iLOv7fpsZi1AK5OgVqZcSONIv1mwWq3VYjZG/BIYOqZNIm1H7bB7wZWs7kiHQMYaeo7WdMRqkfZ8h1ufm/uOvn0GTvf/vQ3sbFMz/52lfRlNulB2iUCdi/Vqjbz2fjOamSOGGKRWJLfX62gOnY1Cjhy8UGNTVDROIBcDwllrkTEJ41RgUMfIUiEsBvqTNSl7xssdAUeMPdWpfXYIleCqUc/U1ch7P7soHnoXSdU1cMxC2mV2otbYyTnSu3fxEa48cxPnVwgaAFI2SQXkuUOmiS50LHuY+sLOJ80KEj1eeKs3/9QFpL1D2jkjWNPYZmKuUJzawzrUNVU61fvGANEHCELn1Rlw6DsWy4HlamCx6Iku4HImdoG+XzCs12pSsFqyWK7oFwtCF1XjKgWZTX0cFKFMSoFyYmyZOQHcQIYBYQ0Ztu9Hc3QURy1OmRVThUmok9Z9ZbJGszU/k9UiJZsVtLQpv50mBpZ1r7KQ25/h9rMDDcfhFfN08Xg41bAT1lXtoLjWffFmKdcghSgbBHFWgGMcM2cAQ2YRp3LY94X54VccGphnNWkTWxtz3zbyJkRvq4MWuG3iqdOhhtYaEGiTFJnv1oOYUy4F/SWPjqWCGMion15gKh5vrr/7x2mvbL+sBEQ0rRsL+qnOqz2vs0lPVT2LzKJvfdXF0ClZDu5YPPf+qLn5ndlJUzQTooyZ5D2j9zinFroVDRgbU2U5RoZeiCHgnLNCSLvzpErIQieVHiH5SgpCDdbdb+TUtuAfnitNMH5IBvB7gDSDJuPWOa+UhD54hqhTjBgb37lnsehZLgfW6wWr5cB6sWC5GBj6QXnvsWNwgR5PxMT8FLNOzsyhJwVN1syCa52tKlAKrqoHnk4fylMgg1ypycRlSS/2Yvc6VuqowvcyZsqUqFM23mghm2OHjrVlvs/YxjBYmXlpn71bt1wRF9r9Dl3HuNtqlyd0jLuNgeGqSbA2UXRJCEkdMKYqlAKpZmTzhJ9+7/e49+H7vPL657j53FV++cuRV7/+m6TV8wxXn+Pe7Y84e/iQs48/xIsnxJ5p3DKOO7ocrVuji5muF55im3jFzUWEO+ggt9PUiW6YSDD7aOO6tqvMhJ+znahgIEO7otqT2HcSg2uXhLoVSSqUcWL0AefVNSulxFQq21LYFU3Cdc4RfNCQSaNEoo1dahWKq5RS+OBu4j/+T/4Bf+3fuMprX/8aV9aJl9/8Bfz1N/nt/+Lv8tYP3ubKq69zevUaVRyLfkHebDWRmoLzE713uFrpyxJfj8lObWi9D5QMKWceP7ng7sUFu6SvIwH3zjb87m/9Fi88d5XFC7/Gjde/wXqYmH74XXz3Be7vMrsx0C/WSIXT68/wwo1neHR2zpNUrDEgRB9YLZeEEJlqYrb0sD1Z0GrPe680GoFpmthtNmyHQe04vdfNeVgQvOaDPP/yyxxfv0mZRmpKTJeXPLz9IRcPPmHaPqH6iXDjKt3VG5y8/HmeefWL3Lz+DFev3GC1WHD15nVW65WJOvVzHneZs/OR3XYE5yhkoo8su571wptBydOgIWXh4iIzTUWpMykROwXGw6B7gcM9tecKuvSkqbDbbi1h2hpPoqnv4tp5uX82dcT67N3UcQ0tGnFWgOnnLjMXWaxotu3HbKEqaqYy7ymSyJvMZrejHxb0IXLce4bFMVsZKK6nThM1JZh2Sqp0xbq9qtlozbtg21j1TnVghipaLdLmG1rP71umrtUi0uqY5vxjdcq8a1ejlu9rCKnW9KxqwOhRuudsPSqqQhW/b74qY8QalG1S20CG07pDw4zV+j4XrVEqOsn95O4lV2Qg9Av6pdAtV2S34OzxGbvNFhcHfIgEcUZEUM0ita2l4IIQZN/SLeLAKRQpWSlVWIZOIVPM8e/2xw8RPMPqhBh7QoG8uyD7npQCNQmxenrvGGJg1QV2nWMnzM1bJ8qCcG6PT2n/XgwtNuFtRSc+VozXUtXgRTxOVEPbBZ1M+uUK59S4J0bTizpPV4WuZqV0r5cMqzWL1Zr16oj1cskidPTOMXhP50xqUAuafM5cS3gzp6G25rtmZ2CNyWZII6UqgyLVWZ9BUfqYZKV2S1LQ8emGZ0qZacrkXCmtgWpaICnqHLaPbvjZa5GfHWh82tIWngYe7SZ7mlNoC5k37xbPLGDTkDQtnLWro1SWFso3i1toUiq9ameQ4Zj1xsBMpXJmKxeqTkMaHQnXkL+BGuvuKLqVWct1wFKcQYHjQJnPQfPdftOzHzF++njsD9ce+h2CpXYgK6p7qAZHvHUTMp4Or+4CFXxRLQS+kbu0d1Ia1cbAhWRMxzCXR3Mp5dgve1KrFjSi/vkTGVeNE5ZBciWNQtoJi17oOiEEP/Oic9WTWezMc07HpMHrPYfaDiyzTuOwWmsV0eGBewoQupkf5iOEXhgiLKJj2WnnIHYdse/ph4HlMLBeDjrNWA+sVgOLxYKh74ldRx90EepQga9SP8os6nbZ77lrRUxvUXFJtRpSCi5npOq9gQ2dbOgIsonsaqo6rZgv6IykTJm0Y5BtXNnSzqdiPyv7DkXjB6vWx+4/47jyX8TblWdfZNycU8adOpkt1oR+zbg5Bx+1W+0hbzeEUgmrHr91eBnxUojVkVzk6vPPkmvleOnZnG/5w3/4jzg6ucoyv8JLXysM/RFf+Oo3uPXyq9x59z3uHJ/w5M5tzZKJgVIK4SgybncwGqDxKgQM1SmYdNplbjTsRmUAbJ0zWpWDGCKuZDPK3DcSQgjs/0TmyYmIs7Trg6aFPW4rVHMtpDRSvRbOpVR2KTGWwi4Xkgj0HZ14HXtXQXLWTlyFUoquv3bO3Jsq//f/6jv83p/c4euv3+LWlcq7nwQuLv6Qdz68pC5OWQ9rgvfWLFFrTCGwTYEH5xsq2dZd3Qx2pbBLiVxGtmNi3E1cnF+wGbNevlVLos0E/8nf+5D37/1nnF79XW7eeo5f+pWf49ryCuP9q3xw7z67KeB8h48D/eqEa8dXefb0lHyhupuKYxEHooP1es109mRP+XDQPCGjbf6uFTAlM007dtsNfdeR+p7cd6QYKVX51i+/9kVyET566ye880ff5tHtd5G0RYaO7sZVllev0K1PWR6dcuu5l3n+xi2u33yG06tXeeaZZ7h64yohBhC1pE1JePJoy3YcZ5tgQqTvA8uFJwZmExDQ86xU2O6EzTYprW/oNLF5CETnWEbmqbat3oAuqeNY2W0mpnFU8FpFi62h067rnyEcT0WIgc/cLQwdMpOd1azEeW/24nZQnTMKiblOStUJpjcKk3fEvgNR4wCKkC8vcK4jrxccLRzFe8JqDV1P3o0U7ylpZ0WWw9WCBG9uV9akdFbEO6fNKWuo+rmIl5lNwbwVtr87qEWAVim09mdrfGJNV6DJBOdmRmN+CK2/tzew8VgAsf2sIianPTwzPCJe9ZdowzNggbrWv/zo3o7Hm/us1wN9L8SNUOoF2ymrM5XTZlG1fVQKSFXDnalo3paWKW7uhSYRSjbymPO4UAhdoD9o/FGEj+qGzeY+q8UFi+WC4+M1PjiSd2ymUcXZVvN47+miZ+iCZfFUte13Gk7sg6fKYaXs5ntrLrUGkx7TVnGZQ2SsdJ0wdI7VIrI8OiKEqPS0nIiusOgdi2XHcr1guV6yWC0ZlguWyzWrfmDZdwwhqA2/98qemGnZnjpVyHruuqdYFqjRTFH72ioZqZaAnvVY1lKsdrAaoqizlhhVikaZKpli2TvjpGBDdX/FpirNlayBDv1MxIJUf5bbP53r1GFdeNiOsQtn1lWI0fBbES/OYurZJ2MbyAjO6YLhDOGbx7I3DUDLu2hPJP7pp2+vyTkDGkUvqmCbujgDCW4/P2i++PwZG/6fhaEO3uYsIm/f6wV7AIDqp/9m3zd9uvBXRK9THT//u0dD9GrWC9+3zIbSOMj62JpUbQMA63bX7JBio1gOX0x77kO0qOPBmg1sFKe2sdmbnavmXZRJSIPQ9aIbarRfQRiLjqFzrRTTGCA6KXBYWMzsVNCOYHsd9r0cnEDA7AagJ4kWpZ2j7z1D71n2gVUfWQ4dfT/QDwOLBjQWA8vlgsVSpxsKRiIxBC1CUP6/ay499iH6qlMMqgK1mrWbzlRhKsprzAVysos7qa6iFOU0JnXyIKvugiY4O+RA5kzNSV0vUtJJRruXQq7mnDLzLWWWscyWyJ9dnEGIPbkU7URWcKHXw18SoV/iuk6tnH1QHr4LhG4xC/ZXYeDlr7/JxWbLnY/vcLRaslr03Lv7kEcP7vLTnwbe+dEf8Nu/dZsX3/gKz778Ejeff5Hl8RGPb9zk7ocf8OTuJ3RDTxonhuPC9tEjxotzpcY5j+8cecxzZ1S59lYkNKMGB9pTas0K7Zy0BFzaulNVNK38bWt8oH7xIoVU9qBE3V2gWLdUg9cmsihPvJTCZhrZTSNZhNWVE9ZXTlT4vRvZmnbDpaTWjFU7oNIaLA52qfL9t+/w4e2H3Lx6ws3rE0en1zm+8RJH128ydWvq5SU5ZbZnT0i7DTUndqnw1u1HPDp/gkcQC9+UmaCqk9ZShTQmW2M1HCygBfg793bc/f++y5XVJzz/7E1uf7Lj9S+/Tn/yGBmOif1C7Vudw8fAMAxcW614kkaSwLBccrxacXrtNW489xy//+3f59H9+7p+ObeXfGGZKuLmIjDXQrJphaZmK+Abuo40Je59+BHLo2M2l2fs0iX99RPC8hnWV2+wPLlKHJYMw4obV6/zzLPPcu3aDa7fuM6NZ5/h5OoJfR8Rgd1U2FxOTLvCbpzUmKDrCH3PYqmJwN7v13+96e4wTY7tNpNzxsegVp5RC7ehg/DUcmmlqGiXcXM5Me5G7Zj7QDd0CmqGQDjommM97FrrZ5aC6YLRStrhC9ZMrNqhnPdY73BFue5BPI6qOirv6VYrmxhl+qj7y5gLUjMlJ0rasbtIDN2SPkSGRY9ER8mBlEZymlTEXDRJWZJp98DCMvT1Nfp4tKJfxOoFdHI5NyGbmQutBtlXH8LB5MmxRxUNaM7ARP9dc7DE+nN6Dbha510XaYF8WJCttxpIp+e61+j1A6r/qAY2VLgN5SKzGSt9H+i6gg8B12l+VS16XHLWEN6aW43qGFNhW6pKGJ0ji1LGm05FaYFqR0sRUvGqMchG38pqEb0cJparifOLwmK9oHaQnNcspqzmMo2+pjlqtck6lV0SA9F7Li8uKe1zmy8u/X4/dBLrhxrnxWvTs+s8fe9ZLgLD4Omj0A/BQKjQdx2rxcByvWKxWmjDcxgYlgOL5VLpVTHSx0h03ixpnQKz7LRuKM2YRsGaK2pMo4MMdQvVgFrTeGaNCagpqwOmaTnIxQpEnVLU5tCW8zzRSI1dcXj8pO7pgVaSzVoeYU8x/ifc/umBxuHMVQ6woIGLBjKifa/lvX513gAGCjK89xo6UtyBVazT7r1TAbdeoK1baN1zDMQYeHHBCv3SXovMVCqhNcpbscD8GBrjcej+sQc1baIxl+b71sJc7M8/d/Ph0J/X+UdtQMneb2I/W/DsuZt7KtX+sXNh1m60DolzHueK0ptaf6f6GWw0Ebm+VD9/dCpc1Xvbt7SAKhSzjJXikexMuKwdupyEaVHp+0LoA6731KCp6WPVgDMtmEVDtMreDWSmQZlvtyKuGbLt32hDbIcobZ5qeM3IiJ6ujwxDx2JQqlT7uhrsvtD/HhYd/RDpukCMOuYM4vCzW4f1BKtuSPp6PVj0hdgkw00VpqrWcrlAyUhJOtEQ+77ohU4qmpiVCqSMyxlMXJVLE1qpGC2X1k3Is+tWbdOMqu5Uoe7TwJVy6Dnw9PrM3fr1kv5yxbR7SB13SEpmEwz0PRIipWRc19Mdn1JTJYvQhwC18MqX3+Brv/rr/Gf/7r/PFz53nbPLC84fX2jQURUePbrg7u07fO/3/gHf//3f45nnXuSLX/95Xv3KV1m+fMTx9We4fPyQx/c/4c677zFudrgQyDWTLs6181i0SHbSOom6ClQr2MS6Cg51s4mi1Ba1zw4zUGhT0zr3JJUTH1C7Ui0YC6XKvP5U58iimRguJzKVkAoVFYfvpokxZY6uXePNb/4i1154nouLc7aXl1yen/Hk3n0uHz/m7p077LYKSPS6F4IFVXY+4P3AxILLusC7gYUFcZVSEZlIacf28lxzBop22HMtGnDVOqjCbBnu0TWq1D3tY17j53XeEWJHv1wRlqc8mQIfP6qcMHJ0ZYkP1UoOrXZCDFy5cspLxysYel585TWu3bjBq194gzGBH/5dfuu/+a+YdqM1srSZkwXEOWKM1OrwTqfERYp+NlV5x8s+crpe88HtTzi/+DHXnn2e5ekJL33t59hOW3zs6FdrrpxcZ7Vcc/XqVa5du8bplatcvXaNq9evsFotlEKQK+NYuTzfMu4mnS45cCEQup5+6FgvA97oXM6KmQYapkk4vxjZbhMuOOIwEILHBS1QO68gVPeIJhbWnIJpEnbbSbMVTMPS9QNdDCy6qHaZRjPC6d5QKkyTwOKf/xrw/+/NBbVblZq1fedlX3/bpqy28w4fwjy5Dk6Bb79Ysjg64vGjRxwtogleK9EYF1CpkpnGS9JmQ+c7lsOCxULtmGPUdPqcE9O40z0hOjPtKHMdBAdtPatFdN/f6zDErPyxicjTtci+GsHonCBzkxbnZhte/NNgo01Fqj22r01BJXOIYIhRLVu7TimkVffqagVuTXU/xbUar9h7EBd0mus9BaVJeayO86JTkaKC5PqU1a+pytk3Beb6Cf29SlFGRkU34mLFt7kkUT0iGjhXfWJyarFfY9ApSdGOvtYhuuZ2sSM4oQuRgGcIvbI/iuP8/Im9pFaLmMmNMTRm4OecmSw4nPf44Oj7yGLR451D6kRwSo/qg6fvIotBGRXL1cKaoQuGRU83DPR9r8Y0eKVco9OfmpoZjbIrmmZQKgSjq9ck1owsxq4o5q6VNOi0Kt1batGJSNbpRzGAobQoZWSUcuhcmCkiBwahZnlstUhptYiZLvzzm2h8CmTM3VaxE9/tTyS1pxVcsPAa9vR9HX/voZKrsufqo5xTDpAVrUGObfh2Rbdci9lpoj1nC+izDUkvnsbh3G+ITUdRaV2nvU7DOTQfrk0U/P69N6es+bg0wDTXzIfyrj3caKCiLTzNErgtEjMVQ2g76F7M5DxFyp5UVt3M46/1gOZhoCIAxUCHfr9/Hi2k1Oq2TIVcPbmqALnUoHSAqZCGQhwCvvfUNtUwoJGypnwns4ItWd0NtH0he8DRTk7XejV2AlSUcDpbbbUD2VoRARc6fOjwXY/ve0Lf0y16+kXPYuhYDh3LRcdiiPR91M5FcATjr7pSkepUFuJs162K+H3x+Byso2DAKBcVdKc6hwtSknYSJFElUavmQkhJSp1KGUkTktJ8r+lA7N2+GsiojXJ1qM0w54h5g6oYberwJPvs3dYnp6TNjvMHt8nbLQFH2m7I045uWONEKDWzffKEfnVEKomcRjof6BYL3vjmV4khsFwGTo8cm0tBkmPlI2NNpFLp1reYgLJ5yN07F9y+/S5/+I/+Ma9++U2+9I2f5/rnX+fmjWO+8HzP47PKh7cfE4Lj7BOP5ELeTfiiTlSNOJnttK00a0YrJF2jdqqdITVbloNnfbLE03F5do55buqD+ID3Ae8KXRCcU9Gd8yBUanUkG+nr561ajFQLqWTGWtk+fMh3/tHv8/IXX+faM89w9cYLHJ/eZLk6oj43sd1ldtuP5omtNneg857o1cHIE6jVUUplTCO73dYaNo6aJvK0I+cJERWcN/G1d9Y8Mv2Jd5r1gwhT1RyD4PfroXYSA51zdCESuyVxWBOGJdUFxpQZpomu78E5Sk5ILYRFx+rkhFdOTxmuX+PGM88TwsCdT55w9vCc8XIkhp7RT9q0cR5xjoxOgELoCNEfuHDpWlVFQcaq77g4O6cgLK6sufHKc7g4cOxvkKvu8DF2PP/c89x45hanV65zcnrM+nhJ7CNd8EiG3TYzpcxmY3bNVOXgB3W0in1kGMKc9utt+qJNLw3Ze/QwcbndgYMYF+C9hkIWWK+9BSe2NVHXTDWRcYyThsvNGUxdTwhR3aaiJS9be1ZEC5cpwW7853TR/zO++S6odWdKB5Md9ff3zs9NxFqKJdVjwnc99sv1kmAi3q5DNQFVpxomBSR2UQvmohOOi2nL7iKwWGg3OvQDwTuGoAGy01TI4oDJAKFpEj5di6BFPpiWx9YYaG6cyt5obnYhmFazJKA1nezzDG1SJbP9tg5PTQnilELpnJuzMlpXuoIWrJdbhkEtnmPsdSrpM0EcUkfNFWFfi7QugxSjeGXXCGw4qRqWbBqoWjRpu5amf8Wanxb8ae+5sd30n4UiKkeX6rTbXt1c/O5bwR5PhpARl9RNKQaldFdIyXSQRaA4ou9wzhNdVO1HKpRJGQeuYMDFao82zbFzy7XudzPosS6zDx0xdlqXxEAcOhbHK4ZhYNV3LLqORd8zDOo81S+WDENPZwwL74KWPbmaxWxRNkoGXzyueJuOONP71JnOruGCSptqYGNKE6Uo24KqIJGsjpZNVyo5IUbblmLul7mq+PuABj7X15UZbMymKDadajqNn+X2TycGPwQa9tHPtSPMY7n5xEe7Mq1mhDa5cDPv0IFatdlspnob+zRngln9v3+yGdwcfG2vzdnXclj4W5HW5hRuXrptsiANaOxJPVjx7x0qOo8KNsQmGs4eN8C+ILTvW0Hvm0XV/Jj76YWCigZBWufCLkC7uGdAILRmn27gNMs89heBfRjzlOPgOaGBJn3WNrjd/04z8Sz4DEXi3u0oa3eiTIU4mdVt52wAYICkoKndWWwsV9Grvu6TSBvXD5jVWI0T4J1CekI7q+YjJWh4kHMm1vARQqc7RYy4LtroNlhYzv4DqmIXqo2P9xeHLiiuCK44JHu1mc3OuIxqJ0euyFSUQpZbqnTCSUJIxo9M8+RCUlbxYFIRYUkHVKkpIVNRXYxpN1rnpZrgTAXgshdd1SbCkr0R12f0dvXZ5/n4rR+xWK15/Ogh8eiUev6IuFQqw7g5Q3aXyLhjGrfExUBxHh96JAQ+vH2Hb/7yszz3yvP89Hvvst2NjFO2gh3KtlDyJV98/RahHnPrquPll57nt377Lf7R332Hn/7ht/n8Vz7H66+/zOrkJr/8+QXXrx5x9WqP3z2Pc4Fvf/dHnH38CTEr/SjnbG5GeyuFXZp0MijBOl/oxi5C1wWWy47//b/5LcL6Of6v//bf5vzsCa4WbdCJME4TpaotrdriovxXoDhBfGsuKPlwZ10onFgXe8edOx9x995tQggM/cCy6zUTYrVid7nBlly7iuaWyHwtqUOJ0v1yyozTVq2iq6cYxaj5rKdcwDn6vteTcu4gYQ4yToWDtAaTdf1s2hG9pwueaKYgtQrTOJGz2uGUUrRI94UybqkpEUNHrfDgk3ucf/wJafpjLi+23L9/l/Pzc6Zxw/HRmlL1egvez+vxdjuSO2HoI0OMxNCx6geunRzxxVdf5oVXXuHuo8dsinDtlRdZnR4jXvVeIUTWzrNarVivj7h+4zonV25yfOUa66OeGNvrF8ZtYbcbmUYNyVPwGSB4+qFn6DuWfWAIZoBihWFr4O5GdZgaxwnvI3HR0w3qoF9z4Wgd6fu2NxhnXLRsSxl2Y2WzSZoQXytdp1QYKYk+9jPQ8zPQ0MUjS1Wt32fwFruOlHa44Kkp42JQGolTf6ZajCZSNWG6swZjS+We0sR6qdPucZfmhqB3qLuUCLjMYhmgg4gwhMjF2Y7zsy2bywv6pRaQ3kfWK0f0aqbiJOLEsb3cUapSCL1N8KtrxhBGobSC7XBHbgVtsAngjetrxHvu3X+keiKxNmUwvYnXmugwz0uni/sGgxP9d7Wx3cPVIvsUbHdAYffO471pDcAmMPvZ+sU4AAA0wElEQVTJbEVfY6Ooz43Y6vBVpwDaw7NcIasramvOWHZasPdc0fNTzW32fAaluxvNR1+xXTcORBOxwSPF4YcIseiERZRVkceCmE4y5UIxUXVN2kwquSBVjWDECnkXPOon66hV9arepkkK6szhchhYLVdICBQfWCxW9OsFxA7fRbxpR/uhZxgWdP1A7Dpc6HBem5maIXK4x8tsRiPF44uzxqszrYWu/VieV7XXX0umlkQpk2lOKk6MGpUKSAMZeWZU1OZyOdnxGJW+XbIWsFJVywH2umyi0qia8uesRf7pXacOK+aDe2tGGxDSr97+Q7Qrq0i7lbnWobdWi/6aAQtpwsl6MIXA6FBurpDnl2Zoub1cQRDv5hPTuYBUgzUzjG4TBfs7UUvbFvSDXTSHIKZpl41tMOtRGqevgYhGVQroRdkO0/62F3kdvpI9QUzmMatKkOyDLQqR2iV8SLRqZXmd/+5pSljD5Psj1F7F/i/ByDlFYAwmijbA0BdkCtTe4aOjBKV7FBRL6BpvbgfmwjSDjBloHKDSVlDhIczjmIaYnjr3nFPDAG8p6USHRId0DiLUCCVCCVCaZ3xtEyGTDpqbQ9MMIWIcUG0E+OyQZHhnBhpFL8h5HKuUKUS7KUKyiYZdzAY0JCXqlChTolhYkIz6s5rUcaqm5l2ti+LsbpFny2+KLUQyo8rP7m17dsnp9Rt89Ce3CT7gfAQX6IbIVITOR4rX8XRKieHohE4ECT2u6/j4nfcocs7N5wZefPYLPL6/4cP37vLJncfsRg+pcO+jn+CmC77//Y/5bkq88YXH/Movv8m9Rz/k/ic/ZdE9YDq/w/raMzz6+IjPP79kfOk1zj75gJdPC6m+QfncVXzZcvuTSz784AlDN3D1xlW224nbn3xCSglAu1NDD1Sm7Y7VuueFF04ppXLnzgN+/ddf5bXXnufiSWDhhcvLyv3HWx5fjkoLoLlE6XomTojO0TvP4APBOx7tRi5TmelYMp8GgpRCkcI2JyanfT555NS6uv2WaMe2ig0UUYpTKoVUEsnO2TwlcpegekqayDXrJAWg7zm9cQO/WZFLoe97vQ5Spht6+mHBbrfj7u3bOgW0ohj2DRVnQYmuVEqeGHcbtpeXLJbH5JxJaQKBsttRkibH1+q4d/cejy43St/KlcdPHrHbbkjTSE6ZznmK93SeWfTcmlyd8yw6z8l6wUvP3eSNr3yF67eeo6yOOV0dc+vkhOX6hN1ONQ59r5zpxWLB8fEJy+WaYVhp9zknRHpqFdJYuLxITDmRp1E3Pu+NVhF0wrroGGIkeNsLnBZlWLGXc+XsfMfF2ZbiPLHvib3mcDgRYu9ZDbZPzgJgsXNG/363KezGzDjuAKUyBOdYdJFFpw5b1pXSxpUtwSVBSQcU1c/QrdZK6CJp3Oo5ZjQOR6OlubmhJFWQoIThitcJ6m7k0ldidHT9oEXTWOapnZNKGbdQM9vtRE2VRfQcrRY8mTZMaYu4iZJ7go8UH1lEB7FHMvRRcMsFrotQK3mspDGr3iZ02pg2WlJtlYLZtqvmwzN06vhYUmJ9tGAxdJRqDmJmc15Nd3CIMOY6yGmN5MwQp5o7nXaC285/UMyJzOtKwVFdoTlftlpk37TQRkMVXcICRi8PFgfgtYlZZV+5VERNLWJUSrBgwFDPSXVG81rIpjzXgUqkQsX6YhOdqpqbSSalulbocg+dUrkyanTQBNE1V/IukaesTcMsuh+XFkzXDCWMtOYczlwyG6vg/9feu/ZKkl3pec++RERezql7d1V3k002RxQlcqQRPLbhsQHbsAXZgr/4o/+X/QP8O+wPgo2Z0UAQYGs0HHJIsZtsdhe7635umRmxL8sf1toReYqE1Q20DDeQq5CoU6fOicyMjL1jvWu977vUvMioUpsVw7DCxUi36hg2G/rNWsFOF3Cdx0WP6wOuj7hOaWY6Z6tSzEBEhyUyzztqFmLOBPSI11zPiqHzvK6kzlLFtBYpK12qOp0k7FEnKhWDK9V7KYDm2WlKpkyd9LwUe6izVtOI6iKqNnR6ZsuIWD7CV85Hvt5kcI4O/DbQqMyzNRrAKHrtUwqzduKoxIJDqwUKHoySYFw8zHVHbUXntTB/vTyv3EJVx/mpOGcIvgkq3Aw86vzaZea+ypzJ17nvgVUQnJNFPuCXSmHrnByzgeYOiwezujo6fW2Jt26C/uLxTQTbFFuHQ40zq70qex/2UwuUoL1inJ37jHpQZ46MlJBjifbRddJqKnX+lzPEKAnrWFRy1mQuJhVnV+90wJhfKhJKWq6LQt24n3qHsxPdTp53zLSS5pIly3lQwY3aG3tXca7ijiZlY1WdEoTshcmpV7cTpYF5Z50qZ9qWqjMyZm16rbMI3GVwRvOSjC62XGd3BsnF7GeLVQ4MZDjtaIgteEkKKor9XadEGTP1kKljQsa80KpyMV2HPlxri5Zm46oDEvNRN/PbjDXuPHjExasvqLUSVyuqZHzU2RnRQcoJF3pcmOjiWkWGo37WFcfFlxc8++xz7pxt+cGP3uP8Ts8f/5MPuPv5Az7+5ec4J6ziwP5yj0uJXoRfffyK//a/hnffOWd/9ZoYhTq9JL14w7/5fODx2Y94/lKYxkRej3z4D37Cs2dP8Ptn/PDhnvW9iRcvXrDarvjO97/Hkw8/5F/95V8SRPjhP/gBGdicrbl4/YZ1P/HjH3/Ap0+v+Ou/e85/+p/t+ey3n3Px+oInD7Y8eXDOP/nJD/j57w7827/+KXVK4CCbhaDm5p4+wCoGtts117VVplpRoBE7j8KoBT4I3qmrTdPLOrfosnQOi2qoUlZOb5om0mHP1EW8gxx0cGaaElMtjLVSBGLoeOfdx1Qc3/3oIz775BN2l5cMq57N2RnX13ueP3um1MEqiNfkRpyVRSRQqmMqhWlMjPs9u+srhtWG2AXdy0uhTgdIkwrgfSAV3R/SlJimxDSO7PZ7pnGcOfJCZYiBew4chRVK57rfRd5/2PPo4T2efPAu9x6/g3vwiPuPv8PqkDjsD1xfjyDC2WbDqu/ZnG1Zb7Z0XUfwkeAjDsc0ToQb7RKMh4n9YQ/YvS324JWe23WBs+2KGC1JmMvMy00zZ7i6ztzsss7/CB4XAt5spYJzrAejfDqsbKVJXrabV61CSqoN887jYjQziUzsehXqGk253aNKFaZJ8480ZXQq6rcrQoyUmuye62m2qa0I2Xj8rpZFvFz1flaqQ8xZJ3SRftNrt20VCFNlOqS5g5xTme1B9/vM2aoneNVBqjg3IxR2NdFtVyoQr0IXK12/oqBW6IOvuNCTUrGiSo/v4eZ6h4ijWw3KqPTaxXJeGPqeacrsx4nNWUeeRtWuRUffeTZDx00RdmnPUnbgSJuhRAHVynqyCHLLhbIVNeEYcFRawXQpPCrFSSzf0KxB9WlhBijqHirauTnqgyCVJGIPdZoidgD0w0AeJ1wpOK8W3bWqQB8U8C2aXX1zkh2FQpZEsq5KG0TnukgNgey0Y1eNPaHDDs3JyZgWs0OkdW3nWqeoeJyA0u2lEp3QRSH2jm7wdF3Ad544dMShs0uwIARcdDogtQtI1KJZsvfSDD4imnNI0dctlSOjF815fVE9psvKbKCaFb/lH5SqdPas2gqRRLNcrZgTVVZa1Zy/tGF8U6aOZZ6UXg+as6iWQ5kc2JT5lmOr1ENzkZbatS7VV4mvN7Cv3rpGl+8fA42WvR4l762S1mQWeG7ZuGnbTexGw8LlL2KD0+b8f/7bbLFnAMIC1hUYCHObUFtwLZXXFyKW6OqC0SqITorWM9gG6hwRuxTZWiK9AAtZFmbrcgg4bxcLSyVq6bW0OPagast+ZjPe6jncpj60o9ZbP98Eq4Iu6IRDx50xty8NC84Ja3O+arH4XrWBhdquJatuoFZPLY5qomkJjho81Tvr8lmXYBaX2QXQQEa7PpRjsFxH4eiF0T5cA1Ku4F3Bu6w1KWk+FZlKpoqJecUTqrUcnSZVoQrBKXfXi4IMX5xVDczVqdZlZsYkSNKvm0ZD7NFEVMWAhkimoROpiVompV5Zp2KmSU0ZOQIZusi1q4FNBJes7Qsx7qR2NMxWsOhslaK1ihmcfhuj35ypy0fsqKNVrkWnbKfDFemww3c93dm5Jgw+4GKPc54QehAh5A5yJe9u+M3LC6ap8p2//yEPXl9x/WYHsoEsbCx5Havw4sVz9peXTLvM559d8Wo7MaXCD3749/m3P/+Mf/mvf8v9e+ec/aNHfPnZmtX5Pab0ELl5zfadB0xnd3nz4jnles+f/ckf89vfPeXqzWuGzYAfXzPtR+7cWfH44V3GyfHuu4/4/OkFLqzpYqBOmc+/vOLFqz2PnrzP//Q//jNev7ni1x9/rHRIjBhgGoJCRtxIjVGNELxVCF0rftiqt0pHK0EE6yJExGijy+5SaiWVwlQKXS6ElEjjRBlH0uHAaBqT2Hf4ijqYtCrcbsflsy85f+cRDx+/x5/86X/Op7/4FVcvn3Pt4E3sFCxl7bwUadOTdRfLVZRBWRwpV/aHA8Nuz+bmWoXxUsnrNY5CEJsF4BxZCtM0qvtWUqrVNKqeZEoTaZqUcx4cKQRi73gShMcPtsSzM87XnruP7uPO7zGe3+MiDOSrPW8On6vzUprYbLdsz855cP8B6/VKZ/J0Hd5HnNNz75x2iXa7PVWq0g6kqjtOjIShw8eAd54hRrqoCb4PEMzKFkBENTg3u8zV9QQhaGfPQdcbPc85+uhmRunSKbd+s1Ndwf4mWXKbZ8+MOHTqrNehNBC/XAKCAoycUF3OOAHb/7AL/j9AKDMBu7HXW51etfCsUJ0lwmixr2qBUYuPOrVaHPipMhV1Z1uvevCOkqoVgo+qphXylKhToSZhykVncxRhNazZXU/sricFjJtIZiL4iEhUC1Lvoa+MuTBVBbUkrTSXgFJgKLjO04WAOKHrA2nKZqbgqeJIWQdRxi7w6N4ZX74RxjRqhjDnXXoyKs0TrlrxwXIVWQawHZ3VOcO47YbWMhCFGlpEbdVWoYpOnPbWjVB6l9PunomFEzDhmGrlkAsugu/UaOH6MOqwWqe9i8KyYy3qN6NmNf1EdvaziYwQgVSLDsPsIjPjqL3LRhEtNgi3ViscVusmqOalpSUIdEAXPK4L+OgI0UP0mu84oVTtZAZfia4ivQNnjnLBIV7Lw1kqvhakZCIO7xRsOLHiZtNfWK1VJ4EbLSkDWeZiewMYktXZMyUdsKe5iCbKLmg7RGqaQYYyJMwBMxVkMqv9KVMOmTJaLlLKDMhcrXYFNQq3U61MdZTqyVIp4r6yc93XAxrH4KK+9e+WRB5/3z5wLM9s/vCtI1CdTshtw/moYl7Btx+3ElTjitXy1muy57sVrZJjz9X8lZuoEY50FG1HdsahlbbgdMG0G6ZXGIc4FRY7AyCKNRaxlQrcG/XrePEotJo7Br/3NlrnQk9mc6Z6e9ktv902Fjd/DMcgY8Ld+ljq0aOdoCZDWwx29Y/SvpoHgIIHl5T2psJlRw0OiVWFaR6lR4D5PjfnKVnAhoh1eZYzMn9Itz5HvWCctQIDWa2OJSA1UEoi56DJkkfbtc4ZrU4rBTEUgs8EF/DWNleQ4ey60mqVajQqLinQYNL3iXUzJDceZJ2BRpHmAK6PiorBJSeYsg7lSwoqmDIyFq0cHFUSSkrKlSxp3gjn58hik42N9lKVKapmGL9Xz/7WxDQl7j98l5sPvs+LX/+SknfgPTVNpJs31JJxkvGr+4xpRzrswPXgCuVwTZDC977/iOfPL9lfXPH43Q0//ZtXvHn+O/JhR82Fl599ziDCKkSKE+7ej/zyZ8+4+fKKriqILJM6qX33YeDXn7/iy+cvuLp8w/sPEn/zySdsz+5zdv8B9+6cs3nvAe8+fMKdd97n5s0znr9+xvs/+IjPPwusVpXLNxNd9Fxcj7x+lulXPSKei1c3XL26UKvlzVqr8anwV//XL/nHP/6H/NP/5r/kf/3sKWV3M3dCBd0na6lcHyb2Sad/Sy3zknEw0xw0wVxKGMfJQnCa8OvWqtdTdsJUPDF7QnCkKTIedjq/xI5fqzr0lJK1Qp4zh/2O/Xhg97unTKnw5//7/8bzzz/lcDhociwH2z5NZ2L7YjBKEd72JxGdeJ4mxt0Nu90GgtdK3WFN7CJdCFr1dI7dfkceD5Rp0sFppVDzpDSmWglBgcB2s+Kdh49Yb1bcGwo//KPv8WpyTAgvNufksGZ1cGyfXZAPz3jw4AGbs3OGYeDO+R3u3rvParWZNQ4OTWJj3+lgUiZCiRBlpvG6EKg+UqvQOc+674leTQHanKjjeRlVVMM2joXLyz056wwPFwKxc8TeE4Ozh34W7d7hqHP9DYTxUBkP2YBGxYeIoKLeofMMfdTTbleGtOcvkHMhjQpSvo0hVYg+UkNPzqPu05ZbaKHGCpdOqUsiKs4vXmnYPgjdKpKq4KZCjJ7xkHGMSm8tcNiPKoq1m2d0nvFG93OXmRN60ZoJ06Ew7jPeq6X+PqnmJoRICIHYe+XvR00093nCDZ1Scl0hSVadZ4GS7J4s2EDYQvQ606ZaYrfbZdZruLu9x4s3rxR5BpmLFlhOohqrot9/qx3edo3bxc65Tkzz0DKFhQIemwfiCTqbBBsUWj24oCUPrwWeitbq7JbKQbToU1MiCEyXV4wpmUufmzsht7OdJUcLruVqQpsUp8VTXasz+yAYcyVYFzDnxd41VxM7V6RmK1orwFcjhQ7feULvGdZryhCpsSOHiLpRVXyeKIeiALEDEU9jYdSSKdmTvIrV1VHRGAq+aC7ibJxBdSYBcFCqGiSJUytis9cnCd4WvrP8oOZMyaqtycVI9a7gXMFlS5pN/E0uSrXKmZoqpEK14mcZC3lUavfshlkzYt0B57ToVYssI70MbFRpAv2vVvT8ekDj+Ep869FsZG9Pw2TuOIh1AqoIeFGbPwdi9o++yvz7wfQXzV2qMWnqXI53RrNpSZchb7f0D27dlR1awXjrLTXbOWkVQZvI7dCJn74BDfzcwRBBJzSad20boANFQYbYoML27flGsSyaxszUG8CSNC7ajAYE7IZtv+ltsR+/seOPodGhFrChhk9mAsgi6Fq6H+2ZF7ixfEefxdkZsDMh4LIiSKmK3jH9tosqYPPtOjFBszQBePP7bSW6JnAJmNm1mOG40qN0fGHBSya2Nmn2SPKU4Mm2YEOt+ihC6gohZL3x+kg13rS3a8NVrzoMo+i5NtXbhvP5ScGGn1DLORN41xkE6GKsUkAS4jKiowvV3rZkmHQxF6uAMRbcVKhjhtGOmZRalXOimF2uulCpTV3NVRdyMWAnzj6jb3M/A24uruhXW+4+eMzLz36jyVZwVq3S/cD3A6vzu/jVwOHVC0opECI5T2zvRe69M7Dd3OPixQUXb3Zkgfvbnt9lQWLHm4uducucM417vvvBGc++2LPqPOfnd/mP//QjVmdbnr94xWbl+LuPn+GojCmxGzNXV6958/INq6dPOfvxP2Tfr3jx299x/s4j7tx7h9U68f0nHyCrwH/y/sRfEfjkk6dMY2F/cYUPHWG1Iu8P/OqXv6KPjtityVk9DHLO/M3PfsZ/9d//D9y7d87L8TDPdVD6lFusuIsJNWXZE+bEwDVxcPsPXVfVNh3v9f6qpQ2rT4lqqHTmTSWVxJQzfhznsruIEELQtvyUyLsrrm+ubEZO5uUXT7l88ZxsTjjtgnTCPHxVBPKxd38E19wzLIkquTDtD3QxsncOqZlhNVBir9VRKq9fv0amrIPGQkBEWPU9qe+Jpt9Tq+s169WK++884uF797ne3uXV1YgbBqIfuLm65ubmBYc315xvzlg/eY9753c4f/CAflhBtgGeRQiB2Rmu5EwWUTvKYUMk4kLEead88FrpY6SPHcF5ohc6D+I1zwnapCKhVcr96NjfZFKqM/jqu0C/dkiuxE7oolI9ES16Kah0IJWUdD+9uk52Q/FzFdlFRx+9Hq/3BC96zlGAl0zzlVJhHLUT8m2MklX4HXxHlmn2FplzEdG7ZXBBE86cFXjgNIkyrVBwnmTV4WzOSKkqSJlS1jVpa6qPjnrQ+3YXPKvVgHeePKmWYbfPVu0VpiKMSY/rXWK9XlPEkyXhbU5QQfBDh5fK0At1L6TDpPfXYmoS56GqcDmao1qbmeGqY9onzu/d4cpdkW3mUrvLt4JnaLlZy8E42j/sp2+XrY73ENsv7PvNg88RCFJ1dMHR/lNrM9hxOnPCeZNmCqkWplKZsBkeaULM0U5zk5ZvyFGOo5+nWodDO3rLR5xYIXC012CTs2t0SPSaowAyJnwupnuw5/A6LX3eOr3DR4+PjriKxE1HHSK5dTW8N77hiEwV5wZC7Qmir1eK6kAKmoCXCimoG5wLkeADIQTEHP8EnbruipvJG0GwmSdWcDdmRUiYQUyzxi+UZHa0or6kzhXwyrJwvnUlMiTrgCQDGpNpQadCPjTny0TJmnvURpmqikyr1NmxrNpk8Dawz9Xjcvf/e3x1oDH3tI6rzzKXyV1tHHjmNtCtsQgG+qRWXGyitbY3yJyke8uUG5++iJsXyawjbldIXX6/3URbEt1ucE1rIXbjbpewF319mhQvBKJjEfdxN0HsfYshdeUjuQVRid7Km67BtfdiX/+BGn47g7coTe17x7ju7a/e7oS0fzWFRaPXLJqM9u961HBqIKXVvKpBmqUGZhh9/vnWOwHdUMlufs5q56fNSBHFCzPIkNmiQMwCoxqvwCnIiA2hOTuGgohYHCFDmBoFSl+FilkrrmR87vE546YMfYcLEQmRznmtzNpr8qBdEbOQW2h6VVuUWfBJQYafRB0q2uRMqdTaFmM2TqYCjNq0GlXv5D4VE37b31OBqRqNyjiiyaaDN4vbqp0TnalRDHA0WkCjsS3Xz7c1vvz4lzz+8COSQFytFAgfRnom4mrAuS399oy0v6EcRoLv6dY905TweO4/HFi5zPe/v+YXaeST307cefiQL14Hbm4SfRRyXVNlh/OFYXtGio95+N1rPlp1HHYO8R1//i/+DcNmzerujnR5xcrD5DyHotdpHzyPP3ifuFnz6a//Hb/55BNi33P/8WM+/Of/BR/88CdsHn+XePicf/7kFX/1yw/53ZdXvPniGVTYXe0oq57rUeg7FQSvthulZ+ZEni7w1x/TB0cMgeqquut50D1WtIJmG5nzVoBoN/52Pdv6c8ZDra0gYqs5tj0Y1W4458xJTjtngDlrJcbJq4OU98S+I5UM44G8u2aaEtjuMNuz2hC0VrxQ6pa2q6stZ21ethur2D5eySWTcmYcR7q+MxtSBVq11+t+N41cX19rxT8EHBFfO+5T2Kx74lZnWHgBHzzr7RbnPK92lStJiB84XI705Zp113N+9x537z9gu9qw2WzZrrdEtJuSphGGDt9r93Mcb0jTSJQ13XpDHNTSlNhTnc40ocJmGDjbDPSdJwSbMo0BLm/7aNVu0jRW9jeFlCrdam3DjquaHvQDMagzl+pbTFfmdCcuRS+EnOGwK0zjZEmBGpWXknEEai1sViudGWFrrpp+p1bdN6eU1czAfzt3krwfiUOvxRcXEAoidQYTDt335yKSUXkUOOg1WosaFtbqOExCDJ7D6CiTsQi8txJum3PV4brK0DkV8OK5ujzgXMSjk+Db9PqpelLV5MR1PROechhJ46hahC5y9+6WbtjAOkKdON8EDiFSp4rLGSd6HTgzYIxOqUv4hcodaiXkia6iVqi1HuUicjsXaTf+I7DR/j4uNwrMTpZvp5CVJdl3aE7RnEERK77a4EHBL7mIiM54MCv+5ojZsowlz/BvPVd7je1nF6gzF5dROmZN8+6kUKRWJJhfVko2uR3dZ7Uios/m1WfUWS7iByBUiitq+OKjOUpWOt/TEehwdAihFFzK1MOkuqmUibUQao8vFfEqTpfY0flADREJnmKDWZVVYcVPnMoLTM/qCvgs+Aw+qW6imA1tajMwTIdapIDLCp5QoCG16JTxXI3Ore5Skgp1EuqYKWM285liBU8btuyqOoLVioiCj1Kb5uVIIC9akP8q8dWBRvvk5ytTlqZBS6RFwUHrYMjxVe21qC0BfbFhydOLHc7LkcY3a2dDKTja4dARDA3oHA+cW7oAxwukgYxmetXS6ltgg3bh63bS+hgKNI6dFuzdiOhFVCvidCoorj23uoUgSzfG3Xo9b/Mg3a3X3o6xIPzlZ5ZKA/P/tmjHbx5UdT7GMWCRo+d5G+a0pexYtpNjEtXSgrczZ8BCvZSLs/kd8zHs2ALHWotFDOmYV5pvXxtJS8RmSYAkjFea8XSI6GA7aYKmlChTpB46ytCR+0juOnKMdD7S+UBw7YZt+hpb3GYatThqZV3YIS1go3lVl7bQJBvIMG0ImSKJSrImc9ZqVFK6FGNVoGGVBH0eq7pYtbRUpac0wVo1oW7ztK7SgMZyDd2q+HzL4m/+9V/y4L3vMKy3+GFL7Af6LsCkQHg9rHF5oo4q9vVEOGSCravry8zds8Jf/MtLJgLDtmczCK++fE3oBtXzpAv6vjCmgOs7otvz64+f8uTROdcXmZubgQ+enLPaDHz629fc73Si7MGGLA1dT0fHe++/R99FXr34gr7znN/dkq8vuHz2Of/if/5foNvy/g/+iB99sOWf/tmf8Hl+xJ//H39B3R/I0x7voMaRJ9+7g2wfsdvvOVxfM91c8+5dz6e//ZRpnOj7TkWQpTmgmI0hUGzNBOfnnUCXljMfBdVCtQJLU0828avypQHczKNuGopUKmPKhDDhY0fIhZwLuWR1YBOtol3sDxxE3XBAOxM+eO000TquSz/WsdCFAJtC3WbzZEqJ5JxIOanmYprwJmQIBnRSqXz29Cm7acR3ahXrgqcfBh4+ekiaRn09McwJd+zXpJy5vJrwL74ghsj6fMt6veXhgwe8+/53uPvwXYbVSu8xsSMYXTSuV4x5wk0eORzY7650sNtmy3B2Bwk9OQRzcql05ky1WQ10XdNhtPJWC+245OI47IXDTvcSFz2h17JBHjMERzCRL87uo27BAVW0QlwrpEnnFTnvKdPB7gdV5z44tVXue68gxy2JnIqb1bVrGpNa4fbfTn/b/fU1Z/G+Vvy9V8qu9ewQu4aMbtL0G9Jc2Bww6d3xZq85eZs0nnPWSq0AlJlN0YZ4TodE7wMlabHMxQjOsz8UAxma02TnyNa9C11HcY5DntRRLnhSKYzTxMXll+A8q2Fg3QXONivKJnK42inDQ4wq5GDoVbOjFBYVBHdeyIcDpHKkFZ3LnYhpSluR9rhO7Ix+6x0zFfd4BS+S7+NcpH1PV7xqP7Wb5sW0nJboiTO2uyjQyDVbmdOeyQ5Zli2NJReRW8/rELI0238DHE4p7SI6iFMq+nlbxVrs56ZktGTU0McHUZOe6K0T5peFFsFFVF9RkjIRJBLWPa4MeFQP0jmniXNK+jkXUYpSH3E5U6eJ1Gnnou86SjeQY4d3SQuezpL16vDilbpV0NwxV6N2CyFrh9UnqEm0i1FaLqIGGFUyRTLiCs5VZVi4ipOs1FUzm5HJ3LyymEbUOh32KEV1HtkaAL6Bx1r1erO5HFKbplnmotNXia/nOqVX6B/+fkUpHhUwX2IVY1u6q9m7/Zz+Xdt9seERO87sz2y8QjdvFm4piktLfoXW0Viq9cwY2B99v6XRx9uro7ljyYzWW7K/HKktwPa1VlCkjWfnuBvR+Hr6m8ccWf3KFvj87Lc7Ew0sLLBk+f3mhXUMXxoYaq9xgVJtIvDy+63Osbyv47/bVw3ceHWIoOHE4+fWDaFtSBkVBenmZpQ4zEqRaq0D+xTm69KOZdaElKBgw9T/OjywUkuklkDNiZAifsq4GPFxwvcdoYuMXaTvdEBf10W60CnQCI6INywjtpBR940s1tUQOGpRhlzxCUJznypVJwpXTf5FtItRyGTJZAMcYtuur5WQMm6quKTgQuzhzMGklgYmrHtR2/uVOXE0s2rdtH9vu//2xm//3d/y9Dcfc+fJO8TNhv7OOenmkrqvRDyPnrxLtxr48lefsOkGUhXK7hr1PREO14Gbm8x3P7xHksjlmxuefXHFNBW6zR1KuuSwT0yTtXwP8OqLa1Zdz+sXe8Zd4erqQB89zu84TCPBO9YucO/OiofrFX/vO+/z9NMv+PXPfkrsA/vrS957/zGPP3ifq8tL9uM1v/n535Iy3Lz4DV88ep+Pf7Hm3nvv8cWvfk3nNSG++/AhNQTO7vU8jI7h6jW7fqA78zw4v8O/+vlrhu1W7XGrsNvvbVikJfuiRgWtO+Ewk4XZyQmKlHlFame43qLLVIRgvvzBW+HAaf8yS9VOkfNq89kNmhjnTNrv2V9d8ebVa64Oe6rzRLfsgSXrmijL9jEnFTq5+Kip7hZdg1bVC6UGpSDWrMcqOlMm+0zoOi5urrk57FidbVlvVpxtNwx9ZLVe06827Hd7rnY79lMmTYX91Q3j/po8Hhi8Y/CBzdmGh++8x/Zsw70HD9luzgheaRAxKBViNQz4LqqZxH7P4foCEWE4P2d97yHd2T1K7JQOkTLBOTbDiqHr6YdI1xmoavcwW6A5V6JzlOzY7zLTpFRI8cqnygYkh6Fn3Xt6NeKhCkSvTd7jnboUneSds8xuS4LDx8DQBbrVQIyBs3UgugX0iHUzkmlDxn2ilES3CsT+WzgWHJjGA2kcCUOnmsAQVMOE4EQnwnsfSHnUtTEDDQAxk0Oh66I6iNbKOFkHwgWr4hpIMXZFrhmpjpRsqOqs96yaJLaia1BTmdhFpilxOOzBOUot9F0kdh25FLJUdoeDFjvzRIod06iJ6TgmIp7oPSFGvdvaNHRv2kjvK947rg8J8eZuhq4v0H9rIv52r+BI9Gx5zu9nBC0HOiZ5N6Cy5CIVA2EoyIhiwAU3dzFSESZLjheziqYbO85c2pMfZ0MzH4XiHM7GDQeaoN+bhskcS/FU8VAU5OmE8KyaYKN0tqKpc960j3XptFbRwYhVnaM8Qcd11V6NLYpQp0x2o97Hs+5Z0munwU2BySu1LnaBvtcZGlOsxDAS2rl0akGt9sMqppdZi2zgIoPPFV8cPol2IYoWbIoIYmY0QqE65a1U38YqFvtMKiEX05u2mSKqT8Sct0rO1kk24bdUsln7AmDieaRawUhmdop3Sh/9KvH1Oxpv56fF1lqr4Dcg0YrlrQPhdNESmblCYlzWW8c0ZOpt+EujY2mnRObXEmS5PNvMi1Y7byi4XcLHbcJjkLE0aRzF8PIi03YmhFqQ/oL3GzGpHlUKlj7FcTrYXk+99So4epblrR8v6OWUtMW2VCrqfCRbvEfHcbY1HFPA2vHl6H9nAPh7H+gCJtpm0josS9tSb3LNdaC06kV7V84+b0EvhmOgIcefSPu82yfjmS8Q8ySsJVNrIJeAz1pFciHiQ4QY8V0ghkjsAl0M9CHq9GEfib4NCLPt1QinrZMhBRNcgcsQM4QkhAw+YVUx9dquBjQQBRWVTBJ91NmxQG11Qyq6SRi4kNwqFXouRJQfr8Ir9W+vdi3py1xgpxoNLJ9Vu86/rfH6zTN++dP/mz998t9x9uAxN69fkm+uoRsIOA5TYXfzmjJNBO+oKZFyoXcFHwIpOb78MnC9vqRMwm4KHG4m+kFpNCXBTVa3FqVMTuxGYdjeYRxvCBGtridByEiF4KLuDVPmy9+8RMKGnkK6fMmhFjpgurricHVD2d/wt399ASWzWnV88P6WfR75iz//O97/4FP2F3teXo8Mfc/rzZbx8Yp777yH8/f53t/7Y4Y4sbn8OdebJ5TtC977aE0aR6ZxYri+ZtyNSC2kUW9mKZu/udPktDqlT6iwN+tNyxtNobRugjP3NxVKNipEwLHuou5fJvQrdv2pNkTog86pefnqimdPnzKlBCGYpk6P2ahPpZZbu4aglMfOg/c6zTqXag7fjlYQ0oqcvt7DeMDHSJg6vflu1vjtmi7AD9/7CWfbLcEJnYMuRG72k14j+8Sbl1dcXr6hpAI503nHnaHnzp17hBhY37nLdrtl3Q104sm7PUMcqDj6e3dZr9aUnNjvbhjHPSUdEFc4u/+I7YN3Ge48oIZItgnT62FgFTt649mH4G/NWHImzBPRffZwENXtHCYcQSvcvcN1jumQkVI5PxvYrCPe6fAu7xsg1GjgLGcDGejzCBUX1Cp1s+0QH1lHr25XoSW+Nm+jKkgZzc4X0Ynn0+EA3Pn/aul/Y1GSWiNv+o4QOq3U1go2GLfRWGoRtOsuSF7q49Wh1qi5mCOlXtMu2MyIal0kE5U7AVeMFli0Qnqci3g5YhhIZZwS1dR0UtSqVelvRbtiUtntR0BwXjtZgnB1vWfVJU1oq9NE2mdc54mxp+AJw4rglFqTfKB4IfZhTpS1St7uvWI6UZkLomL7gS7YhYS9EJI0tNPx+7lIK1S0O1Ir0nrRbKpT+KEZRNFBoEX0ejym2Yjw1n3sdi7inJZGl2GBLRdR2KRUeTHjMTUVogTbHwPORRCsE9r2QM2A6swc0AnZ1WZp4DXP9DEoQUo8vmpXwLkMzpFEXZ5KSYRhIFiBRPZaQPBOHaqGoWc1rMljJfgJ79Ruu2lYvUMr7dbJkKZlzVprDQVcUpaFS5iTmujcDwMEUrNpMvS+ULCukTNei3U0XBHNQ2zQn+SqeU1zz7RcY84u2rUt7cq1P1VmKpWgHbTWef/3xdfXaBwft2W9BhzmJO74+41H1aBk+7/Fzmg5VnueyjLEZB6/LvO16I4OcwwojnCxXVTL5fuHcNfSW1gS3WNKkx7H/d6CaJ2SW8dyYIVEay1xy2K3/ebt+sHCd5z5tBy1Pg1KiL3aY4pVex3y1u+3xuYx2BCWKZzt5+eBhMitc1gXzE870wudy9s20kCIjaHH8IRDB9O4dhzjcLZP4Q9NeBGx1la1robdGds2JhHwiHhK9ZCCtcsDhKhJUAiE4OlCZAyB6AOdC/PCbkDDSTUROFDFpmvqNesyhOIUbGSl7vmCeVcXG+5TaS5TRQpJCpOY1N4tQMPnSij68FmMc6nHcWjbs9hjboHOAMLNeiJkuRIbxFyYqd/OmMY9T3/9C/74+s948OQ9rp49xeeRvVTyzY7XT3+ngvoykZJOz86lEEPEIaTDDikrrl5N2q5fb7VKVjJlPID6k+H7XquH415JkSUTo9ogx77XG8+UjL2nItG0T+Spkt0NXgrr6Oir+ubnqyteffopaZw4pMTK6Q3dl8Kr5y+IwZHGzPWbN0yHieQ8XLwm1jWHqytevBF+/JMPuffumtfjQI53+N6P3iPEnpJHXr5+zvWr15RS2F284ebyijIemMYDu5u9zjzISnnBeet0KLdY31+1qieEGHTpmHseqEBxyoV1DAzefs871p1j6B2RhCsH9iNcX+94+eaNzs7oeh1kBmDvGe8Rb3ono2x471XM7Y1HJMKd3uN3B96MiX3raljlTETdd1LOlDQRNpn3P/ojnnz0Q1Znd9nvDqxWHbUUXr14rpPAd5dcXl1wOBwo40Q97Ak1E6Lj/M5dzjZbXMk8ePQuoR8Yb25Ihz1hSpQ44DuZgeub6x3y6CG7yyumww4/dMQhcHb/Hqv7DwnbM2rsKKXQh0AfA33XMQzDbHfrQ9vTl323ipCT0lv2+8nm4WiXqSKsYtB5J86zOevYrIPuzWJuVf4ouROdyH6YYBx1gy2mr0gp4WNH3w/E3uOqo/Nt+rV+XNphcqoRyZU8aaes63t86OjPvv4Yrf8/hORK2h+Q9VapSTKB6XukVEpO6oJSWneYmfIhYDQ0rxSoIDr3AGfHWGr8rmo+IDZAtrZjHCVi3NqPBao59OjQsFlj4wRqLaRp0ipxo57Yb5aU9blmgKO04VIKCaGWkVQmhlWm7zy5enBeaYDOOpFFZyfoW7F5CyrOUbpu1Y6jw4oG7T0YUnZ2v567M07dhRoMqWiBo1loi92rdB6yMT3sZ3IVioEs7xopfTlbwbU5G0v2oYets+t9RRTcVaV6WkZB6/E3jQhGCXUidHGFHwZcDGq9GtpgwbSwCErWhN0q9VR9zhAcPnhwogVK76glIclpgRBR7Yyr5OK1GNbZvcQ5XAz4GOi6DhtlwXTIS3cqeKVOeTM/sZzeVUzsjQKPAq44QhYThOu1rNa3mhtVK+B6VxBXVevVkmcTSjuj+bt5HpiYU5BqSaWBDCeI146FM8Oe1vHSmcZiaXy1olRVIOhYrqN/T3w9oHEccvRYrI4WYl5DAhwtyqWFcPsYbx/zqPhdW0fj6OeO6/HHIGN+yqODHj/VbVzT1BsmHsLP32vHeltR7+afXFJxYBnIFI6e05yzZn7k8d4EMwjwqBYkwLyQrPFlHRUFDGU+1YtzFDRqmHCM1/LRMZZztICaNsmzTRU//qmCJ8+7j5+f06POKfXoeWYA0sCGs83IHDJuxZFF8CzqOTrS8iHKEXi1Dz97/X2bj4HzaqHnA8RAcZ4SIsl7og9EF4jOz1VVnHV65qEu2FA8zWnFdBuhqvg8FgUdvuhC9aViZtLoL6uwTYGGOjOo65idEXPAag9f1BWrfSqVTKENYWyf6HJOZ0B66/L7w4D62xbOVS7fPOPzT37FP/7w+zz68EOuhp797pKw6XEHQYJQbgq+65H9DdG8H6TohRHIuHxAXKSOe90o60SoBTeck8Q6oaYlkFyIrlK7QQW+TpPsTFJA7L2ZUYg6PlEVpLpAdIXUBkWOO7rqqVEIVekQX/72BT/60Qf4+IBf/OI5+ZDsnQqPHvQ8fDjw7rtr7t8dObz8hP/zpzsurj3r7c9Y3b3L3cfv8+53v8v7732f6dETBE9OI4Lj+uIl02HH/mbH1evXXLx6zTgeGA8jh5sdbtTzEmPQ6bem8RiGQRPR7ObiVBZ1otlLZRJHX2FwniKeqVR2NzvqzYjv9qRakZRwMSAOog/4GKk2rt4POtdEaa+aOgSvGrfgA91qjYTApvP0N1c8ePWaPTAROWTbv50QomPoAg/XPT/8wXf58B/9R6TujIvnXzJdPecauLyeePn8mSZoJSN1Ahy9V/H33fv32JzdYby+ou8HHIV+u0XEE+sNAei7FePVFclB2u/xPjKsNDm7eXMBkhke3cfHFat7D/GrM00Wc2Ldr1n3A55KjMFE3s72lAUUtK9TcuxukiaVKWnSJK1i7khTwTnHdhXYboImc0UH9gUvTU4zu4GnLBz2lWmss93kNE1KRekiPghSxEwFmG2+MdCjdtyw20/sb26orurQrVTZDN++GRoAVChTZtqNrM8Gotdqfy5FXXyskERRKlWtRXOvo2TANVDhnHac/VFh54iS0254rV6KeBXauqXzr/c++yEwWqMwu5DLUjxqFKJ2/SBCmgqr1UBwnulQqLXVZD0haoLad55QhFJGrg5qORoCxOCJ0dP1HZuuRzqduyOWcKhtuijNx4a7qUZegRNVOQ7BOdMG1Zl734wnqmkyM23oZ7vX63uq6PnMIky1zFowEbnNdmhrpoEVM5WYgQYtr3LgnU3QVr1CLHVZbyI2ccNTneCdEB10fUc39GTnKNOkk7Odvt6cktGrqt3H7fmcivN9UFMB5/W5Z9BTAcnKqEkHpWyVSYs6wSPTpOfRe/zQIbHD4zgwklOh84nOB3IIhJa+OC3WtjxHbG5Gc1Vt1O6Wg4TawEe1bpUVNG2IcaGSaiHPOZ0mng411XDZrPtbPmPdEKQiNvS4ifnf1gHOHbBqQxCLaZPRrp77ioYSTmZ4fopTnOIUpzjFKU5xilOc4hTfTHw1JccpTnGKU5ziFKc4xSlOcYpTfI04AY1TnOIUpzjFKU5xilOc4hTfeJyAxilOcYpTnOIUpzjFKU5xim88TkDjFKc4xSlOcYpTnOIUpzjFNx4noHGKU5ziFKc4xSlOcYpTnOIbjxPQOMUpTnGKU5ziFKc4xSlO8Y3HCWic4hSnOMUpTnGKU5ziFKf4xuMENE5xilOc4hSnOMUpTnGKU3zjcQIapzjFKU5xilOc4hSnOMUpvvH4fwAWknZ3YgOUMAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from lensless.utils.image import resize\n", - "\n", - "\n", - "top_right = (80, 100)\n", - "height = 200\n", - "\n", - "# derive width from height and original aspect ratio\n", - "width = int(height * original_aspect_ratio)\n", - "\n", - "# plot extracted reconstruction\n", - "recon_roi = recon[top_right[0]:top_right[0] + height, top_right[1]:top_right[1] + width]\n", - "\n", - "# resize lensed image to match the size of the reconstructed roi\n", - "lensed_re = resize(lensed, shape=recon_roi.shape)\n", - "\n", - "print(recon_roi.shape, lensed_re.shape)\n", - "\n", - "# plot roi, lensed, and overlay\n", - "_, ax = plt.subplots(ncols=3, nrows=1, figsize=(10, 5))\n", - "ax[0].imshow(recon_roi)\n", - "ax[0].set_title('Reconstructed ROI')\n", - "ax[0].axis('off')\n", - "ax[1].imshow(lensed_re)\n", - "ax[1].set_title('Lensed Image')\n", - "ax[1].axis('off')\n", - "ax[2].imshow(recon_roi, alpha=1)\n", - "ax[2].imshow(lensed_re, alpha=0.2)\n", - "ax[2].set_title('Overlay')\n", - "ax[2].axis('off')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "lensless", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.5" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/scripts/recon/train_unrolled.py b/scripts/recon/train_unrolled.py index fdc081ae..95057aca 100644 --- a/scripts/recon/train_unrolled.py +++ b/scripts/recon/train_unrolled.py @@ -39,7 +39,7 @@ import numpy as np import time from lensless.hardware.trainable_mask import prep_trainable_mask -from lensless import UnrolledFISTA, UnrolledADMM, TrainableInversion +from lensless import ADMM, UnrolledFISTA, UnrolledADMM, TrainableInversion from lensless.utils.dataset import ( DiffuserCamMirflickr, DigiCamCelebA, @@ -53,7 +53,6 @@ import torch from lensless.utils.io import save_image from lensless.utils.plot import plot_image -from lensless import ADMM import matplotlib.pyplot as plt # A logger for this file From 6c8de0897bf9b28a078f92a052b637faed639782 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Fri, 5 Apr 2024 15:34:39 +0000 Subject: [PATCH 21/24] Add function to plot train-test curves. --- .gitignore | 1 + lensless/recon/model_dict.py | 7 +++- lensless/utils/plot.py | 74 ++++++++++++++++++++++++++++++++++++ 3 files changed, 80 insertions(+), 2 deletions(-) diff --git a/.gitignore b/.gitignore index ca9b0dfa..e970b7bf 100644 --- a/.gitignore +++ b/.gitignore @@ -8,6 +8,7 @@ DiffuserCam_Mirflickr_200_3011302021_11h43_seed11* paper/paper.pdf data/* models/* +notebooks/models/* *.png *.jpg *.npy diff --git a/lensless/recon/model_dict.py b/lensless/recon/model_dict.py index fe306c87..c76b609f 100644 --- a/lensless/recon/model_dict.py +++ b/lensless/recon/model_dict.py @@ -99,7 +99,7 @@ def remove_data_parallel(old_state_dict): return new_state_dict -def download_model(camera, dataset, model): +def download_model(camera, dataset, model, local_model_dir=None): """ Download model from model_dict (if needed). @@ -112,6 +112,9 @@ def download_model(camera, dataset, model): Name of model. """ + if local_model_dir is None: + local_model_dir = model_dir_path + if camera not in model_dict: raise ValueError(f"Camera {camera} not found in model_dict.") @@ -122,7 +125,7 @@ def download_model(camera, dataset, model): raise ValueError(f"Model {model} not found in model_dict.") repo_id = model_dict[camera][dataset][model] - model_dir = os.path.join(model_dir_path, camera, dataset, model) + model_dir = os.path.join(local_model_dir, camera, dataset, model) if not os.path.exists(model_dir): snapshot_download(repo_id=repo_id, local_dir=model_dir) diff --git a/lensless/utils/plot.py b/lensless/utils/plot.py index 465546cc..360f005c 100644 --- a/lensless/utils/plot.py +++ b/lensless/utils/plot.py @@ -10,6 +10,8 @@ import numpy as np import warnings import matplotlib.pyplot as plt +import os +import json from lensless.utils.image import FLOAT_DTYPES, get_max_val, gamma_correction, autocorr2d @@ -286,3 +288,75 @@ def plot_autocorr2d(vals, pad_mode="reflect", ax=None): ax.imshow(autocorr_img, cmap="gray", vmin=0, vmax=max_val_plot) ax.axis("off") return ax, autocorr + + +def compare_models(model_paths, max_epoch=None, linewidth=2, fontsize=18, metrics=None): + """ + Plot train and test loss for multiple models, and print metrics for best epoch. + + Parameters + ---------- + model_paths : dict + Dictionary of model names and their paths. + max_epoch : int, optional + Maximum epoch to plot. Default is None. + linewidth : int, optional + Line width for plot. Default is 2. + fontsize : int, optional + Font size for plot. Default is 18. + metrics : list, optional + List of metrics to print. Default is ["PSNR", "SSIM", "LPIPS_Vgg"]. + """ + + if metrics is None: + metrics = ["PSNR", "SSIM", "LPIPS_Vgg"] + + # plot train and test loss + import matplotlib.colors as mcolors + + plot_colors = list(mcolors.TABLEAU_COLORS.keys()) + + _, ax = plt.subplots() + # plt.figure() + for model in model_paths: + model_path = model_paths[model] + _metrics_path = os.path.join(model_path, "metrics.json") + + assert os.path.exists(_metrics_path), f"Path {_metrics_path} does not exist" + _test_metrics = json.load(open(_metrics_path)) + + color = plot_colors.pop() + train_loss = np.array(_test_metrics["LOSS"]) + if max_epoch is not None: + train_loss = train_loss[: max_epoch + 1] + ax.plot( + train_loss, label=model + " (train)", color=color, linestyle="--", linewidth=linewidth + ) + + test_loss = np.array(_test_metrics["MSE"]) + np.array(_test_metrics["LPIPS_Vgg"]) + if max_epoch is not None: + test_loss = test_loss[: max_epoch + 1] + ax.plot(test_loss, label=model + " (test)", linestyle="-", color=color, linewidth=linewidth) + + # best_epoch = np.argmin(test_loss) + best_epoch = _test_metrics["best_epoch"] + print(f"\n-- {model} --") + print(f"Best epoch for {model}: {best_epoch} / {len(test_loss)-1}") + print(f"Best test loss for {model}: {test_loss[best_epoch]}") + # print metrics + for _metric in metrics: + print(f"{_metric}: {np.array(_test_metrics[_metric])[best_epoch]:.3}") + + # set font size + ax.tick_params(axis="both", which="major", labelsize=fontsize) + ax.set_xlabel("Epoch", fontsize=fontsize) + ax.set_title("Train-test loss", fontsize=fontsize) + + # legend outside + ax.legend(loc="upper right", fontsize=fontsize) + # ax.set_ylim([0.4, 1]); + if max_epoch is not None: + ax.set_xlim([0, max_epoch]) + + ax.grid() + return ax From fab248f8e3ae8aacd98e235c47e6c0c958f75cf7 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Mon, 8 Apr 2024 14:05:57 +0000 Subject: [PATCH 22/24] Remove commented line. --- lensless/utils/plot.py | 1 - 1 file changed, 1 deletion(-) diff --git a/lensless/utils/plot.py b/lensless/utils/plot.py index 360f005c..3d966532 100644 --- a/lensless/utils/plot.py +++ b/lensless/utils/plot.py @@ -317,7 +317,6 @@ def compare_models(model_paths, max_epoch=None, linewidth=2, fontsize=18, metric plot_colors = list(mcolors.TABLEAU_COLORS.keys()) _, ax = plt.subplots() - # plt.figure() for model in model_paths: model_path = model_paths[model] _metrics_path = os.path.join(model_path, "metrics.json") From 35b3c112757e2adbba6a2e1ab3ca40b93392b8c2 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Mon, 8 Apr 2024 14:09:21 +0000 Subject: [PATCH 23/24] Add links to Google colab notebooks. --- notebooks/README.md | 5 +++++ 1 file changed, 5 insertions(+) create mode 100644 notebooks/README.md diff --git a/notebooks/README.md b/notebooks/README.md new file mode 100644 index 00000000..220cc5ef --- /dev/null +++ b/notebooks/README.md @@ -0,0 +1,5 @@ +The following notebooks can be run from Google Colab: + +- [DigiCam: Single-Shot Lensless Sensing with a Low-Cost Programmable Mask](https://colab.research.google.com/drive/1t59uyZMMyCUYVHGXdqdlNlDlb--FL_3P#scrollTo=t9o50zTf3oUg) +- [Aligning a reconstruction with the screen displayed image](https://colab.research.google.com/drive/1c6kUbiB5JO1vro0-IMd-YDDP1g7NFXv3#scrollTo=MtN7GWCIrBKr) +- [Towards Scalable and Secure Lensless Imaging with a Programmable Mask](https://colab.research.google.com/drive/1YGfs9p4T4NefX8GemVWwtrw4aX8zH1qu#scrollTo=tipedTe4vGwD) \ No newline at end of file From 57eeb00987edd4032340e478f9d0aeefbddc7d12 Mon Sep 17 00:00:00 2001 From: Eric Bezzam Date: Mon, 8 Apr 2024 14:18:10 +0000 Subject: [PATCH 24/24] Update CHANGELOG. --- CHANGELOG.rst | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 758a4fea..870fbe6e 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -19,6 +19,11 @@ Added - ``lensless.hardware.trainable_mask.TrainableCodedAperture`` class for training a coded aperture mask pattern. - Support for other optimizers in ``lensless.utils.Trainer.set_optimizer``. - ``lensless.utils.dataset.simulate_dataset`` for simulating a dataset given a mask/PSF. +- Support for training/testing with multiple mask patterns in the dataset. +- Multi-GPU support for training. +- DigiCam dataset which interfaces with Hugging Face. +- Scripts for authentication. +- DigiCam support for Telegram demo. Changed ~~~~~