-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfilter_dataset.py
300 lines (190 loc) · 7.52 KB
/
filter_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import zipfile
import shutil
import os
import glob
from tqdm import tqdm
from PIL import Image
import numpy as np
import json
import sys
images_folder = 'bdd100k_images'
labels_folder = 'bdd100k_labels'
img_train_dir = os.path.join(images_folder, 'bdd100k', 'images', '100k', 'train')
lab_train_dir = os.path.join(labels_folder, 'bdd100k', 'labels', '100k', 'train')
img_val_dir = os.path.join(images_folder, 'bdd100k', 'images', '100k', 'val')
lab_val_dir = os.path.join(labels_folder, 'bdd100k', 'labels', '100k', 'val')
def extract_here(zipped, target):
print('Extracting file {} to {} ...'.format(zipped, target), end='', flush=True)
with zipfile.ZipFile(zipped, 'r') as zip_ref:
zip_ref.extractall(target)
print(' Done !')
def move_from_to_list(list_path, img_to_dir, lab_to_dir):
print('Getting images and labels from list {}:'.format(list_path))
with open(list_path, 'r') as file:
images = file.readlines()
images = [i.strip() for i in images]
for i in tqdm(images):
try:
shutil.move(os.path.join(img_train_dir, i), os.path.join(img_to_dir, i))
shutil.move(os.path.join(lab_train_dir, i[:-3] + 'json'), os.path.join(lab_to_dir, i[:-3] + 'json'))
except:
shutil.move(os.path.join(img_val_dir, i), os.path.join(img_to_dir, i))
shutil.move(os.path.join(lab_val_dir, i[:-3] + 'json'), os.path.join(lab_to_dir, i[:-3] + 'json'))
extract_here('bdd100k_images.zip', images_folder)
extract_here('bdd100k_labels.zip', labels_folder)
img_train_day_dir_to = os.path.join('images', 'train', 'day')
img_train_night_dir_to = os.path.join('images', 'train', 'night')
img_test_day_dir_to = os.path.join('images', 'test', 'day')
img_test_night_dir_to = os.path.join('images', 'test', 'night')
lab_train_day_dir_to = os.path.join('labels', 'train', 'day')
lab_train_night_dir_to = os.path.join('labels', 'train', 'night')
lab_test_day_dir_to = os.path.join('labels', 'test', 'day')
lab_test_night_dir_to = os.path.join('labels', 'test', 'night')
os.makedirs(img_train_day_dir_to)
os.makedirs(img_train_night_dir_to)
os.makedirs(img_test_day_dir_to)
os.makedirs(img_test_night_dir_to)
os.makedirs(lab_train_day_dir_to)
os.makedirs(lab_train_night_dir_to)
os.makedirs(lab_test_day_dir_to)
os.makedirs(lab_test_night_dir_to)
move_from_to_list(os.path.join('lists', 'train_day.txt'), img_train_day_dir_to, lab_train_day_dir_to)
move_from_to_list(os.path.join('lists', 'train_night.txt'), img_train_night_dir_to, lab_train_night_dir_to)
move_from_to_list(os.path.join('lists', 'test_day.txt'), img_test_day_dir_to, lab_test_day_dir_to)
move_from_to_list(os.path.join('lists', 'test_night.txt'), img_test_night_dir_to, lab_test_night_dir_to)
shutil.rmtree(images_folder)
shutil.rmtree(labels_folder)
side = 256
current_data = None
json_dir = None
without_car = 0
def _in_rule(width, height, cropped, occluded, truncated):
if truncated or cropped or occluded:
return width > 30.0 and height > 30.0
else:
return width > 20.0 and height > 20.0
##### JSON CROP AND RESIZE #####
def _adjust_car_box2d(filename, sw, h, savefile=True):
global current_data
with open(os.path.join(json_dir, filename + '.json'), 'r') as f:
data = json.load(f)
x = []
for obj in data['frames'][0]['objects']:
tmp_debug_x = []
if obj['category'] == 'car':
x_pts = [obj['box2d']['x1'], obj['box2d']['x2']]
x1, x2 = min(x_pts), max(x_pts)
new_x1 = max(sw, min(sw + h, x1))
new_x2 = max(sw, min(sw + h, x2))
cropped = new_x1 != x1 or new_x2 != x2
occluded = obj['attributes']['occluded']
truncated = obj['attributes']['truncated']
new_x1 -= sw
new_x2 -= sw
new_pts = [new_x1, obj['box2d']['y1'], new_x2, obj['box2d']['y2']]
new_pts = [(side * e)/h for e in new_pts] # rescale to (side, side)
new_pts = [max(0, min(e, side)) for e in new_pts]
new_pts = [float(i) for i in new_pts]
width = new_pts[2] - new_pts[0]
height = new_pts[3] - new_pts[1]
if _in_rule(width, height, cropped, occluded, truncated):
x.append('{:.6f} {:.6f} {:.6f} {:.6f} {} {} {}\n'.format(new_pts[0], new_pts[1], new_pts[2], new_pts[3], int(cropped), int(occluded), int(truncated)))
if x != [] and savefile:
current_data[filename] = {}
current_data[filename]['car_box2d'] = x
return len(x)
################################
def _bbox_lane(filename):
with open(os.path.join(json_dir, filename + '.json'), 'r') as f:
data = json.load(f)
x = []
for obj in data['frames'][0]['objects']:
if obj['category'] == 'area/drivable':
for pt in obj['poly2d']:
x.append(float(pt[0]))
return min(x), max(x)
x = []
for obj in data['frames'][0]['objects']:
if obj['category'] == 'area/alternative':
for pt in obj['poly2d']:
x.append(float(pt[0]))
return min(x), max(x)
return _try_bbox_alternative(filename)
def _try_bbox_alternative(filename):
global without_car
h = 720.0
sw_A = 0
sw_B = 280
sw_C = 560
n_cars_A = _adjust_car_box2d(filename, sw_A, h, savefile=False)
n_cars_B = _adjust_car_box2d(filename, sw_B, h, savefile=False)
n_cars_C = _adjust_car_box2d(filename, sw_C, h, savefile=False)
n_cars = 0
sw = 0
if n_cars_A > n_cars_B:
sw = sw_A
n_cars = n_cars_A
else:
sw = sw_B
n_cars = n_cars_B
if n_cars_C > n_cars:
sw = sw_C
n_cars = n_cars_C
if n_cars == 0:
without_car += 1
print('ERROR ! there is no car: {} | {}'.format(filename, without_car))
return None, None
else:
return sw, sw+h
def _square(img, minn, maxx):
w, h = img.size
lane = maxx - minn
mid_lane = minn + (lane/2.0)
sw = max(0, mid_lane - (h/2.0))
if sw + h > w:
sw = w - h
sw = int(sw)
cropped_img = img.crop((sw, 0, sw+h, h))
return cropped_img, h, sw
def _shrink(cropped_img):
return cropped_img.resize((side, side), resample=Image.NEAREST)
def square_and_shrink(images_folder, labels_folder):
global current_data, json_dir
def _try_to_crop(f, minn, maxx):
if minn != None and maxx != None:
img = Image.open(os.path.join(images_folder, f + '.jpg'))
cropped_img, h, sw = _square(img, minn, maxx)
n_cars = _adjust_car_box2d(f, sw, h)
if n_cars > 0:
resized_img = _shrink(cropped_img)
current_data[f]['img'] = resized_img
else:
minn, maxx = _try_bbox_alternative(f)
_try_to_crop(f, minn, maxx)
filenames = os.listdir(images_folder)
filenames = [f[:-4] for f in filenames]
l = len(filenames)
i = 0
json_dir = labels_folder
current_data = {}
print('Processing the images and labels of folders {} and {}:'.format(images_folder, labels_folder))
for f in tqdm(filenames):
minn, maxx = _bbox_lane(f)
_try_to_crop(f, minn, maxx)
os.remove(os.path.join(images_folder, f + '.jpg'))
current_data[f]['img'].save(os.path.join(images_folder, f + '.jpg'))
os.remove(os.path.join(labels_folder, f + '.json'))
with open(os.path.join(labels_folder, f + '.car_box2d'), 'w') as file:
file.writelines(current_data[f]['car_box2d'])
img_train_day_dir_to = os.path.join('images', 'train', 'day')
img_train_night_dir_to = os.path.join('images', 'train', 'night')
img_test_day_dir_to = os.path.join('images', 'test', 'day')
img_test_night_dir_to = os.path.join('images', 'test', 'night')
lab_train_day_dir_to = os.path.join('labels', 'train', 'day')
lab_train_night_dir_to = os.path.join('labels', 'train', 'night')
lab_test_day_dir_to = os.path.join('labels', 'test', 'day')
lab_test_night_dir_to = os.path.join('labels', 'test', 'night')
square_and_shrink(img_train_day_dir_to, lab_train_day_dir_to)
square_and_shrink(img_train_night_dir_to, lab_train_night_dir_to)
square_and_shrink(img_test_day_dir_to, lab_test_day_dir_to)
square_and_shrink(img_test_night_dir_to, lab_test_night_dir_to)