-
Notifications
You must be signed in to change notification settings - Fork 16
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
RTT fairness vs. conventional ECT flows #2
Comments
As mentionned during tsvwg/ietf104, this was a low priority issue as we found no traces of single-queue AQMs that were ECN-enabled (ignoring PIE2), either when doing measurements, or during talks with operators. If such AQM was indeed existing at the bottleneck of a path, then scalable CCs (i.e., responding linearly to CE marks) would indeed starve non-scalable CCs (i;e., those responding quadratically). We have a couple of plans to detect this, and will implement and test them over the coming weeks as time permits. In no particular order, hereafter are example signals that the bottleneck of a path may not be L4S aware, and should be stored in the kernel route cache:
|
The trouble is that even if ECN-enabled single-queue AQMs are presently uncommon, we don't want to unilaterally exclude the possibility of this functionality being turned on in the near future. With that in mind, let me outline what I think the weaknesses of the above approaches are:
This sounds like it would detect a dumb FIFO with reasonable reliability, but TCP Prague already responds "correctly" to tail drops and is thus no less safe than other TCPs with this type of queue. Thus it is not necessary to specifically detect that type of bottleneck. In a DualQ environment, cwnd increase beyond BDP would presumably cause spilling into the Classic queue, which works the same as a standard AQM. But presumably you distinguish the case where high marking rates occur, so as to avoid a false positive. But a reasonably aggressive conventional AQM would also produce high marking rates very soon after a queue was established. This would include an instance of Codel configured for a "metro" or "LAN" environment with a shorter-than-standard 'interval' parameter. It's not clear how you would distinguish this case from a DualQ middlebox.
Surely this would also be true for a DualQ middlebox with no other load? Then you'd only see a lower marking rate on ECT(0) packets, if you had already reached saturation.
Conventional AQMs can already ramp up CE marking to high rates in many cases. I understand DCTCP's steady state is at just 2 marks per RTT, which is reached by Codel after just two intervals (if 'interval' is about the same as the path RTT), and generally it would be hard for a Reno-linear increase function to fill a big queue before Codel ramped up far enough to exert that level of control. But at this level of marking, Classic ECN flows are not steady-state, but halving their cwnd every RTT. That's the core problem. In summary, I have no confidence in the above measures from a theoretical standpoint. I was hoping to see a practical implementation and test results which showed them actually working. |
Reference counting in amdgpu_dm_connector for amdgpu_dm_connector::dc_sink and amdgpu_dm_connector::dc_em_sink as well as in dc_link::local_sink seems to be out of shape. Thus make reference counting consistent for these members and just plain increment the reference count when the variable gets assigned and decrement when the pointer is set to zero or replaced. Also simplify reference counting in selected function sopes to be sure the reference is released in any case. In some cases add NULL pointer check before dereferencing. At a hand full of places a comment is placed to stat that the reference increment happened already somewhere else. This actually fixes the following kernel bug on my system when enabling display core in amdgpu. There are some more similar bug reports around, so it probably helps at more places. kernel BUG at mm/slub.c:294! invalid opcode: 0000 [#1] SMP PTI CPU: 9 PID: 1180 Comm: Xorg Not tainted 5.0.0-rc1+ #2 Hardware name: Supermicro X10DAi/X10DAI, BIOS 3.0a 02/05/2018 RIP: 0010:__slab_free+0x1e2/0x3d0 Code: 8b 54 24 30 48 89 4c 24 28 e8 da fb ff ff 4c 8b 54 24 28 85 c0 0f 85 67 fe ff ff 48 8d 65 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 <0f> 0b 49 3b 5c 24 28 75 ab 48 8b 44 24 30 49 89 4c 24 28 49 89 44 RSP: 0018:ffffb0978589fa90 EFLAGS: 00010246 RAX: ffff92f12806c400 RBX: 0000000080200019 RCX: ffff92f12806c400 RDX: ffff92f12806c400 RSI: ffffdd6421a01a00 RDI: ffff92ed2f406e80 RBP: ffffb0978589fb40 R08: 0000000000000001 R09: ffffffffc0ee4748 R10: ffff92f12806c400 R11: 0000000000000001 R12: ffffdd6421a01a00 R13: ffff92f12806c400 R14: ffff92ed2f406e80 R15: ffffdd6421a01a20 FS: 00007f4170be0ac0(0000) GS:ffff92ed2fb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000562818aaa000 CR3: 000000045745a002 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? drm_dbg+0x87/0x90 [drm] dc_stream_release+0x28/0x50 [amdgpu] amdgpu_dm_connector_mode_valid+0xb4/0x1f0 [amdgpu] drm_helper_probe_single_connector_modes+0x492/0x6b0 [drm_kms_helper] drm_mode_getconnector+0x457/0x490 [drm] ? drm_connector_property_set_ioctl+0x60/0x60 [drm] drm_ioctl_kernel+0xa9/0xf0 [drm] drm_ioctl+0x201/0x3a0 [drm] ? drm_connector_property_set_ioctl+0x60/0x60 [drm] amdgpu_drm_ioctl+0x49/0x80 [amdgpu] do_vfs_ioctl+0xa4/0x630 ? __sys_recvmsg+0x83/0xa0 ksys_ioctl+0x60/0x90 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5b/0x160 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f417110809b Code: 0f 1e fa 48 8b 05 ed bd 0c 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d bd bd 0c 00 f7 d8 64 89 01 48 RSP: 002b:00007ffdd8d1c268 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000562818a8ebc0 RCX: 00007f417110809b RDX: 00007ffdd8d1c2a0 RSI: 00000000c05064a7 RDI: 0000000000000012 RBP: 00007ffdd8d1c2a0 R08: 0000562819012280 R09: 0000000000000007 R10: 0000000000000000 R11: 0000000000000246 R12: 00000000c05064a7 R13: 0000000000000012 R14: 0000000000000012 R15: 00007ffdd8d1c2a0 Modules linked in: nfsv4 dns_resolver nfs lockd grace fscache fuse vfat fat amdgpu intel_rapl sb_edac x86_pkg_temp_thermal intel_powerclamp coretemp kvm_intel kvm irqbypass crct10dif_pclmul chash gpu_sched crc32_pclmul snd_hda_codec_realtek ghash_clmulni_intel amd_iommu_v2 iTCO_wdt iTCO_vendor_support ttm snd_hda_codec_generic snd_hda_codec_hdmi ledtrig_audio snd_hda_intel drm_kms_helper snd_hda_codec intel_cstate snd_hda_core drm snd_hwdep snd_seq snd_seq_device intel_uncore snd_pcm intel_rapl_perf snd_timer snd soundcore ioatdma pcspkr intel_wmi_thunderbolt mxm_wmi i2c_i801 lpc_ich pcc_cpufreq auth_rpcgss sunrpc igb crc32c_intel i2c_algo_bit dca wmi hid_cherry analog gameport joydev This patch is based on agd5f/drm-next-5.1-wip. This patch does not require all of that, but agd5f/drm-next-5.1-wip contains at least one more dc_sink counting fix that I could spot. Signed-off-by: Mathias Fröhlich <[email protected]> Reviewed-by: Leo Li <[email protected]> Signed-off-by: Alex Deucher <[email protected]>
When Daniel removed struct_mutex he didn't fix this call to the unlocked variant which is required since we no longer use struct mutex. This fixes a bunch of: WARNING: CPU: 4 PID: 1370 at drivers/gpu/drm/drm_gem.c:931 drm_gem_object_put+0x2b/0x30 [drm] Modules linked in: udl xt_CHECKSUM ipt_MASQUERADE tun bridge stp llc nf_conntrack_netbios_ns nf_conntrack_broadcast xt_CT ip6t> CPU: 4 PID: 1370 Comm: Xorg Not tainted 5.0.0+ #2 backtraces when you plug in a udl device. Fixes: ae358da (drm/udl: Get rid of dev->struct_mutex usage) Reviewed-by: Daniel Vetter <[email protected]> Cc: Sean Paul <[email protected]> Signed-off-by: Dave Airlie <[email protected]>
Jakub Drnec reported: Setting the realtime clock can sometimes make the monotonic clock go back by over a hundred years. Decreasing the realtime clock across the y2k38 threshold is one reliable way to reproduce. Allegedly this can also happen just by running ntpd, I have not managed to reproduce that other than booting with rtc at >2038 and then running ntp. When this happens, anything with timers (e.g. openjdk) breaks rather badly. And included a test case (slightly edited for brevity): #define _POSIX_C_SOURCE 199309L #include <stdio.h> #include <time.h> #include <stdlib.h> #include <unistd.h> long get_time(void) { struct timespec tp; clock_gettime(CLOCK_MONOTONIC, &tp); return tp.tv_sec + tp.tv_nsec / 1000000000; } int main(void) { long last = get_time(); while(1) { long now = get_time(); if (now < last) { printf("clock went backwards by %ld seconds!\n", last - now); } last = now; sleep(1); } return 0; } Which when run concurrently with: # date -s 2040-1-1 # date -s 2037-1-1 Will detect the clock going backward. The root cause is that wtom_clock_sec in struct vdso_data is only a 32-bit signed value, even though we set its value to be equal to tk->wall_to_monotonic.tv_sec which is 64-bits. Because the monotonic clock starts at zero when the system boots the wall_to_montonic.tv_sec offset is negative for current and future dates. Currently on a freshly booted system the offset will be in the vicinity of negative 1.5 billion seconds. However if the wall clock is set past the Y2038 boundary, the offset from wall to monotonic becomes less than negative 2^31, and no longer fits in 32-bits. When that value is assigned to wtom_clock_sec it is truncated and becomes positive, causing the VDSO assembly code to calculate CLOCK_MONOTONIC incorrectly. That causes CLOCK_MONOTONIC to jump ahead by ~4 billion seconds which it is not meant to do. Worse, if the time is then set back before the Y2038 boundary CLOCK_MONOTONIC will jump backward. We can fix it simply by storing the full 64-bit offset in the vdso_data, and using that in the VDSO assembly code. We also shuffle some of the fields in vdso_data to avoid creating a hole. The original commit that added the CLOCK_MONOTONIC support to the VDSO did actually use a 64-bit value for wtom_clock_sec, see commit a7f290d ("[PATCH] powerpc: Merge vdso's and add vdso support to 32 bits kernel") (Nov 2005). However just 3 days later it was converted to 32-bits in commit 0c37ec2 ("[PATCH] powerpc: vdso fixes (take #2)"), and the bug has existed since then AFAICS. Fixes: 0c37ec2 ("[PATCH] powerpc: vdso fixes (take #2)") Cc: [email protected] # v2.6.15+ Link: http://lkml.kernel.org/r/[email protected] Reported-by: Jakub Drnec <[email protected]> Signed-off-by: Michael Ellerman <[email protected]>
…_map Detected via gcc's ASan: Direct leak of 2048 byte(s) in 64 object(s) allocated from: 6 #0 0x7f606512e370 in __interceptor_realloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee370) 7 #1 0x556b0f1d7ddd in thread_map__realloc util/thread_map.c:43 8 #2 0x556b0f1d84c7 in thread_map__new_by_tid util/thread_map.c:85 9 #3 0x556b0f0e045e in is_event_supported util/parse-events.c:2250 10 #4 0x556b0f0e1aa1 in print_hwcache_events util/parse-events.c:2382 11 #5 0x556b0f0e3231 in print_events util/parse-events.c:2514 12 #6 0x556b0ee0a66e in cmd_list /home/changbin/work/linux/tools/perf/builtin-list.c:58 13 #7 0x556b0f01e0ae in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 14 #8 0x556b0f01e859 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 15 #9 0x556b0f01edc8 in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 16 #10 0x556b0f01f71f in main /home/changbin/work/linux/tools/perf/perf.c:520 17 #11 0x7f6062ccf09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Fixes: 8989605 ("perf tools: Do not put a variable sized type not at the end of a struct") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Detected with gcc's ASan: Direct leak of 66 byte(s) in 5 object(s) allocated from: #0 0x7ff3b1f32070 in __interceptor_strdup (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x3b070) #1 0x560c8761034d in collect_config util/config.c:597 #2 0x560c8760d9cb in get_value util/config.c:169 #3 0x560c8760dfd7 in perf_parse_file util/config.c:285 #4 0x560c8760e0d2 in perf_config_from_file util/config.c:476 #5 0x560c876108fd in perf_config_set__init util/config.c:661 #6 0x560c87610c72 in perf_config_set__new util/config.c:709 #7 0x560c87610d2f in perf_config__init util/config.c:718 #8 0x560c87610e5d in perf_config util/config.c:730 #9 0x560c875ddea0 in main /home/changbin/work/linux/tools/perf/perf.c:442 #10 0x7ff3afb8609a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Cc: Taeung Song <[email protected]> Fixes: 20105ca ("perf config: Introduce perf_config_set class") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Detected with gcc's ASan: Direct leak of 4356 byte(s) in 120 object(s) allocated from: #0 0x7ff1a2b5a070 in __interceptor_strdup (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x3b070) #1 0x55719aef4814 in build_id_cache__origname util/build-id.c:215 #2 0x55719af649b6 in print_sdt_events util/parse-events.c:2339 #3 0x55719af66272 in print_events util/parse-events.c:2542 #4 0x55719ad1ecaa in cmd_list /home/changbin/work/linux/tools/perf/builtin-list.c:58 #5 0x55719aec745d in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #6 0x55719aec7d1a in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #7 0x55719aec8184 in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #8 0x55719aeca41a in main /home/changbin/work/linux/tools/perf/perf.c:520 #9 0x7ff1a07ae09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Masami Hiramatsu <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Fixes: 40218da ("perf list: Show SDT and pre-cached events") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
…r-free issue The evlist should be destroyed before the perf session. Detected with gcc's ASan: ================================================================= ==27350==ERROR: AddressSanitizer: heap-use-after-free on address 0x62b000002e38 at pc 0x5611da276999 bp 0x7ffce8f1d1a0 sp 0x7ffce8f1d190 WRITE of size 8 at 0x62b000002e38 thread T0 #0 0x5611da276998 in __list_del /home/work/linux/tools/include/linux/list.h:89 #1 0x5611da276d4a in __list_del_entry /home/work/linux/tools/include/linux/list.h:102 #2 0x5611da276e77 in list_del_init /home/work/linux/tools/include/linux/list.h:145 #3 0x5611da2781cd in thread__put util/thread.c:130 #4 0x5611da2cc0a8 in __thread__zput util/thread.h:68 #5 0x5611da2d2dcb in hist_entry__delete util/hist.c:1148 #6 0x5611da2cdf91 in hists__delete_entry util/hist.c:337 #7 0x5611da2ce19e in hists__delete_entries util/hist.c:365 #8 0x5611da2db2ab in hists__delete_all_entries util/hist.c:2639 #9 0x5611da2db325 in hists_evsel__exit util/hist.c:2651 #10 0x5611da1c5352 in perf_evsel__exit util/evsel.c:1304 #11 0x5611da1c5390 in perf_evsel__delete util/evsel.c:1309 #12 0x5611da1b35f0 in perf_evlist__purge util/evlist.c:124 #13 0x5611da1b38e2 in perf_evlist__delete util/evlist.c:148 #14 0x5611da069781 in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1645 #15 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #16 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #17 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #18 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520 #19 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) #20 0x5611d9ff35c9 in _start (/home/work/linux/tools/perf/perf+0x3e95c9) 0x62b000002e38 is located 11320 bytes inside of 27448-byte region [0x62b000000200,0x62b000006d38) freed by thread T0 here: #0 0x7fdccb04ab70 in free (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xedb70) #1 0x5611da260df4 in perf_session__delete util/session.c:201 #2 0x5611da063de5 in __cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1300 #3 0x5611da06973c in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1642 #4 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #5 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #6 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #7 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520 #8 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) previously allocated by thread T0 here: #0 0x7fdccb04b138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138) #1 0x5611da26010c in zalloc util/util.h:23 #2 0x5611da260824 in perf_session__new util/session.c:118 #3 0x5611da0633a6 in __cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1192 #4 0x5611da06973c in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1642 #5 0x5611da17d038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #6 0x5611da17d577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #7 0x5611da17d97b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #8 0x5611da17e0e9 in main /home/changbin/work/linux/tools/perf/perf.c:520 #9 0x7fdcc970f09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) SUMMARY: AddressSanitizer: heap-use-after-free /home/work/linux/tools/include/linux/list.h:89 in __list_del Shadow bytes around the buggy address: 0x0c567fff8570: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff8580: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff8590: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff85a0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff85b0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd =>0x0c567fff85c0: fd fd fd fd fd fd fd[fd]fd fd fd fd fd fd fd fd 0x0c567fff85d0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff85e0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff85f0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff8600: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd 0x0c567fff8610: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb ==27350==ABORTING Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
The array str[] should have six elements. ================================================================= ==4322==ERROR: AddressSanitizer: global-buffer-overflow on address 0x56463844e300 at pc 0x564637e7ad0d bp 0x7f30c8c89d10 sp 0x7f30c8c89d00 READ of size 8 at 0x56463844e300 thread T9 #0 0x564637e7ad0c in __ordered_events__flush util/ordered-events.c:316 #1 0x564637e7b0e4 in ordered_events__flush util/ordered-events.c:338 #2 0x564637c6a57d in process_thread /home/changbin/work/linux/tools/perf/builtin-top.c:1073 #3 0x7f30d173a163 in start_thread (/lib/x86_64-linux-gnu/libpthread.so.0+0x8163) #4 0x7f30cfffbdee in __clone (/lib/x86_64-linux-gnu/libc.so.6+0x11adee) 0x56463844e300 is located 32 bytes to the left of global variable 'flags' defined in 'util/trace-event-parse.c:229:26' (0x56463844e320) of size 192 0x56463844e300 is located 0 bytes to the right of global variable 'str' defined in 'util/ordered-events.c:268:28' (0x56463844e2e0) of size 32 SUMMARY: AddressSanitizer: global-buffer-overflow util/ordered-events.c:316 in __ordered_events__flush Shadow bytes around the buggy address: 0x0ac947081c10: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c20: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c30: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c40: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c50: 00 00 00 00 00 00 00 00 f9 f9 f9 f9 00 00 00 00 =>0x0ac947081c60:[f9]f9 f9 f9 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c70: 00 00 00 00 00 00 00 00 00 00 00 00 f9 f9 f9 f9 0x0ac947081c80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081c90: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081ca0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0ac947081cb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Shadow byte legend (one shadow byte represents 8 application bytes): Addressable: 00 Partially addressable: 01 02 03 04 05 06 07 Heap left redzone: fa Freed heap region: fd Stack left redzone: f1 Stack mid redzone: f2 Stack right redzone: f3 Stack after return: f5 Stack use after scope: f8 Global redzone: f9 Global init order: f6 Poisoned by user: f7 Container overflow: fc Array cookie: ac Intra object redzone: bb ASan internal: fe Left alloca redzone: ca Right alloca redzone: cb Thread T9 created by T0 here: #0 0x7f30d179de5f in __interceptor_pthread_create (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x4ae5f) #1 0x564637c6b954 in __cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1253 #2 0x564637c7173c in cmd_top /home/changbin/work/linux/tools/perf/builtin-top.c:1642 #3 0x564637d85038 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #4 0x564637d85577 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #5 0x564637d8597b in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #6 0x564637d860e9 in main /home/changbin/work/linux/tools/perf/perf.c:520 #7 0x7f30cff0509a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Cc: Jiri Olsa <[email protected]> Fixes: 16c66bc ("perf top: Add processing thread") Fixes: 68ca5d0 ("perf ordered_events: Add ordered_events__flush_time interface") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Using gcc's ASan, Changbin reports: ================================================================= ==7494==ERROR: LeakSanitizer: detected memory leaks Direct leak of 48 byte(s) in 1 object(s) allocated from: #0 0x7f0333a89138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138) #1 0x5625e5330a5e in zalloc util/util.h:23 #2 0x5625e5330a9b in perf_counts__new util/counts.c:10 #3 0x5625e5330ca0 in perf_evsel__alloc_counts util/counts.c:47 #4 0x5625e520d8e5 in __perf_evsel__read_on_cpu util/evsel.c:1505 #5 0x5625e517a985 in perf_evsel__read_on_cpu /home/work/linux/tools/perf/util/evsel.h:347 #6 0x5625e517ad1a in test__openat_syscall_event tests/openat-syscall.c:47 #7 0x5625e51528e6 in run_test tests/builtin-test.c:358 #8 0x5625e5152baf in test_and_print tests/builtin-test.c:388 #9 0x5625e51543fe in __cmd_test tests/builtin-test.c:583 #10 0x5625e515572f in cmd_test tests/builtin-test.c:722 #11 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #12 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #13 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #14 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520 #15 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Indirect leak of 72 byte(s) in 1 object(s) allocated from: #0 0x7f0333a89138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138) #1 0x5625e532560d in zalloc util/util.h:23 #2 0x5625e532566b in xyarray__new util/xyarray.c:10 #3 0x5625e5330aba in perf_counts__new util/counts.c:15 #4 0x5625e5330ca0 in perf_evsel__alloc_counts util/counts.c:47 #5 0x5625e520d8e5 in __perf_evsel__read_on_cpu util/evsel.c:1505 #6 0x5625e517a985 in perf_evsel__read_on_cpu /home/work/linux/tools/perf/util/evsel.h:347 #7 0x5625e517ad1a in test__openat_syscall_event tests/openat-syscall.c:47 #8 0x5625e51528e6 in run_test tests/builtin-test.c:358 #9 0x5625e5152baf in test_and_print tests/builtin-test.c:388 #10 0x5625e51543fe in __cmd_test tests/builtin-test.c:583 #11 0x5625e515572f in cmd_test tests/builtin-test.c:722 #12 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #13 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #14 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #15 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520 #16 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) His patch took care of evsel->prev_raw_counts, but the above backtraces are about evsel->counts, so fix that instead. Reported-by: Changbin Du <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Link: https://lkml.kernel.org/n/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
…_event_on_all_cpus test ================================================================= ==7497==ERROR: LeakSanitizer: detected memory leaks Direct leak of 40 byte(s) in 1 object(s) allocated from: #0 0x7f0333a88f30 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xedf30) #1 0x5625e5326213 in cpu_map__trim_new util/cpumap.c:45 #2 0x5625e5326703 in cpu_map__read util/cpumap.c:103 #3 0x5625e53267ef in cpu_map__read_all_cpu_map util/cpumap.c:120 #4 0x5625e5326915 in cpu_map__new util/cpumap.c:135 #5 0x5625e517b355 in test__openat_syscall_event_on_all_cpus tests/openat-syscall-all-cpus.c:36 #6 0x5625e51528e6 in run_test tests/builtin-test.c:358 #7 0x5625e5152baf in test_and_print tests/builtin-test.c:388 #8 0x5625e51543fe in __cmd_test tests/builtin-test.c:583 #9 0x5625e515572f in cmd_test tests/builtin-test.c:722 #10 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #11 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #12 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #13 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520 #14 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Fixes: f30a79b ("perf tools: Add reference counting for cpu_map object") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
================================================================= ==7506==ERROR: LeakSanitizer: detected memory leaks Direct leak of 13 byte(s) in 3 object(s) allocated from: #0 0x7f03339d6070 in __interceptor_strdup (/usr/lib/x86_64-linux-gnu/libasan.so.5+0x3b070) #1 0x5625e53aaef0 in expr__find_other util/expr.y:221 #2 0x5625e51bcd3f in test__expr tests/expr.c:52 #3 0x5625e51528e6 in run_test tests/builtin-test.c:358 #4 0x5625e5152baf in test_and_print tests/builtin-test.c:388 #5 0x5625e51543fe in __cmd_test tests/builtin-test.c:583 #6 0x5625e515572f in cmd_test tests/builtin-test.c:722 #7 0x5625e51c3fb8 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #8 0x5625e51c44f7 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #9 0x5625e51c48fb in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #10 0x5625e51c5069 in main /home/changbin/work/linux/tools/perf/perf.c:520 #11 0x7f033214d09a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Signed-off-by: Changbin Du <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Andi Kleen <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Jiri Olsa <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Fixes: 0751673 ("perf tools: Add a simple expression parser for JSON") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
================================================================= ==20875==ERROR: LeakSanitizer: detected memory leaks Direct leak of 1160 byte(s) in 1 object(s) allocated from: #0 0x7f1b6fc84138 in calloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xee138) #1 0x55bd50005599 in zalloc util/util.h:23 #2 0x55bd500068f5 in perf_evsel__newtp_idx util/evsel.c:327 #3 0x55bd4ff810fc in perf_evsel__newtp /home/work/linux/tools/perf/util/evsel.h:216 #4 0x55bd4ff81608 in test__perf_evsel__tp_sched_test tests/evsel-tp-sched.c:69 #5 0x55bd4ff528e6 in run_test tests/builtin-test.c:358 #6 0x55bd4ff52baf in test_and_print tests/builtin-test.c:388 #7 0x55bd4ff543fe in __cmd_test tests/builtin-test.c:583 #8 0x55bd4ff5572f in cmd_test tests/builtin-test.c:722 #9 0x55bd4ffc4087 in run_builtin /home/changbin/work/linux/tools/perf/perf.c:302 #10 0x55bd4ffc45c6 in handle_internal_command /home/changbin/work/linux/tools/perf/perf.c:354 #11 0x55bd4ffc49ca in run_argv /home/changbin/work/linux/tools/perf/perf.c:398 #12 0x55bd4ffc5138 in main /home/changbin/work/linux/tools/perf/perf.c:520 #13 0x7f1b6e34809a in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2409a) Indirect leak of 19 byte(s) in 1 object(s) allocated from: #0 0x7f1b6fc83f30 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.5+0xedf30) #1 0x7f1b6e3ac30f in vasprintf (/lib/x86_64-linux-gnu/libc.so.6+0x8830f) Signed-off-by: Changbin Du <[email protected]> Reviewed-by: Jiri Olsa <[email protected]> Cc: Alexei Starovoitov <[email protected]> Cc: Daniel Borkmann <[email protected]> Cc: Namhyung Kim <[email protected]> Cc: Peter Zijlstra <[email protected]> Cc: Steven Rostedt (VMware) <[email protected]> Fixes: 6a6cd11 ("perf test: Add test for the sched tracepoint format fields") Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Add 36 pedit action tests to check pedit options described in tc-pedit(8) man page. Test cases can be specified by categories: actions, pedit, raw_op, layered_op. RAW_OP cases check offset option for u8, u16 and u32 offset size. LAYERED_OP cases check fields option for eth, ip, ip6, tcp and udp headers. Include following tests: 377e - Add pedit action with RAW_OP offset u32 a0ca - Add pedit action with RAW_OP offset u32 (INVALID) dd8a - Add pedit action with RAW_OP offset u16 u16 53db - Add pedit action with RAW_OP offset u16 (INVALID) 5c7e - Add pedit action with RAW_OP offset u8 add value 2893 - Add pedit action with RAW_OP offset u8 quad 3a07 - Add pedit action with RAW_OP offset u8-u16-u8 ab0f - Add pedit action with RAW_OP offset u16-u8-u8 9d12 - Add pedit action with RAW_OP offset u32 set u16 clear u8 invert ebfa - Add pedit action with RAW_OP offset overflow u32 (INVALID) f512 - Add pedit action with RAW_OP offset u16 at offmask shift set c2cb - Add pedit action with RAW_OP offset u32 retain value 86d4 - Add pedit action with LAYERED_OP eth set src & dst c715 - Add pedit action with LAYERED_OP eth set src (INVALID) ba22 - Add pedit action with LAYERED_OP eth type set/clear sequence 5810 - Add pedit action with LAYERED_OP ip set src & dst 1092 - Add pedit action with LAYERED_OP ip set ihl & dsfield 02d8 - Add pedit action with LAYERED_OP ip set ttl & protocol 3e2d - Add pedit action with LAYERED_OP ip set ttl (INVALID) 31ae - Add pedit action with LAYERED_OP ip ttl clear/set 486f - Add pedit action with LAYERED_OP ip set duplicate fields e790 - Add pedit action with LAYERED_OP ip set ce, df, mf, firstfrag, nofrag fields 6829 - Add pedit action with LAYERED_OP beyond ip set dport & sport afd8 - Add pedit action with LAYERED_OP beyond ip set icmp_type & icmp_code 3143 - Add pedit action with LAYERED_OP beyond ip set dport (INVALID) fc1f - Add pedit action with LAYERED_OP ip6 set src & dst 6d34 - Add pedit action with LAYERED_OP ip6 dst retain value (INVALID) 6f5e - Add pedit action with LAYERED_OP ip6 flow_lbl 6795 - Add pedit action with LAYERED_OP ip6 set payload_len, nexthdr, hoplimit 1442 - Add pedit action with LAYERED_OP tcp set dport & sport b7ac - Add pedit action with LAYERED_OP tcp sport set (INVALID) cfcc - Add pedit action with LAYERED_OP tcp flags set 3bc4 - Add pedit action with LAYERED_OP tcp set dport, sport & flags fields f1c8 - Add pedit action with LAYERED_OP udp set dport & sport d784 - Add pedit action with mixed RAW/LAYERED_OP #1 70ca - Add pedit action with mixed RAW/LAYERED_OP #2 Signed-off-by: Dmytro Linkin <[email protected]> Signed-off-by: David S. Miller <[email protected]>
Sorry for the late reply, I currently have to work on topics unrelated
to L4S or transport as a whole. Quick thoughts:
On 03/26/2019 13:28, chromi wrote:
> RTT increase proportional to cwnd increase
This sounds like it would detect a dumb FIFO with reasonable reliability, but
TCP Prague already responds "correctly" to tail drops and is thus no less safe
than other TCPs with this type of queue.
Thus it is not necessary to specifically detect that type of bottleneck.
My (personal) opinion on this is the opposite. I think tracking the evolution
of some timings (be it RTT, inter-packet gaps) is extremely important, not only
to detect a dumb FIFO (or a slightly smarter one that would apply classic CEs),
but also to improve TCP Prague's performance during slow-start (e.g., paced
chirping) and minimize overshoot (which is imho even more important than
'safety' fallbacks). BBRv2 seems to be doing some flavor of this, but I
haven't had any opportunity yet to look at more than what was said at
ICCRG.
Roughly, I believe that the RTT probing phase of BBR(v2) is very close
to what we need in combination with paced chirping.
In a DualQ environment, cwnd increase beyond BDP would presumably cause
spilling into the Classic queue, which works the same as a standard AQM.
I am not sure I fully understood your point there. If the cwnd increase
exceeds the BDP, then a queue is building up, i.e., the AQM applies
marks. I do not see why it would spill to the classic queue, i.e., the
dualQ coupling ensures any extra queue buildup in the classic queue translates
to increased marking in the L4S one (in addition to marks set by the L4S
AQM).
> No significant RTT difference when toggling between ECT(0) and ECT(1)
Surely this would also be true for a DualQ middlebox with no other load?
Then you'd only see a lower marking rate on ECT(0) packets, if you had
already reached saturation.
Yes, and this lower marking for ect(0) would then build up a queue hence
eventually increase the RTT/make inter-packet gaps invisible.
… --
You are receiving this because you commented.
Reply to this email directly or view it on GitHub:
#2 (comment)
|
Well, I think the proof of the pudding will be in the eating - and we can't eat it until it's been baked. |
Commit 32a5ad9 ("sysctl: handle overflow for file-max") hooked up min/max values for the file-max sysctl parameter via the .extra1 and .extra2 fields in the corresponding struct ctl_table entry. Unfortunately, the minimum value points at the global 'zero' variable, which is an int. This results in a KASAN splat when accessed as a long by proc_doulongvec_minmax on 64-bit architectures: | BUG: KASAN: global-out-of-bounds in __do_proc_doulongvec_minmax+0x5d8/0x6a0 | Read of size 8 at addr ffff2000133d1c20 by task systemd/1 | | CPU: 0 PID: 1 Comm: systemd Not tainted 5.1.0-rc3-00012-g40b114779944 #2 | Hardware name: linux,dummy-virt (DT) | Call trace: | dump_backtrace+0x0/0x228 | show_stack+0x14/0x20 | dump_stack+0xe8/0x124 | print_address_description+0x60/0x258 | kasan_report+0x140/0x1a0 | __asan_report_load8_noabort+0x18/0x20 | __do_proc_doulongvec_minmax+0x5d8/0x6a0 | proc_doulongvec_minmax+0x4c/0x78 | proc_sys_call_handler.isra.19+0x144/0x1d8 | proc_sys_write+0x34/0x58 | __vfs_write+0x54/0xe8 | vfs_write+0x124/0x3c0 | ksys_write+0xbc/0x168 | __arm64_sys_write+0x68/0x98 | el0_svc_common+0x100/0x258 | el0_svc_handler+0x48/0xc0 | el0_svc+0x8/0xc | | The buggy address belongs to the variable: | zero+0x0/0x40 | | Memory state around the buggy address: | ffff2000133d1b00: 00 00 00 00 00 00 00 00 fa fa fa fa 04 fa fa fa | ffff2000133d1b80: fa fa fa fa 04 fa fa fa fa fa fa fa 04 fa fa fa | >ffff2000133d1c00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00 | ^ | ffff2000133d1c80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00 | ffff2000133d1d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Fix the splat by introducing a unsigned long 'zero_ul' and using that instead. Link: http://lkml.kernel.org/r/[email protected] Fixes: 32a5ad9 ("sysctl: handle overflow for file-max") Signed-off-by: Will Deacon <[email protected]> Acked-by: Christian Brauner <[email protected]> Cc: Kees Cook <[email protected]> Cc: Alexey Dobriyan <[email protected]> Cc: Matteo Croce <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
If xace hardware reports a bad version number, the error handling code in ace_setup() calls put_disk(), followed by queue cleanup. However, since the disk data structure has the queue pointer set, put_disk() also cleans and releases the queue. This results in blk_cleanup_queue() accessing an already released data structure, which in turn may result in a crash such as the following. [ 10.681671] BUG: Kernel NULL pointer dereference at 0x00000040 [ 10.681826] Faulting instruction address: 0xc0431480 [ 10.682072] Oops: Kernel access of bad area, sig: 11 [#1] [ 10.682251] BE PAGE_SIZE=4K PREEMPT Xilinx Virtex440 [ 10.682387] Modules linked in: [ 10.682528] CPU: 0 PID: 1 Comm: swapper Tainted: G W 5.0.0-rc6-next-20190218+ #2 [ 10.682733] NIP: c0431480 LR: c043147c CTR: c0422ad8 [ 10.682863] REGS: cf82fbe0 TRAP: 0300 Tainted: G W (5.0.0-rc6-next-20190218+) [ 10.683065] MSR: 00029000 <CE,EE,ME> CR: 22000222 XER: 00000000 [ 10.683236] DEAR: 00000040 ESR: 00000000 [ 10.683236] GPR00: c043147c cf82fc90 cf82ccc0 00000000 00000000 00000000 00000002 00000000 [ 10.683236] GPR08: 00000000 00000000 c04310bc 00000000 22000222 00000000 c0002c54 00000000 [ 10.683236] GPR16: 00000000 00000001 c09aa39c c09021b0 c09021dc 00000007 c0a68c08 00000000 [ 10.683236] GPR24: 00000001 ced6d400 ced6dcf0 c0815d9c 00000000 00000000 00000000 cedf0800 [ 10.684331] NIP [c0431480] blk_mq_run_hw_queue+0x28/0x114 [ 10.684473] LR [c043147c] blk_mq_run_hw_queue+0x24/0x114 [ 10.684602] Call Trace: [ 10.684671] [cf82fc90] [c043147c] blk_mq_run_hw_queue+0x24/0x114 (unreliable) [ 10.684854] [cf82fcc0] [c04315bc] blk_mq_run_hw_queues+0x50/0x7c [ 10.685002] [cf82fce0] [c0422b24] blk_set_queue_dying+0x30/0x68 [ 10.685154] [cf82fcf0] [c0423ec0] blk_cleanup_queue+0x34/0x14c [ 10.685306] [cf82fd10] [c054d73c] ace_probe+0x3dc/0x508 [ 10.685445] [cf82fd50] [c052d740] platform_drv_probe+0x4c/0xb8 [ 10.685592] [cf82fd70] [c052abb0] really_probe+0x20c/0x32c [ 10.685728] [cf82fda0] [c052ae58] driver_probe_device+0x68/0x464 [ 10.685877] [cf82fdc0] [c052b500] device_driver_attach+0xb4/0xe4 [ 10.686024] [cf82fde0] [c052b5dc] __driver_attach+0xac/0xfc [ 10.686161] [cf82fe00] [c0528428] bus_for_each_dev+0x80/0xc0 [ 10.686314] [cf82fe30] [c0529b3c] bus_add_driver+0x144/0x234 [ 10.686457] [cf82fe50] [c052c46c] driver_register+0x88/0x15c [ 10.686610] [cf82fe60] [c09de288] ace_init+0x4c/0xac [ 10.686742] [cf82fe80] [c0002730] do_one_initcall+0xac/0x330 [ 10.686888] [cf82fee0] [c09aafd0] kernel_init_freeable+0x34c/0x478 [ 10.687043] [cf82ff30] [c0002c6c] kernel_init+0x18/0x114 [ 10.687188] [cf82ff40] [c000f2f0] ret_from_kernel_thread+0x14/0x1c [ 10.687349] Instruction dump: [ 10.687435] 3863ffd4 4bfffd70 9421ffd0 7c0802a6 93c10028 7c9e2378 93e1002c 38810008 [ 10.687637] 7c7f1b78 90010034 4bfffc25 813f008c <81290040> 75290100 4182002c 80810008 [ 10.688056] ---[ end trace 13c9ff51d41b9d40 ]--- Fix the problem by setting the disk queue pointer to NULL before calling put_disk(). A more comprehensive fix might be to rearrange the code to check the hardware version before initializing data structures, but I don't know if this would have undesirable side effects, and it would increase the complexity of backporting the fix to older kernels. Fixes: 74489a9 ("Add support for Xilinx SystemACE CompactFlash interface") Acked-by: Michal Simek <[email protected]> Signed-off-by: Guenter Roeck <[email protected]> Signed-off-by: Jens Axboe <[email protected]>
Extend test_btf with various positive and negative tests around BTF verification of kind Var and DataSec. All passing as well: # ./test_btf [...] BTF raw test[4] (global data test #1): OK BTF raw test[5] (global data test #2): OK BTF raw test[6] (global data test #3): OK BTF raw test[7] (global data test #4, unsupported linkage): OK BTF raw test[8] (global data test #5, invalid var type): OK BTF raw test[9] (global data test #6, invalid var type (fwd type)): OK BTF raw test[10] (global data test #7, invalid var type (fwd type)): OK BTF raw test[11] (global data test #8, invalid var size): OK BTF raw test[12] (global data test #9, invalid var size): OK BTF raw test[13] (global data test #10, invalid var size): OK BTF raw test[14] (global data test #11, multiple section members): OK BTF raw test[15] (global data test #12, invalid offset): OK BTF raw test[16] (global data test #13, invalid offset): OK BTF raw test[17] (global data test #14, invalid offset): OK BTF raw test[18] (global data test #15, not var kind): OK BTF raw test[19] (global data test #16, invalid var referencing sec): OK BTF raw test[20] (global data test #17, invalid var referencing var): OK BTF raw test[21] (global data test #18, invalid var loop): OK BTF raw test[22] (global data test #19, invalid var referencing var): OK BTF raw test[23] (global data test #20, invalid ptr referencing var): OK BTF raw test[24] (global data test #21, var included in struct): OK BTF raw test[25] (global data test #22, array of var): OK [...] PASS:167 SKIP:0 FAIL:0 Signed-off-by: Daniel Borkmann <[email protected]> Acked-by: Martin KaFai Lau <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]>
Ido Schimmel says: ==================== mlxsw: Various fixes This patchset contains various small fixes for mlxsw. Patch #1 fixes a warning generated by switchdev core when the driver fails to insert an MDB entry in the commit phase. Patches #2-#4 fix a warning in check_flush_dependency() that can be triggered when a work item in a WQ_MEM_RECLAIM workqueue tries to flush a non-WQ_MEM_RECLAIM workqueue. It seems that the semantics of the WQ_MEM_RECLAIM flag are not very clear [1] and that various patches have been sent to remove it from various workqueues throughout the kernel [2][3][4] in order to silence the warning. These patches do the same for the workqueues created by mlxsw that probably should not have been created with this flag in the first place. Patch #5 fixes a regression where an IP address cannot be assigned to a VRF upper due to erroneous MAC validation check. Patch #6 adds a test case. Patch #7 adjusts Spectrum-2 shared buffer configuration to be compatible with Spectrum-1. The problem and fix are described in detail in the commit message. Please consider patches #1-#5 for 5.0.y. I verified they apply cleanly. [1] https://patchwork.kernel.org/patch/10791315/ [2] Commit ce162bf ("mac80211_hwsim: don't use WQ_MEM_RECLAIM") [3] Commit 39baf10 ("IB/core: Fix use workqueue without WQ_MEM_RECLAIM") [4] Commit 75215e5 ("iwcm: Don't allocate iwcm workqueue with WQ_MEM_RECLAIM") ==================== Signed-off-by: David S. Miller <[email protected]>
Alan Maguire says: ==================== Extend bpf_skb_adjust_room growth to mark inner MAC header so that L2 encapsulation can be used for tc tunnels. Patch #1 extends the existing test_tc_tunnel to support UDP encapsulation; later we want to be able to test MPLS over UDP and MPLS over GRE encapsulation. Patch #2 adds the BPF_F_ADJ_ROOM_ENCAP_L2(len) macro, which allows specification of inner mac length. Other approaches were explored prior to taking this approach. Specifically, I tried automatically computing the inner mac length on the basis of the specified flags (so inner maclen for GRE/IPv4 encap is the len_diff specified to bpf_skb_adjust_room minus GRE + IPv4 header length for example). Problem with this is that we don't know for sure what form of GRE/UDP header we have; is it a full GRE header, or is it a FOU UDP header or generic UDP encap header? My fear here was we'd end up with an explosion of flags. The other approach tried was to support inner L2 header marking as a separate room adjustment, i.e. adjust for L3/L4 encap, then call bpf_skb_adjust_room for L2 encap. This can be made to work but because it imposed an order on operations, felt a bit clunky. Patch #3 syncs tools/ bpf.h. Patch #4 extends the tests again to support MPLSoverGRE, MPLSoverUDP, and transparent ethernet bridging (TEB) where the inner L2 header is an ethernet header. Testing of BPF encap against tunnels is done for cases where configuration of such tunnels is possible (MPLSoverGRE[6], MPLSoverUDP, gre[6]tap), and skipped otherwise. Testing of BPF encap/decap is always carried out. Changes since v2: - updated tools/testing/selftest/bpf/config with FOU/MPLS CONFIG variables (patches 1, 4) - reduced noise in patch 1 by avoiding unnecessary movement of code - eliminated inner_mac variable in bpf_skb_net_grow (patch 2) Changes since v1: - fixed formatting of commit references. - BPF_F_ADJ_ROOM_FIXED_GSO flag enabled on all variants (patch 1) - fixed fou6 options for UDP encap; checksum errors observed were due to the fact fou6 tunnel was not set up with correct ipproto options (41 -6). 0 checksums work fine (patch 1) - added definitions for mask and shift used in setting L2 length (patch 2) - allow udp encap with fixed GSO (patch 2) - changed "elen" to "l2_len" to be more descriptive (patch 4) ==================== Acked-by: Willem de Bruijn <[email protected]> Signed-off-by: Daniel Borkmann <[email protected]>
Move ieee80211_tx_status_ext() outside of status_list lock section in order to avoid locking dependency and possible deadlock reposed by LOCKDEP in below warning. Also do mt76_tx_status_lock() just before it's needed. [ 440.224832] WARNING: possible circular locking dependency detected [ 440.224833] 5.1.0-rc2+ #22 Not tainted [ 440.224834] ------------------------------------------------------ [ 440.224835] kworker/u16:28/2362 is trying to acquire lock: [ 440.224836] 0000000089b8cacf (&(&q->lock)->rlock#2){+.-.}, at: mt76_wake_tx_queue+0x4c/0xb0 [mt76] [ 440.224842] but task is already holding lock: [ 440.224842] 000000002cfedc59 (&(&sta->lock)->rlock){+.-.}, at: ieee80211_stop_tx_ba_cb+0x32/0x1f0 [mac80211] [ 440.224863] which lock already depends on the new lock. [ 440.224863] the existing dependency chain (in reverse order) is: [ 440.224864] -> #3 (&(&sta->lock)->rlock){+.-.}: [ 440.224869] _raw_spin_lock_bh+0x34/0x40 [ 440.224880] ieee80211_start_tx_ba_session+0xe4/0x3d0 [mac80211] [ 440.224894] minstrel_ht_get_rate+0x45c/0x510 [mac80211] [ 440.224906] rate_control_get_rate+0xc1/0x140 [mac80211] [ 440.224918] ieee80211_tx_h_rate_ctrl+0x195/0x3c0 [mac80211] [ 440.224930] ieee80211_xmit_fast+0x26d/0xa50 [mac80211] [ 440.224942] __ieee80211_subif_start_xmit+0xfc/0x310 [mac80211] [ 440.224954] ieee80211_subif_start_xmit+0x38/0x390 [mac80211] [ 440.224956] dev_hard_start_xmit+0xb8/0x300 [ 440.224957] __dev_queue_xmit+0x7d4/0xbb0 [ 440.224968] ip6_finish_output2+0x246/0x860 [ipv6] [ 440.224978] mld_sendpack+0x1bd/0x360 [ipv6] [ 440.224987] mld_ifc_timer_expire+0x1a4/0x2f0 [ipv6] [ 440.224989] call_timer_fn+0x89/0x2a0 [ 440.224990] run_timer_softirq+0x1bd/0x4d0 [ 440.224992] __do_softirq+0xdb/0x47c [ 440.224994] irq_exit+0xfa/0x100 [ 440.224996] smp_apic_timer_interrupt+0x9a/0x220 [ 440.224997] apic_timer_interrupt+0xf/0x20 [ 440.224999] cpuidle_enter_state+0xc1/0x470 [ 440.225000] do_idle+0x21a/0x260 [ 440.225001] cpu_startup_entry+0x19/0x20 [ 440.225004] start_secondary+0x135/0x170 [ 440.225006] secondary_startup_64+0xa4/0xb0 [ 440.225007] -> #2 (&(&sta->rate_ctrl_lock)->rlock){+.-.}: [ 440.225009] _raw_spin_lock_bh+0x34/0x40 [ 440.225022] rate_control_tx_status+0x4f/0xb0 [mac80211] [ 440.225031] ieee80211_tx_status_ext+0x142/0x1a0 [mac80211] [ 440.225035] mt76x02_send_tx_status+0x2e4/0x340 [mt76x02_lib] [ 440.225037] mt76x02_tx_status_data+0x31/0x40 [mt76x02_lib] [ 440.225040] mt76u_tx_status_data+0x51/0xa0 [mt76_usb] [ 440.225042] process_one_work+0x237/0x5d0 [ 440.225043] worker_thread+0x3c/0x390 [ 440.225045] kthread+0x11d/0x140 [ 440.225046] ret_from_fork+0x3a/0x50 [ 440.225047] -> #1 (&(&list->lock)->rlock#8){+.-.}: [ 440.225049] _raw_spin_lock_bh+0x34/0x40 [ 440.225052] mt76_tx_status_skb_add+0x51/0x100 [mt76] [ 440.225054] mt76x02u_tx_prepare_skb+0xbd/0x116 [mt76x02_usb] [ 440.225056] mt76u_tx_queue_skb+0x5f/0x180 [mt76_usb] [ 440.225058] mt76_tx+0x93/0x190 [mt76] [ 440.225070] ieee80211_tx_frags+0x148/0x210 [mac80211] [ 440.225081] __ieee80211_tx+0x75/0x1b0 [mac80211] [ 440.225092] ieee80211_tx+0xde/0x110 [mac80211] [ 440.225105] __ieee80211_tx_skb_tid_band+0x72/0x90 [mac80211] [ 440.225122] ieee80211_send_auth+0x1f3/0x360 [mac80211] [ 440.225141] ieee80211_auth.cold.40+0x6c/0x100 [mac80211] [ 440.225156] ieee80211_mgd_auth.cold.50+0x132/0x15f [mac80211] [ 440.225171] cfg80211_mlme_auth+0x149/0x360 [cfg80211] [ 440.225181] nl80211_authenticate+0x273/0x2e0 [cfg80211] [ 440.225183] genl_family_rcv_msg+0x196/0x3a0 [ 440.225184] genl_rcv_msg+0x47/0x8e [ 440.225185] netlink_rcv_skb+0x3a/0xf0 [ 440.225187] genl_rcv+0x24/0x40 [ 440.225188] netlink_unicast+0x16d/0x210 [ 440.225189] netlink_sendmsg+0x204/0x3b0 [ 440.225191] sock_sendmsg+0x36/0x40 [ 440.225193] ___sys_sendmsg+0x259/0x2b0 [ 440.225194] __sys_sendmsg+0x47/0x80 [ 440.225196] do_syscall_64+0x60/0x1f0 [ 440.225197] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 440.225198] -> #0 (&(&q->lock)->rlock#2){+.-.}: [ 440.225200] lock_acquire+0xb9/0x1a0 [ 440.225202] _raw_spin_lock_bh+0x34/0x40 [ 440.225204] mt76_wake_tx_queue+0x4c/0xb0 [mt76] [ 440.225215] ieee80211_agg_start_txq+0xe8/0x2b0 [mac80211] [ 440.225225] ieee80211_stop_tx_ba_cb+0xb8/0x1f0 [mac80211] [ 440.225235] ieee80211_ba_session_work+0x1c1/0x2f0 [mac80211] [ 440.225236] process_one_work+0x237/0x5d0 [ 440.225237] worker_thread+0x3c/0x390 [ 440.225239] kthread+0x11d/0x140 [ 440.225240] ret_from_fork+0x3a/0x50 [ 440.225240] other info that might help us debug this: [ 440.225241] Chain exists of: &(&q->lock)->rlock#2 --> &(&sta->rate_ctrl_lock)->rlock --> &(&sta->lock)->rlock [ 440.225243] Possible unsafe locking scenario: [ 440.225244] CPU0 CPU1 [ 440.225244] ---- ---- [ 440.225245] lock(&(&sta->lock)->rlock); [ 440.225245] lock(&(&sta->rate_ctrl_lock)->rlock); [ 440.225246] lock(&(&sta->lock)->rlock); [ 440.225247] lock(&(&q->lock)->rlock#2); [ 440.225248] *** DEADLOCK *** [ 440.225249] 5 locks held by kworker/u16:28/2362: [ 440.225250] #0: 0000000048fcd291 ((wq_completion)phy0){+.+.}, at: process_one_work+0x1b5/0x5d0 [ 440.225252] #1: 00000000f1c6828f ((work_completion)(&sta->ampdu_mlme.work)){+.+.}, at: process_one_work+0x1b5/0x5d0 [ 440.225254] #2: 00000000433d2b2c (&sta->ampdu_mlme.mtx){+.+.}, at: ieee80211_ba_session_work+0x5c/0x2f0 [mac80211] [ 440.225265] #3: 000000002cfedc59 (&(&sta->lock)->rlock){+.-.}, at: ieee80211_stop_tx_ba_cb+0x32/0x1f0 [mac80211] [ 440.225276] #4: 000000009d7b9a44 (rcu_read_lock){....}, at: ieee80211_agg_start_txq+0x33/0x2b0 [mac80211] [ 440.225286] stack backtrace: [ 440.225288] CPU: 2 PID: 2362 Comm: kworker/u16:28 Not tainted 5.1.0-rc2+ #22 [ 440.225289] Hardware name: LENOVO 20KGS23S0P/20KGS23S0P, BIOS N23ET55W (1.30 ) 08/31/2018 [ 440.225300] Workqueue: phy0 ieee80211_ba_session_work [mac80211] [ 440.225301] Call Trace: [ 440.225304] dump_stack+0x85/0xc0 [ 440.225306] print_circular_bug.isra.38.cold.58+0x15c/0x195 [ 440.225307] check_prev_add.constprop.48+0x5f0/0xc00 [ 440.225309] ? check_prev_add.constprop.48+0x39d/0xc00 [ 440.225311] ? __lock_acquire+0x41d/0x1100 [ 440.225312] __lock_acquire+0xd98/0x1100 [ 440.225313] ? __lock_acquire+0x41d/0x1100 [ 440.225315] lock_acquire+0xb9/0x1a0 [ 440.225317] ? mt76_wake_tx_queue+0x4c/0xb0 [mt76] [ 440.225319] _raw_spin_lock_bh+0x34/0x40 [ 440.225321] ? mt76_wake_tx_queue+0x4c/0xb0 [mt76] [ 440.225323] mt76_wake_tx_queue+0x4c/0xb0 [mt76] [ 440.225334] ieee80211_agg_start_txq+0xe8/0x2b0 [mac80211] [ 440.225344] ieee80211_stop_tx_ba_cb+0xb8/0x1f0 [mac80211] [ 440.225354] ieee80211_ba_session_work+0x1c1/0x2f0 [mac80211] [ 440.225356] process_one_work+0x237/0x5d0 [ 440.225358] worker_thread+0x3c/0x390 [ 440.225359] ? wq_calc_node_cpumask+0x70/0x70 [ 440.225360] kthread+0x11d/0x140 [ 440.225362] ? kthread_create_on_node+0x40/0x40 [ 440.225363] ret_from_fork+0x3a/0x50 Cc: [email protected] Fixes: 88046b2 ("mt76: add support for reporting tx status with skb") Signed-off-by: Stanislaw Gruszka <[email protected]> Acked-by: Felix Fietkau <[email protected]> Signed-off-by: Kalle Valo <[email protected]>
Ido Schimmel says: ==================== mlxsw: Add neighbour offload indication Neighbour entries are programmed to the device's table so that the correct destination MAC will be specified in a packet after it was routed. Despite being programmed to the device and unlike routes and FDB entries, neighbour entries are currently not marked as offloaded. This patchset changes that. Patch #1 is a preparatory patch to make sure we only mark a neighbour as offloaded in case it was successfully programmed to the device. Patch #2 sets the offload indication on neighbours. Patch #3 adds a test to verify above mentioned functionality. Patched iproute2 version that prints the offload indication is available here [1]. [1] https://github.com/idosch/iproute2/tree/idosch-next ==================== Signed-off-by: David S. Miller <[email protected]>
…/jkirsher/next-queue Jeff Kirsher says: ==================== 40GbE Intel Wired LAN Driver Updates 2019-04-16 This series contains updates to i40e driver only. Adam fixes i40e so that queues can be restored to its original value if configuring queue channels fails. Bumped the maximum API version supported and added the API version to error messages to clarify supported firmware API versions. Fixed the problem with the driver being able to add only 7 multicast MAC address filters instead of 16. Aleksandr adds support for Dynamic Device Personalization (DDP) which allows loading profiles that change the way internal parser interprets processed frames. Nick fixes an issue where if we modify the VLAN stripping options when a port VLAN is configured, it will break traffic for the VSI, so prevent changes from being made. Jake fixes an issue where a device reset can mess up the clock time because we reset the clock time based on the kernel time every reset. This causes us to potentially completely reset the PTP time, and can cause unexpected behavior in programs like ptp4l. Piotr fixes an LED blink issue with the 'ethtool -p' command, so that identification blinking will work on all hardware. Chinh fixed the error returned to correctly reflect the current state when LLDP or DCBx is not in an operational state. Grzegorz cleans up a misleading error message when untrusted VF tries to exceed addresses beyond the NIC limit. Carolyn fixes the error return code to correctly reflect the error case. v2: updated the URL provided in the DDP patch (#2) ==================== Signed-off-by: David S. Miller <[email protected]>
Ido Schimmel says: ==================== mlxsw: Small routing improvements Patch #1 switches the driver to use a unique and stable ECMP/LAG seed. This allows for consistent behavior across reboots and avoids hash polarization at the same time. Patch #2 relaxes the FIB rule validation in the driver to allow the installation of rules that direct locally generated traffic (iif=lo). This does not result in a discrepancy between both data paths because packets received by the device would never match such rules. ==================== Signed-off-by: David S. Miller <[email protected]>
…nux/kernel/git/kvmarm/kvmarm into kvm-master KVM/ARM fixes for 5.1, take #2: - Don't try to emulate timers on userspace access - Fix unaligned huge mappings, again - Properly reset a vcpu that fails to reset(!) - Properly retire pending LPIs on reset - Fix computation of emulated CNTP_TVAL
Ido Schimmel says: ==================== mlxsw: Firmware version update This patchset updates mlxsw to use a new firmware version and adds support for split into two ports on Spectrum-2 based systems. Patch #1 updates the firmware version to 13.2000.1122 Patch #2 queries new resources from the firmware. Patch #3 makes use of these resources in order to support split into two ports on Spectrum-2 based systems. The need for these resources is explained by Shalom: When splitting a port, different local ports need to be mapped on different systems. For example: SN3700 (local_ports_in_2x=2): * Without split: front panel 1 --> local port 1 front panel 2 --> local port 5 * Split to 2: front panel 1s0 --> local port 1 front panel 1s1 --> local port 3 front panel 2 --> local port 5 SN3800 (local_ports_in_2x=1): * Without split: front panel 1 --> local port 1 front panel 2 --> local port 3 * Split to 2: front panel 1s0 --> local port 1 front panel 1s1 --> local port 2 front panel 2 --> local port 3 The local_ports_in_{1x, 2x} resources provide the offsets from the base local ports according to which the new local ports can be calculated. ==================== Signed-off-by: David S. Miller <[email protected]>
This commit makes the kernel not send the next queued HCI command until a command complete arrives for the last HCI command sent to the controller. This change avoids a problem with some buggy controllers (seen on two SKUs of QCA9377) that send an extra command complete event for the previous command after the kernel had already sent a new HCI command to the controller. The problem was reproduced when starting an active scanning procedure, where an extra command complete event arrives for the LE_SET_RANDOM_ADDR command. When this happends the kernel ends up not processing the command complete for the following commmand, LE_SET_SCAN_PARAM, and ultimately behaving as if a passive scanning procedure was being performed, when in fact controller is performing an active scanning procedure. This makes it impossible to discover BLE devices as no device found events are sent to userspace. This problem is reproducible on 100% of the attempts on the affected controllers. The extra command complete event can be seen at timestamp 27.420131 on the btmon logs bellow. Bluetooth monitor ver 5.50 = Note: Linux version 5.0.0+ (x86_64) 0.352340 = Note: Bluetooth subsystem version 2.22 0.352343 = New Index: 80:C5:F2:8F:87:84 (Primary,USB,hci0) [hci0] 0.352344 = Open Index: 80:C5:F2:8F:87:84 [hci0] 0.352345 = Index Info: 80:C5:F2:8F:87:84 (Qualcomm) [hci0] 0.352346 @ MGMT Open: bluetoothd (privileged) version 1.14 {0x0001} 0.352347 @ MGMT Open: btmon (privileged) version 1.14 {0x0002} 0.352366 @ MGMT Open: btmgmt (privileged) version 1.14 {0x0003} 27.302164 @ MGMT Command: Start Discovery (0x0023) plen 1 {0x0003} [hci0] 27.302310 Address type: 0x06 LE Public LE Random < HCI Command: LE Set Random Address (0x08|0x0005) plen 6 #1 [hci0] 27.302496 Address: 15:60:F2:91:B2:24 (Non-Resolvable) > HCI Event: Command Complete (0x0e) plen 4 #2 [hci0] 27.419117 LE Set Random Address (0x08|0x0005) ncmd 1 Status: Success (0x00) < HCI Command: LE Set Scan Parameters (0x08|0x000b) plen 7 #3 [hci0] 27.419244 Type: Active (0x01) Interval: 11.250 msec (0x0012) Window: 11.250 msec (0x0012) Own address type: Random (0x01) Filter policy: Accept all advertisement (0x00) > HCI Event: Command Complete (0x0e) plen 4 #4 [hci0] 27.420131 LE Set Random Address (0x08|0x0005) ncmd 1 Status: Success (0x00) < HCI Command: LE Set Scan Enable (0x08|0x000c) plen 2 #5 [hci0] 27.420259 Scanning: Enabled (0x01) Filter duplicates: Enabled (0x01) > HCI Event: Command Complete (0x0e) plen 4 #6 [hci0] 27.420969 LE Set Scan Parameters (0x08|0x000b) ncmd 1 Status: Success (0x00) > HCI Event: Command Complete (0x0e) plen 4 #7 [hci0] 27.421983 LE Set Scan Enable (0x08|0x000c) ncmd 1 Status: Success (0x00) @ MGMT Event: Command Complete (0x0001) plen 4 {0x0003} [hci0] 27.422059 Start Discovery (0x0023) plen 1 Status: Success (0x00) Address type: 0x06 LE Public LE Random @ MGMT Event: Discovering (0x0013) plen 2 {0x0003} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) @ MGMT Event: Discovering (0x0013) plen 2 {0x0002} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) @ MGMT Event: Discovering (0x0013) plen 2 {0x0001} [hci0] 27.422067 Address type: 0x06 LE Public LE Random Discovery: Enabled (0x01) Signed-off-by: João Paulo Rechi Vita <[email protected]> Signed-off-by: Marcel Holtmann <[email protected]>
Ido Schimmel says: ==================== mlxsw: spectrum: Implement loopback ethtool feature This patchset from Jiri allows users to enable loopback feature for individual ports using ethtool. The loopback feature is useful for testing purposes and will also be used by upcoming patchsets to enable the monitoring of buffer drops. Patch #1 adds the relevant device register. Patch #2 Implements support in the driver. Patch #3 adds a selftest. ==================== Signed-off-by: David S. Miller <[email protected]>
…OL_MF_STRICT were specified When both MPOL_MF_MOVE* and MPOL_MF_STRICT was specified, mbind() should try best to migrate misplaced pages, if some of the pages could not be migrated, then return -EIO. There are three different sub-cases: 1. vma is not migratable 2. vma is migratable, but there are unmovable pages 3. vma is migratable, pages are movable, but migrate_pages() fails If #1 happens, kernel would just abort immediately, then return -EIO, after a7f40cf ("mm: mempolicy: make mbind() return -EIO when MPOL_MF_STRICT is specified"). If #3 happens, kernel would set policy and migrate pages with best-effort, but won't rollback the migrated pages and reset the policy back. Before that commit, they behaves in the same way. It'd better to keep their behavior consistent. But, rolling back the migrated pages and resetting the policy back sounds not feasible, so just make #1 behave as same as #3. Userspace will know that not everything was successfully migrated (via -EIO), and can take whatever steps it deems necessary - attempt rollback, determine which exact page(s) are violating the policy, etc. Make queue_pages_range() return 1 to indicate there are unmovable pages or vma is not migratable. The #2 is not handled correctly in the current kernel, the following patch will fix it. [[email protected]: fix review comments from Vlastimil] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yang Shi <[email protected]> Reviewed-by: Vlastimil Babka <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Mel Gorman <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
When running syzkaller internally, we ran into the below bug on 4.9.x kernel: kernel BUG at mm/huge_memory.c:2124! invalid opcode: 0000 [#1] SMP KASAN CPU: 0 PID: 1518 Comm: syz-executor107 Not tainted 4.9.168+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.5.1 01/01/2011 task: ffff880067b34900 task.stack: ffff880068998000 RIP: split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124 Call Trace: split_huge_page include/linux/huge_mm.h:100 [inline] queue_pages_pte_range+0x7e1/0x1480 mm/mempolicy.c:538 walk_pmd_range mm/pagewalk.c:50 [inline] walk_pud_range mm/pagewalk.c:90 [inline] walk_pgd_range mm/pagewalk.c:116 [inline] __walk_page_range+0x44a/0xdb0 mm/pagewalk.c:208 walk_page_range+0x154/0x370 mm/pagewalk.c:285 queue_pages_range+0x115/0x150 mm/mempolicy.c:694 do_mbind mm/mempolicy.c:1241 [inline] SYSC_mbind+0x3c3/0x1030 mm/mempolicy.c:1370 SyS_mbind+0x46/0x60 mm/mempolicy.c:1352 do_syscall_64+0x1d2/0x600 arch/x86/entry/common.c:282 entry_SYSCALL_64_after_swapgs+0x5d/0xdb Code: c7 80 1c 02 00 e8 26 0a 76 01 <0f> 0b 48 c7 c7 40 46 45 84 e8 4c RIP [<ffffffff81895d6b>] split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124 RSP <ffff88006899f980> with the below test: uint64_t r[1] = {0xffffffffffffffff}; int main(void) { syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0); intptr_t res = 0; res = syscall(__NR_socket, 0x11, 3, 0x300); if (res != -1) r[0] = res; *(uint32_t*)0x20000040 = 0x10000; *(uint32_t*)0x20000044 = 1; *(uint32_t*)0x20000048 = 0xc520; *(uint32_t*)0x2000004c = 1; syscall(__NR_setsockopt, r[0], 0x107, 0xd, 0x20000040, 0x10); syscall(__NR_mmap, 0x20fed000, 0x10000, 0, 0x8811, r[0], 0); *(uint64_t*)0x20000340 = 2; syscall(__NR_mbind, 0x20ff9000, 0x4000, 0x4002, 0x20000340, 0x45d4, 3); return 0; } Actually the test does: mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000 socket(AF_PACKET, SOCK_RAW, 768) = 3 setsockopt(3, SOL_PACKET, PACKET_TX_RING, {block_size=65536, block_nr=1, frame_size=50464, frame_nr=1}, 16) = 0 mmap(0x20fed000, 65536, PROT_NONE, MAP_SHARED|MAP_FIXED|MAP_POPULATE|MAP_DENYWRITE, 3, 0) = 0x20fed000 mbind(..., MPOL_MF_STRICT|MPOL_MF_MOVE) = 0 The setsockopt() would allocate compound pages (16 pages in this test) for packet tx ring, then the mmap() would call packet_mmap() to map the pages into the user address space specified by the mmap() call. When calling mbind(), it would scan the vma to queue the pages for migration to the new node. It would split any huge page since 4.9 doesn't support THP migration, however, the packet tx ring compound pages are not THP and even not movable. So, the above bug is triggered. However, the later kernel is not hit by this issue due to commit d44d363 ("mm: don't assume anonymous pages have SwapBacked flag"), which just removes the PageSwapBacked check for a different reason. But, there is a deeper issue. According to the semantic of mbind(), it should return -EIO if MPOL_MF_MOVE or MPOL_MF_MOVE_ALL was specified and MPOL_MF_STRICT was also specified, but the kernel was unable to move all existing pages in the range. The tx ring of the packet socket is definitely not movable, however, mbind() returns success for this case. Although the most socket file associates with non-movable pages, but XDP may have movable pages from gup. So, it sounds not fine to just check the underlying file type of vma in vma_migratable(). Change migrate_page_add() to check if the page is movable or not, if it is unmovable, just return -EIO. But do not abort pte walk immediately, since there may be pages off LRU temporarily. We should migrate other pages if MPOL_MF_MOVE* is specified. Set has_unmovable flag if some paged could not be not moved, then return -EIO for mbind() eventually. With this change the above test would return -EIO as expected. [[email protected]: fix review comments from Vlastimil] Link: http://lkml.kernel.org/r/[email protected] Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Yang Shi <[email protected]> Reviewed-by: Vlastimil Babka <[email protected]> Cc: Michal Hocko <[email protected]> Cc: Mel Gorman <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
Hayes says: ==================== v2: For patch #2, replace list_for_each_safe with list_for_each_entry_safe. Remove unlikely in WARN_ON. Adjust the coding style. For patch #4, replace list_for_each_safe with list_for_each_entry_safe. Remove "else" after "continue". For patch #5. replace sysfs with ethtool to modify rx_copybreak and rx_pending. v1: The different chips use different rx buffer size. Use skb_add_rx_frag() to reduce memory copy for RX. ==================== Signed-off-by: Jakub Kicinski <[email protected]>
Since commit e1ab9a4 ("i2c: imx: improve the error handling in i2c_imx_dma_request()") when booting with the DMA driver as module (such as CONFIG_FSL_EDMA=m) the following endless clk warnings are seen: [ 153.077831] ------------[ cut here ]------------ [ 153.082528] WARNING: CPU: 0 PID: 15 at drivers/clk/clk.c:924 clk_core_disable_lock+0x18/0x24 [ 153.093077] i2c0 already disabled [ 153.096416] Modules linked in: [ 153.099521] CPU: 0 PID: 15 Comm: kworker/0:1 Tainted: G W 5.2.0+ #321 [ 153.107290] Hardware name: Freescale Vybrid VF5xx/VF6xx (Device Tree) [ 153.113772] Workqueue: events deferred_probe_work_func [ 153.118979] [<c0019560>] (unwind_backtrace) from [<c0014734>] (show_stack+0x10/0x14) [ 153.126778] [<c0014734>] (show_stack) from [<c083f8dc>] (dump_stack+0x9c/0xd4) [ 153.134051] [<c083f8dc>] (dump_stack) from [<c0031154>] (__warn+0xf8/0x124) [ 153.141056] [<c0031154>] (__warn) from [<c0031248>] (warn_slowpath_fmt+0x38/0x48) [ 153.148580] [<c0031248>] (warn_slowpath_fmt) from [<c040fde0>] (clk_core_disable_lock+0x18/0x24) [ 153.157413] [<c040fde0>] (clk_core_disable_lock) from [<c058f520>] (i2c_imx_probe+0x554/0x6ec) [ 153.166076] [<c058f520>] (i2c_imx_probe) from [<c04b9178>] (platform_drv_probe+0x48/0x98) [ 153.174297] [<c04b9178>] (platform_drv_probe) from [<c04b7298>] (really_probe+0x1d8/0x2c0) [ 153.182605] [<c04b7298>] (really_probe) from [<c04b7554>] (driver_probe_device+0x5c/0x174) [ 153.190909] [<c04b7554>] (driver_probe_device) from [<c04b58c8>] (bus_for_each_drv+0x44/0x8c) [ 153.199480] [<c04b58c8>] (bus_for_each_drv) from [<c04b746c>] (__device_attach+0xa0/0x108) [ 153.207782] [<c04b746c>] (__device_attach) from [<c04b65a4>] (bus_probe_device+0x88/0x90) [ 153.215999] [<c04b65a4>] (bus_probe_device) from [<c04b6a04>] (deferred_probe_work_func+0x60/0x90) [ 153.225003] [<c04b6a04>] (deferred_probe_work_func) from [<c004f190>] (process_one_work+0x204/0x634) [ 153.234178] [<c004f190>] (process_one_work) from [<c004f618>] (worker_thread+0x20/0x484) [ 153.242315] [<c004f618>] (worker_thread) from [<c0055c2c>] (kthread+0x118/0x150) [ 153.249758] [<c0055c2c>] (kthread) from [<c00090b4>] (ret_from_fork+0x14/0x20) [ 153.257006] Exception stack(0xdde43fb0 to 0xdde43ff8) [ 153.262095] 3fa0: 00000000 00000000 00000000 00000000 [ 153.270306] 3fc0: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 [ 153.278520] 3fe0: 00000000 00000000 00000000 00000000 00000013 00000000 [ 153.285159] irq event stamp: 3323022 [ 153.288787] hardirqs last enabled at (3323021): [<c0861c4c>] _raw_spin_unlock_irq+0x24/0x2c [ 153.297261] hardirqs last disabled at (3323022): [<c040d7a0>] clk_enable_lock+0x10/0x124 [ 153.305392] softirqs last enabled at (3322092): [<c000a504>] __do_softirq+0x344/0x540 [ 153.313352] softirqs last disabled at (3322081): [<c00385c0>] irq_exit+0x10c/0x128 [ 153.320946] ---[ end trace a506731ccd9bd703 ]--- This endless clk warnings behaviour is well explained by Andrey Smirnov: "Allocating DMA after registering I2C adapter can lead to infinite probing loop, for example, consider the following scenario: 1. i2c_imx_probe() is called and successfully registers an I2C adapter via i2c_add_numbered_adapter() 2. As a part of i2c_add_numbered_adapter() new I2C slave devices are added from DT which results in a call to driver_deferred_probe_trigger() 3. i2c_imx_probe() continues and calls i2c_imx_dma_request() which due to lack of proper DMA driver returns -EPROBE_DEFER 4. i2c_imx_probe() fails, removes I2C adapter and returns -EPROBE_DEFER, which places it into deferred probe list 5. Deferred probe work triggered in #2 above kicks in and calls i2c_imx_probe() again thus bringing us to step #1" So revert commit e1ab9a4 ("i2c: imx: improve the error handling in i2c_imx_dma_request()") and restore the old behaviour, in order to avoid regressions on existing setups. Cc: <[email protected]> Reported-by: Andrey Smirnov <[email protected]> Reported-by: Russell King <[email protected]> Fixes: e1ab9a4 ("i2c: imx: improve the error handling in i2c_imx_dma_request()") Signed-off-by: Fabio Estevam <[email protected]> Signed-off-by: Wolfram Sang <[email protected]>
Pablo Neira Ayuso says: ==================== flow_offload hardware priority fixes This patchset contains two updates for the flow_offload users: 1) Pass the major tc priority to drivers so they do not have to lshift it. This is a preparation patch for the fix coming in patch #2. 2) Set the hardware priority from the netfilter basechain priority, some drivers break when using the existing hardware priority number that is set to zero. v5: fix patch 2/2 to address a clang warning and to simplify the priority mapping. ==================== Signed-off-by: David S. Miller <[email protected]>
RCU list block_ing_cb_list is protected by rcu read lock in flow_block_ing_cmd() and with flow_indr_block_ing_cb_lock mutex in all functions that use it. However, flow_block_ing_cmd() needs to call blocking functions while iterating block_ing_cb_list which leads to following suspicious RCU usage warning: [ 401.510948] ============================= [ 401.510952] WARNING: suspicious RCU usage [ 401.510993] 5.3.0-rc3+ #589 Not tainted [ 401.510996] ----------------------------- [ 401.511001] include/linux/rcupdate.h:265 Illegal context switch in RCU read-side critical section! [ 401.511004] other info that might help us debug this: [ 401.511008] rcu_scheduler_active = 2, debug_locks = 1 [ 401.511012] 7 locks held by test-ecmp-add-v/7576: [ 401.511015] #0: 00000000081d71a5 (sb_writers#4){.+.+}, at: vfs_write+0x166/0x1d0 [ 401.511037] #1: 000000002bd338c3 (&of->mutex){+.+.}, at: kernfs_fop_write+0xef/0x1b0 [ 401.511051] #2: 00000000c921c634 (kn->count#317){.+.+}, at: kernfs_fop_write+0xf7/0x1b0 [ 401.511062] #3: 00000000a19cdd56 (&dev->mutex){....}, at: sriov_numvfs_store+0x6b/0x130 [ 401.511079] #4: 000000005425fa52 (pernet_ops_rwsem){++++}, at: unregister_netdevice_notifier+0x30/0x140 [ 401.511092] #5: 00000000c5822793 (rtnl_mutex){+.+.}, at: unregister_netdevice_notifier+0x35/0x140 [ 401.511101] #6: 00000000c2f3507e (rcu_read_lock){....}, at: flow_block_ing_cmd+0x5/0x130 [ 401.511115] stack backtrace: [ 401.511121] CPU: 21 PID: 7576 Comm: test-ecmp-add-v Not tainted 5.3.0-rc3+ #589 [ 401.511124] Hardware name: Supermicro SYS-2028TP-DECR/X10DRT-P, BIOS 2.0b 03/30/2017 [ 401.511127] Call Trace: [ 401.511138] dump_stack+0x85/0xc0 [ 401.511146] ___might_sleep+0x100/0x180 [ 401.511154] __mutex_lock+0x5b/0x960 [ 401.511162] ? find_held_lock+0x2b/0x80 [ 401.511173] ? __tcf_get_next_chain+0x1d/0xb0 [ 401.511179] ? mark_held_locks+0x49/0x70 [ 401.511194] ? __tcf_get_next_chain+0x1d/0xb0 [ 401.511198] __tcf_get_next_chain+0x1d/0xb0 [ 401.511251] ? uplink_rep_async_event+0x70/0x70 [mlx5_core] [ 401.511261] tcf_block_playback_offloads+0x39/0x160 [ 401.511276] tcf_block_setup+0x1b0/0x240 [ 401.511312] ? mlx5e_rep_indr_setup_tc_cb+0xca/0x290 [mlx5_core] [ 401.511347] ? mlx5e_rep_indr_tc_block_unbind+0x50/0x50 [mlx5_core] [ 401.511359] tc_indr_block_get_and_ing_cmd+0x11b/0x1e0 [ 401.511404] ? mlx5e_rep_indr_tc_block_unbind+0x50/0x50 [mlx5_core] [ 401.511414] flow_block_ing_cmd+0x7e/0x130 [ 401.511453] ? mlx5e_rep_indr_tc_block_unbind+0x50/0x50 [mlx5_core] [ 401.511462] __flow_indr_block_cb_unregister+0x7f/0xf0 [ 401.511502] mlx5e_nic_rep_netdevice_event+0x75/0xb0 [mlx5_core] [ 401.511513] unregister_netdevice_notifier+0xe9/0x140 [ 401.511554] mlx5e_cleanup_rep_tx+0x6f/0xe0 [mlx5_core] [ 401.511597] mlx5e_detach_netdev+0x4b/0x60 [mlx5_core] [ 401.511637] mlx5e_vport_rep_unload+0x71/0xc0 [mlx5_core] [ 401.511679] esw_offloads_disable+0x5b/0x90 [mlx5_core] [ 401.511724] mlx5_eswitch_disable.cold+0xdf/0x176 [mlx5_core] [ 401.511759] mlx5_device_disable_sriov+0xab/0xb0 [mlx5_core] [ 401.511794] mlx5_core_sriov_configure+0xaf/0xd0 [mlx5_core] [ 401.511805] sriov_numvfs_store+0xf8/0x130 [ 401.511817] kernfs_fop_write+0x122/0x1b0 [ 401.511826] vfs_write+0xdb/0x1d0 [ 401.511835] ksys_write+0x65/0xe0 [ 401.511847] do_syscall_64+0x5c/0xb0 [ 401.511857] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 401.511862] RIP: 0033:0x7fad892d30f8 [ 401.511868] Code: 89 02 48 c7 c0 ff ff ff ff eb bb 0f 1f 80 00 00 00 00 f3 0f 1e fa 48 8d 05 25 96 0d 00 8b 00 85 c0 75 17 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 60 c3 0f 1f 80 00 00 00 00 48 83 ec 28 48 89 [ 401.511871] RSP: 002b:00007ffca2a9fad8 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 [ 401.511875] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007fad892d30f8 [ 401.511878] RDX: 0000000000000002 RSI: 000055afeb072a90 RDI: 0000000000000001 [ 401.511881] RBP: 000055afeb072a90 R08: 00000000ffffffff R09: 000000000000000a [ 401.511884] R10: 000055afeb058710 R11: 0000000000000246 R12: 0000000000000002 [ 401.511887] R13: 00007fad893a8780 R14: 0000000000000002 R15: 00007fad893a3740 To fix the described incorrect RCU usage, convert block_ing_cb_list from RCU list to regular list and protect it with flow_indr_block_ing_cb_lock mutex in flow_block_ing_cmd(). Fixes: 1150ab0 ("flow_offload: support get multi-subsystem block") Signed-off-by: Vlad Buslov <[email protected]> Acked-by: Jakub Kicinski <[email protected]> Acked-by: Jiri Pirko <[email protected]> Signed-off-by: David S. Miller <[email protected]>
Patch series "Enable THP for text section of non-shmem files", v10; This patchset follows up discussion at LSF/MM 2019. The motivation is to put text section of an application in THP, and thus reduces iTLB miss rate and improves performance. Both Facebook and Oracle showed strong interests to this feature. To make reviews easier, this set aims a mininal valid product. Current version of the work does not have any changes to file system specific code. This comes with some limitations (discussed later). This set enables an application to "hugify" its text section by simply running something like: madvise(0x600000, 0x80000, MADV_HUGEPAGE); Before this call, the /proc/<pid>/maps looks like: 00400000-074d0000 r-xp 00000000 00:27 2006927 app After this call, part of the text section is split out and mapped to THP: 00400000-00425000 r-xp 00000000 00:27 2006927 app 00600000-00e00000 r-xp 00200000 00:27 2006927 app <<< on THP 00e00000-074d0000 r-xp 00a00000 00:27 2006927 app Limitations: 1. This only works for text section (vma with VM_DENYWRITE). 2. Original limitation #2 is removed in v3. We gated this feature with an experimental config, READ_ONLY_THP_FOR_FS. Once we get better support on the write path, we can remove the config and enable it by default. Tested cases: 1. Tested with btrfs and ext4. 2. Tested with real work application (memcache like caching service). 3. Tested with "THP aware uprobe": https://patchwork.kernel.org/project/linux-mm/list/?series=131339 This patch (of 7): Currently, filemap_fault() avoids race condition with truncate by checking page->mapping == mapping. This does not work for compound pages. This patch let it check compound_head(page)->mapping instead. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Song Liu <[email protected]> Acked-by: Rik van Riel <[email protected]> Acked-by: Kirill A. Shutemov <[email protected]> Acked-by: Johannes Weiner <[email protected]> Cc: William Kucharski <[email protected]> Cc: Hillf Danton <[email protected]> Cc: Hugh Dickins <[email protected]> Cc: Oleg Nesterov <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
Update MAINTAINERS record to reflect that trusted.h was moved to a different directory in commit 2244798 ("KEYS: Move trusted.h to include/keys [ver #2]"). Cc: Denis Kenzior <[email protected]> Cc: James Bottomley <[email protected]> Cc: Jarkko Sakkinen <[email protected]> Cc: Mimi Zohar <[email protected]> Cc: [email protected] Signed-off-by: Denis Efremov <[email protected]> Reviewed-by: Jarkko Sakkinen <[email protected]> Signed-off-by: Jarkko Sakkinen <[email protected]>
I'm seeing a bunch of debug prints from a user of print_hex_dump_bytes() in my kernel logs, but I don't have CONFIG_DYNAMIC_DEBUG enabled nor do I have DEBUG defined in my build. The problem is that print_hex_dump_bytes() calls a wrapper function in lib/hexdump.c that calls print_hex_dump() with KERN_DEBUG level. There are three cases to consider here 1. CONFIG_DYNAMIC_DEBUG=y --> call dynamic_hex_dum() 2. CONFIG_DYNAMIC_DEBUG=n && DEBUG --> call print_hex_dump() 3. CONFIG_DYNAMIC_DEBUG=n && !DEBUG --> stub it out Right now, that last case isn't detected and we still call print_hex_dump() from the stub wrapper. Let's make print_hex_dump_bytes() only call print_hex_dump_debug() so that it works properly in all cases. Case #1, print_hex_dump_debug() calls dynamic_hex_dump() and we get same behavior. Case #2, print_hex_dump_debug() calls print_hex_dump() with KERN_DEBUG and we get the same behavior. Case #3, print_hex_dump_debug() is a nop, changing behavior to what we want, i.e. print nothing. Link: http://lkml.kernel.org/r/[email protected] Signed-off-by: Stephen Boyd <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
After commit a2c11b0 ("kcm: use BPF_PROG_RUN") syzbot easily triggers the warning in cant_sleep(). As explained in commit 6cab5e9 ("bpf: run bpf programs with preemption disabled") we need to disable preemption before running bpf programs. BUG: assuming atomic context at net/kcm/kcmsock.c:382 in_atomic(): 0, irqs_disabled(): 0, pid: 7, name: kworker/u4:0 3 locks held by kworker/u4:0/7: #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: __write_once_size include/linux/compiler.h:226 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: arch_atomic64_set arch/x86/include/asm/atomic64_64.h:34 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: atomic64_set include/asm-generic/atomic-instrumented.h:855 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: atomic_long_set include/asm-generic/atomic-long.h:40 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: set_work_data kernel/workqueue.c:620 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: set_work_pool_and_clear_pending kernel/workqueue.c:647 [inline] #0: ffff888216726128 ((wq_completion)kstrp){+.+.}, at: process_one_work+0x88b/0x1740 kernel/workqueue.c:2240 #1: ffff8880a989fdc0 ((work_completion)(&strp->work)){+.+.}, at: process_one_work+0x8c1/0x1740 kernel/workqueue.c:2244 #2: ffff888098998d10 (sk_lock-AF_INET){+.+.}, at: lock_sock include/net/sock.h:1522 [inline] #2: ffff888098998d10 (sk_lock-AF_INET){+.+.}, at: strp_sock_lock+0x2e/0x40 net/strparser/strparser.c:440 CPU: 0 PID: 7 Comm: kworker/u4:0 Not tainted 5.3.0+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: kstrp strp_work Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 __cant_sleep kernel/sched/core.c:6826 [inline] __cant_sleep.cold+0xa4/0xbc kernel/sched/core.c:6803 kcm_parse_func_strparser+0x54/0x200 net/kcm/kcmsock.c:382 __strp_recv+0x5dc/0x1b20 net/strparser/strparser.c:221 strp_recv+0xcf/0x10b net/strparser/strparser.c:343 tcp_read_sock+0x285/0xa00 net/ipv4/tcp.c:1639 strp_read_sock+0x14d/0x200 net/strparser/strparser.c:366 do_strp_work net/strparser/strparser.c:414 [inline] strp_work+0xe3/0x130 net/strparser/strparser.c:423 process_one_work+0x9af/0x1740 kernel/workqueue.c:2269 Fixes: a2c11b0 ("kcm: use BPF_PROG_RUN") Fixes: 6cab5e9 ("bpf: run bpf programs with preemption disabled") Signed-off-by: Eric Dumazet <[email protected]> Reported-by: syzbot <[email protected]> Signed-off-by: David S. Miller <[email protected]>
qdisc_root() use from netem_enqueue() triggers a lockdep warning. __dev_queue_xmit() uses rcu_read_lock_bh() which is not equivalent to rcu_read_lock() + local_bh_disable_bh as far as lockdep is concerned. WARNING: suspicious RCU usage 5.3.0-rc7+ #0 Not tainted ----------------------------- include/net/sch_generic.h:492 suspicious rcu_dereference_check() usage! other info that might help us debug this: rcu_scheduler_active = 2, debug_locks = 1 3 locks held by syz-executor427/8855: #0: 00000000b5525c01 (rcu_read_lock_bh){....}, at: lwtunnel_xmit_redirect include/net/lwtunnel.h:92 [inline] #0: 00000000b5525c01 (rcu_read_lock_bh){....}, at: ip_finish_output2+0x2dc/0x2570 net/ipv4/ip_output.c:214 #1: 00000000b5525c01 (rcu_read_lock_bh){....}, at: __dev_queue_xmit+0x20a/0x3650 net/core/dev.c:3804 #2: 00000000364bae92 (&(&sch->q.lock)->rlock){+.-.}, at: spin_lock include/linux/spinlock.h:338 [inline] #2: 00000000364bae92 (&(&sch->q.lock)->rlock){+.-.}, at: __dev_xmit_skb net/core/dev.c:3502 [inline] #2: 00000000364bae92 (&(&sch->q.lock)->rlock){+.-.}, at: __dev_queue_xmit+0x14b8/0x3650 net/core/dev.c:3838 stack backtrace: CPU: 0 PID: 8855 Comm: syz-executor427 Not tainted 5.3.0-rc7+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x172/0x1f0 lib/dump_stack.c:113 lockdep_rcu_suspicious+0x153/0x15d kernel/locking/lockdep.c:5357 qdisc_root include/net/sch_generic.h:492 [inline] netem_enqueue+0x1cfb/0x2d80 net/sched/sch_netem.c:479 __dev_xmit_skb net/core/dev.c:3527 [inline] __dev_queue_xmit+0x15d2/0x3650 net/core/dev.c:3838 dev_queue_xmit+0x18/0x20 net/core/dev.c:3902 neigh_hh_output include/net/neighbour.h:500 [inline] neigh_output include/net/neighbour.h:509 [inline] ip_finish_output2+0x1726/0x2570 net/ipv4/ip_output.c:228 __ip_finish_output net/ipv4/ip_output.c:308 [inline] __ip_finish_output+0x5fc/0xb90 net/ipv4/ip_output.c:290 ip_finish_output+0x38/0x1f0 net/ipv4/ip_output.c:318 NF_HOOK_COND include/linux/netfilter.h:294 [inline] ip_mc_output+0x292/0xf40 net/ipv4/ip_output.c:417 dst_output include/net/dst.h:436 [inline] ip_local_out+0xbb/0x190 net/ipv4/ip_output.c:125 ip_send_skb+0x42/0xf0 net/ipv4/ip_output.c:1555 udp_send_skb.isra.0+0x6b2/0x1160 net/ipv4/udp.c:887 udp_sendmsg+0x1e96/0x2820 net/ipv4/udp.c:1174 inet_sendmsg+0x9e/0xe0 net/ipv4/af_inet.c:807 sock_sendmsg_nosec net/socket.c:637 [inline] sock_sendmsg+0xd7/0x130 net/socket.c:657 ___sys_sendmsg+0x3e2/0x920 net/socket.c:2311 __sys_sendmmsg+0x1bf/0x4d0 net/socket.c:2413 __do_sys_sendmmsg net/socket.c:2442 [inline] __se_sys_sendmmsg net/socket.c:2439 [inline] __x64_sys_sendmmsg+0x9d/0x100 net/socket.c:2439 do_syscall_64+0xfd/0x6a0 arch/x86/entry/common.c:296 entry_SYSCALL_64_after_hwframe+0x49/0xbe Signed-off-by: Eric Dumazet <[email protected]> Reported-by: syzbot <[email protected]> Signed-off-by: David S. Miller <[email protected]>
When a cpu requests broadcasting, before starting the tick broadcast hrtimer, bc_set_next() checks if the timer callback (bc_handler) is active using hrtimer_try_to_cancel(). But hrtimer_try_to_cancel() does not provide the required synchronization when the callback is active on other core. The callback could have already executed tick_handle_oneshot_broadcast() and could have also returned. But still there is a small time window where the hrtimer_try_to_cancel() returns -1. In that case bc_set_next() returns without doing anything, but the next_event of the tick broadcast clock device is already set to a timeout value. In the race condition diagram below, CPU #1 is running the timer callback and CPU #2 is entering idle state and so calls bc_set_next(). In the worst case, the next_event will contain an expiry time, but the hrtimer will not be started which happens when the racing callback returns HRTIMER_NORESTART. The hrtimer might never recover if all further requests from the CPUs to subscribe to tick broadcast have timeout greater than the next_event of tick broadcast clock device. This leads to cascading of failures and finally noticed as rcu stall warnings Here is a depiction of the race condition CPU #1 (Running timer callback) CPU #2 (Enter idle and subscribe to tick broadcast) --------------------- --------------------- __run_hrtimer() tick_broadcast_enter() bc_handler() __tick_broadcast_oneshot_control() tick_handle_oneshot_broadcast() raw_spin_lock(&tick_broadcast_lock); dev->next_event = KTIME_MAX; //wait for tick_broadcast_lock //next_event for tick broadcast clock set to KTIME_MAX since no other cores subscribed to tick broadcasting raw_spin_unlock(&tick_broadcast_lock); if (dev->next_event == KTIME_MAX) return HRTIMER_NORESTART // callback function exits without restarting the hrtimer //tick_broadcast_lock acquired raw_spin_lock(&tick_broadcast_lock); tick_broadcast_set_event() clockevents_program_event() dev->next_event = expires; bc_set_next() hrtimer_try_to_cancel() //returns -1 since the timer callback is active. Exits without restarting the timer cpu_base->running = NULL; The comment that hrtimer cannot be armed from within the callback is wrong. It is fine to start the hrtimer from within the callback. Also it is safe to start the hrtimer from the enter/exit idle code while the broadcast handler is active. The enter/exit idle code and the broadcast handler are synchronized using tick_broadcast_lock. So there is no need for the existing try to cancel logic. All this can be removed which will eliminate the race condition as well. Fixes: 5d1638a ("tick: Introduce hrtimer based broadcast") Originally-by: Thomas Gleixner <[email protected]> Signed-off-by: Balasubramani Vivekanandan <[email protected]> Signed-off-by: Thomas Gleixner <[email protected]> Cc: [email protected] Link: https://lkml.kernel.org/r/[email protected]
Ido Schimmel says: ==================== mlxsw: Various fixes This patchset includes two small fixes for the mlxsw driver and one patch which clarifies recently introduced devlink-trap documentation. Patch #1 clears the port's VLAN filters during port initialization. This ensures that the drop reason reported to the user is consistent. The problem is explained in detail in the commit message. Patch #2 clarifies the description of one of the traps exposed via devlink-trap. Patch #3 from Danielle forbids the installation of a tc filter with multiple mirror actions since this is not supported by the device. The failure is communicated to the user via extack. ==================== Signed-off-by: David S. Miller <[email protected]>
Andrii Nakryiko says: ==================== Add bpf_object__open_file() and bpf_object__open_mem() APIs that use a new approach to providing future-proof non-ABI-breaking API changes. It relies on APIs accepting optional self-describing "opts" struct, containing its own size, filled out and provided by potentially outdated (as well as newer-than-libbpf) user application. A set of internal helper macros (OPTS_VALID, OPTS_HAS, and OPTS_GET) streamline and simplify a graceful handling forward and backward compatibility for user applications dynamically linked against different versions of libbpf shared library. Users of libbpf are provided with convenience macro LIBBPF_OPTS that takes care of populating correct structure size and zero-initializes options struct, which helps avoid obscure issues of unitialized padding. Uninitialized padding in a struct might turn into garbage-populated new fields understood by future versions of libbpf. Patch #1 removes enforcement of kern_version in libbpf and always populates correct one on behalf of users. Patch #2 defines necessary infrastructure for options and two new open APIs relying on it. Patch #3 fixes bug in bpf_object__name(). Patch #4 switches two of test_progs' tests to use new APIs as a validation that they work as expected. v2->v3: - fix LIBBPF_OPTS() to ensure zero-initialization of padded bytes; - pass through name override and relaxed maps flag for open_file() (Toke); - fix bpf_object__name() to actually return object name; - don't bother parsing and verifying version section (John); v1->v2: - use better approach for tracking last field in opts struct; - convert few tests to new APIs for validation; - fix bug with using offsetof(last_field) instead of offsetofend(last_field). ==================== Signed-off-by: Alexei Starovoitov <[email protected]>
Andrii Nakryiko says: ==================== This patch set makes bpf_helpers.h and bpf_endian.h a part of libbpf itself for consumption by user BPF programs, not just selftests. It also splits off tracing helpers into bpf_tracing.h, which also becomes part of libbpf. Some of the legacy stuff (BPF_ANNOTATE_KV_PAIR, load_{byte,half,word}, bpf_map_def with unsupported fields, etc, is extracted into selftests-only bpf_legacy.h. All the selftests and samples are switched to use libbpf's headers and selftests' ones are removed. As part of this patch set we also add BPF_CORE_READ variadic macros, that are simplifying BPF CO-RE reads, especially the ones that have to follow few pointers. E.g., what in non-BPF world (and when using BCC) would be: int x = s->a->b.c->d; /* s, a, and b.c are pointers */ Today would have to be written using explicit bpf_probe_read() calls as: void *t; int x; bpf_probe_read(&t, sizeof(t), s->a); bpf_probe_read(&t, sizeof(t), ((struct b *)t)->b.c); bpf_probe_read(&x, sizeof(x), ((struct c *)t)->d); This is super inconvenient and distracts from program logic a lot. Now, with added BPF_CORE_READ() macros, you can write the above as: int x = BPF_CORE_READ(s, a, b.c, d); Up to 9 levels of pointer chasing are supported, which should be enough for any practical purpose, hopefully, without adding too much boilerplate macro definitions (though there is admittedly some, given how variadic and recursive C macro have to be implemented). There is also BPF_CORE_READ_INTO() variant, which relies on caller to allocate space for result: int x; BPF_CORE_READ_INTO(&x, s, a, b.c, d); Result of last bpf_probe_read() call in the chain of calls is the result of BPF_CORE_READ_INTO(). If any intermediate bpf_probe_read() aall fails, then all the subsequent ones will fail too, so this is sufficient to know whether overall "operation" succeeded or not. No short-circuiting of bpf_probe_read()s is done, though. BPF_CORE_READ_STR_INTO() is added as well, which differs from BPF_CORE_READ_INTO() only in that last bpf_probe_read() call (to read final field after chasing pointers) is replaced with bpf_probe_read_str(). Result of bpf_probe_read_str() is returned as a result of BPF_CORE_READ_STR_INTO() macro itself, so that applications can track return code and/or length of read string. Patch set outline: - patch #1 undoes previously added GCC-specific bpf-helpers.h include; - patch #2 splits off legacy stuff we don't want to carry over; - patch #3 adjusts CO-RE reloc tests to avoid subsequent naming conflict with BPF_CORE_READ; - patch #4 splits off bpf_tracing.h; - patch #5 moves bpf_{helpers,endian,tracing}.h and bpf_helper_defs.h generation into libbpf and adjusts Makefiles to include libbpf for header search; - patch #6 adds variadic BPF_CORE_READ() macro family, as described above; - patch #7 adds tests to verify all possible levels of pointer nestedness for BPF_CORE_READ(), as well as correctness test for BPF_CORE_READ_STR_INTO(). v4->v5: - move BPF_CORE_READ() stuff into bpf_core_read.h header (Alexei); v3->v4: - rebase on latest bpf-next master; - bpf_helper_defs.h generation is moved into libbpf's Makefile; v2->v3: - small formatting fixes and macro () fixes (Song); v1->v2: - fix CO-RE reloc tests before bpf_helpers.h move (Song); - split off legacy stuff we don't want to carry over (Daniel, Toke); - split off bpf_tracing.h (Daniel); - fix samples/bpf build (assuming other fixes are applied); - switch remaining maps either to bpf_map_def_legacy or BTF-defined maps; ==================== Signed-off-by: Daniel Borkmann <[email protected]>
Andrii Nakryiko says: ==================== Patch #1 enforces libbpf build to have bpf_helper_defs.h ready before test BPF programs are built. Patch #2 drops obsolete BTF/pahole detection logic from Makefile. v1->v2: - drop CPU and PROBE (Martin). ==================== Acked-by: Martin KaFai Lau <[email protected]> Signed-off-by: Alexei Starovoitov <[email protected]>
A long time ago we fixed a similar deadlock in show_slab_objects() [1]. However, it is apparently due to the commits like 01fb58b ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path") and 03afc0e ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}"), this kind of deadlock is back by just reading files in /sys/kernel/slab which will generate a lockdep splat below. Since the "mem_hotplug_lock" here is only to obtain a stable online node mask while racing with NUMA node hotplug, in the worst case, the results may me miscalculated while doing NUMA node hotplug, but they shall be corrected by later reads of the same files. WARNING: possible circular locking dependency detected ------------------------------------------------------ cat/5224 is trying to acquire lock: ffff900012ac3120 (mem_hotplug_lock.rw_sem){++++}, at: show_slab_objects+0x94/0x3a8 but task is already holding lock: b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (kn->count#45){++++}: lock_acquire+0x31c/0x360 __kernfs_remove+0x290/0x490 kernfs_remove+0x30/0x44 sysfs_remove_dir+0x70/0x88 kobject_del+0x50/0xb0 sysfs_slab_unlink+0x2c/0x38 shutdown_cache+0xa0/0xf0 kmemcg_cache_shutdown_fn+0x1c/0x34 kmemcg_workfn+0x44/0x64 process_one_work+0x4f4/0x950 worker_thread+0x390/0x4bc kthread+0x1cc/0x1e8 ret_from_fork+0x10/0x18 -> #1 (slab_mutex){+.+.}: lock_acquire+0x31c/0x360 __mutex_lock_common+0x16c/0xf78 mutex_lock_nested+0x40/0x50 memcg_create_kmem_cache+0x38/0x16c memcg_kmem_cache_create_func+0x3c/0x70 process_one_work+0x4f4/0x950 worker_thread+0x390/0x4bc kthread+0x1cc/0x1e8 ret_from_fork+0x10/0x18 -> #0 (mem_hotplug_lock.rw_sem){++++}: validate_chain+0xd10/0x2bcc __lock_acquire+0x7f4/0xb8c lock_acquire+0x31c/0x360 get_online_mems+0x54/0x150 show_slab_objects+0x94/0x3a8 total_objects_show+0x28/0x34 slab_attr_show+0x38/0x54 sysfs_kf_seq_show+0x198/0x2d4 kernfs_seq_show+0xa4/0xcc seq_read+0x30c/0x8a8 kernfs_fop_read+0xa8/0x314 __vfs_read+0x88/0x20c vfs_read+0xd8/0x10c ksys_read+0xb0/0x120 __arm64_sys_read+0x54/0x88 el0_svc_handler+0x170/0x240 el0_svc+0x8/0xc other info that might help us debug this: Chain exists of: mem_hotplug_lock.rw_sem --> slab_mutex --> kn->count#45 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(kn->count#45); lock(slab_mutex); lock(kn->count#45); lock(mem_hotplug_lock.rw_sem); *** DEADLOCK *** 3 locks held by cat/5224: #0: 9eff00095b14b2a0 (&p->lock){+.+.}, at: seq_read+0x4c/0x8a8 #1: 0eff008997041480 (&of->mutex){+.+.}, at: kernfs_seq_start+0x34/0xf0 #2: b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0 stack backtrace: Call trace: dump_backtrace+0x0/0x248 show_stack+0x20/0x2c dump_stack+0xd0/0x140 print_circular_bug+0x368/0x380 check_noncircular+0x248/0x250 validate_chain+0xd10/0x2bcc __lock_acquire+0x7f4/0xb8c lock_acquire+0x31c/0x360 get_online_mems+0x54/0x150 show_slab_objects+0x94/0x3a8 total_objects_show+0x28/0x34 slab_attr_show+0x38/0x54 sysfs_kf_seq_show+0x198/0x2d4 kernfs_seq_show+0xa4/0xcc seq_read+0x30c/0x8a8 kernfs_fop_read+0xa8/0x314 __vfs_read+0x88/0x20c vfs_read+0xd8/0x10c ksys_read+0xb0/0x120 __arm64_sys_read+0x54/0x88 el0_svc_handler+0x170/0x240 el0_svc+0x8/0xc I think it is important to mention that this doesn't expose the show_slab_objects to use-after-free. There is only a single path that might really race here and that is the slab hotplug notifier callback __kmem_cache_shrink (via slab_mem_going_offline_callback) but that path doesn't really destroy kmem_cache_node data structures. [1] http://lkml.iu.edu/hypermail/linux/kernel/1101.0/02850.html [[email protected]: add comment explaining why we don't need mem_hotplug_lock] Link: http://lkml.kernel.org/r/[email protected] Fixes: 01fb58b ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path") Fixes: 03afc0e ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}") Signed-off-by: Qian Cai <[email protected]> Acked-by: Michal Hocko <[email protected]> Cc: Christoph Lameter <[email protected]> Cc: Pekka Enberg <[email protected]> Cc: David Rientjes <[email protected]> Cc: Joonsoo Kim <[email protected]> Cc: Tejun Heo <[email protected]> Cc: Vladimir Davydov <[email protected]> Cc: Roman Gushchin <[email protected]> Cc: <[email protected]> Signed-off-by: Andrew Morton <[email protected]> Signed-off-by: Linus Torvalds <[email protected]>
Daniel Vetter uncovered a nasty cycle in using the mmu-notifiers to invalidate userptr objects which also happen to be pulled into GGTT mmaps. That is when we unbind the userptr object (on mmu invalidation), we revoke all CPU mmaps, which may then recurse into mmu invalidation. We looked for ways of breaking the cycle, but the revocation on invalidation is required and cannot be avoided. The only solution we could see was to not allow such GGTT bindings of userptr objects in the first place. In practice, no one really wants to use a GGTT mmapping of a CPU pointer... Just before Daniel's explosive lockdep patches land in v5.4-rc1, we got a genuine blip from CI: <4>[ 246.793958] ====================================================== <4>[ 246.793972] WARNING: possible circular locking dependency detected <4>[ 246.793989] 5.3.0-gbd6c56f50d15-drmtip_372+ #1 Tainted: G U <4>[ 246.794003] ------------------------------------------------------ <4>[ 246.794017] kswapd0/145 is trying to acquire lock: <4>[ 246.794030] 000000003f565be6 (&dev->struct_mutex/1){+.+.}, at: userptr_mn_invalidate_range_start+0x18f/0x220 [i915] <4>[ 246.794250] but task is already holding lock: <4>[ 246.794263] 000000001799cef9 (&anon_vma->rwsem){++++}, at: page_lock_anon_vma_read+0xe6/0x2a0 <4>[ 246.794291] which lock already depends on the new lock. <4>[ 246.794307] the existing dependency chain (in reverse order) is: <4>[ 246.794322] -> #3 (&anon_vma->rwsem){++++}: <4>[ 246.794344] down_write+0x33/0x70 <4>[ 246.794357] __vma_adjust+0x3d9/0x7b0 <4>[ 246.794370] __split_vma+0x16a/0x180 <4>[ 246.794385] mprotect_fixup+0x2a5/0x320 <4>[ 246.794399] do_mprotect_pkey+0x208/0x2e0 <4>[ 246.794413] __x64_sys_mprotect+0x16/0x20 <4>[ 246.794429] do_syscall_64+0x55/0x1c0 <4>[ 246.794443] entry_SYSCALL_64_after_hwframe+0x49/0xbe <4>[ 246.794456] -> #2 (&mapping->i_mmap_rwsem){++++}: <4>[ 246.794478] down_write+0x33/0x70 <4>[ 246.794493] unmap_mapping_pages+0x48/0x130 <4>[ 246.794519] i915_vma_revoke_mmap+0x81/0x1b0 [i915] <4>[ 246.794519] i915_vma_unbind+0x11d/0x4a0 [i915] <4>[ 246.794519] i915_vma_destroy+0x31/0x300 [i915] <4>[ 246.794519] __i915_gem_free_objects+0xb8/0x4b0 [i915] <4>[ 246.794519] drm_file_free.part.0+0x1e6/0x290 <4>[ 246.794519] drm_release+0xa6/0xe0 <4>[ 246.794519] __fput+0xc2/0x250 <4>[ 246.794519] task_work_run+0x82/0xb0 <4>[ 246.794519] do_exit+0x35b/0xdb0 <4>[ 246.794519] do_group_exit+0x34/0xb0 <4>[ 246.794519] __x64_sys_exit_group+0xf/0x10 <4>[ 246.794519] do_syscall_64+0x55/0x1c0 <4>[ 246.794519] entry_SYSCALL_64_after_hwframe+0x49/0xbe <4>[ 246.794519] -> #1 (&vm->mutex){+.+.}: <4>[ 246.794519] i915_gem_shrinker_taints_mutex+0x6d/0xe0 [i915] <4>[ 246.794519] i915_address_space_init+0x9f/0x160 [i915] <4>[ 246.794519] i915_ggtt_init_hw+0x55/0x170 [i915] <4>[ 246.794519] i915_driver_probe+0xc9f/0x1620 [i915] <4>[ 246.794519] i915_pci_probe+0x43/0x1b0 [i915] <4>[ 246.794519] pci_device_probe+0x9e/0x120 <4>[ 246.794519] really_probe+0xea/0x3d0 <4>[ 246.794519] driver_probe_device+0x10b/0x120 <4>[ 246.794519] device_driver_attach+0x4a/0x50 <4>[ 246.794519] __driver_attach+0x97/0x130 <4>[ 246.794519] bus_for_each_dev+0x74/0xc0 <4>[ 246.794519] bus_add_driver+0x13f/0x210 <4>[ 246.794519] driver_register+0x56/0xe0 <4>[ 246.794519] do_one_initcall+0x58/0x300 <4>[ 246.794519] do_init_module+0x56/0x1f6 <4>[ 246.794519] load_module+0x25bd/0x2a40 <4>[ 246.794519] __se_sys_finit_module+0xd3/0xf0 <4>[ 246.794519] do_syscall_64+0x55/0x1c0 <4>[ 246.794519] entry_SYSCALL_64_after_hwframe+0x49/0xbe <4>[ 246.794519] -> #0 (&dev->struct_mutex/1){+.+.}: <4>[ 246.794519] __lock_acquire+0x15d8/0x1e90 <4>[ 246.794519] lock_acquire+0xa6/0x1c0 <4>[ 246.794519] __mutex_lock+0x9d/0x9b0 <4>[ 246.794519] userptr_mn_invalidate_range_start+0x18f/0x220 [i915] <4>[ 246.794519] __mmu_notifier_invalidate_range_start+0x85/0x110 <4>[ 246.794519] try_to_unmap_one+0x76b/0x860 <4>[ 246.794519] rmap_walk_anon+0x104/0x280 <4>[ 246.794519] try_to_unmap+0xc0/0xf0 <4>[ 246.794519] shrink_page_list+0x561/0xc10 <4>[ 246.794519] shrink_inactive_list+0x220/0x440 <4>[ 246.794519] shrink_node_memcg+0x36e/0x740 <4>[ 246.794519] shrink_node+0xcb/0x490 <4>[ 246.794519] balance_pgdat+0x241/0x580 <4>[ 246.794519] kswapd+0x16c/0x530 <4>[ 246.794519] kthread+0x119/0x130 <4>[ 246.794519] ret_from_fork+0x24/0x50 <4>[ 246.794519] other info that might help us debug this: <4>[ 246.794519] Chain exists of: &dev->struct_mutex/1 --> &mapping->i_mmap_rwsem --> &anon_vma->rwsem <4>[ 246.794519] Possible unsafe locking scenario: <4>[ 246.794519] CPU0 CPU1 <4>[ 246.794519] ---- ---- <4>[ 246.794519] lock(&anon_vma->rwsem); <4>[ 246.794519] lock(&mapping->i_mmap_rwsem); <4>[ 246.794519] lock(&anon_vma->rwsem); <4>[ 246.794519] lock(&dev->struct_mutex/1); <4>[ 246.794519] *** DEADLOCK *** v2: Say no to mmap_ioctl Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111744 Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111870 Signed-off-by: Chris Wilson <[email protected]> Cc: Tvrtko Ursulin <[email protected]> Cc: Daniel Vetter <[email protected]> Cc: [email protected] Reviewed-by: Tvrtko Ursulin <[email protected]> Link: https://patchwork.freedesktop.org/patch/msgid/[email protected] (cherry picked from commit a431174) Signed-off-by: Rodrigo Vivi <[email protected]>
Andrii Nakryiko says: ==================== This patch set extensively revamps selftests/bpf's Makefile to generalize test runner concept and apply it uniformly to test_maps and test_progs test runners, along with test_progs' few build "flavors", exercising various ways to build BPF programs. As we do that, we fix dependencies between various phases of test runners, and simplify some one-off rules and dependencies currently present in Makefile. test_progs' flavors are now built into root $(OUTPUT) directory and can be run without any extra steps right from there. E.g., test_progs-alu32 is built and is supposed to be run from $(OUTPUT). It will cd into alu32/ subdirectory to load correct set of BPF object files (which are different from the ones built for test_progs). Outline: - patch #1 teaches test_progs about flavor sub-directories; - patch #2 fixes one of CO-RE tests to not depend strictly on process name; - patch #3 changes test_maps's usage of map_tests/tests.h to be the same as test_progs' one; - patch #4 adds convenient short `make test_progs`-like targets to build only individual tests, if necessary; - patch #5 is a main patch in the series; it uses a bunch of make magic (mainly $(call) and $(eval)) to define test runner "skeleton" and apply it to 4 different test runners, lots more details in corresponding commit description; - patch #6 does a bit of post-clean up for test_queue_map and test_stack_map BPF programs; - patch #7 cleans up test_libbpf.sh/test_libbpf_open superseded by test_progs. v3->v4: - remove accidentally checked in binaries; v2->v3: - drop test_xdp.o mixed compilation mode, remove test_libbpf.sh (Alexei); v1->v2: - drop test_progs-native causing compilation failures due to __builtin_preserve_field_access, add back test_xdp.o override, which will now emit rule re-definition warning. ==================== Signed-off-by: Alexei Starovoitov <[email protected]>
Ido Schimmel says: ==================== Vadim says: This patch set extends the size of QSFP EEPROM for the cable types SSF-8436 and SFF-8636 from 256 bytes to 640 bytes. This allows ethtool to show correct information for these cable types (more details below). Patch #1 adds a macro that computes the EEPROM page number from the provided offset specified in the request. Patch #2 teaches the driver to access the information stored in the upper pages of the QSFP memory map. Details and examples: SFF-8436 specification defines pages 0, 1, 2 and 3. Page 0 contains lower memory page offsets (from 0x00 to 0x7f) and upper page offsets (from 0x80 to 0xfe). Upper pages 1, 2 and 3 are optional and can be empty. Page 1 is provided if upper page 0 byte 0xc3 bit 6 is set. Page 2 is provided if upper page 0 byte 0xc3 bit 7 is set. Page 3 is provided if lower page 0 byte 0x02 bit 2 is cleared. Offset 0xc3 for the upper page is provided as 0x43 = 0xc3 - 0x80. As a result of exposing 256 bytes only, ethtool shows wrong information for pages 1, 2 and 3. In the below hex dump from ethtool for a cable compliant to SFF-8636 specification, it can be seen that EEPROM of this device contains optical diagnostic page (lower page 0 byte 0x02 bit 2 is cleared), but it is not exposed, as the length defined for this type is 256 bytes. $ ethtool -m sfp42 hex on Offset Values ------ ------ 0x0000: 11 07 00 ff 00 ff 00 00 00 55 55 00 00 00 00 00 0x0010: 00 00 00 00 00 00 2a 90 00 00 82 ae 00 00 00 00 0x0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 0x0060: 00 00 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0080: 11 8c 0c 80 00 00 00 00 00 00 00 05 ff 00 00 23 0x0090: 00 00 32 00 4d 65 6c 6c 61 6e 6f 78 20 20 20 20 0x00a0: 20 20 20 20 00 00 02 c9 4d 4d 41 31 42 30 30 2d 0x00b0: 53 53 31 20 20 20 20 20 41 32 42 68 0b b8 46 05 0x00c0: 02 07 f5 9e 4d 54 31 38 33 34 46 54 30 33 38 34 0x00d0: 36 20 20 20 31 38 30 37 30 33 00 00 0c 10 67 c2 0x00e0: 38 32 36 46 4d 41 32 32 36 49 30 31 31 35 20 20 0x00f0: 00 00 00 00 00 00 00 00 00 00 01 00 0e 00 00 00 After changing the length returned by get_module_info() callback from 256 bytes to 640 bytes, the upper pages 1, 2 and 3 are exposed by ethtool. In the below hex dump from the same cable it can be seen that the optical diagnostic page (page 3, from offset 0x0200) has non-zero data. $ ethtool -m sfp42 hex on Offset Values ------ ------ 0x0000: 11 07 00 ff 00 ff 00 00 00 55 55 00 00 00 00 00 0x0010: 00 00 00 00 00 00 27 79 00 00 82 c5 00 00 00 00 0x0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0050: 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 0x0060: 00 00 ff 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0080: 11 8c 0c 80 00 00 00 00 00 00 00 05 ff 00 00 23 0x0090: 00 00 32 00 4d 65 6c 6c 61 6e 6f 78 20 20 20 20 0x00a0: 20 20 20 20 00 00 02 c9 4d 4d 41 31 42 30 30 2d 0x00b0: 53 53 31 20 20 20 20 20 41 32 42 68 0b b8 46 05 0x00c0: 02 07 f5 9e 4d 54 31 38 33 34 46 54 30 33 38 34 0x00d0: 36 20 20 20 31 38 30 37 30 33 00 00 0c 10 67 c2 0x00e0: 38 32 36 46 4d 41 32 32 36 49 30 31 31 35 20 20 0x00f0: 00 00 00 00 00 00 00 00 00 00 01 00 0e 00 00 00 0x0100: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0110: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0120: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0130: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0140: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0150: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0160: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0170: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0180: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0190: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x01f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0200: 50 00 f6 00 46 00 00 00 00 00 00 00 00 00 00 00 0x0210: 88 b8 79 18 87 5a 7a 76 00 00 00 00 00 00 00 00 0x0220: 00 00 00 00 00 00 00 00 00 00 18 30 0e 61 60 b7 0x0230: 87 71 01 d3 43 e2 03 a5 10 9a 0a ba 0f a0 0b b8 0x0240: 87 71 02 d4 43 e2 05 a5 00 00 00 00 00 00 00 00 0x0250: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0x0260: a7 03 00 00 00 00 00 00 00 00 44 44 22 22 11 11 0x0270: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 And 'ethtool -m sfp42' shows the real values for the below fields, while before it exposed zeros for these fields: Laser bias current high alarm threshold : 8.500 mA Laser bias current low alarm threshold : 5.492 mA Laser bias current high warning threshold : 8.000 mA Laser bias current low warning threshold : 6.000 mA Laser output power high alarm threshold : 3.4673 mW / 5.40 dBm Laser output power low alarm threshold : 0.0724 mW / -11.40 dBm Laser output power high warning threshold : 1.7378 mW / 2.40 dBm Laser output power low warning threshold : 0.1445 mW / -8.40 dBm Module temperature high alarm threshold : 80.00 degrees C / 176.00 F Module temperature low alarm threshold : -10.00 degrees C / 14.00 F Module temperature high warning threshold : 70.00 degrees C / 158.00 F Module temperature low warning threshold : 0.00 degrees C / 32.00 F Module voltage high alarm threshold : 3.5000 V Module voltage low alarm threshold : 3.1000 V ==================== Signed-off-by: Jakub Kicinski <[email protected]>
Tao Ren says: ==================== net: phy: support 1000Base-X auto-negotiation for BCM54616S This patch series aims at supporting auto negotiation when BCM54616S is running in 1000Base-X mode: without the patch series, BCM54616S PHY driver would report incorrect link speed in 1000Base-X mode. Patch #1 (of 3) modifies assignment to OR when dealing with dev_flags in phy_attach_direct function, so that dev_flags updated in BCM54616S PHY's probe callback won't be lost. Patch #2 (of 3) adds several genphy_c37_* functions to support clause 37 1000Base-X auto-negotiation, and these functions are called in BCM54616S PHY driver. Patch #3 (of 3) detects BCM54616S PHY's operation mode and calls according genphy_c37_* functions to configure auto-negotiation and parse link attributes (speed, duplex, and etc.) in 1000Base-X mode. ==================== Signed-off-by: David S. Miller <[email protected]>
Ido Schimmel says: ==================== mlxsw: Update main pool computation and pool size limits Petr says: In Spectrum ASICs, the shared buffer is an area of memory where packets are kept until they can be transmitted. There are two resources associated with shared buffer size: cap_total_buffer_size and cap_guaranteed_shared_buffer. So far, mlxsw has been using the former as a limit when validating shared buffer pool size configuration. However, the total size also includes headrooms and reserved space, which really cannot be used for shared buffer pools. Patch #1 mends this and has mlxsw use the guaranteed size. To configure default pool sizes, mlxsw has historically hard-coded one or two smallish pools, and one "main" pool that took most of the shared buffer (that would be pool 0 on ingress and pool 4 on egress). During the development of Spectrum-2, it became clear that the shared buffer size keeps shrinking as bugs are identified and worked around. In order to prevent having to tweak the size of pools 0 and 4 to catch up with updates to values reported by the FW, patch #2 changes the way these pools are set. Instead of hard-coding a fixed value, the main pool now takes whatever is left from the guaranteed size after the smaller pool(s) are taken into account. ==================== Signed-off-by: David S. Miller <[email protected]>
Ido Schimmel says: ==================== mlxsw: Update firmware version This patch set updates the firmware version for Spectrum-1 and enforces a firmware version for Spectrum-2. The version adds support for querying port module type. It will be used by a followup patch set from Jiri to make port split code more generic. Patch #1 increases the size of an existing register in order to be compatible with the new firmware version. In the future the firmware will assign default values to fields not specified by the driver. Patch #2 temporarily increases the PCI reset timeout for SN3800 systems. Note that in normal cases the driver will need to wait no longer than 5 seconds for the device to become ready following reset command. Patch #3 bumps the firmware version for Spectrum-1. Patch #4 enforces a minimum firmware version for Spectrum-2. v2: * Added patch #2 ==================== Signed-off-by: David S. Miller <[email protected]>
[ Upstream commit 953e549471cabc9d4980f1da2e9fa79f4c23da06 ] Lockdep gives a false positive splat as it can't distinguish the lock which is taken by different IRQ descriptors from different IRQ chips that are organized in a way of a hierarchy: ====================================================== WARNING: possible circular locking dependency detected 6.12.0-rc5-next-20241101-00148-g9fabf8160b53 #562 Tainted: G W ------------------------------------------------------ modprobe/141 is trying to acquire lock: ffff899446947868 (intel_soc_pmic_bxtwc:502:(&bxtwc_regmap_config)->lock){+.+.}-{4:4}, at: regmap_update_bits_base+0x33/0x90 but task is already holding lock: ffff899446947c68 (&d->lock){+.+.}-{4:4}, at: __setup_irq+0x682/0x790 which lock already depends on the new lock. -> #3 (&d->lock){+.+.}-{4:4}: -> #2 (&desc->request_mutex){+.+.}-{4:4}: -> #1 (ipclock){+.+.}-{4:4}: -> #0 (intel_soc_pmic_bxtwc:502:(&bxtwc_regmap_config)->lock){+.+.}-{4:4}: Chain exists of: intel_soc_pmic_bxtwc:502:(&bxtwc_regmap_config)->lock --> &desc->request_mutex --> &d->lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&d->lock); lock(&desc->request_mutex); lock(&d->lock); lock(intel_soc_pmic_bxtwc:502:(&bxtwc_regmap_config)->lock); *** DEADLOCK *** 3 locks held by modprobe/141: #0: ffff8994419368f8 (&dev->mutex){....}-{4:4}, at: __driver_attach+0xf6/0x250 #1: ffff89944690b250 (&desc->request_mutex){+.+.}-{4:4}, at: __setup_irq+0x1a2/0x790 #2: ffff899446947c68 (&d->lock){+.+.}-{4:4}, at: __setup_irq+0x682/0x790 Set a lockdep class when we map the IRQ so that it doesn't warn about a lockdep bug that doesn't exist. Fixes: 4af8be6 ("regmap: Convert regmap_irq to use irq_domain") Signed-off-by: Andy Shevchenko <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Mark Brown <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
[ Upstream commit 06dbbb4d5f7126b6307ab807cbf04ecfc459b933 ] copy_from_kernel_nofault() can be called when doing read of /proc/kcore. /proc/kcore can have some unmapped kfence objects which when read via copy_from_kernel_nofault() can cause page faults. Since *_nofault() functions define their own fixup table for handling fault, use that instead of asking kfence to handle such faults. Hence we search the exception tables for the nip which generated the fault. If there is an entry then we let the fixup table handler handle the page fault by returning an error from within ___do_page_fault(). This can be easily triggered if someone tries to do dd from /proc/kcore. eg. dd if=/proc/kcore of=/dev/null bs=1M Some example false negatives: =============================== BUG: KFENCE: invalid read in copy_from_kernel_nofault+0x9c/0x1a0 Invalid read at 0xc0000000fdff0000: copy_from_kernel_nofault+0x9c/0x1a0 0xc00000000665f950 read_kcore_iter+0x57c/0xa04 proc_reg_read_iter+0xe4/0x16c vfs_read+0x320/0x3ec ksys_read+0x90/0x154 system_call_exception+0x120/0x310 system_call_vectored_common+0x15c/0x2ec BUG: KFENCE: use-after-free read in copy_from_kernel_nofault+0x9c/0x1a0 Use-after-free read at 0xc0000000fe050000 (in kfence-#2): copy_from_kernel_nofault+0x9c/0x1a0 0xc00000000665f950 read_kcore_iter+0x57c/0xa04 proc_reg_read_iter+0xe4/0x16c vfs_read+0x320/0x3ec ksys_read+0x90/0x154 system_call_exception+0x120/0x310 system_call_vectored_common+0x15c/0x2ec Fixes: 90cbac0 ("powerpc: Enable KFENCE for PPC32") Suggested-by: Christophe Leroy <[email protected]> Reported-by: Disha Goel <[email protected]> Signed-off-by: Ritesh Harjani (IBM) <[email protected]> Reviewed-by: Christophe Leroy <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://patch.msgid.link/a411788081d50e3b136c6270471e35aba3dfafa3.1729271995.git.ritesh.list@gmail.com Signed-off-by: Sasha Levin <[email protected]>
[ Upstream commit cadae3a45d23aa4f6485938a67cbc47aaaa25e38 ] The dtl_access_lock needs to be a rw_sempahore, a sleeping lock, because the code calls kmalloc() while holding it, which can sleep: # echo 1 > /proc/powerpc/vcpudispatch_stats BUG: sleeping function called from invalid context at include/linux/sched/mm.h:337 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 199, name: sh preempt_count: 1, expected: 0 3 locks held by sh/199: #0: c00000000a0743f8 (sb_writers#3){.+.+}-{0:0}, at: vfs_write+0x324/0x438 #1: c0000000028c7058 (dtl_enable_mutex){+.+.}-{3:3}, at: vcpudispatch_stats_write+0xd4/0x5f4 #2: c0000000028c70b8 (dtl_access_lock){+.+.}-{2:2}, at: vcpudispatch_stats_write+0x220/0x5f4 CPU: 0 PID: 199 Comm: sh Not tainted 6.10.0-rc4 #152 Hardware name: IBM pSeries (emulated by qemu) POWER9 (raw) 0x4e1202 0xf000005 of:SLOF,HEAD hv:linux,kvm pSeries Call Trace: dump_stack_lvl+0x130/0x148 (unreliable) __might_resched+0x174/0x410 kmem_cache_alloc_noprof+0x340/0x3d0 alloc_dtl_buffers+0x124/0x1ac vcpudispatch_stats_write+0x2a8/0x5f4 proc_reg_write+0xf4/0x150 vfs_write+0xfc/0x438 ksys_write+0x88/0x148 system_call_exception+0x1c4/0x5a0 system_call_common+0xf4/0x258 Fixes: 06220d7 ("powerpc/pseries: Introduce rwlock to gatekeep DTLB usage") Tested-by: Kajol Jain <[email protected]> Reviewed-by: Nysal Jan K.A <[email protected]> Reviewed-by: Kajol Jain <[email protected]> Signed-off-by: Michael Ellerman <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Sasha Levin <[email protected]>
[ Upstream commit f10a890308a7cd8794e21f646f09827c6cb4bf5d ] syzbot reports deadlock issue of f2fs as below: ====================================================== WARNING: possible circular locking dependency detected 6.12.0-rc3-syzkaller-00087-gc964ced77262 #0 Not tainted ------------------------------------------------------ kswapd0/79 is trying to acquire lock: ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_down_write fs/f2fs/f2fs.h:2199 [inline] ffff888011824088 (&sbi->sb_lock){++++}-{3:3}, at: f2fs_record_stop_reason+0x52/0x1d0 fs/f2fs/super.c:4068 but task is already holding lock: ffff88804bd92610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (sb_internal#2){.+.+}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 percpu_down_read include/linux/percpu-rwsem.h:51 [inline] __sb_start_write include/linux/fs.h:1716 [inline] sb_start_intwrite+0x4d/0x1c0 include/linux/fs.h:1899 f2fs_evict_inode+0x662/0x15c0 fs/f2fs/inode.c:842 evict+0x4e8/0x9b0 fs/inode.c:725 f2fs_evict_inode+0x1a4/0x15c0 fs/f2fs/inode.c:807 evict+0x4e8/0x9b0 fs/inode.c:725 dispose_list fs/inode.c:774 [inline] prune_icache_sb+0x239/0x2f0 fs/inode.c:963 super_cache_scan+0x38c/0x4b0 fs/super.c:223 do_shrink_slab+0x701/0x1160 mm/shrinker.c:435 shrink_slab+0x1093/0x14d0 mm/shrinker.c:662 shrink_one+0x43b/0x850 mm/vmscan.c:4818 shrink_many mm/vmscan.c:4879 [inline] lru_gen_shrink_node mm/vmscan.c:4957 [inline] shrink_node+0x3799/0x3de0 mm/vmscan.c:5937 kswapd_shrink_node mm/vmscan.c:6765 [inline] balance_pgdat mm/vmscan.c:6957 [inline] kswapd+0x1ca3/0x3700 mm/vmscan.c:7226 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 -> #1 (fs_reclaim){+.+.}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 __fs_reclaim_acquire mm/page_alloc.c:3834 [inline] fs_reclaim_acquire+0x88/0x130 mm/page_alloc.c:3848 might_alloc include/linux/sched/mm.h:318 [inline] prepare_alloc_pages+0x147/0x5b0 mm/page_alloc.c:4493 __alloc_pages_noprof+0x16f/0x710 mm/page_alloc.c:4722 alloc_pages_mpol_noprof+0x3e8/0x680 mm/mempolicy.c:2265 alloc_pages_noprof mm/mempolicy.c:2345 [inline] folio_alloc_noprof+0x128/0x180 mm/mempolicy.c:2352 filemap_alloc_folio_noprof+0xdf/0x500 mm/filemap.c:1010 do_read_cache_folio+0x2eb/0x850 mm/filemap.c:3787 read_mapping_folio include/linux/pagemap.h:1011 [inline] f2fs_commit_super+0x3c0/0x7d0 fs/f2fs/super.c:4032 f2fs_record_stop_reason+0x13b/0x1d0 fs/f2fs/super.c:4079 f2fs_handle_critical_error+0x2ac/0x5c0 fs/f2fs/super.c:4174 f2fs_write_inode+0x35f/0x4d0 fs/f2fs/inode.c:785 write_inode fs/fs-writeback.c:1503 [inline] __writeback_single_inode+0x711/0x10d0 fs/fs-writeback.c:1723 writeback_single_inode+0x1f3/0x660 fs/fs-writeback.c:1779 sync_inode_metadata+0xc4/0x120 fs/fs-writeback.c:2849 f2fs_release_file+0xa8/0x100 fs/f2fs/file.c:1941 __fput+0x23f/0x880 fs/file_table.c:431 task_work_run+0x24f/0x310 kernel/task_work.c:228 resume_user_mode_work include/linux/resume_user_mode.h:50 [inline] exit_to_user_mode_loop kernel/entry/common.c:114 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:328 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x168/0x370 kernel/entry/common.c:218 do_syscall_64+0x100/0x230 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (&sbi->sb_lock){++++}-{3:3}: check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1384/0x2050 kernel/locking/lockdep.c:5202 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825 down_write+0x99/0x220 kernel/locking/rwsem.c:1577 f2fs_down_write fs/f2fs/f2fs.h:2199 [inline] f2fs_record_stop_reason+0x52/0x1d0 fs/f2fs/super.c:4068 f2fs_handle_critical_error+0x2ac/0x5c0 fs/f2fs/super.c:4174 f2fs_evict_inode+0xa61/0x15c0 fs/f2fs/inode.c:883 evict+0x4e8/0x9b0 fs/inode.c:725 f2fs_evict_inode+0x1a4/0x15c0 fs/f2fs/inode.c:807 evict+0x4e8/0x9b0 fs/inode.c:725 dispose_list fs/inode.c:774 [inline] prune_icache_sb+0x239/0x2f0 fs/inode.c:963 super_cache_scan+0x38c/0x4b0 fs/super.c:223 do_shrink_slab+0x701/0x1160 mm/shrinker.c:435 shrink_slab+0x1093/0x14d0 mm/shrinker.c:662 shrink_one+0x43b/0x850 mm/vmscan.c:4818 shrink_many mm/vmscan.c:4879 [inline] lru_gen_shrink_node mm/vmscan.c:4957 [inline] shrink_node+0x3799/0x3de0 mm/vmscan.c:5937 kswapd_shrink_node mm/vmscan.c:6765 [inline] balance_pgdat mm/vmscan.c:6957 [inline] kswapd+0x1ca3/0x3700 mm/vmscan.c:7226 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 other info that might help us debug this: Chain exists of: &sbi->sb_lock --> fs_reclaim --> sb_internal#2 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); lock(&sbi->sb_lock); Root cause is there will be potential deadlock in between below tasks: Thread A Kswapd - f2fs_ioc_commit_atomic_write - mnt_want_write_file -- down_read lock A - balance_pgdat - __fs_reclaim_acquire -- lock B - shrink_node - prune_icache_sb - dispose_list - f2fs_evict_inode - sb_start_intwrite -- down_read lock A - f2fs_do_sync_file - f2fs_write_inode - f2fs_handle_critical_error - f2fs_record_stop_reason - f2fs_commit_super - read_mapping_folio - filemap_alloc_folio_noprof - fs_reclaim_acquire -- lock B Both threads try to acquire read lock of lock A, then its upcoming write lock grabber will trigger deadlock. Let's always create an asynchronous task in f2fs_handle_critical_error() rather than calling f2fs_record_stop_reason() synchronously to avoid this potential deadlock issue. Fixes: b62e71b ("f2fs: support errors=remount-ro|continue|panic mountoption") Reported-by: [email protected] Closes: https://lore.kernel.org/all/[email protected] Signed-off-by: Chao Yu <[email protected]> Reviewed-by: Daejun Park <[email protected]> Signed-off-by: Jaegeuk Kim <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
…ndex [ Upstream commit e9db1b551774037ebe39dde4a658d89ba95e260b ] Intel SoundWire machine driver always uses Pin number 2 and above. Currently, the pin number is used as the FW DAI index directly. As a result, FW DAI 0 and 1 are never used. That worked fine because we use up to 2 DAIs in a SDW link. Convert the topology pin index to ALH dai index, the mapping is using 2-off indexing, iow, pin #2 is ALH dai #0. The issue exists since beginning. And the Fixes tag is the first commit that this commit can be applied. Fixes: b66bfc3 ("ASoC: SOF: sof-audio: Fix broken early bclk feature for SSP") Signed-off-by: Bard Liao <[email protected]> Reviewed-by: Péter Ujfalusi <[email protected]> Reviewed-by: Liam Girdwood <[email protected]> Reviewed-by: Kai Vehmanen <[email protected]> Reviewed-by: Ranjani Sridharan <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Mark Brown <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
[ Upstream commit 88fd2b70120d52c1010257d36776876941375490 ] Commit bab1c29 ("LoongArch: Fix sleeping in atomic context in setup_tlb_handler()") changes the gfp flag from GFP_KERNEL to GFP_ATOMIC for alloc_pages_node(). However, for PREEMPT_RT kernels we can still get a "sleeping in atomic context" error: [ 0.372259] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 [ 0.372266] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 0, name: swapper/1 [ 0.372268] preempt_count: 1, expected: 0 [ 0.372270] RCU nest depth: 1, expected: 1 [ 0.372272] 3 locks held by swapper/1/0: [ 0.372274] #0: 900000000c9f5e60 (&pcp->lock){+.+.}-{3:3}, at: get_page_from_freelist+0x524/0x1c60 [ 0.372294] #1: 90000000087013b8 (rcu_read_lock){....}-{1:3}, at: rt_spin_trylock+0x50/0x140 [ 0.372305] #2: 900000047fffd388 (&zone->lock){+.+.}-{3:3}, at: __rmqueue_pcplist+0x30c/0xea0 [ 0.372314] irq event stamp: 0 [ 0.372316] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [ 0.372322] hardirqs last disabled at (0): [<9000000005947320>] copy_process+0x9c0/0x26e0 [ 0.372329] softirqs last enabled at (0): [<9000000005947320>] copy_process+0x9c0/0x26e0 [ 0.372335] softirqs last disabled at (0): [<0000000000000000>] 0x0 [ 0.372341] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.12.0-rc7+ #1891 [ 0.372346] Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 [ 0.372349] Stack : 0000000000000089 9000000005a0db9c 90000000071519c8 9000000100388000 [ 0.372486] 900000010038b890 0000000000000000 900000010038b898 9000000007e53788 [ 0.372492] 900000000815bcc8 900000000815bcc0 900000010038b700 0000000000000001 [ 0.372498] 0000000000000001 4b031894b9d6b725 00000000055ec000 9000000100338fc0 [ 0.372503] 00000000000000c4 0000000000000001 000000000000002d 0000000000000003 [ 0.372509] 0000000000000030 0000000000000003 00000000055ec000 0000000000000003 [ 0.372515] 900000000806d000 9000000007e53788 00000000000000b0 0000000000000004 [ 0.372521] 0000000000000000 0000000000000000 900000000c9f5f10 0000000000000000 [ 0.372526] 90000000076f12d8 9000000007e53788 9000000005924778 0000000000000000 [ 0.372532] 00000000000000b0 0000000000000004 0000000000000000 0000000000070000 [ 0.372537] ... [ 0.372540] Call Trace: [ 0.372542] [<9000000005924778>] show_stack+0x38/0x180 [ 0.372548] [<90000000071519c4>] dump_stack_lvl+0x94/0xe4 [ 0.372555] [<900000000599b880>] __might_resched+0x1a0/0x260 [ 0.372561] [<90000000071675cc>] rt_spin_lock+0x4c/0x140 [ 0.372565] [<9000000005cbb768>] __rmqueue_pcplist+0x308/0xea0 [ 0.372570] [<9000000005cbed84>] get_page_from_freelist+0x564/0x1c60 [ 0.372575] [<9000000005cc0d98>] __alloc_pages_noprof+0x218/0x1820 [ 0.372580] [<900000000593b36c>] tlb_init+0x1ac/0x298 [ 0.372585] [<9000000005924b74>] per_cpu_trap_init+0x114/0x140 [ 0.372589] [<9000000005921964>] cpu_probe+0x4e4/0xa60 [ 0.372592] [<9000000005934874>] start_secondary+0x34/0xc0 [ 0.372599] [<900000000715615c>] smpboot_entry+0x64/0x6c This is because in PREEMPT_RT kernels normal spinlocks are replaced by rt spinlocks and rt_spin_lock() will cause sleeping. Fix it by disabling NUMA optimization completely for PREEMPT_RT kernels. Signed-off-by: Huacai Chen <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
[ Upstream commit 2e3dbf938656986cce73ac4083500d0bcfbffe24 ] Since the netlink attribute range validation provides inclusive checking, the *max* of attribute NL80211_ATTR_MLO_LINK_ID should be IEEE80211_MLD_MAX_NUM_LINKS - 1 otherwise causing an off-by-one. One crash stack for demonstration: ================================================================== BUG: KASAN: wild-memory-access in ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939 Read of size 6 at addr 001102080000000c by task fuzzer.386/9508 CPU: 1 PID: 9508 Comm: syz.1.386 Not tainted 6.1.70 #2 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x177/0x231 lib/dump_stack.c:106 print_report+0xe0/0x750 mm/kasan/report.c:398 kasan_report+0x139/0x170 mm/kasan/report.c:495 kasan_check_range+0x287/0x290 mm/kasan/generic.c:189 memcpy+0x25/0x60 mm/kasan/shadow.c:65 ieee80211_tx_control_port+0x3b6/0xca0 net/mac80211/tx.c:5939 rdev_tx_control_port net/wireless/rdev-ops.h:761 [inline] nl80211_tx_control_port+0x7b3/0xc40 net/wireless/nl80211.c:15453 genl_family_rcv_msg_doit+0x22e/0x320 net/netlink/genetlink.c:756 genl_family_rcv_msg net/netlink/genetlink.c:833 [inline] genl_rcv_msg+0x539/0x740 net/netlink/genetlink.c:850 netlink_rcv_skb+0x1de/0x420 net/netlink/af_netlink.c:2508 genl_rcv+0x24/0x40 net/netlink/genetlink.c:861 netlink_unicast_kernel net/netlink/af_netlink.c:1326 [inline] netlink_unicast+0x74b/0x8c0 net/netlink/af_netlink.c:1352 netlink_sendmsg+0x882/0xb90 net/netlink/af_netlink.c:1874 sock_sendmsg_nosec net/socket.c:716 [inline] __sock_sendmsg net/socket.c:728 [inline] ____sys_sendmsg+0x5cc/0x8f0 net/socket.c:2499 ___sys_sendmsg+0x21c/0x290 net/socket.c:2553 __sys_sendmsg net/socket.c:2582 [inline] __do_sys_sendmsg net/socket.c:2591 [inline] __se_sys_sendmsg+0x19e/0x270 net/socket.c:2589 do_syscall_x64 arch/x86/entry/common.c:51 [inline] do_syscall_64+0x45/0x90 arch/x86/entry/common.c:81 entry_SYSCALL_64_after_hwframe+0x63/0xcd Update the policy to ensure correct validation. Fixes: 7b0a0e3 ("wifi: cfg80211: do some rework towards MLO link APIs") Signed-off-by: Lin Ma <[email protected]> Suggested-by: Cengiz Can <[email protected]> Link: https://patch.msgid.link/[email protected] Signed-off-by: Johannes Berg <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
One of the major theoretical concerns with TCP Prague, with respect to deployability in the public Internet, is what happens when the bottleneck is a conventional single-queue AQM supporting ECN. While such an AQM can probably still control a DCTCP-style ECN response sufficiently well, the sustained marking rates required to do so would cause any conventional CC algo sharing that link to collapse to minimum cwnd.
To mitigate this, the "TCP Prague Requirements" draft mentions a need to detect such conventional AQMs and switch to a conventional ECN response. However, I do not see any mechanism to do so in this implementation (only a fallback to conventional TCP if AccECN isn't negotiated, which is a completely different concern). Nor have I seen a detailed description of how such single-queue AQM detection would work.
Is there a plan to address this shortcoming?
The text was updated successfully, but these errors were encountered: