This stack uses Severless Framework, Makefile, Python, Selenium, Deadless Chronium, AWS and circleci to deployment infrustracture which is capable to deploying hundreds of lambdas to scrap information, process information, and store information.
make deploy
curl -i -H "x-api-key: xxxxxxxxxxxxxxxxxxxxxxxx" https://xxxxxxxxx.execute-api.us-west-2.amazonaws.com/beta/V1/RM\?dropID\=xxxx
default sls deploy will deploy to aws lab account as beta
sls deploy --env lab/preprod/prod --stage beta
config/secrets-labs.env
export AWS_ACCESS_KEY_ID=xxxxxxxxxxxxxxxxxxxxxxxx
export AWS_SECRET_ACCESS_KEY=xxxxxxxxxxxxxxxxxxxxxxxx
export AWS_DEFAULT_REGION=xxxxxxxxxxxxxxxxxxxxxxxx
config/env-var/aws-labs.json
config/env-var/aws-s3-legacy-access.json
aws-labs.json
{
"aws_access_key_id": "xxxxxxxxxxxxxxxxxxxxx",
"aws_secret_access_key": "xxxxxxxxxxxxxxxxxxxxx",
"aws_region": "xxxxxxxxxxxxxxxxxxxxx"
}
aws-s3-legacy-access.json
{
"aws_access_key_id":"xxxxxxxxxxxxxxxxxxxxx",
"aws_secret_access_key":"xxxxxxxxxxxxxxxxxxxxx
}
This code allows users to request an API Gateway GET endpoint with a file id and determine if the mail file is passing or failing based off global & unique campaign settings.