-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy path02_Double_Deep_Q_Network.py
451 lines (343 loc) · 14.3 KB
/
02_Double_Deep_Q_Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
# Import modules
import tensorflow as tf
import pygame
import random
import numpy as np
import matplotlib.pyplot as plt
import datetime
import time
import cv2
import os
# Import game
import sys
sys.path.append("DQN_GAMES/")
import Parameters
game = Parameters.game
class DDQN:
def __init__(self):
# Game Information
self.algorithm = 'DDQN'
self.game_name = game.ReturnName()
# Get parameters
self.progress = ''
self.Num_action = game.Return_Num_Action()
# Initial parameters
self.Num_Exploration = Parameters.Num_start_training
self.Num_Training = Parameters.Num_training
self.Num_Testing = Parameters.Num_test
self.learning_rate = Parameters.Learning_rate
self.gamma = Parameters.Gamma
self.first_epsilon = Parameters.Epsilon
self.final_epsilon = Parameters.Final_epsilon
self.epsilon = self.first_epsilon
self.Num_plot_episode = Parameters.Num_plot_episode
self.Is_train = Parameters.Is_train
self.load_path = Parameters.Load_path
self.step = 1
self.score = 0
self.episode = 0
# date - hour - minute - second of training time
self.date_time = str(datetime.date.today()) + '_' + \
str(datetime.datetime.now().hour) + '_' + \
str(datetime.datetime.now().minute) + '_' + \
str(datetime.datetime.now().second)
# parameters for skipping and stacking
self.state_set = []
self.Num_skipping = Parameters.Num_skipFrame
self.Num_stacking = Parameters.Num_stackFrame
# Parameter for Experience Replay
self.Num_replay_memory = Parameters.Num_replay_memory
self.Num_batch = Parameters.Num_batch
self.replay_memory = []
# Parameter for Target Network
self.Num_update_target = Parameters.Num_update
# Parameters for network
self.img_size = 80
self.Num_colorChannel = Parameters.Num_colorChannel
self.first_conv = Parameters.first_conv
self.second_conv = Parameters.second_conv
self.third_conv = Parameters.third_conv
self.first_dense = Parameters.first_dense
self.second_dense = Parameters.second_dense
# Variables for tensorboard
self.loss = 0
self.maxQ = 0
self.score_board = 0
self.maxQ_board = 0
self.loss_board = 0
self.step_old = 0
# Initialize Network
self.input, self.output = self.network('network')
self.input_target, self.output_target = self.network('target')
self.train_step, self.action_target, self.y_target, self.loss_train = self.loss_and_train()
self.sess, self.saver, self.summary_placeholders, self.update_ops, self.summary_op, self.summary_writer = self.init_sess()
def main(self):
# Define game state
game_state = game.GameState()
# Initialization
state = self.initialization(game_state)
stacked_state = self.skip_and_stack_frame(state)
while True:
# Get progress:
self.progress = self.get_progress()
# Select action
action = self.select_action(stacked_state)
# Take action and get info. for update
next_state, reward, terminal = game_state.frame_step(action)
next_state = self.reshape_input(next_state)
stacked_next_state = self.skip_and_stack_frame(next_state)
# Experience Replay
self.experience_replay(stacked_state, action, reward, stacked_next_state, terminal)
# Training!
if self.progress == 'Training':
# Update target network
if self.step % self.Num_update_target == 0:
self.update_target()
# Training
self.train(self.replay_memory)
# Save model
self.save_model()
# Update former info.
stacked_state = stacked_next_state
self.score += reward
self.step += 1
# Plotting
self.plotting(terminal)
# If game is over (terminal)
if terminal:
stacked_state = self.if_terminal(game_state)
# Finished!
if self.progress == 'Finished':
print('Finished!')
break
def init_sess(self):
# Initialize variables
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
# Make folder for save data
os.makedirs('saved_networks/' + self.game_name + '/' + self.date_time + '_' + self.algorithm)
# Summary for tensorboard
summary_placeholders, update_ops, summary_op = self.setup_summary()
summary_writer = tf.summary.FileWriter('saved_networks/' + self.game_name + '/' + self.date_time + '_' + self.algorithm, sess.graph)
init = tf.global_variables_initializer()
sess.run(init)
# Load the file if the saved file exists
saver = tf.train.Saver()
check_save = input('Load Model? (1=yes/2=no): ')
if check_save == '1':
# Restore variables from disk.
saver.restore(sess, self.load_path + "/model.ckpt")
print("Model restored.")
check_train = input('Inference or Training? (1=Inference / 2=Training): ')
if check_train == '1':
self.Num_Exploration = 0
self.Num_Training = 0
return sess, saver, summary_placeholders, update_ops, summary_op, summary_writer
def initialization(self, game_state):
action = np.zeros([self.Num_action])
state, _, _ = game_state.frame_step(action)
state = self.reshape_input(state)
for i in range(self.Num_skipping * self.Num_stacking):
self.state_set.append(state)
return state
def skip_and_stack_frame(self, state):
self.state_set.append(state)
state_in = np.zeros((self.img_size, self.img_size, self.Num_colorChannel * self.Num_stacking))
# Stack the frame according to the number of skipping frame
for stack_frame in range(self.Num_stacking):
state_in[:,:, self.Num_colorChannel * stack_frame : self.Num_colorChannel * (stack_frame+1)] = self.state_set[-1 - (self.Num_skipping * stack_frame)]
del self.state_set[0]
state_in = np.uint8(state_in)
return state_in
def get_progress(self):
progress = ''
if self.step <= self.Num_Exploration:
progress = 'Exploring'
elif self.step <= self.Num_Exploration + self.Num_Training:
progress = 'Training'
elif self.step <= self.Num_Exploration + self.Num_Training + self.Num_Testing:
progress = 'Testing'
else:
progress = 'Finished'
return progress
# Resize and make input as grayscale
def reshape_input(self, state):
state_out = cv2.resize(state, (self.img_size, self.img_size))
if self.Num_colorChannel == 1:
state_out = cv2.cvtColor(state_out, cv2.COLOR_BGR2GRAY)
state_out = np.reshape(state_out, (self.img_size, self.img_size, 1))
state_out = np.uint8(state_out)
return state_out
# Code for tensorboard
def setup_summary(self):
episode_score = tf.Variable(0.)
episode_maxQ = tf.Variable(0.)
episode_loss = tf.Variable(0.)
tf.summary.scalar('Average Score/' + str(self.Num_plot_episode) + ' episodes', episode_score)
tf.summary.scalar('Average MaxQ/' + str(self.Num_plot_episode) + ' episodes', episode_maxQ)
tf.summary.scalar('Average Loss/' + str(self.Num_plot_episode) + ' episodes', episode_loss)
summary_vars = [episode_score, episode_maxQ, episode_loss]
summary_placeholders = [tf.placeholder(tf.float32) for _ in range(len(summary_vars))]
update_ops = [summary_vars[i].assign(summary_placeholders[i]) for i in range(len(summary_vars))]
summary_op = tf.summary.merge_all()
return summary_placeholders, update_ops, summary_op
# Convolution and pooling
def conv2d(self, x, w, stride):
return tf.nn.conv2d(x,w,strides=[1, stride, stride, 1], padding='SAME')
# Get Variables
def conv_weight_variable(self, name, shape):
return tf.get_variable(name, shape = shape, initializer = tf.contrib.layers.xavier_initializer_conv2d())
def weight_variable(self, name, shape):
return tf.get_variable(name, shape = shape, initializer = tf.contrib.layers.xavier_initializer())
def bias_variable(self, name, shape):
return tf.get_variable(name, shape = shape, initializer = tf.contrib.layers.xavier_initializer())
def network(self, network_name):
# Input
x_image = tf.placeholder(tf.float32, shape = [None,
self.img_size,
self.img_size,
self.Num_stacking * self.Num_colorChannel])
x_normalize = (x_image - (255.0/2)) / (255.0/2)
with tf.variable_scope(network_name):
# Convolution variables
w_conv1 = self.conv_weight_variable('_w_conv1', self.first_conv)
b_conv1 = self.bias_variable('_b_conv1',[self.first_conv[3]])
w_conv2 = self.conv_weight_variable('_w_conv2',self.second_conv)
b_conv2 = self.bias_variable('_b_conv2',[self.second_conv[3]])
w_conv3 = self.conv_weight_variable('_w_conv3',self.third_conv)
b_conv3 = self.bias_variable('_b_conv3',[self.third_conv[3]])
# Densely connect layer variables
w_fc1 = self.weight_variable('_w_fc1',self.first_dense)
b_fc1 = self.bias_variable('_b_fc1',[self.first_dense[1]])
w_fc2 = self.weight_variable('_w_fc2',self.second_dense)
b_fc2 = self.bias_variable('_b_fc2',[self.second_dense[1]])
# Network
h_conv1 = tf.nn.relu(self.conv2d(x_normalize, w_conv1, 4) + b_conv1)
h_conv2 = tf.nn.relu(self.conv2d(h_conv1, w_conv2, 2) + b_conv2)
h_conv3 = tf.nn.relu(self.conv2d(h_conv2, w_conv3, 1) + b_conv3)
h_flat = tf.reshape(h_conv3, [-1, self.first_dense[0]])
h_fc1 = tf.nn.relu(tf.matmul(h_flat, w_fc1)+b_fc1)
output = tf.matmul(h_fc1, w_fc2) + b_fc2
return x_image, output
def loss_and_train(self):
# Loss function and Train
action_target = tf.placeholder(tf.float32, shape = [None, self.Num_action])
y_target = tf.placeholder(tf.float32, shape = [None])
y_prediction = tf.reduce_sum(tf.multiply(self.output, action_target), reduction_indices = 1)
Loss = tf.reduce_mean(tf.square(y_prediction - y_target))
train_step = tf.train.AdamOptimizer(learning_rate = self.learning_rate, epsilon = 1e-02).minimize(Loss)
return train_step, action_target, y_target, Loss
def select_action(self, stacked_state):
action = np.zeros([self.Num_action])
action_index = 0
# Choose action
if self.progress == 'Exploring':
# Choose random action
action_index = random.randint(0, self.Num_action-1)
action[action_index] = 1
elif self.progress == 'Training':
if random.random() < self.epsilon:
# Choose random action
action_index = random.randint(0, self.Num_action-1)
action[action_index] = 1
else:
# Choose greedy action
Q_value = self.output.eval(feed_dict={self.input: [stacked_state]})
action_index = np.argmax(Q_value)
action[action_index] = 1
self.maxQ = np.max(Q_value)
# Decrease epsilon while training
if self.epsilon > self.final_epsilon:
self.epsilon -= self.first_epsilon/self.Num_Training
elif self.progress == 'Testing':
# Choose greedy action
Q_value = self.output.eval(feed_dict={self.input: [stacked_state]})
action_index = np.argmax(Q_value)
action[action_index] = 1
self.maxQ = np.max(Q_value)
self.epsilon = 0
return action
def experience_replay(self, state, action, reward, next_state, terminal):
# If Replay memory is longer than Num_replay_memory, delete the oldest one
if len(self.replay_memory) >= self.Num_replay_memory:
del self.replay_memory[0]
self.replay_memory.append([state, action, reward, next_state, terminal])
def update_target(self):
# Get trainable variables
trainable_variables = tf.trainable_variables()
# network variables
trainable_variables_network = [var for var in trainable_variables if var.name.startswith('network')]
# target variables
trainable_variables_target = [var for var in trainable_variables if var.name.startswith('target')]
for i in range(len(trainable_variables_network)):
self.sess.run(tf.assign(trainable_variables_target[i], trainable_variables_network[i]))
def train(self, replay_memory):
# Select minibatch
minibatch = random.sample(replay_memory, self.Num_batch)
# Save the each batch data
state_batch = [batch[0] for batch in minibatch]
action_batch = [batch[1] for batch in minibatch]
reward_batch = [batch[2] for batch in minibatch]
next_state_batch = [batch[3] for batch in minibatch]
terminal_batch = [batch[4] for batch in minibatch]
####################################### Double Q Learning part #######################################
# Get target values
y_batch = []
# Selecting actions
Q_network = self.output.eval(feed_dict = {self.input: next_state_batch})
a_max = []
for i in range(Q_network.shape[0]):
a_max.append(np.argmax(Q_network[i]))
# Evaluation
Q_target = self.output_target.eval(feed_dict = {self.input_target: next_state_batch})
for i in range(len(minibatch)):
if terminal_batch[i] == True:
y_batch.append(reward_batch[i])
else:
y_batch.append(reward_batch[i] + self.gamma * Q_target[i, a_max[i]])
_, self.loss = self.sess.run([self.train_step, self.loss_train], feed_dict = {self.action_target: action_batch,
self.y_target: y_batch,
self.input: state_batch})
######################################################################################################
def save_model(self):
# Save the variables to disk.
if self.step == self.Num_Exploration + self.Num_Training:
save_path = self.saver.save(self.sess, 'saved_networks/' + self.game_name + '/' + self.date_time + '_' + self.algorithm + "/model.ckpt")
print("Model saved in file: %s" % save_path)
def plotting(self, terminal):
if self.progress != 'Exploring':
if terminal:
self.score_board += self.score
self.maxQ_board += self.maxQ
self.loss_board += self.loss
if self.episode % self.Num_plot_episode == 0 and self.episode != 0 and terminal:
diff_step = self.step - self.step_old
tensorboard_info = [self.score_board / self.Num_plot_episode, self.maxQ_board / diff_step, self.loss_board / diff_step]
for i in range(len(tensorboard_info)):
self.sess.run(self.update_ops[i], feed_dict = {self.summary_placeholders[i]: float(tensorboard_info[i])})
summary_str = self.sess.run(self.summary_op)
self.summary_writer.add_summary(summary_str, self.step)
self.score_board = 0
self.maxQ_board = 0
self.loss_board = 0
self.step_old = self.step
else:
self.step_old = self.step
def if_terminal(self, game_state):
# Show Progress
print('Step: ' + str(self.step) + ' / ' +
'Episode: ' + str(self.episode) + ' / ' +
'Progress: ' + self.progress + ' / ' +
'Epsilon: ' + str(self.epsilon) + ' / ' +
'Score: ' + str(self.score))
if self.progress != 'Exploring':
self.episode += 1
self.score = 0
# If game is finished, initialize the state
state = self.initialization(game_state)
stacked_state = self.skip_and_stack_frame(state)
return stacked_state
if __name__ == '__main__':
agent = DDQN()
agent.main()