-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdisorder_visualisation_complete.py
286 lines (219 loc) · 9.96 KB
/
disorder_visualisation_complete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
"""Project: Impact of Covid 19 on Mental Health - Study on effects of the Pandemic on stress,
anxiety and depression levels and an insight on thier subsequent corellation with Impact on Drug Use
and Suicidal Ideation
Authors : Kushagra Raghuvanshi, Madhav Garg, Jacob Grimm
"""
from typing import Any
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
###################################################################################################
# Files containing the data
###################################################################################################
# file1 = 'Table-1.csv'
# NOTE: This file shold be in same folder as this python file
###################################################################################################
# Code for reading file
###################################################################################################
def read_csv_file() -> Any:
"""Read csv file as a pandas Dataframe
"""
return pd.read_csv('Table-1.csv', index_col=None, na_values=['NA'])
###################################################################################################
# Visualisation by AGE
###################################################################################################
def disorder_age() -> Any:
"""Visualise how Age group of respondents relate to prevalence of anxiety & depression
disorders.
"""
orig_dataframe = read_csv_file()
dataframe = orig_dataframe.loc[6:9, :]
column1 = 'Anxiety disorder'
column2 = 'Depressive disorder'
labels = [column1[0:34], column2]
group_1 = [dataframe[column1][6], dataframe[column2][6]]
group_2 = [dataframe[column1][7], dataframe[column2][7]]
group_3 = [dataframe[column1][8], dataframe[column2][8]]
group_4 = [dataframe[column1][9], dataframe[column2][9]]
x = np.arange(len(labels))
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width / 2, group_1, width, label='18 to 24 years')
rects2 = ax.bar(x - width / 4, group_2, width, label='25 to 44 years')
rects3 = ax.bar(x + width * (1 / 4), group_3, width, label='44 to 64 years')
rects4 = ax.bar(x + width * (1 / 2), group_4, width, label='>64 years')
ax.set_ylabel('Percentage')
ax.set_title('% of Repondents showing symptoms By Age')
ax.set_xticks(x, labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)
ax.bar_label(rects4, padding=3)
fig.tight_layout()
plt.show()
###################################################################################################
# Visualisation by GENDER
###################################################################################################
def disorder_gender() -> Any:
"""Visualise how the Gender of respondents relate to prevalence of anxiety & depression
disorders.
"""
orig_dataframe = read_csv_file()
dataframe = orig_dataframe.loc[2:4, :]
column1 = 'Anxiety disorder'
column2 = 'Depressive disorder'
labels = [column1[0:34], column2]
group_1 = [dataframe[column1][2], dataframe[column2][2]]
group_2 = [dataframe[column1][3], dataframe[column2][3]]
group_3 = [dataframe[column1][4], dataframe[column2][4]]
x = np.arange(len(labels))
width = 0.35
fig, ax = plt.subplots()
rects1 = ax.bar(x - width / 3, group_1, width, label='Female')
rects2 = ax.bar(x + width / 3, group_2, width, label='Male')
rects3 = ax.bar(x + width, group_3, width, label='Other')
ax.set_ylabel('Percentage')
ax.set_title('% of Repondents showing symptoms By Gender')
ax.set_xticks(x, labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)
fig.tight_layout()
plt.show()
###################################################################################################
# Visualisation by Race/Ethinicity
###################################################################################################
def disorder_race() -> Any:
"""Visualise how the Race/Ethinic background of respondents relate to prevalence of
anxiety & depression disorders.
"""
orig_dataframe = read_csv_file()
dataframe = orig_dataframe.loc[11:16, :]
column1 = 'Anxiety disorder'
column2 = 'Depressive disorder'
labels = [column1[0:34], column2]
group_1 = [dataframe[column1][11], dataframe[column2][11]]
group_2 = [dataframe[column1][12], dataframe[column2][12]]
group_3 = [dataframe[column1][13], dataframe[column2][13]]
group_4 = [dataframe[column1][14], dataframe[column2][14]]
group_5 = [dataframe[column1][15], dataframe[column2][15]]
group_6 = [dataframe[column1][16], dataframe[column2][16]]
x = np.arange(len(labels))
width = 0.2
fig, ax = plt.subplots()
rects1 = ax.bar(x - width, group_1, width, label='White, non-Hispanic')
rects2 = ax.bar(x - width * (1 / 2), group_2, width, label='Black, non-Hispanic')
rects3 = ax.bar(x, group_3, width, label='Asian, non-Hispanic')
rects4 = ax.bar(x + width * (1 / 2), group_4, width, label='Other race or multiple races,'
' non-Hispanic')
rects5 = ax.bar(x + width, group_5, width, label='Hispanic, any race(s)')
rects6 = ax.bar(x + width * (3 / 2), group_6, width, label='Unknown')
ax.set_ylabel('Percentage')
ax.set_title('% of Repondents showing symptoms By Race/Ethinicity')
ax.set_xticks(x, labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)
ax.bar_label(rects4, padding=3)
ax.bar_label(rects5, padding=3)
ax.bar_label(rects6, padding=3)
fig.tight_layout()
plt.show()
###################################################################################################
# Visualisation by Income
###################################################################################################
def disorder_income() -> Any:
"""Visualise how Income levels of respondents relate to prevalence of anxiety & depression
disorders.
"""
orig_dataframe = read_csv_file()
dataframe = orig_dataframe.loc[18:23, :]
column1 = 'Anxiety disorder'
column2 = 'Depressive disorder'
labels = [column1[0:34], column2]
group_1 = [dataframe[column1][18], dataframe[column2][18]]
group_2 = [dataframe[column1][19], dataframe[column2][19]]
group_3 = [dataframe[column1][20], dataframe[column2][20]]
group_4 = [dataframe[column1][21], dataframe[column2][21]]
group_5 = [dataframe[column1][22], dataframe[column2][22]]
group_6 = [dataframe[column1][23], dataframe[column2][23]]
x = np.arange(len(labels))
width = 0.2
fig, ax = plt.subplots()
rects1 = ax.bar(x - width, group_1, width, label='<$25,000')
rects2 = ax.bar(x - width * (1 / 2), group_2, width, label='$25,000-499999')
rects3 = ax.bar(x, group_3, width, label='$50,000-99,999')
rects4 = ax.bar(x + width * (1 / 2), group_4, width, label='$100,000-199,999')
rects5 = ax.bar(x + width * 1, group_5, width, label='>$200,000')
rects6 = ax.bar(x + width * (3 / 2), group_6, width, label='Unknown')
ax.set_ylabel('Percentage')
ax.set_title('% of Repondents showing symptoms By Income')
ax.set_xticks(x, labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)
ax.bar_label(rects4, padding=3)
ax.bar_label(rects5, padding=3)
ax.bar_label(rects6, padding=3)
fig.tight_layout()
plt.show()
###################################################################################################
# Visualisation by Education Status
###################################################################################################
def disorder_education() -> Any:
"""Visualise how Educational status of respondents relate to prevalence of anxiety & depression
disorders.
"""
orig_dataframe = read_csv_file()
dataframe = orig_dataframe.loc[25:30, :]
column1 = 'Anxiety disorder'
column2 = 'Depressive disorder'
labels = [column1[0:34], column2]
group_1 = [dataframe[column1][25], dataframe[column2][25]]
group_2 = [dataframe[column1][26], dataframe[column2][26]]
group_3 = [dataframe[column1][27], dataframe[column2][27]]
group_4 = [dataframe[column1][28], dataframe[column2][28]]
group_5 = [dataframe[column1][29], dataframe[column2][29]]
group_6 = [dataframe[column1][30], dataframe[column2][30]]
x = np.arange(len(labels))
width = 0.2
fig, ax = plt.subplots()
rects1 = ax.bar(x - width, group_1, width, label='Less than high school diploma')
rects2 = ax.bar(x - width * (1 / 2), group_2, width, label='High school diploma')
rects3 = ax.bar(x, group_3, width, label='Some college')
rects4 = ax.bar(x + width * (1 / 2), group_4, width, label='Bachelor’s degree')
rects5 = ax.bar(x + width * 1, group_5, width, label='Professional degree')
rects6 = ax.bar(x + width * (3 / 2), group_6, width, label='Unknown')
ax.set_ylabel('Percentage')
ax.set_title('% of Repondents showing symptoms By Education Status')
ax.set_xticks(x, labels)
ax.legend()
ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)
ax.bar_label(rects3, padding=3)
ax.bar_label(rects4, padding=3)
ax.bar_label(rects5, padding=3)
ax.bar_label(rects6, padding=3)
fig.tight_layout()
plt.show()
if __name__ == '__main__':
disorder_age()
disorder_gender()
disorder_race()
disorder_income()
disorder_education()
# import python_ta
# python_ta.check_all(config={
# 'extra-imports': ['python_ta.contracts', 'numpy', 'pandas', 'matplotlib.pyplot'],
# 'allowed-io': [],
# 'max-line-length': 100,
# 'disable': ['R1705', 'C0200']
# })
# import python_ta.contracts
# python_ta.contracts.check_all_contracts()
# import doctest
# doctest.testmod()