-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathgam.R
217 lines (180 loc) · 8.41 KB
/
gam.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
library(mgcv)
library(data.table)
library(car)
all_data = fread('zcat ~/data/ddg/interface_ddg_paper/control_and_60k-score_terms.csv.gz', header = T, sep = ',')
all_data = all_data[ ( ScoreMethodID == 40 | ScoreMethodID == 10000 | ScoreMethodID == 20000 | ScoreMethodID == 30000 | ScoreMethodID == 40000 | ScoreMethodID == 50000 | ScoreMethodID == 60000 ) ] # 10k intervals
### all_data = all_data[ (MutType == 'complete' | MutType == 's2l') & (ScoreMethodID == 2500 | ScoreMethodID == 5000)] # Shorter dataset for testing
all_data$total_diff = ( all_data$fa_atr + all_data$fa_dun + all_data$fa_elec + all_data$fa_intra_rep + all_data$fa_rep + all_data$fa_sol + all_data$hbond_bb_sc + all_data$hbond_lr_bb + all_data$hbond_sc ) - all_data$total
print( 'Dataframe loaded successfully\n' )
print( paste0( 'Number of rows where total score sum does not match within tolerance: ', sum( abs(all_data$total_diff) >= 0.01 ) ) )
output_dir = "output_R"
unlink(output_dir, recursive=TRUE)
dir.create(output_dir, showWarnings = FALSE)
## save column names of prediction columns for later use
pred_col_names = c()
calc_gam <- function(df, by_labels, img_type) {
df_args <- c(by_labels, sep="-")
unique_name = do.call(paste, df_args)
print( unique_name )
dir.create(file.path(output_dir, unique_name), showWarnings = FALSE)
zz = file( file.path( file.path(output_dir, unique_name), 'gam_summary'), open = "wt")
sink(zz)
gamobj <- gam( ExperimentalDDG ~ s(fa_atr, fx=TRUE, k=-1, bs="cs") + s(fa_elec, fx=TRUE, k=-1, bs="cs") + s(fa_rep, fx=TRUE, k=-1, bs="cs") + s(fa_sol, fx=TRUE, k=-1, bs="cs") + s(hbond_bb_sc, fx=TRUE, k=-1, bs="cs") + s(hbond_lr_bb, fx=TRUE, k=-1, bs="cs") + s(hbond_sc, fx=TRUE, k=-1, bs="cs"),
## family=gaussian(link=identity),
data = df,
control = gam.control(nthreads = 4)
)
gamsum = summary(gamobj)
print(gamsum)
if( img_type == 'pdf' ) {
pdf( file.path( file.path(output_dir, unique_name), sprintf('gam_results-%s.pdf', unique_name)) )
} else {
png(
file.path( file.path(output_dir, unique_name),
sprintf('gam_results-%s.png', unique_name)),
width=20, height=20, units="cm", res=400
)
}
par(mfrow=c(3,3))
plot(
gamobj,
scheme=1
)
frame()
legend("topleft", legend=" ",
title=sprintf("GAM R: %.2f", sqrt(gamsum$r.sq) ),
bty='n')
dev.off()
if( img_type == 'pdf' ) {
pdf( file.path( file.path(output_dir, unique_name), sprintf('gam_results-residuals-%s.pdf', unique_name)) )
} else {
png(
file.path( file.path(output_dir, unique_name),
sprintf('gam_results-residuals-%s.png', unique_name)),
width=20, height=20, units="cm", res=400
)
}
par(mfrow=c(3,3))
plot(
gamobj,
scheme=1,
residuals=TRUE
)
frame()
legend("topleft", legend=" ",
title=sprintf("GAM R: %.2f", sqrt(gamsum$r.sq) ),
bty='n')
dev.off()
sink()
close(zz)
## Save lpmatrix for later fitting
step = 0.01
boundary = 40
newd <- data.frame(
fa_atr = ( (-boundary/step):(boundary/step) ) * step,
fa_elec = ( (-boundary/step):(boundary/step) ) * step,
fa_rep = ( (-boundary/step):(boundary/step) ) * step,
fa_sol = ( (-boundary/step):(boundary/step) ) * step,
hbond_bb_sc = ( (-boundary/step):(boundary/step) ) * step,
hbond_lr_bb = ( (-boundary/step):(boundary/step) ) * step,
hbond_sc = ( (-boundary/step):(boundary/step) ) * step
)
pred = predict.gam(gamobj, newd)
Xp <- predict(gamobj, newd, type="lpmatrix")
df$gamTotal = predict(gamobj, df)
## Save lpmatrix, coeff, step, boundary; df with predictions
out_path = file.path( file.path(output_dir, unique_name),
'lpmatrix.csv' )
write.table( Xp, out_path )
system( paste0("gzip ", out_path) )
out_path = file.path( file.path(output_dir, unique_name),
'coeff' )
write.table( coef(gamobj), out_path )
out_path = file.path( file.path(output_dir, unique_name),
'predictions.csv' )
write.table( df, out_path )
system( paste0("gzip ", out_path) )
out_path = file.path( file.path(output_dir, unique_name),
'gamobj.Rdata.gz' )
save(
gamobj,
file = out_path,
compress = "gzip"
)
zz = file( file.path( file.path(output_dir, unique_name), 'step-boundary'), open = "wt")
sink(zz)
print(step)
print(boundary)
sink()
close(zz)
## Predict values on all_data
pred_col_name = paste0( unique_name, "-gamTotal" )
pred_col_names <- c( pred_col_names, pred_col_name )
assign( 'pred_col_names', pred_col_names, envir=.GlobalEnv )
all_data$new_pred = predict(gamobj, all_data)
names(all_data)[names(all_data) == "new_pred"] <- pred_col_name
assign( 'all_data', all_data, envir=.GlobalEnv )
## Check calculating prediction manually
## xn_vals <- c(3.7054, 0.1415, -0.446, -0.8832, -0.0129, 0.1304, 0.664) ## want prediction at these values
## xn <- (xn_vals + boundary) / ( 2 * boundary ) # Convert to percentage in boundary range
## ncols <- length(colnames(Xp))
## nsmoothterms <- length(xn)
## nsections <- ( ncols - 1 ) / nsmoothterms
## print( paste0( 'nsmoothterms ', nsmoothterms, ' nsections ', nsections ) )
## x0 <- 1 ## intercept column
## for (j in 0:(nsmoothterms-1)) { ## loop through smooth terms
## cols <- 1+j*nsections + 1:nsections ## relevant cols of Xp
## i <- floor( xn[j+1] * nrow(Xp) ) ## find relevant rows of Xp
## w1 <- xn_vals[j+1] %% step / step
## ## find approx. predict matrix row portion, by interpolation
## x0 <- c(x0,Xp[i+2,cols]*w1 + Xp[i+1,cols]*(1-w1))
## }
## dim(x0) <- c(1,ncols)
## fv <- x0 %*% coef(gamobj) ## evaluate
## ## compare to normal prediction
## print( predict(gamobj, newdata=data.frame(
## fa_atr=xn_vals[1],
## fa_elec=xn_vals[2],
## fa_rep=xn_vals[3],
## fa_sol=xn_vals[4],
## hbond_bb_sc=xn_vals[5],
## hbond_lr_bb=xn_vals[6],
## hbond_sc=xn_vals[7]
## ),
## se=FALSE) )
return( sqrt(gamsum$r.sq) )
}
corr_summary = all_data[,.( gamR=calc_gam(.SD, .BY, 'pdf'), R=cor(total, ExperimentalDDG) ), by=.(PredictionRunName,ScoreMethodID,MutType)] # .SD is subset for each group by, .BY is group labels
write.csv( corr_summary, file.path( output_dir, "corr_summary.csv") )
print( corr_summary )
print( "GAM on all backrub steps" )
steps_corr_summary = all_data[,.( gamR=calc_gam(.SD, .BY, 'png'), R=cor(total, ExperimentalDDG) ), by=.(PredictionRunName,MutType)] # .SD is subset for each group by, .BY is group labels
print( steps_corr_summary )
write.csv( steps_corr_summary, file.path( output_dir, "steps_corr_summary.csv") )
## Save all data
print( "Saving all data" )
out_path = file.path( output_dir, "all_data.csv")
write.csv( all_data, out_path )
system( paste0("gzip ", out_path) )
## Cross correlation of gam prediction columns
print( "Cross correlation" )
selection_cols = c( pred_col_names, c("ExperimentalDDG", "PredictionRunName", "MutType", "ScoreMethodID") )
complete_data = all_data[ , selection_cols, with=FALSE ]
alt_gam_r = NULL
for ( pred_col in pred_col_names ) {
print( pred_col )
print( head(complete_data[,pred_col,with=FALSE]) )
print( "ExperimentalDDG" )
print( head(complete_data[,"ExperimentalDDG",with=FALSE]) )
print( cor(complete_data[,pred_col,with=FALSE], complete_data[,"ExperimentalDDG",with=FALSE]) )
alt_gam_r_inner = complete_data[,.( R=cor(get(pred_col), ExperimentalDDG, use = "complete.obs", method = "pearson") ), by=.(PredictionRunName,MutType,ScoreMethodID)] # .SD is subset for each group by, .BY is group labels
names(alt_gam_r_inner)[names(alt_gam_r_inner)=="R"] <- paste0(pred_col, "-expR")
if( is.null(alt_gam_r) ) {
alt_gam_r = alt_gam_r_inner
} else {
alt_gam_r = merge(alt_gam_r, alt_gam_r_inner, all=TRUE)
}
}
print( alt_gam_r )
out_path = file.path( output_dir, "alt_gam_r.csv")
write.csv( alt_gam_r, out_path )