forked from microideax/TCOperator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrix_method.py
114 lines (87 loc) · 3.46 KB
/
Trix_method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import networkx as nx
import numpy as np
from time import perf_counter
def list_set_intersection (list_first, list_second) :
## this method is too slow
## for i in range(len(list_first)):
## count += list_first[i] & list_second[i]
## print(count)
count = np.bincount(list_first + list_second)
## print(count)
if (len(count) == 3):
return count[2]
else :
return 0
file_name = './datasets/facebook_combined.txt'
#================================= graph preprocess =================================#
txt_array_t = np.int64(np.loadtxt(file_name))
txt_array = txt_array_t[:,:2]
## if source_id > dest_id, exchange them; only suitable for undirected graph.
for i in range (txt_array.shape[0]) :
if (txt_array[i][0] >= txt_array[i][1]) :
temp = txt_array[i][1]
txt_array[i][1] = txt_array[i][0]
txt_array[i][0] = temp
txt_array = txt_array[np.lexsort([txt_array.T[1]])] ## sort array by incremental order
txt_array = txt_array[np.lexsort([txt_array.T[0]])] ## sort array by incremental order
list_a = [] ## delete self-edges
for i in range (txt_array.shape[0]) :
if (txt_array[i][0] == txt_array[i][1]) :
list_a.append(i)
## print(list_a)
## print(txt_array)
txt_array = np.delete(txt_array, list_a, axis = 0)
list_b = [] ## delete duplicated edges
for i in range (1, txt_array.shape[0]) :
if ((txt_array[i][0] == txt_array[i-1][0]) & (txt_array[i][1] == txt_array[i-1][1])) :
list_b.append(i)
## print(list_a)
txt_array = np.delete(txt_array, list_b, axis = 0)
vertex_max = np.int64(txt_array.max())
vertex_min = np.int64(txt_array.min())
## convert array to adjcent matrix
print (vertex_max)
print (vertex_min)
print (txt_array.shape[0])
#================================= graph partition =================================#
## need to add csr format for memory efficiency !!
## create adj matrix
adj_matrix = np.zeros([vertex_max+1, vertex_max+1], dtype = int)
for i in range (txt_array.shape[0]):
## print (txt_array[i])
adj_matrix[txt_array[i][0]][txt_array[i][1]] = 1
print (adj_matrix)
## split adj matrix vertically
split_index = int(vertex_max/2) ## define two vertical partitions
index_vertical = [0, split_index, vertex_max]
adj_partition_1 = adj_matrix[:, : split_index + 1]
adj_partition_2 = adj_matrix[:, split_index + 1: vertex_max+1]
print(adj_partition_1)
print(adj_partition_2)
#================================= TC operation in partition =================================#
tri_count_1 = 0
tri_count_2 = 0
for i in range (txt_array.shape[0]):
edge_a = txt_array[i][0]
edge_b = txt_array[i][1]
temp_1 = list_set_intersection(adj_partition_1[edge_a], adj_partition_1[edge_b])
## print("temp1", temp_1)
tri_count_1 += temp_1
for i in range (txt_array.shape[0]):
edge_a = txt_array[i][0]
edge_b = txt_array[i][1]
temp_2 = list_set_intersection(adj_partition_2[edge_a], adj_partition_2[edge_b])
## print("temp2", temp_2)
tri_count_2 += temp_2
print(tri_count_1)
print(tri_count_2)
result_partition = tri_count_1+ tri_count_2
print(result_partition)
#================================= GOLDEN TEST =================================#
testgraph = nx.read_edgelist(file_name, comments='#', delimiter=None, create_using=None, nodetype=None, data=True, edgetype=None, encoding='utf-8')
result_golden = int(sum(nx.triangles(testgraph).values())/3)
print(result_golden)
if (result_partition == result_golden) :
print("TEST PASS")
else :
print("TEST FAILED")