-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy paths3dg.py
328 lines (296 loc) · 13 KB
/
s3dg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""Contains the definition for Gated Separable 3D network (S3D-G).
"""
import torch as th
import torch.nn.functional as F
import torch.nn as nn
import os
import numpy as np
import re
class InceptionBlock(nn.Module):
def __init__(self, input_dim, num_outputs_0_0a, num_outputs_1_0a, num_outputs_1_0b, num_outputs_2_0a, num_outputs_2_0b, num_outputs_3_0b, gating=True):
super(InceptionBlock, self).__init__()
self.conv_b0 = STConv3D(input_dim, num_outputs_0_0a, [1, 1, 1])
self.conv_b1_a = STConv3D(input_dim, num_outputs_1_0a, [1, 1, 1])
self.conv_b1_b = STConv3D(num_outputs_1_0a, num_outputs_1_0b, [3, 3, 3], padding=1, separable=True)
self.conv_b2_a = STConv3D(input_dim, num_outputs_2_0a, [1, 1, 1])
self.conv_b2_b = STConv3D(num_outputs_2_0a, num_outputs_2_0b, [3, 3, 3], padding=1, separable=True)
self.maxpool_b3 = th.nn.MaxPool3d((3, 3, 3), stride=1, padding=1)
self.conv_b3_b = STConv3D(input_dim, num_outputs_3_0b, [1, 1, 1])
self.gating = gating
self.output_dim = num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b
if gating:
self.gating_b0 = SelfGating(num_outputs_0_0a)
self.gating_b1 = SelfGating(num_outputs_1_0b)
self.gating_b2 = SelfGating(num_outputs_2_0b)
self.gating_b3 = SelfGating(num_outputs_3_0b)
def forward(self, input):
"""Inception block
"""
b0 = self.conv_b0(input)
b1 = self.conv_b1_a(input)
b1 = self.conv_b1_b(b1)
b2 = self.conv_b2_a(input)
b2 = self.conv_b2_b(b2)
b3 = self.maxpool_b3(input)
b3 = self.conv_b3_b(b3)
if self.gating:
b0 = self.gating_b0(b0)
b1 = self.gating_b1(b1)
b2 = self.gating_b2(b2)
b3 = self.gating_b3(b3)
return th.cat((b0, b1, b2, b3), dim=1)
class SelfGating(nn.Module):
def __init__(self, input_dim):
super(SelfGating, self).__init__()
self.fc = nn.Linear(input_dim, input_dim)
def forward(self, input_tensor):
"""Feature gating as used in S3D-G.
"""
spatiotemporal_average = th.mean(input_tensor, dim=[2, 3, 4])
weights = self.fc(spatiotemporal_average)
weights = th.sigmoid(weights)
return weights[:, :, None, None, None] * input_tensor
class STConv3D(nn.Module):
def __init__(self,
input_dim,
output_dim,
kernel_size,
stride=1,
padding=0,
separable=False):
super(STConv3D, self).__init__()
self.separable = separable
self.relu = nn.ReLU(inplace=True)
assert len(kernel_size) == 3
if separable and kernel_size[0] != 1:
spatial_kernel_size = [1, kernel_size[1], kernel_size[2]]
temporal_kernel_size = [kernel_size[0], 1, 1]
if isinstance(stride, list) and len(stride) == 3:
spatial_stride = [1, stride[1], stride[2]]
temporal_stride = [stride[0], 1, 1]
else:
spatial_stride = [1, stride, stride]
temporal_stride = [stride, 1, 1]
if isinstance(padding, list) and len(padding) == 3:
spatial_padding = [0, padding[1], padding[2]]
temporal_padding = [padding[0], 0, 0]
else:
spatial_padding = [0, padding, padding]
temporal_padding = [padding, 0, 0]
if separable:
self.conv1 = nn.Conv3d(input_dim, output_dim,
kernel_size=spatial_kernel_size,
stride=spatial_stride,
padding=spatial_padding, bias=False)
self.bn1 = nn.BatchNorm3d(output_dim)
self.conv2 = nn.Conv3d(output_dim, output_dim,
kernel_size=temporal_kernel_size,
stride=temporal_stride,
padding=temporal_padding, bias=False)
self.bn2 = nn.BatchNorm3d(output_dim)
else:
self.conv1 = nn.Conv3d(input_dim, output_dim,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=False)
self.bn1 = nn.BatchNorm3d(output_dim)
def forward(self, input):
out = self.relu(self.bn1(self.conv1(input)))
if self.separable:
out = self.relu(self.bn2(self.conv2(out)))
return out
def get_padding_shape(filter_shape, stride):
def _pad_top_bottom(filter_dim, stride_val):
pad_along = max(filter_dim - stride_val, 0)
pad_top = pad_along // 2
pad_bottom = pad_along - pad_top
return pad_top, pad_bottom
padding_shape = []
for filter_dim, stride_val in zip(filter_shape, stride):
pad_top, pad_bottom = _pad_top_bottom(filter_dim, stride_val)
padding_shape.append(pad_top)
padding_shape.append(pad_bottom)
depth_top = padding_shape.pop(0)
depth_bottom = padding_shape.pop(0)
padding_shape.append(depth_top)
padding_shape.append(depth_bottom)
return tuple(padding_shape)
class MaxPool3dTFPadding(th.nn.Module):
def __init__(self, kernel_size, stride=None, padding='SAME'):
super(MaxPool3dTFPadding, self).__init__()
if padding == 'SAME':
padding_shape = get_padding_shape(kernel_size, stride)
self.padding_shape = padding_shape
self.pad = th.nn.ConstantPad3d(padding_shape, 0)
self.pool = th.nn.MaxPool3d(kernel_size, stride, ceil_mode=True)
def forward(self, inp):
inp = self.pad(inp)
out = self.pool(inp)
return out
class Sentence_Embedding(nn.Module):
def __init__(self,
embd_dim,
token_to_word_path,
num_embeddings=66250,
word_embedding_dim=300,
word2vec_path='',
max_words=16,
output_dim=2048):
super(Sentence_Embedding, self).__init__()
if word2vec_path:
self.word_embd = nn.Embedding.from_pretrained(th.load(word2vec_path))
else:
self.word_embd = nn.Embedding(num_embeddings, word_embedding_dim)
self.fc1 = nn.Linear(word_embedding_dim, output_dim)
self.fc2 = nn.Linear(output_dim, embd_dim)
self.word_to_token = {}
self.max_words = max_words
token_to_word = np.load(token_to_word_path)
for i, t in enumerate(token_to_word):
self.word_to_token[t] = i + 1
def _zero_pad_tensor_token(self, tensor, size):
if len(tensor) >= size:
return tensor[:size]
else:
zero = th.zeros(size - len(tensor)).long()
return th.cat((tensor, zero), dim=0)
def is_cuda(self):
return self.fc1.bias.is_cuda
def _split_text(self, sentence):
w = re.findall(r"[\w']+", str(sentence))
return w
def _words_to_token(self, words):
words = [self.word_to_token[word] for word in words if word in self.word_to_token]
if words:
we = self._zero_pad_tensor_token(th.LongTensor(words), self.max_words)
return we
else:
return th.zeros(self.max_words).long()
def words_to_ids(self, x):
split_x = [self._words_to_token(self._split_text(sent)) for sent in x]
return th.stack(split_x, dim=0)
def forward(self, x, raw_text=False):
if raw_text:
x = self.words_to_ids(x)
with th.no_grad():
x = self.word_embd(x)
x = F.relu(self.fc1(x), inplace=True)
x = th.max(x, dim=1)[0]
x = self.fc2(x)
return x
class S3D(nn.Module):
def __init__(self, num_classes=512, gating=True, space_to_depth=False, word2vec_path='', init='uniform', token_to_word_path='./data/dict.npy'):
super(S3D, self).__init__()
self.num_classes = num_classes
self.gating = gating
self.space_to_depth = space_to_depth
if space_to_depth:
self.conv1 = STConv3D(24, 64, [2, 4, 4], stride=1, padding=(1, 2, 2), separable=False)
else:
self.conv1 = STConv3D(3, 64, [3, 7, 7], stride=2, padding=(1, 3, 3), separable=False)
self.conv_2b = STConv3D(64, 64, [1, 1, 1], separable=False)
self.conv_2c = STConv3D(64, 192, [3, 3, 3], padding=1, separable=True)
self.gating = SelfGating(192)
self.maxpool_2a = MaxPool3dTFPadding(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding='SAME')
self.maxpool_3a = MaxPool3dTFPadding(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding='SAME')
self.mixed_3b = InceptionBlock(192, 64, 96, 128, 16, 32, 32)
self.mixed_3c = InceptionBlock(self.mixed_3b.output_dim, 128, 128, 192, 32, 96, 64)
self.maxpool_4a = MaxPool3dTFPadding(kernel_size=(3, 3, 3), stride=(2, 2, 2), padding='SAME')
self.mixed_4b = InceptionBlock(self.mixed_3c.output_dim, 192, 96, 208, 16, 48, 64)
self.mixed_4c = InceptionBlock(self.mixed_4b.output_dim, 160, 112, 224, 24, 64, 64)
self.mixed_4d = InceptionBlock(self.mixed_4c.output_dim, 128, 128, 256, 24, 64, 64)
self.mixed_4e = InceptionBlock(self.mixed_4d.output_dim, 112, 144, 288, 32, 64, 64)
self.mixed_4f = InceptionBlock(self.mixed_4e.output_dim, 256, 160, 320, 32, 128, 128)
self.maxpool_5a = self.maxPool3d_5a_2x2 = MaxPool3dTFPadding(kernel_size=(2, 2, 2), stride=(2, 2, 2), padding='SAME')
self.mixed_5b = InceptionBlock(self.mixed_4f.output_dim, 256, 160, 320, 32, 128, 128)
self.mixed_5c = InceptionBlock(self.mixed_5b.output_dim, 384, 192, 384, 48, 128, 128)
self.fc = nn.Linear(self.mixed_5c.output_dim, num_classes)
self.text_module = Sentence_Embedding(
num_classes,
os.path.join(os.path.dirname(__file__), token_to_word_path),
word2vec_path=os.path.join(os.path.dirname(__file__), word2vec_path))
if init == 'kaiming_normal':
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _space_to_depth(self, input):
B, C, T, H, W = input.shape
input = input.view(B, C, T // 2, 2, H // 2, 2, W // 2, 2)
input = input.permute(0, 3, 5, 7, 1, 2, 4, 6)
input = input.contiguous().view(B, 8 * C, T // 2, H // 2, W // 2)
return input
def forward(self, video, text, mode='all', mixed5c=False):
if mode == 'all':
return self.forward_video(video), self.text_module(text)
elif mode == 'video':
return self.forward_video(video, mixed5c=mixed5c)
elif mode == 'text':
return self.text_module(text)
else:
raise NotImplementedError
def forward_video(self, inputs, mixed5c=False):
#out = {}
if self.space_to_depth:
inputs = self._space_to_depth(inputs)
# 'Conv2d_1a_7x7'
net = self.conv1(inputs)
if self.space_to_depth:
net = net[:, :, 1:, 1:, 1:]
#out['Conv2d_1a_7x7'] = net
# 'MaxPool_2a_3x3'
net = self.maxpool_2a(net)
#out['MaxPool_2a_3x3'] = net
#'Conv2d_2b_1x1'
net = self.conv_2b(net)
#out['Conv2d_2b_1x1'] = net
# 'Conv2d_2c_3x3'
net = self.conv_2c(net)
#out['Conv2d_2c_3x3'] = net
if self.gating:
net = self.gating(net)
#out['gating_1'] = net
# 'MaxPool_3a_3x3'
net = self.maxpool_3a(net)
#out['MaxPool_3a_3x3'] = net
# end_point = 'Mixed_3b'
net = self.mixed_3b(net)
#out['Mixed_3b'] = net
# end_point = 'Mixed_3c'
net = self.mixed_3c(net)
#out['Mixed_3c'] = net
# end_point = 'MaxPool_4a_3x3'
net = self.maxpool_4a(net)
#out['MaxPool_4a_3x3'] = net
# end_point = 'Mixed_4b'
net = self.mixed_4b(net)
#out['Mixed_4b'] = net
# end_point = 'Mixed_4c'
net = self.mixed_4c(net)
#out['Mixed_4c'] = net
# end_point = 'Mixed_4d'
net = self.mixed_4d(net)
#out['Mixed_4d'] = net
# end_point = 'Mixed_4e'
net = self.mixed_4e(net)
#out['Mixed_4e'] = net
# end_point = 'Mixed_4f'
net = self.mixed_4f(net)
#out['Mixed_4f'] = net
#end_point = 'MaxPool_5a_2x2'
net = self.maxpool_5a(net)
#out['MaxPool_5a_2x2'] = net
# end_point = 'Mixed_5b'
net = self.mixed_5b(net)
#out['Mixed_5b'] = net
# end_point = 'Mixed_5c'
net = self.mixed_5c(net)
#out['Mixed_5c'] = net
#out['Avgpool'] = net
net = th.mean(net, dim=[2, 3, 4])
if mixed5c:
return net
net = self.fc(net)
#out['final'] = net
return net