forked from Skylark0924/Machine-Learning-is-ALL-You-Need
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRandom_Forest_Clf.py
122 lines (104 loc) · 4.54 KB
/
Random_Forest_Clf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
import sys
sys.path.append("D:\Github\Machine-Learning-Basic-Codes")
sys.path.append("D:/Github/Machine-Learning-Basic-Codes/07Decision_Trees")
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from Decision_Trees_Clf import Skylark_DecisionTreeClassifier
from utils.visualize import *
class Skylark_RandomForestClassifier():
def __init__(self, n_estimators=100, min_samples_split=2, min_gain=0,
max_depth=float("inf"), max_features=None):
super().__init__()
self.n_estimators = n_estimators
self.min_samples_split = min_samples_split
self.min_gain = min_gain
self.max_depth = max_depth
self.max_features = max_features
self.trees = []
# 建立森林(bulid forest)
for _ in range(self.n_estimators):
tree = Skylark_DecisionTreeClassifier(min_samples_split=self.min_samples_split, min_impurity=self.min_gain,
max_depth=self.max_depth)
self.trees.append(tree)
def fit(self, X_train, Y_train):
# 训练,每棵树使用随机的数据集(bootstrap)和随机的特征
# every tree use random data set(bootstrap) and random feature
sub_sets = self.get_bootstrap_data(X_train, Y_train)
n_features = X_train.shape[1]
if self.max_features == None:
self.max_features = int(np.sqrt(n_features))
for i in range(self.n_estimators):
# 生成随机的特征
# get random feature
sub_X, sub_Y = sub_sets[i]
idx = np.random.choice(n_features, self.max_features, replace=True)
sub_X = sub_X[:, idx]
self.trees[i].fit(sub_X, sub_Y)
self.trees[i].feature_indices = idx
print("tree", i, "fit complete")
def predict(self, X_test):
y_preds = []
for i in range(self.n_estimators):
idx = self.trees[i].feature_indices
sub_X = X_test[:, idx]
y_pre = self.trees[i].predict(sub_X)
y_preds.append(y_pre)
y_preds = np.array(y_preds).T
y_pred = []
for y_p in y_preds:
# np.bincount()可以统计每个索引出现的次数
# np.argmax()可以返回数组中最大值的索引
# cheak np.bincount() and np.argmax() in numpy Docs
y_pred.append(np.bincount(y_p.astype('int')).argmax())
return np.array(y_pred)
def get_bootstrap_data(self, X, Y):
# 通过bootstrap的方式获得n_estimators组有放回的采样数据
# get int(n_estimators) datas by bootstrap
m = X.shape[0]
Y = Y.reshape(m, 1)
# 合并X和Y,方便bootstrap (conbine X and Y)
X_Y = np.hstack((X, Y))
np.random.shuffle(X_Y)
data_sets = []
for _ in range(self.n_estimators):
idm = np.random.choice(m, m, replace=True)
bootstrap_X_Y = X_Y[idm, :]
bootstrap_X = bootstrap_X_Y[:, :-1]
bootstrap_Y = bootstrap_X_Y[:, -1:]
data_sets.append([bootstrap_X, bootstrap_Y])
return data_sets
if __name__ == '__main__':
use_sklearn = False
# Data Preprocessing
dataset = pd.read_csv('./dataset/Social_Network_Ads.csv')
X = dataset.iloc[:, [2, 3]].values
Y = dataset.iloc[:, 4].values
# Making Dataset
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=0.25, random_state=0)
# Feature Scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train.astype(np.float64))
X_test = sc.transform(X_test.astype(np.float64))
if use_sklearn:
from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(
n_estimators=10, criterion='entropy', random_state=0)
classifier.fit(X_train, Y_train)
else:
classifier = Skylark_RandomForestClassifier(n_estimators=10)
classifier.fit(X_train, Y_train)
Y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
print_confusion_matrix(
Y_test, Y_pred, clf_name='Random Forest Classification')
# Visualising the Training set results
visualization_clf(X_train, Y_train, classifier,
clf_name='Random Forest Classification', set_name='Training')
# Visualising the Test set results
visualization_clf(X_test, Y_test, classifier,
clf_name='Random Forest Classification', set_name='Test')