forked from zhiweichen0012/E2Net
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·253 lines (210 loc) · 9.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import tensorflow as tf
import sys
from tensorpack import ModelSaver
from tensorpack import ClassificationError
from tensorpack import EstimatedTimeLeft
from tensorpack import MinSaver
from tensorpack import ScheduledHyperParamSetter
from tensorpack import QueueInput
from tensorpack import StagingInput
from tensorpack import InferenceRunner
from tensorpack.models.regularize import regularize_cost
from tensorpack.models.regularize import l2_regularizer
from tensorpack.tfutils import optimizer
from tensorpack.tfutils import gradproc
from tensorpack.tfutils import get_model_loader
from tensorpack.tfutils.summary import add_moving_summary
from tensorpack.train.config import TrainConfig
from tensorpack.train.interface import launch_train_with_config
from tensorpack.train.model_desc import ModelDesc
from tensorpack.train.trainers import SyncMultiGPUTrainerParameterServer
from tensorpack.utils import logger
from tensorpack.utils.gpu import get_nr_gpu
from config import get_args
from data_loader import get_data
from evaluate import evaluate_wsol
from os.path import join as ospj
from util import image_summaries
import backbone as arch
_CKPT_NAMES = {
'resnet50_se': 'models/ResNet50-SE.npz',
'vgg_gap': 'models/vgg16.npz',
}
_WEIGHT_DECAY = {
'resnet50_se': 1e-4,
'vgg_gap': 5e-4,
}
_LR_SCALE = {
'resnet50_se': [('conv0.*', 0.1), ('group[0-2].*', 0.1)],
'vgg_gap': [('conv.*', 0.1), ('fc.*', 0.1)],
}
class Model(ModelDesc):
def __init__(self, args):
self.args = args
def inputs(self):
input_shape = [None, self.args.final_size, self.args.final_size, 3]
return [
tf.placeholder(tf.uint8, input_shape, 'input'),
tf.placeholder(tf.int32, [None], 'label'),
tf.placeholder(tf.float32, [None, 2, 2], 'bbox')
]
def build_graph(self, image, label, bbox):
image, label_onehot = self._pre_process_inputs(image, label)
if self.args.method_name in ['AAE', 'SAE', 'AAE_SAE']:
logit, convmap = arch.__dict__[self.args.arch_name](image,
self.args)
# tf.identity(maps[0], name='pool1')
# tf.identity(maps[1], name='pool2')
# tf.identity(maps[2], name='pool3')
# tf.identity(maps[3], name='pool4')
# tf.identity(maps[4], name='conv53')
self._prepare_cam(logit, convmap, label_onehot)
logits = (logit[0] + logit[1] + logit[2])
# loss1 = self._get_loss(logit[0], label)
# loss2 = self._get_loss(logit[1], label)
# loss3 = self._get_loss(logit[2], label)
loss = self._get_loss(logits, label)
else:
logit, convmap = arch.__dict__[self.args.arch_name](image,
self.args)
self._prepare_cam(logit, convmap, label_onehot)
loss = self._get_loss(logit, label)
return loss
def optimizer(self):
lr = tf.get_variable('learning_rate',
initializer=self.args.base_lr,
trainable=False)
opt = tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True)
add_moving_summary(lr)
if self.args.use_pretrained_model:
gradprocs = [
gradproc.ScaleGradient(_LR_SCALE[self.args.arch_name])
]
return optimizer.apply_grad_processors(opt, gradprocs)
else:
return opt
def _pre_process_inputs(self, image, label):
image = self._image_preprocess(image, is_bgr=True)
image = tf.transpose(image, [0, 3, 1, 2])
label_onehot = tf.one_hot(label, self.args.number_of_class)
image_summaries('input-images', image)
return image, label_onehot
def _image_preprocess(self, image, is_bgr=True):
with tf.name_scope('image_preprocess'):
if image.dtype.base_dtype != tf.float32:
image = tf.cast(image, tf.float32)
image = image * (1.0 / 255)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
if is_bgr:
mean = mean[::-1]
std = std[::-1]
image_mean = tf.constant(mean, dtype=tf.float32)
image_std = tf.constant(std, dtype=tf.float32)
image = (image - image_mean) / image_std
return image
def _prepare_cam(self, logits, convmaps, label_onehot):
if self.args.method_name in ['AAE', 'SAE', 'AAE_SAE']:
for _i, n in enumerate(['', '_1x3', '_3x1']):
_, indices = tf.nn.top_k(logits[_i], 5)
tf.identity(indices, name='top5' + n)
tf.identity(convmaps[_i], name='actmap' + n)
y_c = tf.reduce_sum(tf.multiply(logits[_i], label_onehot),
axis=1)
tf.identity(tf.gradients(y_c, convmaps[_i])[0],
name='grad' + n)
else:
_, indices = tf.nn.top_k(logits, 5)
tf.identity(indices, name='top5')
tf.identity(convmaps, name='actmap')
y_c = tf.reduce_sum(tf.multiply(logits, label_onehot), axis=1)
tf.identity(tf.gradients(y_c, convmaps)[0], name='grad')
def _get_loss(self, logits, label):
loss = self._compute_loss_and_error(logits, label)
wd_cost = regularize_cost('.*/W',
l2_regularizer(
_WEIGHT_DECAY[self.args.arch_name]),
name='l2_regularize_loss')
add_moving_summary(loss, wd_cost)
return tf.add_n([loss, wd_cost], name='cost')
def _compute_loss_and_error(self, logits, label):
def prediction_incorrect(logits_,
label_,
topk=1,
name='incorrect_vector'):
with tf.name_scope('prediction_incorrect'):
x = tf.logical_not(tf.nn.in_top_k(logits_, label_, topk))
return tf.cast(x, tf.float32, name=name)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
labels=label)
loss = tf.reduce_mean(loss, name='xentropy-loss')
wrong = prediction_incorrect(logits, label, 1, name='wrong-top1')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top1'))
wrong = prediction_incorrect(logits, label, 5, name='wrong-top5')
add_moving_summary(tf.reduce_mean(wrong, name='train-error-top5'))
return loss
def get_callbacks(dataset_val, option):
cls_metric = [
ClassificationError('wrong-top1', 'val-error-top1'),
ClassificationError('wrong-top5', 'val-error-top5')
]
callbacks = [
ModelSaver(max_to_keep=1, keep_checkpoint_every_n_hours=1000),
EstimatedTimeLeft(),
InferenceRunner(dataset_val, cls_metric),
MinSaver('val-error-top1'),
# ScheduledHyperParamSetter('learning_rate',
# [(0, option.base_lr),
# (30, option.base_lr * 1e-1),
# (60, option.base_lr * 1e-2),
# (90, option.base_lr * 1e-3),
# (100, option.base_lr * 1e-4)]),
ScheduledHyperParamSetter('learning_rate',
[(0, option.base_lr),
(30, option.base_lr * 1e-1),
(60, option.base_lr * 1e-2),
(90, option.base_lr * 1e-3),
(100, option.base_lr * 1e-4),
(110, option.base_lr * 1e-5)]),
]
return callbacks
def get_steps_per_epoch(option):
nr_gpu = get_nr_gpu()
total_batch = option.batch_size * nr_gpu
if option.dataset_name == 'CUB':
steps_per_epoch = 25 * (256 / total_batch) * option.stepscale
elif option.dataset_name == 'ILSVRC':
steps_per_epoch = 5000 * (256 / total_batch) * option.stepscale
else:
raise KeyError("Unavailable dataset: {}".format(option.dataset_name))
return int(steps_per_epoch)
def get_config(model, option):
dataset_train = get_data('train', option)
dataset_val = get_data('val', option)
callbacks = get_callbacks(dataset_val, option)
steps_per_epoch = get_steps_per_epoch(option)
return TrainConfig(
model=model,
data=StagingInput(QueueInput(dataset_train), nr_stage=1),
callbacks=callbacks,
steps_per_epoch=steps_per_epoch,
max_epoch=option.epoch,
starting_epoch=option.starting_epoch,
)
def main():
args = get_args()
nr_gpu = get_nr_gpu()
args.batch_size = args.batch_size // nr_gpu
model = Model(args)
if args.evaluate:
evaluate_wsol(args, model, interval=False)
sys.exit()
logger.set_logger_dir(ospj('train_log', args.log_dir))
config = get_config(model, args)
if args.use_pretrained_model:
config.session_init = get_model_loader(_CKPT_NAMES[args.arch_name])
launch_train_with_config(config,
SyncMultiGPUTrainerParameterServer(nr_gpu))
evaluate_wsol(args, model, interval=True)
if __name__ == '__main__':
main()