-
Notifications
You must be signed in to change notification settings - Fork 1
/
model_generator.py
203 lines (179 loc) · 8.48 KB
/
model_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import pandas as pd
import csv
from PIL import Image
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, TensorBoard, CSVLogger
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import Model, load_model
from tensorflow.keras import backend as K
from tensorflow.keras.applications.inception_v3 import InceptionV3
from tensorflow.keras.applications.densenet import DenseNet201
from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2
from tensorflow.keras.applications.xception import Xception
from tensorflow.keras.applications.resnet_v2 import ResNet152V2
from tensorflow.keras.applications.resnet_v2 import ResNet50V2
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D
import numpy as np
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score, f1_score
import numpy as np
from numpy import argmax
# # Deep learning code inspired by the Project DeepWeeds
# # Source: https://github.com/AlexOlsen/DeepWeeds/blob/master/deepweeds.py
# # Data obtained from FluSense project
# # Source: https://github.com/Forsad/FluSense-data
# # Global info
LABEL_DIRECTORY = "./labels/"
IMG_DIRECTORY = "./processed-data/"
# Global variables
RAW_IMG_SIZE = (256, 256)
IMG_SIZE = (224, 224)
INPUT_SHAPE = (IMG_SIZE[0], IMG_SIZE[1], 3)
MAX_EPOCH = 2
BATCH_SIZE = 32
STOPPING_PATIENCE = 32
LR_PATIENCE = 16
INITIAL_LR = 0.0001
CLASSES = [0, 1]
CLASS_NAMES = ['cough', 'speech']
def parse_args():
parser = argparse.ArgumentParser(description='Train and test deep learning models on FluSense')
parser.add_argument('--model', default='resnet')
args = parser.parse_args()
return args.model
def crop(img, size):
(h, w, c) = img.shape
x = int((w - size[0]) / 2)
y = int((h - size[1]) / 2)
return img[y:(y + size[1]), x:(x + size[0]), :]
def crop_generator(batches, size):
while True:
batch_x, batch_y = next(batches)
(b, h, w, c) = batch_x.shape
batch_crops = np.zeros((b, size[0], size[1], c))
for i in range(b):
batch_crops[i] = crop(batch_x[i], (size[0], size[1]))
yield (batch_crops, batch_y)
def train(model_name):
CLASSES_str = ['0', '1']
OUTPUT_DIRECTORY = model_name+'/'
if not os.path.exists(OUTPUT_DIRECTORY):
os.makedirs(OUTPUT_DIRECTORY)
train_dataframe = pd.read_csv('labels/train.csv',dtype=str)
val_dataframe = pd.read_csv('labels/val.csv',dtype=str)
train_image_count = train_dataframe.shape[0]
val_image_count = val_dataframe.shape[0]
train_dataframe['Filenamefull'] = IMG_DIRECTORY+train_dataframe['Filename']
val_dataframe['Filenamefull'] = IMG_DIRECTORY+val_dataframe['Filename']
# Training image augmentation
train_data_generator = ImageDataGenerator(
rescale=1. / 255,
fill_mode="constant",
shear_range=0.2,
zoom_range=(0.5, 1),
horizontal_flip=True,
rotation_range=360)
# Validation image augmentation
val_data_generator = ImageDataGenerator(
rescale=1. / 255,
fill_mode="constant",
shear_range=0.2,
zoom_range=(0.5, 1),
horizontal_flip=True,
rotation_range=360)
# Load train images in batches from directory and apply augmentations
train_data_generator = train_data_generator.flow_from_dataframe(
train_dataframe,
'',
x_col='Filenamefull',
y_col='Label',
target_size=RAW_IMG_SIZE,
batch_size=BATCH_SIZE,
has_ext=True,
classes=CLASSES_str,
class_mode='categorical')
# Load validation images in batches from directory and apply rescaling
val_data_generator = val_data_generator.flow_from_dataframe(
val_dataframe,
'',
x_col="Filenamefull",
y_col="Label",
target_size=RAW_IMG_SIZE,
batch_size=BATCH_SIZE,
has_ext=True,
classes=CLASSES_str,
class_mode='categorical')
# Crop augmented images from 256x256 to 224x224
train_data_generator = crop_generator(train_data_generator, IMG_SIZE)
val_data_generator = crop_generator(val_data_generator, IMG_SIZE)
# Load ImageNet pre-trained model
if model_name == "resnet":
base_model = ResNet50V2(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
elif model_name == "inception":
base_model = InceptionV3(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
elif model_name == "inception-resnet":
base_model = InceptionResNetV2(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
elif model_name == "xception":
base_model = Xception(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
elif model_name == "densenet":
base_model = DenseNet201(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
elif model_name == "resnet152":
base_model = ResNet152V2(weights='imagenet', include_top=False, input_shape=INPUT_SHAPE)
x = base_model.output
# Add a global average pooling layer
x = GlobalAveragePooling2D(name='avg_pool')(x)
# Add fully connected output layer with sigmoid activation for multi label classification
outputs = Dense(len(CLASSES), activation='sigmoid', name='fc9')(x)
# Assemble the modified model
model = Model(inputs=base_model.input, outputs=outputs)
# Checkpoints for training
model_checkpoint = ModelCheckpoint(OUTPUT_DIRECTORY + model_name+".hdf5", verbose=1, save_best_only=True)
early_stopping = EarlyStopping(patience=STOPPING_PATIENCE, restore_best_weights=True)
tensorboard = TensorBoard(log_dir=OUTPUT_DIRECTORY, histogram_freq=0, write_graph=True, write_images=False)
reduce_lr = ReduceLROnPlateau('val_loss', factor=0.5, patience=LR_PATIENCE, min_lr=0.000003125)
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=INITIAL_LR), metrics=['categorical_accuracy'])
csv_logger = CSVLogger(OUTPUT_DIRECTORY + "training_metrics.csv")
# Train model until MAX_EPOCH, restarting after each early stop when learning has plateaued
global_epoch = 0
restarts = 0
last_best_losses = []
last_best_epochs = []
while global_epoch < MAX_EPOCH:
history = model.fit_generator(
generator=train_data_generator,
steps_per_epoch=train_image_count // BATCH_SIZE,
epochs=MAX_EPOCH - global_epoch,
validation_data=val_data_generator,
validation_steps=val_image_count // BATCH_SIZE,
callbacks=[tensorboard, model_checkpoint, early_stopping, reduce_lr, csv_logger],
shuffle=False)
last_best_losses.append(min(history.history['val_loss']))
last_best_local_epoch = history.history['val_loss'].index(min(history.history['val_loss']))
last_best_epochs.append(global_epoch + last_best_local_epoch)
if early_stopping.stopped_epoch == 0:
print("Completed training after {} epochs.".format(MAX_EPOCH))
break
else:
global_epoch = global_epoch + early_stopping.stopped_epoch - STOPPING_PATIENCE + 1
print("Early stopping triggered after local epoch {} (global epoch {}).".format(
early_stopping.stopped_epoch, global_epoch))
print("Restarting from last best val_loss at local epoch {} (global epoch {}).".format(
early_stopping.stopped_epoch - STOPPING_PATIENCE, global_epoch - STOPPING_PATIENCE))
restarts = restarts + 1
model.compile(loss='binary_crossentropy', optimizer=Adam(lr=INITIAL_LR / 2 ** restarts),
metrics=['categorical_accuracy'])
model_checkpoint = ModelCheckpoint(OUTPUT_DIRECTORY + "lastbest-{}.hdf5".format(restarts),
monitor='val_loss', verbose=1, save_best_only=True, mode='min')
# Save last best model info
with open(OUTPUT_DIRECTORY + "last_best_models.csv", 'w', newline='') as file:
writer = csv.writer(file, delimiter=',')
writer.writerow(['Model file', 'Global epoch', 'Validation loss'])
for i in range(restarts + 1):
writer.writerow([model_name+"_lastbest-{}.hdf5".format(i), last_best_epochs[i], last_best_losses[i]])
# Run training on 1 of 5 models: densenet, resnet, inception-resnet, resnet152 and xception
# Example: python3 model_generator.py --model densenet
if __name__ == '__main__':
# Parse command line arguments
model = parse_args()
train(model)