Skip to content

Latest commit

 

History

History
executable file
·
251 lines (206 loc) · 12.3 KB

CHANGELOG.md

File metadata and controls

executable file
·
251 lines (206 loc) · 12.3 KB

MMSceneGraph Change Log

(Self-Adaptive Version) v1.6.0

  • Now we support the scene graph visualization.

  • For the VisualGenomeDataset, the groundtruth for test/val set is modified so that the duplicated triplets are filtered. The impact to the recall is ignorable.

(Self-Adaptive Version) v1.5.0

  • Adjust the feature extraction API for scene graph generation. We add the frontend_features function to the relation_head and delete all the feature extraction process from different sub-class heads.

(Self-Adaptive Version) v1.4.0

Hightlights

  • Modify the APIs for detection result visualization: Add the patches package under mmdet. It uses colors from seaborn. Note: The opencv2 "color" must be a triplet tuple containing "int" type.
  • Reimplement the interfaces for supporting repPoints extraction and visualization under with the RepPointDetector.

(Self-Adaptive Version) v1.3.0

Hightlights

  • For supporting the transfer learning of instance segmentation (Mask-X-RCNN), the following features are added:
    • Add the CocoRemapDataset, which maps 53 COCO categories to the VG 150 categories.
    • Add the TransferMaskHead.
    • Add the ExtrDetWeightSharedFCBBoxHead to extract the detection weights.
  • Add the shape aware RoI Align operation.
  • Adapt the commition of class wise evaluation result for COCO from the mmdetection github v2.0.
  • Adapt the commition of merging dist and non-dist tranining from v2.0.
  • Adapt the commition of modification of gpu_ids from v2.0.

(Self-Adaptive Version) vA1.2.0 (06/4/2020)

Highlights

  • Add the VisualGenome dataset. The data loading and formatting module is modified.
  • Create 'filter_cocoval_from_train_split' in VG-SGG-with-attr.h5 file. It filters the images in VG training split which are also in cocoval2017 split. This split way is used for the first stage training of [SegmentEverything CVPR 2018].

Original mmdetection Change Log

v1.1.0 (24/2/2020)

Highlights

  • Dataset evaluation is rewritten with a unified api, which is used by both evaluation hooks and test scripts.
  • Support new methods: CARAFE.

Breaking Changes

  • The new MMDDP inherits from the official DDP, thus the __init__ api is changed to be the same as official DDP.
  • The mask_head field in HTC config files is modified.
  • The evaluation and testing script is updated.
  • In all transforms, instance masks are stored as a numpy array shaped (n, h, w) instead of a list of (h, w) arrays, where n is the number of instances.

Bug Fixes

  • Fix IOU assigners when ignore_iof_thr > 0 and there is no pred boxes. (#2135)
  • Fix mAP evaluation when there are no ignored boxes. (#2116)
  • Fix the empty RoI input for Deformable RoI Pooling. (#2099)
  • Fix the dataset settings for multiple workflows. (#2103)
  • Fix the warning related to torch.uint8 in PyTorch 1.4. (#2105)
  • Fix the inference demo on devices other than gpu:0. (#2098)
  • Fix Dockerfile. (#2097)
  • Fix the bug that pad_val is unused in Pad transform. (#2093)
  • Fix the albumentation transform when there is no ground truth bbox. (#2032)

Improvements

  • Use torch instead of numpy for random sampling. (#2094)
  • Migrate to the new MMDDP implementation in MMCV v0.3. (#2090)
  • Add meta information in logs. (#2086)
  • Rewrite Soft NMS with pytorch extension and remove cython as a dependency. (#2056)
  • Rewrite dataset evaluation. (#2042, #2087, #2114, #2128)
  • Use numpy array for masks in transforms. (#2030)

New Features

  • Implement "CARAFE: Content-Aware ReAssembly of FEatures". (#1583)
  • Add worker_init_fn() in data_loader when seed is set. (#2066, #2111)
  • Add logging utils. (#2035)

v1.0.0 (30/1/2020)

This release mainly improves the code quality and add more docstrings.

Highlights

  • Documentation is online now: https://mmdetection.readthedocs.io.
  • Support new models: ATSS.
  • DCN is now available with the api build_conv_layer and ConvModule like the normal conv layer.
  • A tool to collect environment information is available for trouble shooting.

Bug Fixes

  • Fix the incompatibility of the latest numpy and pycocotools. (#2024)
  • Fix the case when distributed package is unavailable, e.g., on Windows. (#1985)
  • Fix the dimension issue for refine_bboxes(). (#1962)
  • Fix the typo when seg_prefix is a list. (#1906)
  • Add segmentation map cropping to RandomCrop. (#1880)
  • Fix the return value of ga_shape_target_single(). (#1853)
  • Fix the loaded shape of empty proposals. (#1819)
  • Fix the mask data type when using albumentation. (#1818)

Improvements

  • Enhance AssignResult and SamplingResult. (#1995)
  • Add ability to overwrite existing module in Registry. (#1982)
  • Reorganize requirements and make albumentations and imagecorruptions optional. (#1969)
  • Check NaN in SSDHead. (#1935)
  • Encapsulate the DCN in ResNe(X)t into a ConvModule & Conv_layers. (#1894)
  • Refactoring for mAP evaluation and support multiprocessing and logging. (#1889)
  • Init the root logger before constructing Runner to log more information. (#1865)
  • Split SegResizeFlipPadRescale into different existing transforms. (#1852)
  • Move init_dist() to MMCV. (#1851)
  • Documentation and docstring improvements. (#1971, #1938, #1869, #1838)
  • Fix the color of the same class for mask visualization. (#1834)
  • Remove the option keep_all_stages in HTC and Cascade R-CNN. (#1806)

New Features

  • Add two test-time options crop_mask and rle_mask_encode for mask heads. (#2013)
  • Support loading grayscale images as single channel. (#1975)
  • Implement "Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection". (#1872)
  • Add sphinx generated docs. (#1859, #1864)
  • Add GN support for flops computation. (#1850)
  • Collect env info for trouble shooting. (#1812)

v1.0rc1 (13/12/2019)

The RC1 release mainly focuses on improving the user experience, and fixing bugs.

Highlights

  • Support new models: FoveaBox, RepPoints and FreeAnchor.
  • Add a Dockerfile.
  • Add a jupyter notebook demo and a webcam demo.
  • Setup the code style and CI.
  • Add lots of docstrings and unit tests.
  • Fix lots of bugs.

Breaking Changes

  • There was a bug for computing COCO-style mAP w.r.t different scales (AP_s, AP_m, AP_l), introduced by #621. (#1679)

Bug Fixes

  • Fix a sampling interval bug in Libra R-CNN. (#1800)
  • Fix the learning rate in SSD300 WIDER FACE. (#1781)
  • Fix the scaling issue when keep_ratio=False. (#1730)
  • Fix typos. (#1721, #1492, #1242, #1108, #1107)
  • Fix the shuffle argument in build_dataloader. (#1693)
  • Clip the proposal when computing mask targets. (#1688)
  • Fix the "index out of range" bug for samplers in some corner cases. (#1610, #1404)
  • Fix the NMS issue on devices other than GPU:0. (#1603)
  • Fix SSD Head and GHM Loss on CPU. (#1578)
  • Fix the OOM error when there are too many gt bboxes. (#1575)
  • Fix the wrong keyword argument nms_cfg in HTC. (#1573)
  • Process masks and semantic segmentation in Expand and MinIoUCrop transforms. (#1550, #1361)
  • Fix a scale bug in the Non Local op. (#1528)
  • Fix a bug in transforms when gt_bboxes_ignore is None. (#1498)
  • Fix a bug when img_prefix is None. (#1497)
  • Pass the device argument to grid_anchors and valid_flags. (#1478)
  • Fix the data pipeline for test_robustness. (#1476)
  • Fix the argument type of deformable pooling. (#1390)
  • Fix the coco_eval when there are only two classes. (#1376)
  • Fix a bug in Modulated DeformableConv when deformable_group>1. (#1359)
  • Fix the mask cropping in RandomCrop. (#1333)
  • Fix zero outputs in DeformConv when not running on cuda:0. (#1326)
  • Fix the type issue in Expand. (#1288)
  • Fix the inference API. (#1255)
  • Fix the inplace operation in Expand. (#1249)
  • Fix the from-scratch training config. (#1196)
  • Fix inplace add in RoIExtractor which cause an error in PyTorch 1.2. (#1160)
  • Fix FCOS when input images has no positive sample. (#1136)
  • Fix recursive imports. (#1099)

Improvements

  • Print the config file and mmdet version in the log. (#1721)
  • Lint the code before compiling in travis CI. (#1715)
  • Add a probability argument for the Expand transform. (#1651)
  • Update the PyTorch and CUDA version in the docker file. (#1615)
  • Raise a warning when specifying --validate in non-distributed training. (#1624, #1651)
  • Beautify the mAP printing. (#1614)
  • Add pre-commit hook. (#1536)
  • Add the argument in_channels to backbones. (#1475)
  • Add lots of docstrings and unit tests, thanks to @Erotemic. (#1603, #1517, #1506, #1505, #1491, #1479, #1477, #1475, #1474)
  • Add support for multi-node distributed test when there is no shared storage. (#1399)
  • Optimize Dockerfile to reduce the image size. (#1306)
  • Update new results of HRNet. (#1284, #1182)
  • Add an argument no_norm_on_lateral in FPN. (#1240)
  • Test the compiling in CI. (#1235)
  • Move docs to a separate folder. (#1233)
  • Add a jupyter notebook demo. (#1158)
  • Support different type of dataset for training. (#1133)
  • Use int64_t instead of long in cuda kernels. (#1131)
  • Support unsquare RoIs for bbox and mask heads. (#1128)
  • Manually add type promotion to make compatible to PyTorch 1.2. (#1114)
  • Allowing validation dataset for computing validation loss. (#1093)
  • Use .scalar_type() instead of .type() to suppress some warnings. (#1070)

New Features

  • Add an option --with_ap to compute the AP for each class. (#1549)
  • Implement "FreeAnchor: Learning to Match Anchors for Visual Object Detection". (#1391)
  • Support Albumentations for augmentations in the data pipeline. (#1354)
  • Implement "FoveaBox: Beyond Anchor-based Object Detector". (#1339)
  • Support horizontal and vertical flipping. (#1273, #1115)
  • Implement "RepPoints: Point Set Representation for Object Detection". (#1265)
  • Add test-time augmentation to HTC and Cascade R-CNN. (#1251)
  • Add a COCO result analysis tool. (#1228)
  • Add Dockerfile. (#1168)
  • Add a webcam demo. (#1155, #1150)
  • Add FLOPs counter. (#1127)
  • Allow arbitrary layer order for ConvModule. (#1078)

v1.0rc0 (27/07/2019)

  • Implement lots of new methods and components (Mixed Precision Training, HTC, Libra R-CNN, Guided Anchoring, Empirical Attention, Mask Scoring R-CNN, Grid R-CNN (Plus), GHM, GCNet, FCOS, HRNet, Weight Standardization, etc.). Thank all collaborators!
  • Support two additional datasets: WIDER FACE and Cityscapes.
  • Refactoring for loss APIs and make it more flexible to adopt different losses and related hyper-parameters.
  • Speed up multi-gpu testing.
  • Integrate all compiling and installing in a single script.

v0.6.0 (14/04/2019)

  • Up to 30% speedup compared to the model zoo.
  • Support both PyTorch stable and nightly version.
  • Replace NMS and SigmoidFocalLoss with Pytorch CUDA extensions.

v0.6rc0(06/02/2019)

  • Migrate to PyTorch 1.0.

v0.5.7 (06/02/2019)

  • Add support for Deformable ConvNet v2. (Many thanks to the authors and @chengdazhi)
  • This is the last release based on PyTorch 0.4.1.

v0.5.6 (17/01/2019)

  • Add support for Group Normalization.
  • Unify RPNHead and single stage heads (RetinaHead, SSDHead) with AnchorHead.

v0.5.5 (22/12/2018)

  • Add SSD for COCO and PASCAL VOC.
  • Add ResNeXt backbones and detection models.
  • Refactoring for Samplers/Assigners and add OHEM.
  • Add VOC dataset and evaluation scripts.

v0.5.4 (27/11/2018)

  • Add SingleStageDetector and RetinaNet.

v0.5.3 (26/11/2018)

  • Add Cascade R-CNN and Cascade Mask R-CNN.
  • Add support for Soft-NMS in config files.

v0.5.2 (21/10/2018)

  • Add support for custom datasets.
  • Add a script to convert PASCAL VOC annotations to the expected format.

v0.5.1 (20/10/2018)

  • Add BBoxAssigner and BBoxSampler, the train_cfg field in config files are restructured.
  • ConvFCRoIHead / SharedFCRoIHead are renamed to ConvFCBBoxHead / SharedFCBBoxHead for consistency.