machine learning algorithm with pure python which let pramgramer learn easily;
please push your code to this project,let's learn together;
- AdBoost.py
- AdTree.py
- Ann.py
- Array.py
- Bandit.py
- BaseStrut.py
- Bayes.py
- Bp.py
- Bp1.py
- Neroun(object)
- init(self , weight_len , learn_rate = 0.1 , delta = random.uniform(1 , -1))
- init_weights(self , weight_len , weight_max = 0.5 , weight_min = -0.5)
- predict(self , inputs)
- simgod(self , value)
- disgod(self , target)
- len(self)
- getitem(self , index)
- setitem(self , index , value)
- update(self , target, predict)
- Layer(object)
- OutPutLayer(Layer)
- HiddenLayer(Layer)
- Bp(object)
- Neroun(object)
- Canopy.py
- Cart.py
- Node(object)
- CartTree(object)
- init(self)
- load_model(self, file_path)
- save(self, model_path)
- __train(self, datas, labels, attrs, threshold=0.01)
- split_data_by_attr(self, datas, attrs, attr_name)
- train(self, datas, attrs, labels, threshold=0.01)
- get_split_attr(self, attrs, attr)
- get_split_value(self, datas, split_index)
- calc_gini(self, datas, labels, split_index, split_value)
- get_best_feature(self, datas, labels, attrs)
- _classify(self, data, attrs, node)
- classify(self, data)
- DDistance.py
- DataSet.py
- DbScan.py
- DecisionTree.py
- DecisionTree1.py
- Node(dict)
- DecisionTree(object)
- init(self)
- load_model(self, file_path)
- save(self, model_path)
- __train(self, datas , labels , attrs, threshold=0.01, dense_data=True)
- train(self, datas , labels , attrs, threshold=0.01, dense_data=True)
- entropy(probs)
- get_split_attr(self, attrs, attr)
- get_best_feature(self, datas, labels, attrs, dense_data)
- split_data_by_attr(self, datas , labels , attrs, attr_name, attr_value, dense_data=True)
- classify(self, data)
- ID3(DecisionTree)
- C45(ID3)
- DefaultValue.py
- Dict.py
- Emm.py
- Feature.py
- FeatureExtract.py
- GRTree.py
- HCluster.py
- Hmm.py
- Hmm1.py
- Interface.py
- KdTree.py
- Kmeans.py
- KmeansPlusPlus.py
- Knn.py
- LinerModel.py
- Logistic.py
- MiniBatchKMeans.py
- Ngram.py
- OneHotCode.py
- PageRank.py
- RandomForst.py
- RegressionTree.py
- init.py
- config.py