Skip to content

Latest commit

 

History

History
66 lines (39 loc) · 4.15 KB

README.md

File metadata and controls

66 lines (39 loc) · 4.15 KB

Voice Clone 在对话时悄悄偷走你的声音

GPT-SoVITS(推荐)

感谢大家的开源贡献,我借鉴了当前开源的语音克隆模型 GPT-SoVITS,我认为效果是相当不错的,项目地址可参考https://github.com/RVC-Boss/GPT-SoVITS

他有以下功能:

  1. 零样本文本到语音(TTS): 输入 5 秒的声音样本,即刻体验文本到语音转换。
  2. 少样本 TTS: 仅需 1 分钟的训练数据即可微调模型,提升声音相似度和真实感。
  3. 跨语言支持: 支持与训练数据集不同语言的推理,目前支持英语、日语和中文。
  4. WebUI 工具: 集成工具包括声音伴奏分离、自动训练集分割、中文自动语音识别(ASR)和文本标注,协助初学者创建训练数据集和 GPT/SoVITS 模型。

之前很多方法都是少样本,比如OpenVoiceXTTS,我之前也想着使用他们来进行实现语音克隆部分,但是很遗憾的是,并没有感觉有很好的效果,其实XTTS还是不错的,如果我们简单用麦克风🎤说几句话作为参考来进行克隆,我觉得效果还是可以的。

但是如果遇到比较高的要求,我觉得可能就需要更好的模型,并且成本也要打压下来,所以我就看到了这个GPT-SoVITS,我觉得这个模型是相当厉害的,少样本的TTS能做,也能做跨语言支持,这样我们很有可能就可以体验到奥巴马讲中文之类的,这样就可以完成视频翻译的一些任务了,所以我是很推崇这样的简单微调,效果又好的方法的。

为了尊重作者,我并没有把GPT-SoVITS的全套代码搬过来,我写了一个关于语音克隆的类,大家可以将训练好的模型参数中,就可以在本项目使用经过语音克隆后的TTS了,希望大家玩的开心,玩的愉快。

如果使用语音克隆模型,可能需要python为3.10,pytorch为2.1左右可能比较好,我的环境已经测试过了,简单来说,先安装GPT-SoVITS的环境,再直接pip intsall -r requirements_app.txt即可使用

除此之外,还需要根据原作者的说明放入对应路径,我的预训练模型和存放位置已给出,可参考https://huggingface.co/Kedreamix/Linly-Talker

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
# 安装对应的依赖
pip install -r VITS/requirements_gptsovits.txt

# 启动如下的WebUI界面
python VITS/app.py 

Coqui XTTS

Coqui XTTS是一个领先的深度学习文本到语音任务(TTS语音生成模型)工具包,通过使用一段5秒钟以上的语音频剪辑就可以完成声音克隆将语音克隆到不同的语言。支持多种语言文本到语音转换,使其成为国际化应用的理想选择,这一特点特别适用于全球化的市场,其中需要生成多种语言的语音内容。所以在实验过程中,我也加入了这一部分,不过暂时使用的是默认的模型,并没有进行微调,个人认为是没有GPT-SoVITS经过微调后好的,但是其中的少样本五秒钟克隆语音还是值得称赞的。大家也可以在官方的在线体验,但是官方的可能会有生成语音限制,文字不能太长,但是还是足够我们体验了。

🐸TTS 是一个用于高级文本转语音生成的库。

🚀 超过 1100 种语言的预训练模型。

🛠️ 用于以任何语言训练新模型和微调现有模型的工具。

📚 用于数据集分析和管理的实用程序。

XTTS的环境也需要PyTorch 2.1所以,如果下载了GPT-SoVITS,也不妨体验一下XTTS的效果。

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

# 安装对应的依赖
pip install -r VITS/requirements_xtts.txt

# 启动如下的WebUI界面
python VITS/XTTS.py