forked from naoto0804/pytorch-AdaIN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·191 lines (159 loc) · 7.14 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
from pathlib import Path
import torch
import torch.nn as nn
from PIL import Image
from torchvision import transforms
from torchvision.utils import save_image
from tqdm import tqdm
import net
from function import adaptive_instance_normalization, coral
def test_transform(size, crop):
transform_list = []
if size != 0:
transform_list.append(transforms.Resize(size))
if crop:
transform_list.append(transforms.CenterCrop(size))
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
def style_transfer(vgg, decoder, content, style, alpha=1.0,
interpolation_weights=None):
assert (0.0 <= alpha <= 1.0)
content_f = vgg(content)
style_f = vgg(style)
if interpolation_weights:
_, C, H, W = content_f.size()
feat = torch.FloatTensor(1, C, H, W).zero_().to(device)
base_feat = adaptive_instance_normalization(content_f, style_f)
for i, w in enumerate(interpolation_weights):
feat = feat + w * base_feat[i:i + 1]
content_f = content_f[0:1]
else:
feat = adaptive_instance_normalization(content_f, style_f)
feat = feat * alpha + content_f * (1 - alpha)
return decoder(feat)
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content', type=str,
help='File path to the content image')
parser.add_argument('--content_dir', type=str,
help='Directory path to a batch of content images')
parser.add_argument('--style', type=str,
help='File path to the style image, or multiple style \
images separated by commas if you want to do style \
interpolation or spatial control')
parser.add_argument('--style_dir', type=str,
help='Directory path to a batch of style images')
parser.add_argument('--vgg', type=str, default='models/vgg_normalised.pth')
parser.add_argument('--decoder', type=str, default='models/decoder.pth')
# Additional options
parser.add_argument('--content_size', type=int, default=512,
help='New (minimum) size for the content image, \
keeping the original size if set to 0')
parser.add_argument('--style_size', type=int, default=512,
help='New (minimum) size for the style image, \
keeping the original size if set to 0')
parser.add_argument('--crop', action='store_true',
help='do center crop to create squared image')
parser.add_argument('--save_ext', default='.jpg',
help='The extension name of the output image')
parser.add_argument('--output', type=str, default='output',
help='Directory to save the output image(s)')
# Advanced options
parser.add_argument('--preserve_color', action='store_true',
help='If specified, preserve color of the content image')
parser.add_argument('--alpha', type=float, default=1.0,
help='The weight that controls the degree of \
stylization. Should be between 0 and 1')
parser.add_argument(
'--style_interpolation_weights', type=str, default='',
help='The weight for blending the style of multiple style images')
parser.add_argument('--key', type=str)
args = parser.parse_args()
import pandas
import os
path = 'input'
if args.key:
csv_path = f"input/EPFL_styles/landmark_style_pairs_{args.key}.csv"
df = pandas.read_csv(csv_path)
#img_path = [ os.path.join(path, img) for img in df['style_img_path'].to_list()]
#landmark_img_path = [ os.path.join(path, img) for img in df['landmark_img_path'].to_list()]
do_interpolation = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_dir = Path(args.output)
output_dir.mkdir(exist_ok=True, parents=True)
# Either --content or --contentDir should be given.
assert (args.content or args.content_dir or args.key)
if args.content:
content_paths = [Path(args.content)]
elif args.content_dir:
content_dir = Path(args.content_dir)
content_paths = [f for f in content_dir.glob('*')]
else:
output_dir = Path(f'input/EPFL_stylized/{args.key}')
content_paths = [ Path(os.path.join(path, 'EPFL_landmark', args.key, img)) for img in df['landmark_img_path'].to_list()]
# Either --style or --styleDir should be given.
assert (args.style or args.style_dir or args.key)
if args.style:
style_paths = args.style.split(',')
if len(style_paths) == 1:
style_paths = [Path(args.style)]
else:
do_interpolation = True
assert (args.style_interpolation_weights != ''), \
'Please specify interpolation weights'
weights = [int(i) for i in args.style_interpolation_weights.split(',')]
interpolation_weights = [w / sum(weights) for w in weights]
elif args.style_dir:
style_dir = Path(args.style_dir)
style_paths = [f for f in style_dir.glob('*')]
else:
style_paths = [ Path(os.path.join(path, 'EPFL_styles', args.key, img)) for img in df['style_img_path'].to_list()]
decoder = net.decoder
vgg = net.vgg
decoder.eval()
vgg.eval()
decoder.load_state_dict(torch.load(args.decoder))
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
vgg.to(device)
decoder.to(device)
content_tf = test_transform(args.content_size, args.crop)
style_tf = test_transform(args.style_size, args.crop)
print('All model downloaded')
for content_path, style_path in tqdm(zip(content_paths, style_paths)):
#print(content_path, style_path)
if do_interpolation: # one content image, N style image
style = torch.stack([style_tf(Image.open(str(p))) for p in style_paths])
content = content_tf(Image.open(str(content_path))) \
.unsqueeze(0).expand_as(style)
style = style.to(device)
content = content.to(device)
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha, interpolation_weights)
output = output.cpu()
output_name = output_dir / '{:s}_interpolation{:s}'.format(
content_path.stem, args.save_ext)
save_image(output, str(output_name))
else: # process one content and one style
try:
#print(os.listdir(output_dir))
output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
content_path.stem, style_path.stem, args.save_ext)
content = content_tf(Image.open(str(content_path)))
style = style_tf(Image.open(str(style_path)))
if args.preserve_color:
style = coral(style, content)
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha)
output = output.cpu()
#print(f'output {output.shape} saved {str(output_name)}')
save_image(output, str(output_name))
except Exception as e:
print(f"{e} for {content_path}, {style_path}")
print('Test function finished')