-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSolver.py
103 lines (102 loc) · 3.3 KB
/
Solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
E = 3*10**7
A = 3.14
mu = 0.3
FS = 1.5
Rho = 73*10**-5
class node:
node_id = None
x = None
y = None
def __init__(self,id,x,y,z):
self.node_id = id
self.x = x
self.y = y
self.z = z
class element:
element_id = None
first = None
second = None
length = None
element_stiffness_matrix = None
def calc_stiffness_matrix(self):
length = self.length
first = self.first
second = self.second
l = second.x - first.x
m = second.y - first.y
n = second.z - first.z
element_stiffness_matrix = (E*A/length)*np.matrix([[l**2,l*m,l*n,-1*l**2,-1*l*m,-1*l*n],[l*m,m**2,m*n,-1*l*m,-1*m**2,-1*m*n],[l*n,m*n,n**2,-1*l*n,-1*m*n,-1*n**2]])
print(element_stiffness_matrix)
return element_stiffness_matrix
def __init__(self,element_id,first,second):
self.first = first
self.second = second
self.length = np.sqrt((first.x-second.x)**2+(first.y-second.y)**2+(first.z-second.z)**2)
self.element_stiffness_matrix = self.calc_stiffness_matrix()
class truss:
elements = []
nodes = []
hinges = []
number_nodes = None
number_elements = None
global_stiffness_matrix = None
rhs = None
solution = None
def __init__(self,number_nodes,number_elements,number_hinges,number_forces):
self.number_nodes = number_nodes
self.number_elements = number_elements
nodes = []
elements = []
hinges = []
for i in range(number_nodes):
print('Node - ',i+1)
x = float(input('Enter the x-coordinate - '))
y = float(input('Enter the y-coordinate - '))
z = float(input('Enter the z-coordinate - '))
nodes.append(node(i+1,x,y,z))
self.nodes = nodes
for i in range(number_elements):
print('Element - ',i+1)
m = int(input('Enter the first node - '))
n = int(input('Enter the second node - '))
elements.append(element(i+1,nodes[m-1],nodes[n-1]))
self.elements = elements
print('Enter the hinges in the truss - ')
rhs = np.zeros(3*number_nodes)
for i in range(number_hinges):
x = int(input('Hinge Node - {} = '.format(i+1)))
hinges.append(x)
self.hinges = hinges
for i in range(number_forces):
print("Information of Force {}".format(i+1))
node_id = int(input("Enter the node on which the force is acting - "))
F = float(input('Magnitude of Force = '))
alpha = float(input('Enter the angle WRT to X-axis - '))
alpha = alpha*np.pi/180.0
phi = float(input('Enter the angle WRT to Z-axis - '))
phi = phi*np.pi/180.0
F_resolved = F*np.array([np.sin(phi)*np.cos(alpha),np.sin(phi)*np.sin(alpha),np.cos(phi)])
rhs[3*(node_id-1):3*node_id] = F_resolved
def form_stiffness_matrix(self):
number_nodes = self.number_nodes
number_elements = self.number_elements
elements = self.elements
global_stiffness_matrix = np.zeros((3*number_nodes,3*number_nodes))
for i in range(number_elements):
n1 = elements[i].first.node_id
n2 = elements[i].second.node_id
k1 = 3*(n1-1)
k2 = 3*n1-2
k3 = 3*n1-1
k4 = 3*(n2-1)
k5 = 3*(n2-2)
k6 = 3*(n2-3)
element_matrix = elements[i].element_stiffness_matrix
global_stiffness_matrix[k1:k3+1,k1:k3+1] += element_matrix[0:3,0:3]
global_stiffness_matrix[k1:k3+1,k4:k6+1] += element_matrix[0:3,3:6]
global_stiffness_matrix[k4:k6+1,k1:k3+1] += element_matrix[3:6,0:3]
global_stiffness_matrix[k4:k6+1,k4:k6+1] += element_matrix[3:6,3:6]
def solve(self):
self.form_stiffness_matrix()
truss(2,1,1,1).solve()