You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am getting 0.0 Fscore and the summaries generated are either 3 seconds long and wrong or theyre 30 seconds and vague (probably wrong too). log_test.txt log_train.txt
As you can see video_12 has a Fscore of 0.0% and also the FScores vary drastically. I followed the instructions but I cant seem to figure out what I did wrong. Any help is much appreciated.
The text was updated successfully, but these errors were encountered:
I am getting 0.0 Fscore and the summaries generated are either 3 seconds long and wrong or theyre 30 seconds and vague (probably wrong too).
log_test.txt
log_train.txt
Below are the contents of the log_train.txt file.
Args:Namespace(beta=0.01, dataset='datasets/eccv16_dataset_summe_google_pool5.h5', evaluate=False, gamma=0.1, gpu='0', hidden_dim=256, input_dim=1024, lr=1e-05, max_epoch=60, metric='summe', num_episode=5, num_layers=1, resume='', rnn_cell='lstm', save_dir='log/summe-split0', save_results=False, seed=1, split='datasets/summe_splits.json', split_id=0, stepsize=30, use_cpu=False, verbose=True, weight_decay=1e-05)
Currently using CPU
Initialize dataset datasets/eccv16_dataset_summe_google_pool5.h5
total videos 25. # train videos 20. # test videos 5
Initialize model
Model size: 2.62605M
==> Start training
epoch 1/60 reward 0.8963902491331102
epoch 2/60 reward 0.8972550570964813
epoch 3/60 reward 0.8970675492286683
epoch 4/60 reward 0.8971286928653719
epoch 5/60 reward 0.8963818806409837
epoch 6/60 reward 0.896572777032852
epoch 7/60 reward 0.8964594054222106
epoch 8/60 reward 0.896507331132889
epoch 9/60 reward 0.8974075722694396
epoch 10/60 reward 0.8957048553228377
epoch 11/60 reward 0.8968981993198394
epoch 12/60 reward 0.8965510278940201
epoch 13/60 reward 0.8972574228048324
epoch 14/60 reward 0.896853615641594
epoch 15/60 reward 0.8963686144351959
epoch 16/60 reward 0.8969772887229919
epoch 17/60 reward 0.8977362161874771
epoch 18/60 reward 0.8969273221492766
epoch 19/60 reward 0.8961024188995361
epoch 20/60 reward 0.8966317284107209
epoch 21/60 reward 0.8962920480966569
epoch 22/60 reward 0.8959967434406279
epoch 23/60 reward 0.8971632570028305
epoch 24/60 reward 0.8966683238744737
epoch 25/60 reward 0.8961001712083817
epoch 26/60 reward 0.8959629529714583
epoch 27/60 reward 0.8962142568826674
epoch 28/60 reward 0.896654149889946
epoch 29/60 reward 0.8972274744510651
epoch 30/60 reward 0.8969877260923385
epoch 31/60 reward 0.897369709610939
epoch 32/60 reward 0.8968648070096972
epoch 33/60 reward 0.8968213593959808
epoch 34/60 reward 0.8971809494495391
epoch 35/60 reward 0.8975461572408676
epoch 36/60 reward 0.8970616376399994
epoch 37/60 reward 0.896257193684578
epoch 38/60 reward 0.8968519711494446
epoch 39/60 reward 0.8967313235998153
epoch 40/60 reward 0.8973873049020767
epoch 41/60 reward 0.8970531791448593
epoch 42/60 reward 0.8969561916589738
epoch 43/60 reward 0.8972805547714232
epoch 44/60 reward 0.8977496469020844
epoch 45/60 reward 0.8977025932073592
epoch 46/60 reward 0.8980738395452498
epoch 47/60 reward 0.8963353443145753
epoch 48/60 reward 0.8971281045675278
epoch 49/60 reward 0.8968862169981003
epoch 50/60 reward 0.8971532964706421
epoch 51/60 reward 0.896593438386917
epoch 52/60 reward 0.8973712176084518
epoch 53/60 reward 0.8967011392116548
epoch 54/60 reward 0.8982456147670745
epoch 55/60 reward 0.897282282114029
epoch 56/60 reward 0.8965970069169996
epoch 57/60 reward 0.8967110335826873
epoch 58/60 reward 0.8953982496261597
epoch 59/60 reward 0.8963999301195145
epoch 60/60 reward 0.8975783979892731
==> Test
No. Video F-score
1 video_12 0.0%
2 video_15 55.1%
3 video_2 22.3%
4 video_5 29.7%
5 video_8 49.4%
Average F-score 31.3%
Finished. Total elapsed time (h:m:s): 0:24:16
Model saved to log/summe-split0\model_epoch60.pth.tar
Below are the contents of the log_test.txt file.
Args:Namespace(beta=0.01, dataset='datasets/eccv16_dataset_summe_google_pool5.h5', evaluate=True, gamma=0.1, gpu='0', hidden_dim=256, input_dim=1024, lr=1e-05, max_epoch=60, metric='summe', num_episode=5, num_layers=1, resume='log/summe-split0/model_epoch60.pth.tar', rnn_cell='lstm', save_dir='log/summe-split0', save_results=True, seed=1, split='datasets/summe_splits.json', split_id=0, stepsize=30, use_cpu=False, verbose=True, weight_decay=1e-05)
Currently using CPU
Initialize dataset datasets/eccv16_dataset_summe_google_pool5.h5
total videos 25. # train videos 20. # test videos 5
Initialize model
Model size: 2.62605M
Loading checkpoint from 'log/summe-split0/model_epoch60.pth.tar'
Evaluate only
==> Test
No. Video F-score
1 video_12 0.0%
2 video_15 55.1%
3 video_2 22.3%
4 video_5 29.7%
5 video_8 49.4%
Average F-score 31.3%
As you can see video_12 has a Fscore of 0.0% and also the FScores vary drastically. I followed the instructions but I cant seem to figure out what I did wrong. Any help is much appreciated.
The text was updated successfully, but these errors were encountered: