-
-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathrun_networks.py
705 lines (588 loc) · 31 KB
/
run_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
"""Copyright (c) Facebook, Inc. and its affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
Portions of the source code are from the OLTR project which
notice below and in LICENSE in the root directory of
this source tree.
Copyright (c) 2019, Zhongqi Miao
All rights reserved.
"""
import os
import copy
import pickle
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from tqdm import tqdm
from utils import *
from logger import Logger
import time
import numpy as np
import warnings
import pdb
from sklearn.decomposition import IncrementalPCA
class model ():
def __init__(self, config, data, test=False):
self.config = config
self.training_opt = self.config['training_opt']
self.data = data
self.test_mode = test
self.num_gpus = torch.cuda.device_count()
self.do_shuffle = config['shuffle'] if 'shuffle' in config else False
# Setup logger
self.logger = Logger(self.training_opt['log_dir'])
# init moving average
self.embed_mean = torch.zeros(int(self.training_opt['feature_dim'])).numpy()
self.mu = 0.9
# Initialize model
self.init_models()
# apply incremental pca
self.apply_pca = ('apply_ipca' in self.config) and self.config['apply_ipca']
if self.apply_pca:
print('==========> Apply Incremental PCA <=======')
self.pca = IncrementalPCA(n_components=self.config['num_components'], batch_size=self.training_opt['batch_size'])
# Load pre-trained model parameters
if 'model_dir' in self.config and self.config['model_dir'] is not None:
self.load_model(self.config['model_dir'])
# Under training mode, initialize training steps, optimizers, schedulers, criterions
if not self.test_mode:
# If using steps for training, we need to calculate training steps
# for each epoch based on actual number of training data instead of
# oversampled data number
print('Using steps for training.')
self.training_data_num = len(self.data['train'].dataset)
self.epoch_steps = int(self.training_data_num / self.training_opt['batch_size'])
# Initialize model optimizer and scheduler
print('Initializing model optimizer.')
self.init_optimizers(self.model_optim_params_dict)
self.init_criterions()
# Set up log file
self.log_file = os.path.join(self.training_opt['log_dir'], 'log.txt')
self.logger.log_cfg(self.config)
else:
self.log_file = None
def init_models(self, optimizer=True):
networks_defs = self.config['networks']
self.networks = {}
self.model_optim_params_dict = {}
self.model_optim_named_params = {}
print("Using", torch.cuda.device_count(), "GPUs.")
for key, val in networks_defs.items():
# Networks
def_file = val['def_file']
model_args = val['params']
model_args.update({'test': self.test_mode})
self.networks[key] = source_import(def_file).create_model(**model_args)
self.networks[key] = nn.DataParallel(self.networks[key]).cuda()
if 'fix' in val and val['fix']:
print('Freezing weights of module {}'.format(key))
for param_name, param in self.networks[key].named_parameters():
# Freeze all parameters except final fc layer
if 'fc' not in param_name:
param.requires_grad = False
print('=====> Freezing: {} | False'.format(key))
if 'fix_set' in val:
for fix_layer in val['fix_set']:
for param_name, param in self.networks[key].named_parameters():
if fix_layer == param_name:
param.requires_grad = False
print('=====> Freezing: {} | {}'.format(param_name, param.requires_grad))
continue
# Optimizer list
optim_params = val['optim_params']
self.model_optim_named_params.update(dict(self.networks[key].named_parameters()))
self.model_optim_params_dict[key] = {'params': self.networks[key].parameters(),
'lr': optim_params['lr'],
'momentum': optim_params['momentum'],
'weight_decay': optim_params['weight_decay']}
def init_criterions(self):
criterion_defs = self.config['criterions']
self.criterions = {}
self.criterion_weights = {}
for key, val in criterion_defs.items():
def_file = val['def_file']
loss_args = list(val['loss_params'].values())
self.criterions[key] = source_import(def_file).create_loss(*loss_args).cuda()
self.criterion_weights[key] = val['weight']
if val['optim_params']:
print('Initializing criterion optimizer.')
optim_params = val['optim_params']
optim_params = [{'params': self.criterions[key].parameters(),
'lr': optim_params['lr'],
'momentum': optim_params['momentum'],
'weight_decay': optim_params['weight_decay']}]
# Initialize criterion optimizer and scheduler
self.criterion_optimizer, \
self.criterion_optimizer_scheduler = self.init_optimizers(optim_params)
else:
self.criterion_optimizer = None
def init_optimizers(self, optim_params_dict):
'''
seperate backbone optimizer and classifier optimizer
by Kaihua
'''
networks_defs = self.config['networks']
self.model_optimizer_dict = {}
self.model_scheduler_dict = {}
for key, val in networks_defs.items():
# optimizer
if 'optimizer' in self.training_opt and self.training_opt['optimizer'] == 'adam':
print('=====> Using Adam optimizer')
optimizer = optim.Adam([optim_params_dict[key],])
else:
print('=====> Using SGD optimizer')
optimizer = optim.SGD([optim_params_dict[key],])
self.model_optimizer_dict[key] = optimizer
# scheduler
scheduler_params = val['scheduler_params']
if scheduler_params['coslr']:
print("===> Module {} : Using coslr eta_min={}".format(key, scheduler_params['endlr']))
self.model_scheduler_dict[key] = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer, self.training_opt['num_epochs'], eta_min=scheduler_params['endlr'])
elif scheduler_params['warmup']:
print("===> Module {} : Using warmup".format(key))
self.model_scheduler_dict[key] = WarmupMultiStepLR(optimizer, scheduler_params['lr_step'],
gamma=scheduler_params['lr_factor'], warmup_epochs=scheduler_params['warm_epoch'])
else:
self.model_scheduler_dict[key] = optim.lr_scheduler.StepLR(optimizer,
step_size=scheduler_params['step_size'],
gamma=scheduler_params['gamma'])
return
def show_current_lr(self):
max_lr = 0.0
for key, val in self.model_optimizer_dict.items():
lr_set = list(set([para['lr'] for para in val.param_groups]))
if max(lr_set) > max_lr:
max_lr = max(lr_set)
lr_set = ','.join([str(i) for i in lr_set])
print_str = ['=====> Current Learning Rate of model {} : {}'.format(key, str(lr_set))]
print_write(print_str, self.log_file)
return max_lr
def batch_forward(self, inputs, labels=None, feature_ext=False, phase='train'):
'''
This is a general single batch running function.
'''
# Calculate Features
self.features = self.networks['feat_model'](inputs)
if self.apply_pca:
if phase=='train' and self.features.shape[0] > 0:
self.pca.partial_fit(self.features.cpu().numpy())
else:
pca_feat = self.pca.transform(self.features.cpu().numpy())
pca_feat[:, 0] = 0.0
new_feat = self.pca.inverse_transform(pca_feat)
self.features = torch.from_numpy(new_feat).float().to(self.features.device)
# update moving average
if phase == 'train':
self.embed_mean = self.mu * self.embed_mean + self.features.detach().mean(0).view(-1).cpu().numpy()
# If not just extracting features, calculate logits
if not feature_ext:
# cont_eval = 'continue_eval' in self.training_opt and self.training_opt['continue_eval'] and phase != 'train'
self.logits, self.route_logits = self.networks['classifier'](self.features, labels, self.embed_mean)
def batch_backward(self, print_grad=False):
# Zero out optimizer gradients
for key, optimizer in self.model_optimizer_dict.items():
optimizer.zero_grad()
if self.criterion_optimizer:
self.criterion_optimizer.zero_grad()
# Back-propagation from loss outputs
self.loss.backward()
# display gradient
if self.training_opt['display_grad']:
print_grad_norm(self.model_optim_named_params, print_write, self.log_file, verbose=print_grad)
# Step optimizers
for key, optimizer in self.model_optimizer_dict.items():
optimizer.step()
if self.criterion_optimizer:
self.criterion_optimizer.step()
def batch_loss(self, labels):
self.loss = 0
# First, apply performance loss
if 'PerformanceLoss' in self.criterions.keys():
self.loss_perf = self.criterions['PerformanceLoss'](self.logits, labels)
self.loss_perf *= self.criterion_weights['PerformanceLoss']
self.loss += self.loss_perf
# Apply loss on Route Weights if set up
if 'RouteWeightLoss' in self.criterions.keys():
self.loss_route = self.criterions['RouteWeightLoss'](self.route_logits, labels)
self.loss_route = self.loss_route * self.criterion_weights['RouteWeightLoss']
# Add Route Weights loss to total loss
self.loss += self.loss_route
def shuffle_batch(self, x, y):
index = torch.randperm(x.size(0))
x = x[index]
y = y[index]
return x, y
def train(self):
# When training the network
print_str = ['Phase: train']
print_write(print_str, self.log_file)
time.sleep(0.25)
print_write(['Force shuffle in training??? --- ', self.do_shuffle], self.log_file)
# Initialize best model
best_model_weights = {}
best_model_weights['feat_model'] = copy.deepcopy(self.networks['feat_model'].state_dict())
best_model_weights['classifier'] = copy.deepcopy(self.networks['classifier'].state_dict())
best_acc = 0.0
best_epoch = 0
end_epoch = self.training_opt['num_epochs']
# Loop over epochs
for epoch in range(1, end_epoch + 1):
for key, model in self.networks.items():
# only train the module with lr > 0
if self.config['networks'][key]['optim_params']['lr'] == 0.0:
print_write(['=====> module {} is set to eval due to 0.0 learning rate.'.format(key)], self.log_file)
model.eval()
else:
model.train()
torch.cuda.empty_cache()
# Set model modes and set scheduler
# In training, step optimizer scheduler and set model to train()
for key, scheduler in self.model_scheduler_dict.items():
scheduler.step()
if self.criterion_optimizer:
self.criterion_optimizer_scheduler.step()
# Iterate over dataset
total_preds = []
total_labels = []
# indicate current path
print_write([self.training_opt['log_dir']], self.log_file)
# print learning rate
current_lr = self.show_current_lr()
current_lr = min(current_lr * 50, 1.0)
# scale the original mu according to the lr
if 'CIFAR' not in self.training_opt['dataset']:
self.mu = 1.0 - (1 - 0.9) * current_lr
for step, (inputs, labels, indexes) in enumerate(self.data['train']):
# Break when step equal to epoch step
if step == self.epoch_steps:
break
if self.do_shuffle:
inputs, labels = self.shuffle_batch(inputs, labels)
inputs, labels = inputs.cuda(), labels.cuda()
# If on training phase, enable gradients
with torch.set_grad_enabled(True):
# If training, forward with loss, and no top 5 accuracy calculation
self.batch_forward(inputs, labels, phase='train')
self.batch_loss(labels)
self.batch_backward(print_grad=(step % self.training_opt['display_grad_step'] == 0))
# Tracking predictions
_, preds = torch.max(self.logits, 1)
total_preds.append(torch2numpy(preds))
total_labels.append(torch2numpy(labels))
# Output minibatch training results
if step % self.training_opt['display_step'] == 0:
minibatch_loss_route = self.loss_route.item() \
if 'RouteWeightLoss' in self.criterions.keys() else None
minibatch_loss_perf = self.loss_perf.item() \
if 'PerformanceLoss' in self.criterions else None
minibatch_loss_total = self.loss.item()
minibatch_acc = mic_acc_cal(preds, labels)
print_str = ['Epoch: [%d/%d]'
% (epoch, self.training_opt['num_epochs']),
'Step: %5d'
% (step),
'Minibatch_loss_route: %.3f'
% (minibatch_loss_route) if minibatch_loss_route else '',
'Minibatch_loss_performance: %.3f'
% (minibatch_loss_perf) if minibatch_loss_perf else '',
'Minibatch_accuracy_micro: %.3f'
% (minibatch_acc)]
print_write(print_str, self.log_file)
loss_info = {
'Epoch': epoch,
'Step': step,
'Total': minibatch_loss_total,
'CE': minibatch_loss_perf,
'route': minibatch_loss_route,
}
self.logger.log_loss(loss_info)
# batch-level: sampler update
if hasattr(self.data['train'].sampler, 'update_weights'):
if hasattr(self.data['train'].sampler, 'ptype'):
ptype = self.data['train'].sampler.ptype
else:
ptype = 'score'
ws = get_priority(ptype, self.logits.detach(), labels)
inlist = [indexes.cpu().numpy(), ws]
if self.training_opt['sampler']['type'] == 'ClassPrioritySampler':
inlist.append(labels.cpu().numpy())
self.data['train'].sampler.update_weights(*inlist)
# epoch-level: reset sampler weight
if hasattr(self.data['train'].sampler, 'get_weights'):
self.logger.log_ws(epoch, self.data['train'].sampler.get_weights())
if hasattr(self.data['train'].sampler, 'reset_weights'):
self.data['train'].sampler.reset_weights(epoch)
# After every epoch, validation
rsls = {'epoch': epoch}
rsls_train = self.eval_with_preds(total_preds, total_labels)
rsls_eval = self.eval(phase='val')
rsls.update(rsls_train)
rsls.update(rsls_eval)
# Reset class weights for sampling if pri_mode is valid
if hasattr(self.data['train'].sampler, 'reset_priority'):
ws = get_priority(self.data['train'].sampler.ptype,
self.total_logits.detach(),
self.total_labels)
self.data['train'].sampler.reset_priority(ws, self.total_labels.cpu().numpy())
# Log results
self.logger.log_acc(rsls)
# Under validation, the best model need to be updated
if self.eval_acc_mic_top1 > best_acc:
best_epoch = epoch
best_acc = self.eval_acc_mic_top1
best_model_weights['feat_model'] = copy.deepcopy(self.networks['feat_model'].state_dict())
best_model_weights['classifier'] = copy.deepcopy(self.networks['classifier'].state_dict())
print('===> Saving checkpoint')
self.save_latest(epoch)
print()
print('Training Complete.')
print_str = ['Best validation accuracy is %.3f at epoch %d' % (best_acc, best_epoch)]
print_write(print_str, self.log_file)
# Save the best model
self.save_model(epoch, best_epoch, best_model_weights, best_acc)
# Test on the test set
self.reset_model(best_model_weights)
self.eval('test' if 'test' in self.data else 'val')
print('Done')
def eval_with_preds(self, preds, labels):
# Count the number of examples
n_total = sum([len(p) for p in preds])
# Split the examples into normal and mixup
normal_preds, normal_labels = [], []
mixup_preds, mixup_labels1, mixup_labels2, mixup_ws = [], [], [], []
for p, l in zip(preds, labels):
if isinstance(l, tuple):
mixup_preds.append(p)
mixup_labels1.append(l[0])
mixup_labels2.append(l[1])
mixup_ws.append(l[2] * np.ones_like(l[0]))
else:
normal_preds.append(p)
normal_labels.append(l)
# Calculate normal prediction accuracy
rsl = {'train_all':0., 'train_many':0., 'train_median':0., 'train_low': 0.}
if len(normal_preds) > 0:
normal_preds, normal_labels = list(map(np.concatenate, [normal_preds, normal_labels]))
n_top1 = mic_acc_cal(normal_preds, normal_labels)
n_top1_many, \
n_top1_median, \
n_top1_low, = shot_acc(normal_preds, normal_labels, self.data['train'])
rsl['train_all'] += len(normal_preds) / n_total * n_top1
rsl['train_many'] += len(normal_preds) / n_total * n_top1_many
rsl['train_median'] += len(normal_preds) / n_total * n_top1_median
rsl['train_low'] += len(normal_preds) / n_total * n_top1_low
# Calculate mixup prediction accuracy
if len(mixup_preds) > 0:
mixup_preds, mixup_labels, mixup_ws = \
list(map(np.concatenate, [mixup_preds*2, mixup_labels1+mixup_labels2, mixup_ws]))
mixup_ws = np.concatenate([mixup_ws, 1-mixup_ws])
n_top1 = weighted_mic_acc_cal(mixup_preds, mixup_labels, mixup_ws)
n_top1_many, \
n_top1_median, \
n_top1_low, = weighted_shot_acc(mixup_preds, mixup_labels, mixup_ws, self.data['train'])
rsl['train_all'] += len(mixup_preds) / 2 / n_total * n_top1
rsl['train_many'] += len(mixup_preds) / 2 / n_total * n_top1_many
rsl['train_median'] += len(mixup_preds) / 2 / n_total * n_top1_median
rsl['train_low'] += len(mixup_preds) / 2 / n_total * n_top1_low
# Top-1 accuracy and additional string
print_str = ['\n Training acc Top1: %.3f \n' % (rsl['train_all']),
'Many_top1: %.3f' % (rsl['train_many']),
'Median_top1: %.3f' % (rsl['train_median']),
'Low_top1: %.3f' % (rsl['train_low']),
'\n']
print_write(print_str, self.log_file)
return rsl
def eval(self, phase='val', save_feat=False):
print_str = ['Phase: %s' % (phase)]
print_write(print_str, self.log_file)
time.sleep(0.25)
torch.cuda.empty_cache()
# In validation or testing mode, set model to eval() and initialize running loss/correct
for model in self.networks.values():
model.eval()
self.total_logits = torch.empty((0, self.training_opt['num_classes'])).cuda()
self.total_labels = torch.empty(0, dtype=torch.long).cuda()
self.total_paths = np.empty(0)
feats_all, labels_all, idxs_all, logits_all = [], [], [], []
featmaps_all = []
# feature saving initialization
if save_feat:
self.saving_feature_with_label_init()
# Iterate over dataset
for inputs, labels, paths in tqdm(self.data[phase]):
inputs, labels = inputs.cuda(), labels.cuda()
# If on training phase, enable gradients
with torch.set_grad_enabled(False):
# In validation or testing
self.batch_forward(inputs, labels, phase=phase)
# feature saving update
if save_feat:
self.saving_feature_with_label_update(self.features, self.logits, labels)
self.total_logits = torch.cat((self.total_logits, self.logits))
self.total_labels = torch.cat((self.total_labels, labels))
self.total_paths = np.concatenate((self.total_paths, paths))
# feature saving export
if save_feat:
self.saving_feature_with_label_export()
probs, preds = F.softmax(self.total_logits.detach(), dim=1).max(dim=1)
# Calculate the overall accuracy and F measurement
self.eval_acc_mic_top1= mic_acc_cal(preds[self.total_labels != -1],
self.total_labels[self.total_labels != -1])
self.eval_f_measure = F_measure(preds, self.total_labels, theta=self.training_opt['open_threshold'])
self.many_acc_top1, \
self.median_acc_top1, \
self.low_acc_top1, \
self.cls_accs = shot_acc(preds[self.total_labels != -1],
self.total_labels[self.total_labels != -1],
self.data['train'],
acc_per_cls=True)
# Top-1 accuracy and additional string
print_str = ['\n\n',
'Phase: %s'
% (phase),
'\n\n',
'Evaluation_accuracy_micro_top1: %.3f'
% (self.eval_acc_mic_top1),
'\n',
'Averaged F-measure: %.3f'
% (self.eval_f_measure),
'\n',
'Many_shot_accuracy_top1: %.3f'
% (self.many_acc_top1),
'Median_shot_accuracy_top1: %.3f'
% (self.median_acc_top1),
'Low_shot_accuracy_top1: %.3f'
% (self.low_acc_top1),
'\n']
rsl = {phase + '_all': self.eval_acc_mic_top1,
phase + '_many': self.many_acc_top1,
phase + '_median': self.median_acc_top1,
phase + '_low': self.low_acc_top1,
phase + '_fscore': self.eval_f_measure}
if phase == 'val':
print_write(print_str, self.log_file)
else:
acc_str = ["{:.1f} \t {:.1f} \t {:.1f} \t {:.1f}".format(
self.many_acc_top1 * 100,
self.median_acc_top1 * 100,
self.low_acc_top1 * 100,
self.eval_acc_mic_top1 * 100)]
if self.log_file is not None and os.path.exists(self.log_file):
print_write(print_str, self.log_file)
print_write(acc_str, self.log_file)
else:
print(*print_str)
print(*acc_str)
if phase == 'test':
with open(os.path.join(self.training_opt['log_dir'], 'cls_accs.pkl'), 'wb') as f:
pickle.dump(self.cls_accs, f)
return rsl
def reset_model(self, model_state):
for key, model in self.networks.items():
weights = model_state[key]
weights = {k: weights[k] for k in weights if k in model.state_dict()}
model.load_state_dict(weights)
def load_model(self, model_dir=None):
model_dir = self.training_opt['log_dir'] if model_dir is None else model_dir
if 'CIFAR' in self.training_opt['dataset']:
# CIFARs don't have val set, so use the latest model
print('Validation on the latest model.')
if not model_dir.endswith('.pth'):
model_dir = os.path.join(model_dir, 'latest_model_checkpoint.pth')
print('Loading model from %s' % (model_dir))
checkpoint = torch.load(model_dir)
model_state = checkpoint['state_dict']
else:
print('Validation on the best model.')
if not model_dir.endswith('.pth'):
model_dir = os.path.join(model_dir, 'final_model_checkpoint.pth')
print('Loading model from %s' % (model_dir))
checkpoint = torch.load(model_dir)
model_state = checkpoint['state_dict_best']
for key, model in self.networks.items():
##########################################
# if loading classifier in training:
# 1. only tuning memory embedding
# 2. retrain the entire classifier
##########################################
if 'embed' in checkpoint:
print('============> Load Moving Average <===========')
self.embed_mean = checkpoint['embed']
if not self.test_mode and 'Classifier' in self.config['networks'][key]['def_file']:
if 'tuning_memory' in self.config and self.config['tuning_memory']:
print('=============== WARNING! WARNING! ===============')
print('========> Only Tuning Memory Embedding <========')
for param_name, param in self.networks[key].named_parameters():
# frezing all params only tuning memory_embeding
if 'embed' in param_name:
param.requires_grad = True
print('=====> Abandon Weight {} in {} from the checkpoints.'.format(param_name, key))
if param_name in model_state[key]:
del model_state[key][param_name]
else:
param.requires_grad = False
print('=====> Tuning: {} | {}'.format(str(param.requires_grad).ljust(5, ' '), param_name))
print('=================================================')
else:
# Skip classifier initialization
#print('================ WARNING! WARNING! ================')
print('=======> Load classifier from checkpoint <=======')
#print('===================================================')
#continue
weights = model_state[key]
weights = {k: weights[k] for k in weights if k in model.state_dict()}
x = model.state_dict()
x.update(weights)
if all([weights[k].sum().item() == x[k].sum().item() for k in weights if k in x]):
print('=====> All keys in weights have been loaded to the module {}'.format(key))
else:
print('=====> Error! Error! Error! Error! Loading failure in module {}'.format(key))
model.load_state_dict(x)
def save_latest(self, epoch):
model_weights = {}
model_weights['feat_model'] = copy.deepcopy(self.networks['feat_model'].state_dict())
model_weights['classifier'] = copy.deepcopy(self.networks['classifier'].state_dict())
model_states = {
'epoch': epoch,
'state_dict': model_weights,
'embed': self.embed_mean,
}
model_dir = os.path.join(self.training_opt['log_dir'],
'latest_model_checkpoint.pth')
torch.save(model_states, model_dir)
def save_model(self, epoch, best_epoch, best_model_weights, best_acc):
model_states = {'epoch': epoch,
'best_epoch': best_epoch,
'state_dict_best': best_model_weights,
'best_acc': best_acc,
'embed': self.embed_mean,}
model_dir = os.path.join(self.training_opt['log_dir'],
'final_model_checkpoint.pth')
torch.save(model_states, model_dir)
def output_logits(self):
filename = os.path.join(self.training_opt['log_dir'], 'logits')
print("Saving total logits to: %s.npz" % filename)
np.savez(filename,
logits=self.total_logits.detach().cpu().numpy(),
labels=self.total_labels.detach().cpu().numpy(),
paths=self.total_paths)
def saving_feature_with_label_init(self):
self.saving_feature_container = []
self.saving_logit_container = []
self.saving_label_container = []
def saving_feature_with_label_update(self, features, logits, labels):
self.saving_feature_container.append(features.detach().cpu())
self.saving_logit_container.append(logits.detach().cpu())
self.saving_label_container.append(labels.detach().cpu())
def saving_feature_with_label_export(self):
eval_features = {'features': torch.cat(self.saving_feature_container, dim=0).numpy(),
'labels': torch.cat(self.saving_label_container, dim=0).numpy(),
'logits': torch.cat(self.saving_logit_container, dim=0).numpy(),
}
eval_features_dir = os.path.join(self.training_opt['log_dir'],
'eval_features_with_labels.pth')
torch.save(eval_features, eval_features_dir)
print_write(['=====> Features with labels are saved as {}'.format(eval_features_dir)], self.log_file)