-
Notifications
You must be signed in to change notification settings - Fork 0
/
adventOfCode22d15.py
418 lines (336 loc) · 17 KB
/
adventOfCode22d15.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 19 15:23:57 2022
@author: xBubblex
"""
'''
NEED TO ALLOCATE SEPARATE ARRAYS FOR SENSOR + BEACON PAIRS.
'''
import re
import numpy as np
import random as rd
import functools as ft
def load_files():
fContent = []
with open("input15.txt") as f:
for (lineIndex, line) in enumerate(f): #loading the file into an np.array
if bool(line) and line != "\n":
fContent.append(line.strip("\n"))
return(fContent)
# print(load_files())
class Beacons():
def __init__(self, offset = [20, 20]):
self.raw = load_files()
self.data = {"sensors": [], "beacons": []}
self.board = np.array([])
self.translation = []
self.boardOffset = offset
self.preprocessingFinished = False
self.solution1 = 0
self.rowListOfHash = []
self.beacon = []
self.tuningFreq = 4000000
self.row = np.array([], dtype = int)
self.col = -1
def __create_board__(self, shape0 = 0, shape1 = 0):
self.board = np.empty((shape0 + self.boardOffset[0] * 2, shape1 + self.boardOffset[1] * 2), dtype = str)
self.board[ : , : ] = "."
return self
def __place_s_b__(self, key = "", data = ([0], [0])):
if key == "sensors":
self.board[data] = "S"
if key == "beacons":
self.board[data] = "B"
return self
def __board_offset__(self):
#list(dataForOffset)[0] print(list(zip(self.data["sensors"], self.data["beacons"])))
dataForOffset = zip(self.data["sensors"], self.data["beacons"])
# print(list(dataForOffset))
# for sensor, beacon in list(dataForOffset):
# print(sensor, beacon)
# print(list(dataForOffset)[0] == ([2, 18], [-2, 15]))
dataForOffsetList = list(dataForOffset)
# print(dataForOffsetList[0])
keyOffset = lambda sensorAndBeacon: abs(sensorAndBeacon[0][0] - sensorAndBeacon[1][0]) + abs(sensorAndBeacon[0][1] - sensorAndBeacon[1][1])
# print(keyOffset(dataForOffsetList[0]))
boardOffset = sum(max(dataForOffsetList, key = keyOffset))
# print(boardOffset)
# print(boardOffset)
self.boardOffset = [boardOffset + 1, boardOffset + 1]
def __ping__(self, sensor):
beaconFound = False
step = 0
SLocations = np.where(self.board == "S")
try:
pingedLocations = np.where(self.board == "#")
self.board[pingedLocations] = "."
except:
pass
while not beaconFound:
if step == 0:
# self.print_board()
directions = [[1, 0], [0, 1], [-1, 0], [0, -1]]
for direction in directions:
try:
if self.board[sensor[0] + direction[0], sensor[1] + direction[1]] == "B":
beaconFound = True
if self.board[sensor[0] + direction[0], sensor[1] + direction[1]] not in ["#", "B"]:
self.board[sensor[0] + direction[0], sensor[1] + direction[1]] = "#"
except IndexError:
pass
nextY, nextX = np.where(self.board == "#")
for nY, nX in zip(nextY, nextX):
for direction in directions:
try:
if self.board[nY + direction[0], nX + direction[1]] not in ["#", "B", ","]:
self.board[nY + direction[0], nX + direction[1]] = ","
except IndexError:
pass
# self.print_board()
step += 1
nextY, nextX = np.where(self.board == ",")
self.board[np.where(self.board == ",")] = "#"
if beaconFound == True:
break
for nY, nX in zip(nextY, nextX):
for direction in directions:
try:
if self.board[nY + direction[0], nX + direction[1]] not in ["#", "B", ","]:
self.board[nY + direction[0], nX + direction[1]] = ","
if self.board[nY + direction[0], nX + direction[1]] == "B":
beaconFound = True
except IndexError:
pass
self.board[np.where(self.board == ",")] = "#"
self.board[SLocations] = "S"
self.board[pingedLocations] = "#"
return self
def print_board(self):
for row in self.board:
for column in row:
print(column, end = "")
print()
print()
print()
def preprocess(self):
if self.preprocessingFinished:
self.data = {"sensors": [], "beacons": []}
self.board = np.array([])
self.translation = []
for line in self.raw:
line = line.split(": ")
line = {"sensors": line[0], "beacons": line[1]}
for key in self.data.keys():
data = []
readStart = line[key].index("=") + 1
readEnd = line[key].index(",")
data.append(int(line[key][readStart : readEnd]))
readStart = line[key][readEnd : ].index("=") + readEnd + 1
data.append(int(line[key][readStart : ]))
self.data[key].append(data)
allCoords = []
allCoords += self.data["sensors"]
allCoords += self.data["beacons"]
# print(allCoords)
# print(min(allCoords, key = lambda coords: coords[1])[1] - 1, min(allCoords, key = lambda coords: coords[0])[0] - 1)
boardShape0 = max(allCoords, key = lambda coords: coords[1])[1] - min(allCoords, key = lambda coords: coords[1])[1] * sign(min(allCoords, key = lambda coords: coords[1])[1]) - 1
boardShape1 = max(allCoords, key = lambda coords: coords[0])[0] - min(allCoords, key = lambda coords: coords[0])[0] * sign(min(allCoords, key = lambda coords: coords[0])[0]) - 1
print(boardShape0, boardShape1)
print(boardShape0, boardShape1)
self.__create_board__(boardShape0, boardShape1)
# print(self.board.shape)
self.__board_offset__()
midPointTranslation = [min([0, min(allCoords, key = lambda coords: coords[0])[0]]), min([0, min(allCoords, key = lambda coords: coords[1])[1]])]
midPointTranslation = [midPointTranslation[0] - self.boardOffset[1], midPointTranslation[1] - self.boardOffset[0]]
self.translation = [midPointTranslation[1], midPointTranslation[0]]
print("TRANSLATION", self.translation)
modifiedData = {}
for key in self.data.keys():
modifiedData[key] = np.array(self.data[key])
modifiedData[key] = (np.array(modifiedData[key][ : , 1]) - midPointTranslation[1], np.array(modifiedData[key][ : , 0]) - midPointTranslation[0])
# print(modifiedData[key])
self.__place_s_b__(key, modifiedData[key])
self.preprocessingFinished = True
return self
def ping_all(self):
self.preprocess()
# print("TRANSLATION", self.translation)
sensors = [[sensor[1] - self.translation[0], sensor[0] - self.translation[1]] for sensor in self.data["sensors"]]
# print("SENSORS", sensors)
for sensorIdx, sensor in enumerate(sensors):
self.__ping__([sensor[0], sensor[1]])
# if sensorIdx == 5:
# self.print_board()
return self
def ping_all_short(self, row = 10):
#self.data[key][n][0/1] = x/y position of the key for nth + 1 example,
yToCheck = row
return self
def __count_hash_in_row__(self, row = 10, mode = "count", rangeS = [0, 20]):
#Make one array with indices in rangeS and overwrite said indices with zeros when they are covered by sensors' range. Count zeros in array for a given row for
#first part. Find non-zero value in rangeSxrangeS for second part.
print("\rROW " + str(row), end = "")
if mode == "count":
self.rowListOfHash = np.array([], dtype = int)
dataForDistances = zip(self.data["sensors"], self.data["beacons"])
dataForDistancesList = list(dataForDistances)
for sAndB in dataForDistancesList:
sensorX = sAndB[0][0]
sensorY = sAndB[0][1]
# print(sensorX)
distance = lambda sensorAndBeacon: abs(sensorAndBeacon[0][0] - sensorAndBeacon[1][0]) + abs(sensorAndBeacon[0][1] - sensorAndBeacon[1][1])
threshold = sensorY + distance(sAndB) - row if row >= sensorY else row - (sensorY - distance(sAndB))
# print(threshold, distance(sAndB), sensorY)
if row in range(sensorY, sensorY + distance(sAndB) + 1):
# print("HASH", numHash)
# self.rowListOfHash += [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
toConcat = [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
self.rowListOfHash = np.concatenate((self.rowListOfHash, toConcat))
if row in range(sensorY - distance(sAndB), sensorY):
# self.rowListOfHash += [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
toConcat = [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
self.rowListOfHash = np.concatenate((self.rowListOfHash, toConcat))
self.rowListOfHash = list(set(self.rowListOfHash))
# print(self.rowListOfHash)
for beacon in self.data["beacons"]:
if beacon[1] == row: #and beacon[0] in range(rangeS[0], rangeS[1] + 1):
try:
self.rowListOfHash.pop(self.rowListOfHash.index(beacon[0]))
except:
pass
for sensor in self.data["sensors"]:
if sensor[1] == row: #and sensor[0] in range(rangeS[0], rangeS[1] + 1):
self.rowListOfHash.append(sensor[0])
self.rowListOfHash = np.array(list(set(self.rowListOfHash)))
# print(row, self.rowListOfHash)
self.solution1 = len(self.rowListOfHash.tolist()) if (mode == "count" or row == 10) else 0
if mode == "find":
# print("find")
toZeroFull = []
dataForDistances = zip(self.data["sensors"], self.data["beacons"])
dataForDistancesList = list(dataForDistances)
for sAndB in dataForDistancesList:
# print(sAndB)
sensorX = sAndB[0][0]
sensorY = sAndB[0][1]
# print(sensorX)
distance = lambda sensorAndBeacon: abs(sensorAndBeacon[0][0] - sensorAndBeacon[1][0]) + abs(sensorAndBeacon[0][1] - sensorAndBeacon[1][1])
threshold = sensorY + distance(sAndB) - row if row >= sensorY else row - (sensorY - distance(sAndB))
# print(threshold)
# print(threshold, distance(sAndB), sensorY)
# print(row in range(sensorY, sensorY + distance(sAndB) + 1), row in range(sensorY - distance(sAndB), sensorY))
if row in range(sensorY, sensorY + distance(sAndB) + 1):
# print("HASH", numHash)
# self.rowListOfHash += [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
toZero = [sensorX - threshold if sensorX - threshold >= 0 else 0, sensorX + threshold if sensorX + threshold <= rangeS[1] + 1 else rangeS[1] + 1]
toZeroFull += [toZero]
# self.row[toZero[0] : toZero[1] + 1] = -1
if row in range(sensorY - distance(sAndB), sensorY):
# self.rowListOfHash += [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
# toZero = [colIdx for colIdx in range(sensorX - threshold, sensorX + threshold + 1)]
toZero = [sensorX - threshold if sensorX - threshold >= 0 else 0, sensorX + threshold if sensorX + threshold <= rangeS[1] + 1 else rangeS[1] + 1]
toZeroFull += [toZero]
# while toZero[0] < 0:
# toZero.pop(0)
# while toZero[-1] > rangeS[1] + 1:
# toZero.pop(-1)
# self.row[toZero[0] : toZero[1] + 1] = -1
# print("ANY", any(np.array(self.row) != -1))
toZeroFull = sorted(toZeroFull, key = lambda toZero: toZero[1])
# print(toZeroFull)
def connect(lists):
newLists = []
elem = lists[0]
for lisT in lists:
if elem[1] in range(lisT[0], lisT[1] + 1):
elem = [min(elem[0], lisT[0]), lisT[1]]
# print("ELEM", elem)
else:
newLists.append(elem)
elem = [lisT[0], lisT[1]]
newLists.append(elem)
# print("NEW", newLists)
return newLists
while toZeroFull != connect(toZeroFull):
toZeroFull = connect(toZeroFull)
# print(len(toZeroFull))
toZeroFullDif = []
if len(toZeroFull) > 1:
for elemIdx, elem in enumerate(toZeroFull):
if elemIdx + 1 == len(toZeroFull):
break
toZeroFullDif.append(((toZeroFull[elemIdx + 1][0] - elem[1]) > 1) * (elem[1] + 1 ))
toZeroFullDif = np.array(toZeroFullDif)
# print(toZeroFullDif)
if any(toZeroFullDif > 0):
self.col = sum(toZeroFullDif)
# print(self.solution1, row)
return self
def preprocess_short(self):
#
if self.preprocessingFinished == True:
return self
if not self.preprocessingFinished:
self.data = {"sensors": [], "beacons": []}
self.board = np.array([])
self.translation = []
for line in self.raw:
line = line.split(": ")
line = {"sensors": line[0], "beacons": line[1]}
for key in self.data.keys():
data = []
readStart = line[key].index("=") + 1
readEnd = line[key].index(",")
data.append(int(line[key][readStart : readEnd]))
readStart = line[key][readEnd : ].index("=") + readEnd + 1
data.append(int(line[key][readStart : ]))
self.data[key].append(data)
allCoords = []
allCoords += self.data["sensors"]
allCoords += self.data["beacons"]
self.preprocessingFinished = True
return self
def find_short(self, row = 10, mode = "count", rangeS = [0, 20]):
# print("prep")
self.preprocess_short()
# print("count")
self.__count_hash_in_row__(row, mode, rangeS)
return self
def find_beacon(self, mode = "find", rangeS = [0, 20]):
self.tuningFreq = 4000000
for row in range(rangeS[0], rangeS[1] + 1):
# print(row)
if self.col != -1:
break
self.find_short(row, mode, rangeS)
# print(self.solution1)
# print(row)
if self.col != -1:
column = self.col
self.beacon = [row, column]
self.tuningFreq = int(self.tuningFreq) * int(self.beacon[1]) + int(self.beacon[0])
print("TUNING FREQ", self.tuningFreq, "\n", self.beacon)
return self
def find_where_it_isnt(self, row = 10):
row = row - self.translation[0]
# print([location in ["#"] for location in self.board[row, : ]])
# for rowV in range(row - 1, row + 2):
# for column in self.board[rowV]:
# print(column, end = "")
# print()
# print()
# print()
self.solution1 = sum([location in ["#"] for location in self.board[row, : ]])
print("SOLUTION 1: ", self.solution1)
return self
# a = "abbbccc"
# print(a[a.index("d") + 1])
def run():
beacons = Beacons()
# print("SOLUTION1", beacons.find_short(row = 2000000).solution1)
beacons.find_beacon(rangeS = [0, 4000000])
# beacons.find_beacon(rangeS = [0, 20])
print(run())
# a = np.arange(25).reshape((5, -1))
# print(np.where(a > 4))
# print(a[([1, 1], [0, 1])])