forked from BUPT-GAMMA/OpenHGNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.ini
889 lines (804 loc) · 13.5 KB
/
config.ini
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
[General]
learning_rate = 0.01
weight_decay = 0.0001
dropout = 0.2
seed = 0
hidden_dim = 64
max_epoch = 50
patience = 200
mini_batch_flag = False
[SHGP]
save_emb = store_true
dataset = mag
target_type = p
train_percent = 0.08
seed = 0
hidden_dim = [256,512]
epochs = 100
lr = 0.0005
l2_coef = 5e-4
type_fusion = att
type_att_size = 64
warm_epochs = 10
compress_ratio = 0.01
cuda = -1
[NSHE]
learning_rate = 0.001
weight_decay = 0.00001
beta = 0.05
seed = 0
norm_emd_flag = True
project_dim = 128
context_dim = 64
emd_dim = 128
num_e_neg = 1
num_ns_neg = 4
max_epoch = 500
patience = 10
optimizer = adam
mini_batch_flag = False
[GTN]
learning_rate = 0.005
weight_decay = 0.001
hidden_dim = 128
out_dim = 16
num_channels = 2
num_layers = 2
seed = 0
max_epoch = 50
patience = 10
identity = True
norm_emd_flag = True
adaptive_lr_flag = True
mini_batch_flag = False
[MHNF]
learning_rate = 0.05
weight_decay = 0.001
;Hidden layer dimension
hidden_dim = 64
;Number of classification type.
out_dim = 16
;Number of conv channels
num_channels = 2
;Length of hybrid metapath
num_layers = 2
seed = 0
max_epoch = 50
patience = 10
;If True, the identity matrix will be added to relation matrix set
identity = False
;If True, the adjacency matrix will be normalized.
norm_emd_flag = True
;If True, the learning rate can be adaptived
adaptive_lr_flag = True
mini_batch_flag = False
[RSHN]
learning_rate = 0.005
weight_decay = 0.001
dropout = 0.2
seed = 1233
;Hidden layer dimension
hidden_dim = 16
max_epoch = 500
rw_len = 4
batch_size = 1000
;Number of Nodes Layers applied
num_node_layer = 2
;Number of Edges Layers applied
num_edge_layer = 2
patience = 50
validation = True
mini_batch_flag = False
[RHGNN]
learning_rate = 0.001
num_heads = 8
hidden_dim = 64
relation_hidden_units = 8
drop_out = 0.5
num_layers = 2
residual = True
batch_size = 80
node_neighbors_min_num = 10
optimizer = adam
weight_decay = 0.0
max_epoch = 100
patience = 50
mini_batch_flag = True
negative_slope = 0.2
norm = True
dropout = 0.2
n_heads = 4
category = movie
out_dim = 3
use_uva = False
fanout = -1
[RGCN]
learning_rate = 0.01
weight_decay = 0.0001
dropout = 0.2
seed = 0
in_dim = 64
hidden_dim = 64
# number of weight matrix bases
n_bases = 40
num_layers = 3
max_epoch = 50
patience = 50
batch_size = 128
fanout = 4
validation = True
use_self_loop = False
mini_batch_flag = True
use_uva = True
[CompGCN]
learning_rate = 0.01
weight_decay = 0.0001
dropout = 0.2
seed = 0
num_layers = 2
in_dim = 32
hidden_dim = 32
out_dim = 32
;We restrict the number of hidden units to 32. from paper
max_epoch = 500
patience = 100
;sub(subtraction) mult(multiplication) ccorr(circular-correlation)
comp_fn = sub
validation = True
mini_batch_flag = True
batch_size = 128
fanout = 4
[HetGNN]
seed = 0
learning_rate = 0.001
weight_decay = 0.00001
dim = 128
max_epoch = 500
batch_size = 64
window_size = 5
num_workers = 4
batches_per_epoch = 50
rw_length = 50
rw_walks = 10
rwr_prob = 0.5
patience = 20
mini_batch_flag = True
[Metapath2vec]
learning_rate = 0.01
# embedding dimension
dim = 128
max_epoch = 1
batch_size = 512
# context window size on a walk trace
window_size = 5
num_workers = 4
# walk length of one random walk
rw_length = 20
# number of random walks per node
rw_walks = 10
# number of negative nodes per positive sample
neg_size = 5
seed = 0
# key of meta path defined in dataset
meta_path_key = APVPA
[HERec]
learning_rate = 0.01
# embedding dimension
dim = 128
max_epoch = 1
batch_size = 128
# context window size on a walk trace
window_size = 2
num_workers = 4
rw_length = 100
# number of random walks per node
rw_walks = 10
# number of negative nodes per positive sample
neg_size = 5
seed = 0
# key of meta path defined in dataset
meta_path_key = APVPA
[HAN]
seed = 0
learning_rate = 0.005
weight_decay = 0.001
dropout = 0.6
hidden_dim = 128
out_dim = 16
; number of attention heads
num_heads = 8
max_epoch = 200
patience = 100
mini_batch_flag = False
[RoHe]
seed = 0
learning_rate = 0.005
weight_decay = 0.001
dropout = 0.6
hidden_dim = 128
out_dim = 16
; number of attention heads
num_heads = 8
max_epoch = 200
patience = 100
mini_batch_flag = False
[NARS]
seed = 0
learning_rate = 0.003
weight_decay = 0.001
dropout = 0.7
hidden_dim = 64
out_dim = 16
num_heads = 8
num_hops = 2
max_epoch = 200
mini_batch_flag = False
R = 2
patience = 100
input_dropout = True
cpu_preprocess = True
ff_layer = 2
[MAGNN]
seed = 0
learning_rate = 0.005
weight_decay = 0.001
dropout = 0.3
hidden_dim = 64
out_dim = 3
inter_attn_feats = 128
;The number of attention heads
num_heads = 8
;The number of layers
num_layers = 4
;Maximum number of epoches
max_epoch = 10
patience = 30
;the type of encoder, e.g ['RotateE', 'Average', 'Linear']
encoder_type = RotateE
mini_batch_flag = False
batch_size = 8
num_samples = 5
[HGNN_AC]
feats_drop_rate = 0.2
attn_vec_dim = 32
feats_opt = 110
loss_lambda = 0.2
src_node_type = 2
dropout = 0.1
num_heads = 8
HIN = MAGNN
[HGT]
seed = 0
learning_rate = 0.001
weight_decay = 0.0001
dropout = 0.4
batch_size = 5120
patience = 40
hidden_dim = 64
out_dim = 16
num_layers = 2
num_heads = 8
num_workers = 64
max_epoch = 500
mini_batch_flag = True
fanout = 5
norm = True
use_uva = True
[HeCo]
seed = 2
hidden_dim = 64
max_epoch = 10000
eva_lr = 0.05
eva_wd = 0
patience = 5
learning_rate = 0.0008
weight_decay = 0
tau = 0.8
feat_drop = 0.3
attn_drop = 0.5
sample_rate = author-7_subject-1
lam = 0.5
mini_batch_flag = False
[DMGI]
seed = 0
learning_rate = 0.0005
weight_decay = 0.0001
sc = 3
dropout = 0.5
reg_coef = 0.001
sup_coef = 0.1
patience = 20
hidden_dim = 64
num_heads = 1
max_epoch = 10000
isSemi = False
isBias = False
isAttn = False
[SLiCE]
data_name = amazon
num_walks_per_node = 1
beam_width = 4
max_length = 6
walk_type = dfs
batch_size = 128
outdir = ./openhgnn/output/SLiCE/amazon/
pretrained_embeddings = ./openhgnn/output/SLiCE/amazon/amazon.embed
n_pred = 1
max_pred = 1
lr = 0.0001
n_epochs = 300
get_bert_encoder_embeddings = False
checkpoint = 20
path_option = shortest
ft_batch_size = 100
d_model = 200
ft_d_ff = 512
ft_layer = ffn
ft_drop_rate = 0.1
ft_input_option = last4_cat
ft_lr = 0.00005
ft_n_epochs = 200
num_layers = 6
ft_checkpoint = 1000
[HPN]
seed = 0
learning_rate = 0.005
weight_decay = 0.001
dropout = 0.6
k_layer = 2
alpha = 0.1
edge_drop = 0
hidden_dim = 64
out_dim = 16
max_epoch = 200
patience = 100
mini_batch_flag = False
[KGCN]
seed = 0
weight_decay = 1e-4
lr = 0.002
in_dim = 16
out_dim = 16
batch_size = 128
n_neighbor = 8
aggregate = SUM
n_relation = 60
n_user = 1872
# epoch_iter = 100
max_epoch = 100
mini_batch_flag = True
[HeGAN]
seed = 0
lr_gen = 0.001
lr_dis = 0.001
wd_gen = 1e-5
wd_dis = 1e-5
sigma = 1.0
n_sample = 16
max_epoch = 100
emb_size = 64
epoch_dis = 10
epoch_gen = 5
mini_batch_flag = False
validation = True
patience = 10
label_smooth = 0.05
[general_HGNN]
gnn_type = gcnconv
dropout = 0.5
has_bn = true
activation = tanh
has_l2norm = true
hidden_dim = 64
max_epoch = 400
lr = 0.01
optimizer = Adam
weight_decay = 0.0001
patience = 40
layers_gnn = 4
layers_post_mp = 1
layers_pre_mp = 1
stage_type = stack
macro_func = attention
num_heads = 8
feat = 0
subgraph_extraction = metapath
mini_batch_flag = false
[homo_GNN]
gnn_type = gcnconv
dropout = 0.5
has_bn = true
activation = tanh
has_l2norm = true
hidden_dim = 64
max_epoch = 400
lr = 0.01
optimizer = Adam
weight_decay = 0.0001
patience = 40
layers_gnn = 4
layers_post_mp = 1
layers_pre_mp = 1
stage_type = stack
num_heads = 8
feat = 0
subgraph = metapath
mini_batch_flag = false
[HDE]
emb_dim = 128
num_neighbor = 5
use_bias = true
k_hop = 2
max_epoch = 400
batch_size = 32
max_dist = 3
lr = 0.001
[SimpleHGN]
hidden_dim = 256
num_layers = 3
num_heads = 8
feats_drop_rate = 0.2
slope = 0.05
edge_dim = 64
seed = 0
max_epoch = 500
patience = 100
lr = 0.001
weight_decay = 5e-4
beta = 0.05
residual = True
mini_batch_flag = True
fanout = 5
batch_size = 2048
use_uva = True
[GATNE-T]
learning_rate = 0.01
patience = 2
max_epoch = 5
batch_size = 256
num_workers = 4
dim = 200
edge_dim = 10
att_dim = 20
rw_length = 10
rw_walks = 20
window_size = 5
neg_size = 5
neighbor_samples = 10
score_fn = dot-product
[HetSANN]
lr = 0.0001
weight_decay = 0.0005
dropout = 0.2
seed = 0
hidden_dim = 64
num_layers = 2
num_heads = 16
max_epoch = 10000
patience = 100
slope = 0.2
residual = True
mini_batch_flag = True
batch_size = 2048
fanout = 5
use_uva = True
[ieHGCN]
num_layers = 5
hidden_dim = 64
attn_dim = 32
out_dim = 16
patience = 100
seed = 0
lr = 0.001
weight_decay = 5e-4
max_epoch = 3500
mini_batch_flag = True
fanout = 10
batch_size = 512
dropout = 0.2
bias = True
batchnorm = True
[HGAT]
num_layers = 3
hidden_dim = 64
attn_dim = 32
num_classes = 16
negative_slope = 0.2
patience = 100
seed = 0
lr = 0.01
weight_decay = 5e-4
max_epoch = 350
[HGSL]
# acm4GTN & dblp4GTN
undirected_relations = author-paper,paper-subject
# yelp4HGSL
; undirected_relations = b-l,b-s,b-u
gnn_dropout = 0
fs_eps = 0.8
fp_eps = 0.2
mp_eps = 0.6
hidden_dim = 128
num_heads = 3
gnn_emd_dim = 128
lr = 0.001
weight_decay = 0.0001
max_epoch = 200
[TransE]
seed = 0
patience = 3
batch_size = 100
neg_size = 13
dis_norm = 1
margin = 4
hidden_dim = 400
optimizer = SGD
lr = 1
weight_decay = 0.0001
max_epoch = 50
score_fn = transe
filtered = filtered
valid_percent = 0.01
test_percent = 0.1
[TransH]
seed = 0
patience = 3
batch_size = 100
neg_size = 13
dis_norm = 1
margin = 4
hidden_dim = 400
optimizer = SGD
lr = 1
weight_decay = 0.0001
max_epoch = 50
score_fn = transh
filtered = filtered
valid_percent = 0.01
test_percent = 0.1
[TransR]
seed = 0
patience = 3
batch_size = 100
neg_size = 13
dis_norm = 1
margin = 4
ent_dim = 400
rel_dim = 400
optimizer = SGD
lr = 1
weight_decay = 0.0001
max_epoch = 50
score_fn = transr
filtered = filtered
valid_percent = 0.01
test_percent = 0.1
[TransD]
seed = 0
patience = 3
batch_size = 100
neg_size = 13
dis_norm = 1
margin = 4
ent_dim = 400
rel_dim = 400
optimizer = SGD
lr = 1
weight_decay = 0.0001
max_epoch = 50
score_fn = transd
filtered = filtered
valid_percent = 0.01
test_percent = 0.1
[GIE]
seed = 0
patience = 3
batch_size = 100
neg_size = 13
dis_norm = 1
margin = 4
hidden_dim = 400
optimizer = SGD
lr = 1
weight_decay = 0.0001
max_epoch = 50
score_fn = gie
filtered = filtered
valid_percent = 0.01
test_percent = 0.1
[GIN]
hidden_dim=64
input_dim=64
out_dim=3
num_layers = 2
batch_size=128
lr=0.01
weight_decay=0.0009
mini_batch_flag = True
max_epoch = 350
patience = 100
learn_eps = False
aggregate = sum
fanout = -1
[RGAT]
;Input tensor dimension
in_dim = 64
;The number of layers
num_layers = 3
;The dimension of hidden layers tensor
hidden_dim = 64
patience = 100
seed = 0
lr = 0.01
weight_decay = 5e-4
max_epoch = 350
dropout = 0.2
;The number of attention heads
num_heads = 3
;Output tensor dimension
out_dim = 3
[Rsage]
;Input tensor dimension
in_dim = 64
;The number of layers
num_layers = 3
;The dimension of hidden layers tensor
hidden_dim = 64
patience = 100
seed = 0
lr = 0.01
weight_decay = 5e-4
max_epoch = 350
dropout = 0.2
;The type of aggregator, can be 'pool' or 'mean' or 'lstm' or 'gcn'
aggregator_type = pool
;Output tensor dimension
out_dim = 3
[MG2VEC]
learning_rate = 0.001
max_epoch = 3
dim = 128
batch_size = 512
num_workers = 0
sample_num = 10
alpha = 0.5
seed = 0
[DHNE]
lr = 1e-2
embedding_sizes = 32
prefix_path = 'model'
hidden_size = 64
epochs_to_train = 10
max_epoch = 20
batch_size = 16
alpha = 1
num_neg_samples = 5
seed = 2002
dim_features = [64, 64, 64]
[DiffMG]
lr = 0.01
wd = 0.001
dropout = 0.6
embedding_sizes = 64
max_epoch = 200
hidden_dim = 64
Amazon_train_seed = 1
Amazon_preprocess_seed = 3
Amazon_gen_neg_seed = 4
Amazon_search_seed = 0
attn_dim = 64
use_norm = True
out_nl = True
mini_batch_flag = False
search_lr = 0.01
search_wd = 0.001
search_alr = 3e-4
search_steps_s = 4
search_steps_t = 4
search_epochs = 100
search_eps= 0.5
search_decay = 0.9
[MeiREC]
lr = 0.001
weight_decay = 0.00001
vocab_size = 280000
train_epochs = 25
batch_num = 512
num_workers = 8
val_frequency = 1
save_frequency = 2
[AEHCL]
lr = 0.001
hidden_dim = 64
weight_intra_pair = 1.0
weight_intra_multi = 0.8
weight_inter = 0.2
num_of_attention_heads = 4
t = 1.0
batch_size = 64
weight_decay = 0
eval_epoch = 1
max_epoch = 6
neg_num = 10
[KGAT]
lr = 0.0001
max_epoch = 1000
stopping_steps = 20
;0: No pretrain, 1: Pretrain with the learned embeddings, 2: Pretrain with stored model.
use_pretrain = 1
seed = 2023
;Specify the type of the aggregation layer from {gcn, graphsage, bi-interaction}.
aggregation_type = bi-interaction
;User / entity Embedding size.
entity_dim = 64
;Relation Embedding size.
relation_dim = 64
;Output sizes of every aggregation layer.
conv_dim_list = [64, 32, 16]
;Dropout probability w.r.t. message dropout for each deep layer. 0: no dropout.
mess_dropout = [0.1, 0.1, 0.1]
cf_l2loss_lambda = 1e-5
kg_l2loss_lambda = 1e-5
cf_batch_size = 1024
kg_batch_size = 1024
test_batch_size = 1024
multi_gpu = False
;Calculate metric@K when evaluating.
K = 20
[DSSL]
epochs = 200
lr = 0.001
weight_decay = 1e-3
hidden_channels = 64
num_layers = 2
dropout = 0.5
normalize_features = True
seed = 0
display_step = 25
train_prop = 0.48
valid_prop = 0.32
batch_size = 1024
rand_split = True
embedding_dim = 10
neighbor_max = 5
cluster_num = 6
no_bn = False
alpha = 1
gamma =0.1
entropy = 0.0
tau =0.99
encoder = GCN
mlp_bool = 1
tao = 1
beta = 1
mlp_inference_bool = 1
neg_alpha = 0
load_json = 0
[HGCL]
batch = 8192
epochs = 400
wu1 = 0.8
wu2 = 0.2
wi1 = 0.8
wi2 = 0.2
lr = 0.055
topk = 10
hide_dim = 32
metareg = 0.15
ssl_temp = 0.5
ssl_ureg = 0.04
ssl_ireg = 0.05
ssl_reg = 0.01
ssl_beta = 0.32
rank = 3
Layers = 2
reg = 0.043
[lightGCN]
lr = 0.001
weight_decay = 0.0001
max_epoch = 1000
batch_size = 1024
embedding_size = 64
num_layers = 3
test_u_batch_size = 100
topks = 20