forked from seongjunyun/Graph_Transformer_Networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgcn.py
117 lines (92 loc) · 4.3 KB
/
gcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
from torch.nn import Parameter
from torch_scatter import scatter_add
from torch_geometric.nn.conv.message_passing import MessagePassing
from torch_geometric.utils import add_self_loops
from inits import glorot, zeros
class GCNConv(MessagePassing):
r"""The graph convolutional operator from the `"Semi-supervised
Classfication with Graph Convolutional Networks"
<https://arxiv.org/abs/1609.02907>`_ paper
.. math::
\mathbf{X}^{\prime} = \mathbf{\hat{D}}^{-1/2} \mathbf{\hat{A}}
\mathbf{\hat{D}}^{-1/2} \mathbf{X} \mathbf{\Theta},
where :math:`\mathbf{\hat{A}} = \mathbf{A} + \mathbf{I}` denotes the
adjacency matrix with inserted self-loops and
:math:`\hat{D}_{ii} = \sum_{j=0} \hat{A}_{ij}` its diagonal degree matrix.
Args:
in_channels (int): Size of each input sample.
out_channels (int): Size of each output sample.
improved (bool, optional): If set to :obj:`True`, the layer computes
:math:`\mathbf{\hat{A}}` as :math:`\mathbf{A} + 2\mathbf{I}`.
(default: :obj:`False`)
cached (bool, optional): If set to :obj:`True`, the layer will cache
the computation of :math:`{\left(\mathbf{\hat{D}}^{-1/2}
\mathbf{\hat{A}} \mathbf{\hat{D}}^{-1/2} \right)}`.
(default: :obj:`False`)
bias (bool, optional): If set to :obj:`False`, the layer will not learn
an additive bias. (default: :obj:`True`)
"""
def __init__(self,
in_channels,
out_channels,
improved=False,
cached=False,
bias=True,
args=None):
super(GCNConv, self).__init__('add', flow='target_to_source')
self.in_channels = in_channels
self.out_channels = out_channels
self.improved = improved
self.cached = cached
self.cached_result = None
self.weight = Parameter(torch.Tensor(in_channels, out_channels))
if bias:
self.bias = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias', None)
self.args = args
self.reset_parameters()
def reset_parameters(self):
glorot(self.weight)
zeros(self.bias)
self.cached_result = None
@staticmethod
def norm(edge_index, num_nodes, edge_weight, improved=False, dtype=None, args=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ),
dtype=dtype,
device=edge_index.device)
edge_weight = edge_weight.view(-1)
assert edge_weight.size(0) == edge_index.size(1)
edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)
loop_weight = torch.full((num_nodes, ),
1 if not args.remove_self_loops else 0,
dtype=edge_weight.dtype,
device=edge_weight.device)
edge_weight = torch.cat([edge_weight, loop_weight], dim=0)
row, col = edge_index
# deg = scatter_add(edge_weight, col, dim=0, dim_size=num_nodes)
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-1)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
# return edge_index, (deg_inv_sqrt[col] ** 0.5) * edge_weight * (deg_inv_sqrt[row] ** 0.5)
return edge_index, deg_inv_sqrt[row] * edge_weight
def forward(self, x, edge_index, edge_weight=None):
""""""
x = torch.matmul(x, self.weight)
if not self.cached or self.cached_result is None:
edge_index, norm = self.norm(edge_index, x.size(0), edge_weight,
self.improved, x.dtype, args=self.args)
self.cached_result = edge_index, norm
edge_index, norm = self.cached_result
return self.propagate(edge_index, x=x, norm=norm)
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
def update(self, aggr_out):
if self.bias is not None:
aggr_out = aggr_out + self.bias
return aggr_out
def __repr__(self):
return '{}({}, {})'.format(self.__class__.__name__, self.in_channels,
self.out_channels)