-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathschedule_generator.py
447 lines (403 loc) · 13.3 KB
/
schedule_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import pickle
import numpy as np
from pyomo.opt import SolverFactory
from components.target import Target
from components.grid import Grid
from load_import import load_obj
from indexed_model import IndexedModel
from components.converter import Converter
from components.storage import Storage
from redis_utils import *
from Daten.results.plotter import plot_load_comparison
facility_names = [
"chp",
"Electrolyseur",
"Battery",
"methanization",
]
name_to_id = {
"chp": "1",
"Electrolyseur": "2",
"Battery": "3",
"Gasstorage": "4",
"methanization": "6",
"Lastreihe": "10",
}
# Specific energy of methane mwhH/kg
METHANE_ENERGY = 15.4 / 1000
# Specific energy of hydrogen mwH/kg
H2_ENERGY = 0.039389
# Weights for the optimization
INCOME_WEIGHT = 0.4
FULFILLMENT_WEIGHT = 0.6
# Cost for CO2 in €/kg (certificates from 2021)
pr_CO2 = 25 / 1000
# Conversion factor from CH4 to CO2
CH4_to_CO2 = (44 / 16) * (1 / METHANE_ENERGY)
# Values from the evaluation.csv
PEAK_RMSD = 1.0693029029
MIN_INCOME = -26875.717205459492
MAX_INCOME = 7954.206175268439
def get_gas_price(timeframe, step_length):
data = load_obj("Daten/Gasdemand_test.pkl")
times = data["time"]
prices = data["Price"]
result = []
prev_time = 0
for time, price in zip(times, prices):
while prev_time < time and prev_time < timeframe * step_length:
result.append(price * 1000) # €/kwh to €/mwH
prev_time += step_length
if prev_time > timeframe * step_length:
break
return result
def get_electricity_price(timeframe, step_length):
data = load_obj("Daten/electricity_grid_04-11_04_2022.pkl")
times = data["time"]
prices = data["price"]
result = []
prev_time = 0
for time, price in zip(times, prices):
while prev_time < time and prev_time < timeframe * step_length:
result.append(price * 10) # cent/kwH to €/mwH
prev_time += step_length
if prev_time > timeframe * step_length:
break
return result
def model_from_facility_parameters(parameters, timeframe, step_length):
"""
parameters: systemvalues from simulation
timeframe: number of steps to be simulated (needs to be the same in EMS)
step_length: length of a time step in seconds (also currently the same as in EMS)
"""
model = IndexedModel(index=range(0, timeframe))
heat_price = get_gas_price(timeframe, step_length)
print("initiated models")
chp_params = parameters["parameters"]["BHKW"]["metadata"]
chp = Converter(
name="chp",
max_powers={"electricity": chp_params["P_max_KWK"] / 1000000},
min_powers={"electricity": chp_params["P_min_KWK"] / 1000000},
conversion_factors={"methane": 0.43, "electricity": 1},
input_types=["methane"],
output_types=["electricity"],
ramp_up=chp_params["t_startup"],
ramp_down=1,
heat_price=heat_price,
is_chp=True,
thermic_efficiency=0.423,
pr_CO2=pr_CO2,
CH4_to_CO2=CH4_to_CO2,
step_length=step_length,
)
model.add_device(chp)
electrolysis_params = parameters["parameters"]["Electrolyseur"]
electrolysis = Converter(
name="Electrolyseur",
max_powers={
"h2": electrolysis_params["input"]["Eta_PEM"]
* electrolysis_params["input"]["P_max_PEM"]
/ 1000000
},
min_powers={"h2": 0.31 * 0.73},
conversion_factors={
"h2": 1,
"electricity": electrolysis_params["input"]["Eta_PEM"],
},
input_types=["electricity"],
output_types=["h2"],
ramp_up=electrolysis_params["input"]["t_ramp_PEM"],
ramp_down=1,
step_length=step_length,
)
model.add_device(electrolysis)
methanization_params = parameters["parameters"]["Methanation"]
methanization = Converter(
name="methanization",
max_powers={"methane": (methanization_params["input"]["P_max_meth"]) / 1000000},
min_powers={"methane": methanization_params["input"]["P_min_meth"] / 1000000},
input_types=["h2"],
output_types=["methane"],
ramp_up=methanization_params["input"]["t_ramp_meth"],
ramp_down=1,
pr_CO2=pr_CO2,
CH4_to_CO2=CH4_to_CO2,
conversion_factors={
"methane": 1,
"h2": 0.25 * H2_ENERGY * 62.3 * (1 / METHANE_ENERGY) * (1 / 496),
}, # mol * mwh/kg * kg/mol * kg/mwH * mol/kg
step_length=step_length,
)
# 62.3 kg/mol methane
# 496 kg/mol h2
model.add_device(methanization)
print("added converters")
h2_storage = Storage(
name="h2_storage",
max_charging_power=1,
max_discharging_power=2,
capacity=10,
input_types=["h2"],
charging_efficiency=1,
step_length=step_length,
initial_charge=0,
)
model.add_device(h2_storage)
battery_params = parameters["parameters"]["Battery"]["input"]
battery = Storage(
name="Battery",
max_charging_power=battery_params["P_max_Bat"] / 1000000,
max_discharging_power=battery_params["P_max_Bat"] / 1000000,
capacity=battery_params["EBat"] / 3600000000, # Joule to mwh
initial_charge=battery_params["EBat"] / 3600000000 / 2,
charging_efficiency=battery_params["eta_Bat"],
input_types=["electricity"],
step_length=step_length,
)
model.add_device(battery)
gas_storage = Storage(
name="Gasstorage",
max_charging_power=0.27 * METHANE_ENERGY * step_length,
max_discharging_power=0.27 * METHANE_ENERGY * step_length,
capacity=1500 * METHANE_ENERGY,
initial_charge=750 * METHANE_ENERGY,
charging_efficiency=1,
input_types=["methane"],
step_length=step_length,
)
model.add_device(gas_storage)
print("added storage")
return model
def add_prices_to_model(model, timeframe, step_length):
"""
Reads data from the grid files to get
energy prices for the Model
"""
gas_price = get_gas_price(timeframe, step_length)
gas_network = Grid(
"gas_grid",
max_buying_power=-1000,
max_selling_power=1000,
energy_cost={"methane": gas_price},
types=["methane"],
step_length=step_length,
)
model.add_device(gas_network)
h2_price = [5.95 / H2_ENERGY for _ in range(timeframe)]
h2_network = Grid(
"h2grid",
max_buying_power=-1000,
max_selling_power=0,
energy_cost={"h2": h2_price},
types=["h2"],
step_length=step_length,
)
model.add_device(h2_network)
return model
def add_target_to_model(model, timeframe, step_length):
"""
Reads the demand file to get the target for the energy hub
"""
data = load_obj("Daten/Lastreihe_CN_04-11_04_2022.pkl")
times = data["time"][1:]
load_series = data["Lastreihe"][1:]
result = []
for time, load in zip(times, load_series):
if time > timeframe * step_length:
break
result.append(-load / 1000000)
electricity_prices = get_electricity_price(timeframe, step_length)
target = Target(
"target",
time_series=result,
types=["electricity"],
electricity_prices=electricity_prices,
step_length=step_length,
)
model.add_device(target)
return model
def solve_model(
timeframe,
values,
step_length,
income_weight,
fulfillment_weight,
max_mean_deviation,
min_mean_deviation,
max_income,
min_income,
):
"""
:param timeframe: Number of steps
:param values: Systemvalues to use
:param step_length Number of seconds per step
"""
print("received values")
model = model_from_facility_parameters(values, timeframe, step_length)
print("generated facilities")
model = add_prices_to_model(model, timeframe, step_length)
print("added prices")
model = add_target_to_model(model, timeframe, step_length)
print("added target")
model.set_objective_with_weights(
income_weight=income_weight,
fulfillment_weight=fulfillment_weight,
step_length=step_length,
max_mean_deviation=max_mean_deviation,
min_mean_deviation=min_mean_deviation,
min_income=min_income,
max_income=max_income,
)
print("objective created")
model.generate_power_balance()
print("power balance created")
gurobi = SolverFactory("gurobi", solver_io="python")
print("starting to solve")
result = gurobi.solve(model, report_timing=True)
print(result)
print("income dof, sum (€)", model.income_dof(), model.income_sum())
print(
"target dof mean squared",
model.fulfillment_dof(),
"| sum (mean_deviation, mwH^2)",
model.mean_deviation(),
)
return model
def extract_schedule_from_result(model):
schedule = {}
for facility in facility_names:
if facility == "Battery":
setpoints = [
value
for _, value in model.get_attribute_by_name(facility, "setpoint")
.extract_values()
.items()
]
is_charging = [
value
for _, value in model.get_attribute_by_name(facility, "is_charging")
.extract_values()
.items()
]
schedule[facility] = [
(-setpoint) if charging else (setpoint)
for (setpoint, charging) in zip(setpoints, is_charging)
]
else:
schedule[facility] = [
value
for _, value in model.get_attribute_by_name(facility, "setpoint")
.extract_values()
.items()
]
return schedule
def create_fake_activity_matrix(schedule):
"""
Creates an empty activity matrix in the same format as gleam would use (to send to the EMS)
"""
matrix = [
{
"planID": 0,
"childID": 0,
"NrOfGenes": 0,
"resourcePlan": [
{
"resourceID": name_to_id[facility],
"powerGeneration": schedule[facility],
}
for facility in schedule
],
}
]
return matrix
def connect_and_schedule(timeframe, step_length, filename):
data = load_obj("Daten/Lastreihe_CN_04-11_04_2022.pkl")
times = data["time"]
load_series = data["Lastreihe"]
target = []
for time, load in zip(times, load_series):
if time > timeframe * 900:
break
target.append(load / 1000000)
redis, system = engage_redis(cluster=False, channel="Systemvalues")
values = wait_for_stream(system)
print(values)
model = multi_step_optimization(timeframe, values, step_length)
milp_schedule = extract_schedule_from_result(model)
matrix = create_fake_activity_matrix(milp_schedule)
send_redis(matrix, redis)
milp_result = model.get_attribute_by_name(
"target", "electricity_power"
).extract_values()
milp_result = [-milp_result[t] for t in range(timeframe)]
redis, r_schedule = engage_redis(cluster=False, channel="Schedule")
ems_schedule = wait_for_stream(r_schedule)
print("got schedule")
combined_schedule = {
"milp_power": milp_result,
"milp_schedule": milp_schedule,
"ems": ems_schedule,
}
with open("Daten/results/" + filename, "w") as f:
json.dump(combined_schedule, f)
plot_load_comparison(milp=milp_result, milp_ems=ems_schedule, systemvalues=values)
model_values = model.values()
def single_step_optimization(timeframe, values, target):
model = solve_model(
timeframe,
values,
900,
income_weight=INCOME_WEIGHT,
fulfillment_weight=FULFILLMENT_WEIGHT,
max_mean_deviation=PEAK_RMSD,
min_mean_deviation=0,
min_income=MIN_INCOME,
max_income=MAX_INCOME,
)
return model
def multi_step_optimization(timeframe, values, step_length):
"""
Test if better performance possible when using own prediction for optimal incomes and deviation
"""
model = solve_model(
timeframe,
values,
step_length,
income_weight=0,
fulfillment_weight=1,
max_mean_deviation=PEAK_RMSD,
min_mean_deviation=0,
min_income=MIN_INCOME,
max_income=MAX_INCOME,
)
minimum_income_result = model.income_sum()
min_mean_deviation = model.mean_deviation()
print("min_mean_deviation", min_mean_deviation)
print("min_income", minimum_income_result)
model = solve_model(
timeframe,
values,
step_length,
income_weight=1,
fulfillment_weight=0,
max_mean_deviation=PEAK_RMSD,
min_mean_deviation=min_mean_deviation,
min_income=MIN_INCOME,
max_income=MAX_INCOME,
)
max_income_result = model.income_sum()
max_mean_deviation = model.mean_deviation()
print("optimum_income", max_income_result)
print("peak_deviation", max_mean_deviation)
model = solve_model(
timeframe,
values,
step_length,
income_weight=INCOME_WEIGHT,
fulfillment_weight=FULFILLMENT_WEIGHT,
max_mean_deviation=max_mean_deviation,
min_mean_deviation=min_mean_deviation,
min_income=minimum_income_result,
max_income=max_income_result,
)
return model