forked from neo4j-contrib/neo4j-graph-algorithms
-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.html
6110 lines (6094 loc) · 288 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<!--[if IE]><meta http-equiv="X-UA-Compatible" content="IE=edge"><![endif]-->
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="generator" content="Asciidoctor 1.5.3">
<title>Neo4j Graph Algorithms</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Open+Sans:300,300italic,400,400italic,600,600italic%7CNoto+Serif:400,400italic,700,700italic%7CDroid+Sans+Mono:400,700">
<style>
/* Asciidoctor default stylesheet | MIT License | http://asciidoctor.org */
/* Remove comment around @import statement below when using as a custom stylesheet */
/*@import "https://fonts.googleapis.com/css?family=Open+Sans:300,300italic,400,400italic,600,600italic%7CNoto+Serif:400,400italic,700,700italic%7CDroid+Sans+Mono:400,700";*/
article,aside,details,figcaption,figure,footer,header,hgroup,main,nav,section,summary{display:block}
audio,canvas,video{display:inline-block}
audio:not([controls]){display:none;height:0}
[hidden],template{display:none}
script{display:none!important}
html{font-family:sans-serif;-ms-text-size-adjust:100%;-webkit-text-size-adjust:100%}
body{margin:0}
a{background:transparent}
a:focus{outline:thin dotted}
a:active,a:hover{outline:0}
h1{font-size:2em;margin:.67em 0}
abbr[title]{border-bottom:1px dotted}
b,strong{font-weight:bold}
dfn{font-style:italic}
hr{-moz-box-sizing:content-box;box-sizing:content-box;height:0}
mark{background:#ff0;color:#000}
code,kbd,pre,samp{font-family:monospace;font-size:1em}
pre{white-space:pre-wrap}
q{quotes:"\201C" "\201D" "\2018" "\2019"}
small{font-size:80%}
sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}
sup{top:-.5em}
sub{bottom:-.25em}
img{border:0}
svg:not(:root){overflow:hidden}
figure{margin:0}
fieldset{border:1px solid silver;margin:0 2px;padding:.35em .625em .75em}
legend{border:0;padding:0}
button,input,select,textarea{font-family:inherit;font-size:100%;margin:0}
button,input{line-height:normal}
button,select{text-transform:none}
button,html input[type="button"],input[type="reset"],input[type="submit"]{-webkit-appearance:button;cursor:pointer}
button[disabled],html input[disabled]{cursor:default}
input[type="checkbox"],input[type="radio"]{box-sizing:border-box;padding:0}
input[type="search"]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}
input[type="search"]::-webkit-search-cancel-button,input[type="search"]::-webkit-search-decoration{-webkit-appearance:none}
button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}
textarea{overflow:auto;vertical-align:top}
table{border-collapse:collapse;border-spacing:0}
*,*:before,*:after{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}
html,body{font-size:100%}
body{background:#fff;color:rgba(0,0,0,.8);padding:0;margin:0;font-family:"Noto Serif","DejaVu Serif",serif;font-weight:400;font-style:normal;line-height:1;position:relative;cursor:auto}
a:hover{cursor:pointer}
img,object,embed{max-width:100%;height:auto}
object,embed{height:100%}
img{-ms-interpolation-mode:bicubic}
.left{float:left!important}
.right{float:right!important}
.text-left{text-align:left!important}
.text-right{text-align:right!important}
.text-center{text-align:center!important}
.text-justify{text-align:justify!important}
.hide{display:none}
body{-webkit-font-smoothing:antialiased}
img,object,svg{display:inline-block;vertical-align:middle}
textarea{height:auto;min-height:50px}
select{width:100%}
.center{margin-left:auto;margin-right:auto}
.spread{width:100%}
p.lead,.paragraph.lead>p,#preamble>.sectionbody>.paragraph:first-of-type p{font-size:1.21875em;line-height:1.6}
.subheader,.admonitionblock td.content>.title,.audioblock>.title,.exampleblock>.title,.imageblock>.title,.listingblock>.title,.literalblock>.title,.stemblock>.title,.openblock>.title,.paragraph>.title,.quoteblock>.title,table.tableblock>.title,.verseblock>.title,.videoblock>.title,.dlist>.title,.olist>.title,.ulist>.title,.qlist>.title,.hdlist>.title{line-height:1.45;color:#7a2518;font-weight:400;margin-top:0;margin-bottom:.25em}
div,dl,dt,dd,ul,ol,li,h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6,pre,form,p,blockquote,th,td{margin:0;padding:0;direction:ltr}
a{color:#2156a5;text-decoration:underline;line-height:inherit}
a:hover,a:focus{color:#1d4b8f}
a img{border:none}
p{font-family:inherit;font-weight:400;font-size:1em;line-height:1.6;margin-bottom:1.25em;text-rendering:optimizeLegibility}
p aside{font-size:.875em;line-height:1.35;font-style:italic}
h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{font-family:"Open Sans","DejaVu Sans",sans-serif;font-weight:300;font-style:normal;color:#ba3925;text-rendering:optimizeLegibility;margin-top:1em;margin-bottom:.5em;line-height:1.0125em}
h1 small,h2 small,h3 small,#toctitle small,.sidebarblock>.content>.title small,h4 small,h5 small,h6 small{font-size:60%;color:#e99b8f;line-height:0}
h1{font-size:2.125em}
h2{font-size:1.6875em}
h3,#toctitle,.sidebarblock>.content>.title{font-size:1.375em}
h4,h5{font-size:1.125em}
h6{font-size:1em}
hr{border:solid #ddddd8;border-width:1px 0 0;clear:both;margin:1.25em 0 1.1875em;height:0}
em,i{font-style:italic;line-height:inherit}
strong,b{font-weight:bold;line-height:inherit}
small{font-size:60%;line-height:inherit}
code{font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;font-weight:400;color:rgba(0,0,0,.9)}
ul,ol,dl{font-size:1em;line-height:1.6;margin-bottom:1.25em;list-style-position:outside;font-family:inherit}
ul,ol,ul.no-bullet,ol.no-bullet{margin-left:1.5em}
ul li ul,ul li ol{margin-left:1.25em;margin-bottom:0;font-size:1em}
ul.square li ul,ul.circle li ul,ul.disc li ul{list-style:inherit}
ul.square{list-style-type:square}
ul.circle{list-style-type:circle}
ul.disc{list-style-type:disc}
ul.no-bullet{list-style:none}
ol li ul,ol li ol{margin-left:1.25em;margin-bottom:0}
dl dt{margin-bottom:.3125em;font-weight:bold}
dl dd{margin-bottom:1.25em}
abbr,acronym{text-transform:uppercase;font-size:90%;color:rgba(0,0,0,.8);border-bottom:1px dotted #ddd;cursor:help}
abbr{text-transform:none}
blockquote{margin:0 0 1.25em;padding:.5625em 1.25em 0 1.1875em;border-left:1px solid #ddd}
blockquote cite{display:block;font-size:.9375em;color:rgba(0,0,0,.6)}
blockquote cite:before{content:"\2014 \0020"}
blockquote cite a,blockquote cite a:visited{color:rgba(0,0,0,.6)}
blockquote,blockquote p{line-height:1.6;color:rgba(0,0,0,.85)}
@media only screen and (min-width:768px){h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{line-height:1.2}
h1{font-size:2.75em}
h2{font-size:2.3125em}
h3,#toctitle,.sidebarblock>.content>.title{font-size:1.6875em}
h4{font-size:1.4375em}}
table{background:#fff;margin-bottom:1.25em;border:solid 1px #dedede}
table thead,table tfoot{background:#f7f8f7;font-weight:bold}
table thead tr th,table thead tr td,table tfoot tr th,table tfoot tr td{padding:.5em .625em .625em;font-size:inherit;color:rgba(0,0,0,.8);text-align:left}
table tr th,table tr td{padding:.5625em .625em;font-size:inherit;color:rgba(0,0,0,.8)}
table tr.even,table tr.alt,table tr:nth-of-type(even){background:#f8f8f7}
table thead tr th,table tfoot tr th,table tbody tr td,table tr td,table tfoot tr td{display:table-cell;line-height:1.6}
body{tab-size:4}
h1,h2,h3,#toctitle,.sidebarblock>.content>.title,h4,h5,h6{line-height:1.2;word-spacing:-.05em}
h1 strong,h2 strong,h3 strong,#toctitle strong,.sidebarblock>.content>.title strong,h4 strong,h5 strong,h6 strong{font-weight:400}
.clearfix:before,.clearfix:after,.float-group:before,.float-group:after{content:" ";display:table}
.clearfix:after,.float-group:after{clear:both}
*:not(pre)>code{font-size:.9375em;font-style:normal!important;letter-spacing:0;padding:.1em .5ex;word-spacing:-.15em;background-color:#f7f7f8;-webkit-border-radius:4px;border-radius:4px;line-height:1.45;text-rendering:optimizeSpeed}
pre,pre>code{line-height:1.45;color:rgba(0,0,0,.9);font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;font-weight:400;text-rendering:optimizeSpeed}
.keyseq{color:rgba(51,51,51,.8)}
kbd{font-family:"Droid Sans Mono","DejaVu Sans Mono",monospace;display:inline-block;color:rgba(0,0,0,.8);font-size:.65em;line-height:1.45;background-color:#f7f7f7;border:1px solid #ccc;-webkit-border-radius:3px;border-radius:3px;-webkit-box-shadow:0 1px 0 rgba(0,0,0,.2),0 0 0 .1em white inset;box-shadow:0 1px 0 rgba(0,0,0,.2),0 0 0 .1em #fff inset;margin:0 .15em;padding:.2em .5em;vertical-align:middle;position:relative;top:-.1em;white-space:nowrap}
.keyseq kbd:first-child{margin-left:0}
.keyseq kbd:last-child{margin-right:0}
.menuseq,.menu{color:rgba(0,0,0,.8)}
b.button:before,b.button:after{position:relative;top:-1px;font-weight:400}
b.button:before{content:"[";padding:0 3px 0 2px}
b.button:after{content:"]";padding:0 2px 0 3px}
p a>code:hover{color:rgba(0,0,0,.9)}
#header,#content,#footnotes,#footer{width:100%;margin-left:auto;margin-right:auto;margin-top:0;margin-bottom:0;max-width:62.5em;*zoom:1;position:relative;padding-left:.9375em;padding-right:.9375em}
#header:before,#header:after,#content:before,#content:after,#footnotes:before,#footnotes:after,#footer:before,#footer:after{content:" ";display:table}
#header:after,#content:after,#footnotes:after,#footer:after{clear:both}
#content{margin-top:1.25em}
#content:before{content:none}
#header>h1:first-child{color:rgba(0,0,0,.85);margin-top:2.25rem;margin-bottom:0}
#header>h1:first-child+#toc{margin-top:8px;border-top:1px solid #ddddd8}
#header>h1:only-child,body.toc2 #header>h1:nth-last-child(2){border-bottom:1px solid #ddddd8;padding-bottom:8px}
#header .details{border-bottom:1px solid #ddddd8;line-height:1.45;padding-top:.25em;padding-bottom:.25em;padding-left:.25em;color:rgba(0,0,0,.6);display:-ms-flexbox;display:-webkit-flex;display:flex;-ms-flex-flow:row wrap;-webkit-flex-flow:row wrap;flex-flow:row wrap}
#header .details span:first-child{margin-left:-.125em}
#header .details span.email a{color:rgba(0,0,0,.85)}
#header .details br{display:none}
#header .details br+span:before{content:"\00a0\2013\00a0"}
#header .details br+span.author:before{content:"\00a0\22c5\00a0";color:rgba(0,0,0,.85)}
#header .details br+span#revremark:before{content:"\00a0|\00a0"}
#header #revnumber{text-transform:capitalize}
#header #revnumber:after{content:"\00a0"}
#content>h1:first-child:not([class]){color:rgba(0,0,0,.85);border-bottom:1px solid #ddddd8;padding-bottom:8px;margin-top:0;padding-top:1rem;margin-bottom:1.25rem}
#toc{border-bottom:1px solid #efefed;padding-bottom:.5em}
#toc>ul{margin-left:.125em}
#toc ul.sectlevel0>li>a{font-style:italic}
#toc ul.sectlevel0 ul.sectlevel1{margin:.5em 0}
#toc ul{font-family:"Open Sans","DejaVu Sans",sans-serif;list-style-type:none}
#toc li{line-height:1.3334;margin-top:.3334em}
#toc a{text-decoration:none}
#toc a:active{text-decoration:underline}
#toctitle{color:#7a2518;font-size:1.2em}
@media only screen and (min-width:768px){#toctitle{font-size:1.375em}
body.toc2{padding-left:15em;padding-right:0}
#toc.toc2{margin-top:0!important;background-color:#f8f8f7;position:fixed;width:15em;left:0;top:0;border-right:1px solid #efefed;border-top-width:0!important;border-bottom-width:0!important;z-index:1000;padding:1.25em 1em;height:100%;overflow:auto}
#toc.toc2 #toctitle{margin-top:0;margin-bottom:.8rem;font-size:1.2em}
#toc.toc2>ul{font-size:.9em;margin-bottom:0}
#toc.toc2 ul ul{margin-left:0;padding-left:1em}
#toc.toc2 ul.sectlevel0 ul.sectlevel1{padding-left:0;margin-top:.5em;margin-bottom:.5em}
body.toc2.toc-right{padding-left:0;padding-right:15em}
body.toc2.toc-right #toc.toc2{border-right-width:0;border-left:1px solid #efefed;left:auto;right:0}}
@media only screen and (min-width:1280px){body.toc2{padding-left:20em;padding-right:0}
#toc.toc2{width:20em}
#toc.toc2 #toctitle{font-size:1.375em}
#toc.toc2>ul{font-size:.95em}
#toc.toc2 ul ul{padding-left:1.25em}
body.toc2.toc-right{padding-left:0;padding-right:20em}}
#content #toc{border-style:solid;border-width:1px;border-color:#e0e0dc;margin-bottom:1.25em;padding:1.25em;background:#f8f8f7;-webkit-border-radius:4px;border-radius:4px}
#content #toc>:first-child{margin-top:0}
#content #toc>:last-child{margin-bottom:0}
#footer{max-width:100%;background-color:rgba(0,0,0,.8);padding:1.25em}
#footer-text{color:rgba(255,255,255,.8);line-height:1.44}
.sect1{padding-bottom:.625em}
@media only screen and (min-width:768px){.sect1{padding-bottom:1.25em}}
.sect1+.sect1{border-top:1px solid #efefed}
#content h1>a.anchor,h2>a.anchor,h3>a.anchor,#toctitle>a.anchor,.sidebarblock>.content>.title>a.anchor,h4>a.anchor,h5>a.anchor,h6>a.anchor{position:absolute;z-index:1001;width:1.5ex;margin-left:-1.5ex;display:block;text-decoration:none!important;visibility:hidden;text-align:center;font-weight:400}
#content h1>a.anchor:before,h2>a.anchor:before,h3>a.anchor:before,#toctitle>a.anchor:before,.sidebarblock>.content>.title>a.anchor:before,h4>a.anchor:before,h5>a.anchor:before,h6>a.anchor:before{content:"\00A7";font-size:.85em;display:block;padding-top:.1em}
#content h1:hover>a.anchor,#content h1>a.anchor:hover,h2:hover>a.anchor,h2>a.anchor:hover,h3:hover>a.anchor,#toctitle:hover>a.anchor,.sidebarblock>.content>.title:hover>a.anchor,h3>a.anchor:hover,#toctitle>a.anchor:hover,.sidebarblock>.content>.title>a.anchor:hover,h4:hover>a.anchor,h4>a.anchor:hover,h5:hover>a.anchor,h5>a.anchor:hover,h6:hover>a.anchor,h6>a.anchor:hover{visibility:visible}
#content h1>a.link,h2>a.link,h3>a.link,#toctitle>a.link,.sidebarblock>.content>.title>a.link,h4>a.link,h5>a.link,h6>a.link{color:#ba3925;text-decoration:none}
#content h1>a.link:hover,h2>a.link:hover,h3>a.link:hover,#toctitle>a.link:hover,.sidebarblock>.content>.title>a.link:hover,h4>a.link:hover,h5>a.link:hover,h6>a.link:hover{color:#a53221}
.audioblock,.imageblock,.literalblock,.listingblock,.stemblock,.videoblock{margin-bottom:1.25em}
.admonitionblock td.content>.title,.audioblock>.title,.exampleblock>.title,.imageblock>.title,.listingblock>.title,.literalblock>.title,.stemblock>.title,.openblock>.title,.paragraph>.title,.quoteblock>.title,table.tableblock>.title,.verseblock>.title,.videoblock>.title,.dlist>.title,.olist>.title,.ulist>.title,.qlist>.title,.hdlist>.title{text-rendering:optimizeLegibility;text-align:left;font-family:"Noto Serif","DejaVu Serif",serif;font-size:1rem;font-style:italic}
table.tableblock>caption.title{white-space:nowrap;overflow:visible;max-width:0}
.paragraph.lead>p,#preamble>.sectionbody>.paragraph:first-of-type p{color:rgba(0,0,0,.85)}
table.tableblock #preamble>.sectionbody>.paragraph:first-of-type p{font-size:inherit}
.admonitionblock>table{border-collapse:separate;border:0;background:none;width:100%}
.admonitionblock>table td.icon{text-align:center;width:80px}
.admonitionblock>table td.icon img{max-width:none}
.admonitionblock>table td.icon .title{font-weight:bold;font-family:"Open Sans","DejaVu Sans",sans-serif;text-transform:uppercase}
.admonitionblock>table td.content{padding-left:1.125em;padding-right:1.25em;border-left:1px solid #ddddd8;color:rgba(0,0,0,.6)}
.admonitionblock>table td.content>:last-child>:last-child{margin-bottom:0}
.exampleblock>.content{border-style:solid;border-width:1px;border-color:#e6e6e6;margin-bottom:1.25em;padding:1.25em;background:#fff;-webkit-border-radius:4px;border-radius:4px}
.exampleblock>.content>:first-child{margin-top:0}
.exampleblock>.content>:last-child{margin-bottom:0}
.sidebarblock{border-style:solid;border-width:1px;border-color:#e0e0dc;margin-bottom:1.25em;padding:1.25em;background:#f8f8f7;-webkit-border-radius:4px;border-radius:4px}
.sidebarblock>:first-child{margin-top:0}
.sidebarblock>:last-child{margin-bottom:0}
.sidebarblock>.content>.title{color:#7a2518;margin-top:0;text-align:center}
.exampleblock>.content>:last-child>:last-child,.exampleblock>.content .olist>ol>li:last-child>:last-child,.exampleblock>.content .ulist>ul>li:last-child>:last-child,.exampleblock>.content .qlist>ol>li:last-child>:last-child,.sidebarblock>.content>:last-child>:last-child,.sidebarblock>.content .olist>ol>li:last-child>:last-child,.sidebarblock>.content .ulist>ul>li:last-child>:last-child,.sidebarblock>.content .qlist>ol>li:last-child>:last-child{margin-bottom:0}
.literalblock pre,.listingblock pre:not(.highlight),.listingblock pre[class="highlight"],.listingblock pre[class^="highlight "],.listingblock pre.CodeRay,.listingblock pre.prettyprint{background:#f7f7f8}
.sidebarblock .literalblock pre,.sidebarblock .listingblock pre:not(.highlight),.sidebarblock .listingblock pre[class="highlight"],.sidebarblock .listingblock pre[class^="highlight "],.sidebarblock .listingblock pre.CodeRay,.sidebarblock .listingblock pre.prettyprint{background:#f2f1f1}
.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{-webkit-border-radius:4px;border-radius:4px;word-wrap:break-word;padding:1em;font-size:.8125em}
.literalblock pre.nowrap,.literalblock pre[class].nowrap,.listingblock pre.nowrap,.listingblock pre[class].nowrap{overflow-x:auto;white-space:pre;word-wrap:normal}
@media only screen and (min-width:768px){.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{font-size:.90625em}}
@media only screen and (min-width:1280px){.literalblock pre,.literalblock pre[class],.listingblock pre,.listingblock pre[class]{font-size:1em}}
.literalblock.output pre{color:#f7f7f8;background-color:rgba(0,0,0,.9)}
.listingblock pre.highlightjs{padding:0}
.listingblock pre.highlightjs>code{padding:1em;-webkit-border-radius:4px;border-radius:4px}
.listingblock pre.prettyprint{border-width:0}
.listingblock>.content{position:relative}
.listingblock code[data-lang]:before{display:none;content:attr(data-lang);position:absolute;font-size:.75em;top:.425rem;right:.5rem;line-height:1;text-transform:uppercase;color:#999}
.listingblock:hover code[data-lang]:before{display:block}
.listingblock.terminal pre .command:before{content:attr(data-prompt);padding-right:.5em;color:#999}
.listingblock.terminal pre .command:not([data-prompt]):before{content:"$"}
table.pyhltable{border-collapse:separate;border:0;margin-bottom:0;background:none}
table.pyhltable td{vertical-align:top;padding-top:0;padding-bottom:0;line-height:1.45}
table.pyhltable td.code{padding-left:.75em;padding-right:0}
pre.pygments .lineno,table.pyhltable td:not(.code){color:#999;padding-left:0;padding-right:.5em;border-right:1px solid #ddddd8}
pre.pygments .lineno{display:inline-block;margin-right:.25em}
table.pyhltable .linenodiv{background:none!important;padding-right:0!important}
.quoteblock{margin:0 1em 1.25em 1.5em;display:table}
.quoteblock>.title{margin-left:-1.5em;margin-bottom:.75em}
.quoteblock blockquote,.quoteblock blockquote p{color:rgba(0,0,0,.85);font-size:1.15rem;line-height:1.75;word-spacing:.1em;letter-spacing:0;font-style:italic;text-align:justify}
.quoteblock blockquote{margin:0;padding:0;border:0}
.quoteblock blockquote:before{content:"\201c";float:left;font-size:2.75em;font-weight:bold;line-height:.6em;margin-left:-.6em;color:#7a2518;text-shadow:0 1px 2px rgba(0,0,0,.1)}
.quoteblock blockquote>.paragraph:last-child p{margin-bottom:0}
.quoteblock .attribution{margin-top:.5em;margin-right:.5ex;text-align:right}
.quoteblock .quoteblock{margin-left:0;margin-right:0;padding:.5em 0;border-left:3px solid rgba(0,0,0,.6)}
.quoteblock .quoteblock blockquote{padding:0 0 0 .75em}
.quoteblock .quoteblock blockquote:before{display:none}
.verseblock{margin:0 1em 1.25em 1em}
.verseblock pre{font-family:"Open Sans","DejaVu Sans",sans;font-size:1.15rem;color:rgba(0,0,0,.85);font-weight:300;text-rendering:optimizeLegibility}
.verseblock pre strong{font-weight:400}
.verseblock .attribution{margin-top:1.25rem;margin-left:.5ex}
.quoteblock .attribution,.verseblock .attribution{font-size:.9375em;line-height:1.45;font-style:italic}
.quoteblock .attribution br,.verseblock .attribution br{display:none}
.quoteblock .attribution cite,.verseblock .attribution cite{display:block;letter-spacing:-.025em;color:rgba(0,0,0,.6)}
.quoteblock.abstract{margin:0 0 1.25em 0;display:block}
.quoteblock.abstract blockquote,.quoteblock.abstract blockquote p{text-align:left;word-spacing:0}
.quoteblock.abstract blockquote:before,.quoteblock.abstract blockquote p:first-of-type:before{display:none}
table.tableblock{max-width:100%;border-collapse:separate}
table.tableblock td>.paragraph:last-child p>p:last-child,table.tableblock th>p:last-child,table.tableblock td>p:last-child{margin-bottom:0}
table.tableblock,th.tableblock,td.tableblock{border:0 solid #dedede}
table.grid-all th.tableblock,table.grid-all td.tableblock{border-width:0 1px 1px 0}
table.grid-all tfoot>tr>th.tableblock,table.grid-all tfoot>tr>td.tableblock{border-width:1px 1px 0 0}
table.grid-cols th.tableblock,table.grid-cols td.tableblock{border-width:0 1px 0 0}
table.grid-all *>tr>.tableblock:last-child,table.grid-cols *>tr>.tableblock:last-child{border-right-width:0}
table.grid-rows th.tableblock,table.grid-rows td.tableblock{border-width:0 0 1px 0}
table.grid-all tbody>tr:last-child>th.tableblock,table.grid-all tbody>tr:last-child>td.tableblock,table.grid-all thead:last-child>tr>th.tableblock,table.grid-rows tbody>tr:last-child>th.tableblock,table.grid-rows tbody>tr:last-child>td.tableblock,table.grid-rows thead:last-child>tr>th.tableblock{border-bottom-width:0}
table.grid-rows tfoot>tr>th.tableblock,table.grid-rows tfoot>tr>td.tableblock{border-width:1px 0 0 0}
table.frame-all{border-width:1px}
table.frame-sides{border-width:0 1px}
table.frame-topbot{border-width:1px 0}
th.halign-left,td.halign-left{text-align:left}
th.halign-right,td.halign-right{text-align:right}
th.halign-center,td.halign-center{text-align:center}
th.valign-top,td.valign-top{vertical-align:top}
th.valign-bottom,td.valign-bottom{vertical-align:bottom}
th.valign-middle,td.valign-middle{vertical-align:middle}
table thead th,table tfoot th{font-weight:bold}
tbody tr th{display:table-cell;line-height:1.6;background:#f7f8f7}
tbody tr th,tbody tr th p,tfoot tr th,tfoot tr th p{color:rgba(0,0,0,.8);font-weight:bold}
p.tableblock>code:only-child{background:none;padding:0}
p.tableblock{font-size:1em}
td>div.verse{white-space:pre}
ol{margin-left:1.75em}
ul li ol{margin-left:1.5em}
dl dd{margin-left:1.125em}
dl dd:last-child,dl dd:last-child>:last-child{margin-bottom:0}
ol>li p,ul>li p,ul dd,ol dd,.olist .olist,.ulist .ulist,.ulist .olist,.olist .ulist{margin-bottom:.625em}
ul.unstyled,ol.unnumbered,ul.checklist,ul.none{list-style-type:none}
ul.unstyled,ol.unnumbered,ul.checklist{margin-left:.625em}
ul.checklist li>p:first-child>.fa-square-o:first-child,ul.checklist li>p:first-child>.fa-check-square-o:first-child{width:1em;font-size:.85em}
ul.checklist li>p:first-child>input[type="checkbox"]:first-child{width:1em;position:relative;top:1px}
ul.inline{margin:0 auto .625em auto;margin-left:-1.375em;margin-right:0;padding:0;list-style:none;overflow:hidden}
ul.inline>li{list-style:none;float:left;margin-left:1.375em;display:block}
ul.inline>li>*{display:block}
.unstyled dl dt{font-weight:400;font-style:normal}
ol.arabic{list-style-type:decimal}
ol.decimal{list-style-type:decimal-leading-zero}
ol.loweralpha{list-style-type:lower-alpha}
ol.upperalpha{list-style-type:upper-alpha}
ol.lowerroman{list-style-type:lower-roman}
ol.upperroman{list-style-type:upper-roman}
ol.lowergreek{list-style-type:lower-greek}
.hdlist>table,.colist>table{border:0;background:none}
.hdlist>table>tbody>tr,.colist>table>tbody>tr{background:none}
td.hdlist1,td.hdlist2{vertical-align:top;padding:0 .625em}
td.hdlist1{font-weight:bold;padding-bottom:1.25em}
.literalblock+.colist,.listingblock+.colist{margin-top:-.5em}
.colist>table tr>td:first-of-type{padding:0 .75em;line-height:1}
.colist>table tr>td:last-of-type{padding:.25em 0}
.thumb,.th{line-height:0;display:inline-block;border:solid 4px #fff;-webkit-box-shadow:0 0 0 1px #ddd;box-shadow:0 0 0 1px #ddd}
.imageblock.left,.imageblock[style*="float: left"]{margin:.25em .625em 1.25em 0}
.imageblock.right,.imageblock[style*="float: right"]{margin:.25em 0 1.25em .625em}
.imageblock>.title{margin-bottom:0}
.imageblock.thumb,.imageblock.th{border-width:6px}
.imageblock.thumb>.title,.imageblock.th>.title{padding:0 .125em}
.image.left,.image.right{margin-top:.25em;margin-bottom:.25em;display:inline-block;line-height:0}
.image.left{margin-right:.625em}
.image.right{margin-left:.625em}
a.image{text-decoration:none;display:inline-block}
a.image object{pointer-events:none}
sup.footnote,sup.footnoteref{font-size:.875em;position:static;vertical-align:super}
sup.footnote a,sup.footnoteref a{text-decoration:none}
sup.footnote a:active,sup.footnoteref a:active{text-decoration:underline}
#footnotes{padding-top:.75em;padding-bottom:.75em;margin-bottom:.625em}
#footnotes hr{width:20%;min-width:6.25em;margin:-.25em 0 .75em 0;border-width:1px 0 0 0}
#footnotes .footnote{padding:0 .375em 0 .225em;line-height:1.3334;font-size:.875em;margin-left:1.2em;text-indent:-1.05em;margin-bottom:.2em}
#footnotes .footnote a:first-of-type{font-weight:bold;text-decoration:none}
#footnotes .footnote:last-of-type{margin-bottom:0}
#content #footnotes{margin-top:-.625em;margin-bottom:0;padding:.75em 0}
.gist .file-data>table{border:0;background:#fff;width:100%;margin-bottom:0}
.gist .file-data>table td.line-data{width:99%}
div.unbreakable{page-break-inside:avoid}
.big{font-size:larger}
.small{font-size:smaller}
.underline{text-decoration:underline}
.overline{text-decoration:overline}
.line-through{text-decoration:line-through}
.aqua{color:#00bfbf}
.aqua-background{background-color:#00fafa}
.black{color:#000}
.black-background{background-color:#000}
.blue{color:#0000bf}
.blue-background{background-color:#0000fa}
.fuchsia{color:#bf00bf}
.fuchsia-background{background-color:#fa00fa}
.gray{color:#606060}
.gray-background{background-color:#7d7d7d}
.green{color:#006000}
.green-background{background-color:#007d00}
.lime{color:#00bf00}
.lime-background{background-color:#00fa00}
.maroon{color:#600000}
.maroon-background{background-color:#7d0000}
.navy{color:#000060}
.navy-background{background-color:#00007d}
.olive{color:#606000}
.olive-background{background-color:#7d7d00}
.purple{color:#600060}
.purple-background{background-color:#7d007d}
.red{color:#bf0000}
.red-background{background-color:#fa0000}
.silver{color:#909090}
.silver-background{background-color:#bcbcbc}
.teal{color:#006060}
.teal-background{background-color:#007d7d}
.white{color:#bfbfbf}
.white-background{background-color:#fafafa}
.yellow{color:#bfbf00}
.yellow-background{background-color:#fafa00}
span.icon>.fa{cursor:default}
.admonitionblock td.icon [class^="fa icon-"]{font-size:2.5em;text-shadow:1px 1px 2px rgba(0,0,0,.5);cursor:default}
.admonitionblock td.icon .icon-note:before{content:"\f05a";color:#19407c}
.admonitionblock td.icon .icon-tip:before{content:"\f0eb";text-shadow:1px 1px 2px rgba(155,155,0,.8);color:#111}
.admonitionblock td.icon .icon-warning:before{content:"\f071";color:#bf6900}
.admonitionblock td.icon .icon-caution:before{content:"\f06d";color:#bf3400}
.admonitionblock td.icon .icon-important:before{content:"\f06a";color:#bf0000}
.conum[data-value]{display:inline-block;color:#fff!important;background-color:rgba(0,0,0,.8);-webkit-border-radius:100px;border-radius:100px;text-align:center;font-size:.75em;width:1.67em;height:1.67em;line-height:1.67em;font-family:"Open Sans","DejaVu Sans",sans-serif;font-style:normal;font-weight:bold}
.conum[data-value] *{color:#fff!important}
.conum[data-value]+b{display:none}
.conum[data-value]:after{content:attr(data-value)}
pre .conum[data-value]{position:relative;top:-.125em}
b.conum *{color:inherit!important}
.conum:not([data-value]):empty{display:none}
dt,th.tableblock,td.content,div.footnote{text-rendering:optimizeLegibility}
h1,h2,p,td.content,span.alt{letter-spacing:-.01em}
p strong,td.content strong,div.footnote strong{letter-spacing:-.005em}
p,blockquote,dt,td.content,span.alt{font-size:1.0625rem}
p{margin-bottom:1.25rem}
.sidebarblock p,.sidebarblock dt,.sidebarblock td.content,p.tableblock{font-size:1em}
.exampleblock>.content{background-color:#fffef7;border-color:#e0e0dc;-webkit-box-shadow:0 1px 4px #e0e0dc;box-shadow:0 1px 4px #e0e0dc}
.print-only{display:none!important}
@media print{@page{margin:1.25cm .75cm}
*{-webkit-box-shadow:none!important;box-shadow:none!important;text-shadow:none!important}
a{color:inherit!important;text-decoration:underline!important}
a.bare,a[href^="#"],a[href^="mailto:"]{text-decoration:none!important}
a[href^="http:"]:not(.bare):after,a[href^="https:"]:not(.bare):after{content:"(" attr(href) ")";display:inline-block;font-size:.875em;padding-left:.25em}
abbr[title]:after{content:" (" attr(title) ")"}
pre,blockquote,tr,img,object,svg{page-break-inside:avoid}
thead{display:table-header-group}
svg{max-width:100%}
p,blockquote,dt,td.content{font-size:1em;orphans:3;widows:3}
h2,h3,#toctitle,.sidebarblock>.content>.title{page-break-after:avoid}
#toc,.sidebarblock,.exampleblock>.content{background:none!important}
#toc{border-bottom:1px solid #ddddd8!important;padding-bottom:0!important}
.sect1{padding-bottom:0!important}
.sect1+.sect1{border:0!important}
#header>h1:first-child{margin-top:1.25rem}
body.book #header{text-align:center}
body.book #header>h1:first-child{border:0!important;margin:2.5em 0 1em 0}
body.book #header .details{border:0!important;display:block;padding:0!important}
body.book #header .details span:first-child{margin-left:0!important}
body.book #header .details br{display:block}
body.book #header .details br+span:before{content:none!important}
body.book #toc{border:0!important;text-align:left!important;padding:0!important;margin:0!important}
body.book #toc,body.book #preamble,body.book h1.sect0,body.book .sect1>h2{page-break-before:always}
.listingblock code[data-lang]:before{display:block}
#footer{background:none!important;padding:0 .9375em}
#footer-text{color:rgba(0,0,0,.6)!important;font-size:.9em}
.hide-on-print{display:none!important}
.print-only{display:block!important}
.hide-for-print{display:none!important}
.show-for-print{display:inherit!important}}
</style>
</head>
<body class="article toc2 toc-left">
<div id="header">
<h1>Neo4j Graph Algorithms</h1>
<div id="toc" class="toc2">
<div id="toctitle">Table of Contents</div>
<ul class="sectlevel1">
<li><a href="#_introduction">Introduction</a>
<ul class="sectlevel2">
<li><a href="#_algorithms">Algorithms</a></li>
<li><a href="#_installation">Installation</a></li>
<li><a href="#_usage">Usage</a></li>
<li><a href="#_building_locally">Building Locally</a></li>
</ul>
</li>
<li><a href="#_yelp">Yelp</a>
<ul class="sectlevel2">
<li><a href="#_yelp_open_dataset">Yelp Open Dataset</a></li>
<li><a href="#_data">Data</a></li>
<li><a href="#_graph_model">Graph Model</a></li>
<li><a href="#_import">Import</a></li>
<li><a href="#_networks">Networks</a></li>
</ul>
</li>
<li><a href="#_overview_of_algorithm_procedures">Overview of Algorithm Procedures</a></li>
<li><a href="#_algorithms_2">Algorithms</a>
<ul class="sectlevel2">
<li><a href="#_community_detection_triangle_counting_clustering_coefficient">Community detection: Triangle Counting / Clustering Coefficient</a></li>
<li><a href="#_page_rank">Page Rank</a></li>
<li><a href="#_betweenness_centrality">Betweenness Centrality</a></li>
<li><a href="#_closeness_centrality">Closeness Centrality</a></li>
<li><a href="#_minimum_weight_spanning_tree">Minimum Weight Spanning Tree</a></li>
<li><a href="#_all_pairs_and_single_source_shortest_path">All Pairs- and Single Source - Shortest Path</a></li>
<li><a href="#_graph_partitioning_label_propagation">Graph Partitioning: Label Propagation</a></li>
<li><a href="#_community_detection_connected_components">Community detection: Connected Components</a></li>
<li><a href="#_community_detection_strongly_connected_components">Community detection: Strongly Connected Components</a></li>
</ul>
</li>
<li><a href="#_implementers_section">Implementers Section</a>
<ul class="sectlevel2">
<li><a href="#_algorithm_procedures_api_discussion">Algorithm Procedures API Discussion</a></li>
<li><a href="#_api_documentation">API Documentation</a></li>
<li><a href="#_triangle_count">Triangle Count</a></li>
<li><a href="#_pagerank">PageRank</a></li>
<li><a href="#_betweenness_centrality_2">Betweenness Centrality</a></li>
<li><a href="#_closeness_centrality_2">Closeness Centrality</a></li>
<li><a href="#_minimum_weight_spanning_tree_2">Minimum Weight Spanning Tree</a></li>
<li><a href="#_single_shortest_path">Single Shortest Path</a></li>
<li><a href="#_label_propagation">Label Propagation</a></li>
<li><a href="#_weakly_connected_components">Weakly Connected Components</a></li>
<li><a href="#_strongly_connected_components">Strongly Connected Components</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="content">
<div class="sect1">
<h2 id="_introduction"><a class="link" href="#_introduction">Introduction</a></h2>
<div class="sectionbody">
<div class="paragraph">
<p>The goal of this library is to provide efficiently implemented, parallel versions of common graph algorithms for Neo4j 3.x exposed as Cypher procedures.</p>
</div>
<div class="paragraph">
<p>Releases are available here: <a href="https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases" class="bare">https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases</a></p>
</div>
<div class="sect2">
<h3 id="_algorithms"><a class="link" href="#_algorithms">Algorithms</a></h3>
<div class="paragraph">
<p>Centralities:</p>
</div>
<div class="ulist">
<ul>
<li>
<p>Page Rank (<code>algo.pageRank</code>)</p>
</li>
<li>
<p>Betweenness Centrality (<code>algo.betweenness</code>)</p>
</li>
<li>
<p>Closeness Centrality (<code>algo.closeness</code>)</p>
</li>
</ul>
</div>
<div class="paragraph">
<p>Community Detection:</p>
</div>
<div class="ulist">
<ul>
<li>
<p>Louvain (<code>algo.louvain</code>)</p>
</li>
<li>
<p>Label Propagation (<code>algo.labelPropagation</code>)</p>
</li>
<li>
<p>(Weakly) Connected Components (<code>algo.unionFind</code>)</p>
</li>
<li>
<p>Strongly Connected Components (<code>algo.scc</code>)</p>
</li>
<li>
<p>Triangle Count / Clustering Coefficient (<code>algo.triangleCount</code>)</p>
</li>
</ul>
</div>
<div class="paragraph">
<p>Path Finding:</p>
</div>
<div class="ulist">
<ul>
<li>
<p>Minimum Weight Spanning Tree (<code>algo.mst</code>)</p>
</li>
<li>
<p>All Pairs- and Single Source - Shortest Path (<code>algo.shortestPath</code>, <code>algo.allShortestPaths</code>)</p>
</li>
</ul>
</div>
<div class="paragraph">
<p>These procedures work either on the whole graph or on a subgraph optionally filtered by label and relationship-type.
You can also use filtering and projection using Cypher queries, see below.</p>
</div>
<div class="paragraph">
<p><strong>We’d love your feedback</strong>, so please try out these algorithms and let us know how well they work for your use-case.
Also please note things that you miss from installation instructions, documentation, etc.</p>
</div>
<div class="paragraph">
<p>Please raise <a href="https://github.com/neo4j-contrib/neo4j-graph-algorithms/issues">GitHub issues</a> for anything you encounter or join the <a href="http://neo4j.com/developer/slack">neo4j-users Slack group</a> and ask in the <code>#neo4j-graph-algorithm</code> channel.</p>
</div>
</div>
<div class="sect2">
<h3 id="_installation"><a class="link" href="#_installation">Installation</a></h3>
<div class="paragraph">
<p>Just copy the <code>graph-algorithms-algo-*.jar</code> from <a href="https://github.com/neo4j-contrib/neo4j-graph-algorithms/releases">the matching release</a> into your <code>$NEO4J_HOME/plugins</code> directory.</p>
</div>
<div class="paragraph">
<p>Because the algorithms use the lower level Kernel API to read from and write to Neo4j you also have to enable them in the configuration (for security reasons):</p>
</div>
<div class="listingblock">
<div class="title">Add to $NEO4J_HOME/conf/neo4j.conf</div>
<div class="content">
<pre>dbms.security.procedures.unrestricted=algo.*</pre>
</div>
</div>
<div class="paragraph">
<p>Then running <code>call algo.list();</code> should list the algorithm procedures.
You can also see the full list in the documentation.</p>
</div>
</div>
<div class="sect2">
<h3 id="_usage"><a class="link" href="#_usage">Usage</a></h3>
<div class="paragraph">
<p>These algorithms are exposed as Neo4j procedures.
You can call them directly from Cypher in your Neo4j Browser, from cypher-shell or your client code.</p>
</div>
<div class="paragraph">
<p>For most algorithms we provide two procedures, one that writes results back to the graph as node-properties and reports statistics.
And another (named <code>algo.<name>.stream</code>) that returns a stream of data, e.g. node-ids and computed values.</p>
</div>
<div class="paragraph">
<p>For large graphs the streaming procedure might return millions or billions of results, that’s why it is often more convenient to store the results of the algorithm and then use them with later queries.</p>
</div>
<div class="paragraph">
<p>The general call syntax is:</p>
</div>
<div class="listingblock">
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL algo.<name>([label],[relationshipType],{config})</code></pre>
</div>
</div>
<div class="paragraph">
<p>For example for page rank on DBpedia (11M nodes, 116M relationships):</p>
</div>
<div class="listingblock">
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL algo.pageRank('Page','Link',{iterations:5, dampingFactor:0.85, write: true, writeProperty:'pagerank'});
// YIELD nodes, iterations, loadMillis, computeMillis, writeMillis, dampingFactor, write, writeProperty
CALL algo.pageRank.stream('Page','Link',{iterations:5, dampingFactor:0.85})
YIELD node, score
RETURN node.title, score
ORDER BY score DESC LIMIT 10;</code></pre>
</div>
</div>
<div class="sect3">
<h4 id="_projection_via_cypher_queries"><a class="link" href="#_projection_via_cypher_queries">Projection via Cypher Queries</a></h4>
<div class="paragraph">
<p>If label and relationship-type are not selective enough to describe your subgraph to run the algorithm on, you can use Cypher statements to load or project subsets of your graph.
Then use a node-statement instead of the label parameter and a relationship-statement instead of the relationship-type and use <code>graph:'cypher'</code> in the config.</p>
</div>
<div class="paragraph">
<p>You can also return a property value or weight (according to your config) in addition to the id’s from these statements.</p>
</div>
<div class="listingblock">
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL algo.pageRank(
'MATCH (p:Page) RETURN id(p) as id',
'MATCH (p1:Page)-[:Link]->(p2:Page) RETURN id(p1) as source, id(p2) as target, count(*) as weight',
{graph:'cypher', iterations:5, write: true});</code></pre>
</div>
</div>
</div>
</div>
<div class="sect2">
<h3 id="_building_locally"><a class="link" href="#_building_locally">Building Locally</a></h3>
<div class="paragraph">
<p>Currently aiming at Neo4j 3.x (with a branch per version)</p>
</div>
<div class="listingblock">
<div class="content">
<pre>git clone https://github.com/neo4j-contrib/neo4j-graph-algorithms
cd neo4j-graph-algorithms
git checkout 3.3
mvn clean install
cp algo/target/graph-algorithms-*.jar $NEO4J_HOME/plugins/
$NEO4J_HOME/bin/neo4j restart</pre>
</div>
</div>
</div>
</div>
</div>
<div class="sect1">
<h2 id="_yelp"><a class="link" href="#_yelp">Yelp</a></h2>
<div class="sectionbody">
<div class="sect2">
<h3 id="_yelp_open_dataset"><a class="link" href="#_yelp_open_dataset">Yelp Open Dataset</a></h3>
<div class="paragraph">
<p><a href="https://www.yelp.com/">Yelp.com</a> has been running <a href="https://www.yelp.com/dataset/challenge">Yelp Dataset challenge</a> for about five years now.
It is a competition that encourages people to explore and research Yelp’s open dataset, which contains almost 5 million reviews from over 1.1 million users on over 150,000 businesses from 12 metropolitan areas in the tenth round of the challenge.
Over the years the dataset has become very popular with <a href="https://scholar.google.com/scholar?q=citation%3A+Yelp+Dataset&btnG=&hl=en&as_sdt=0%2C5">hundreds of academic paper</a> written about it.
It has well-structured and highly relational data and is therefore a great showcase for Neo4j and graph algorithms on a realistic dataset.
We will show how to use graph algorithms on a social network of friends and how to create and analyse an inferred graph (for example, projecting a review co-occurence graph or similarity between users based on their reviews).</p>
</div>
<div class="paragraph">
<p>Check out also <a href="https://www.yelp.com/dataset/challenge/winners">past winners and their work</a>.</p>
</div>
</div>
<div class="sect2">
<h3 id="_data"><a class="link" href="#_data">Data</a></h3>
<div class="paragraph">
<p>You can <a href="https://www.yelp.com/dataset/download">get the dataset</a> by filling out their form.
Download the data in JSON format.
We will use <a href="https://github.com/neo4j-contrib/neo4j-apoc-procedures/releases">APOC plugin</a> to help us with importing and batching data in Neo4j.
There are 6 JSON files available (<a href="https://www.yelp.com/dataset/documentation/json">detailed documentation</a>).
Photos and checkins are not the topic of our analysis, so they will not be imported.
From the other files we will import a knowledge graph of Yelp’s world, that contains data about:</p>
</div>
<div class="ulist">
<ul>
<li>
<p>156639 businesses</p>
</li>
<li>
<p>1005693 tips from users about businesses</p>
</li>
<li>
<p>4736897 reviews of businesses by users</p>
</li>
<li>
<p>9489337 users total</p>
</li>
<li>
<p>35444850 friend relationships</p>
</li>
</ul>
</div>
<div class="paragraph">
<p>Depending on your setup import might take some time as <em>user.json</em> contains data about a 10 million person social network of friends.
While <em>review.json</em> is even bigger in size, it is mostly made up of text representing the actual review, so the import will be faster.
We also do not need the actual text, but only meta-data about them e.g. who wrote the review and how he rated a certain business, so the text will not be imported.</p>
</div>
</div>
<div class="sect2">
<h3 id="_graph_model"><a class="link" href="#_graph_model">Graph Model</a></h3>
<div class="imageblock">
<div class="content">
<img src="https://github.com/neo4j-contrib/neo4j-graph-algorithms/raw/3.1/doc/img/yelp_graph_model.png" alt="yelp graph model">
</div>
</div>
<div class="paragraph">
<p>Graph consist of nodes labeled User, that can have a FRIEND relationship with other users. Users also write reviews and tips about businesses. We store all the meta-data ( location of business etc.) as properties of nodes except for categories of the businesses, which are represented by separate nodes labeled Category.</p>
</div>
<div class="paragraph">
<p>Graph model always depends on the application we have in mind for it.
Our application is to analyse ( inferred ) networks with graph algorithms.
If we were to use our graph as a recommendation engine, we might construct a different graph model.
Check this <a href="http://guides.neo4j.com/sandbox/recommendations">great guide</a> or this <a href="https://www.youtube.com/watch?v=oMTmG4ClO5I">educational video</a> on how you can use Neo4j as a recommendation engine.</p>
</div>
</div>
<div class="sect2">
<h3 id="_import"><a class="link" href="#_import">Import</a></h3>
<div class="listingblock">
<div class="title">Define graph schema (constraint/index)</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.schema.assert(
{Category:['name']},
{Business:['id'],User:['id'],Review:['id']});</code></pre>
</div>
</div>
<div class="listingblock">
<div class="title">Load businesses</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/business.json') YIELD value RETURN value
","
MERGE (b:Business{id:value.business_id})
SET b += apoc.map.clean(value, ['attributes','hours','business_id','categories','address','postal_code'],[])
WITH b,value.categories as categories
UNWIND categories as category
MERGE (c:Category{id:category})
MERGE (b)-[:IN_CATEGORY]->(c)
",{batchSize: 10000, iterateList: true});</code></pre>
</div>
</div>
<div class="listingblock">
<div class="title">Load tips</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/tip.json') YIELD value RETURN value
","
MATCH (b:Business{id:value.business_id})
MERGE (u:User{id:value.user_id})
MERGE (u)-[:TIP{date:value.date,likes:value.likes}]->(b)
",{batchSize: 20000, iterateList: true});</code></pre>
</div>
</div>
<div class="listingblock">
<div class="title">Load reviews</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/review.json')
YIELD value RETURN value
","
MERGE (b:Business{id:value.business_id})
MERGE (u:User{id:value.user_id})
MERGE (r:Review{id:value.review_id})
MERGE (u)-[:WROTE]->(r)
MERGE (r)-[:REVIEWS]->(b)
SET r += apoc.map.clean(value, ['business_id','user_id','review_id','text'],[0])
",{batchSize: 10000, iterateList: true});</code></pre>
</div>
</div>
<div class="listingblock">
<div class="title">Load users</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate("
CALL apoc.load.json('file:///dataset/user.json')
YIELD value RETURN value
","
MERGE (u:User{id:value.user_id})
SET u += apoc.map.clean(value, ['friends','user_id'],[0])
WITH u,value.friends as friends
UNWIND friends as friend
MERGE (u1:User{id:friend})
MERGE (u)-[:FRIEND]-(u1)
",{batchSize: 100, iterateList: true});</code></pre>
</div>
</div>
</div>
<div class="sect2">
<h3 id="_networks"><a class="link" href="#_networks">Networks</a></h3>
<div class="sect3">
<h4 id="_social_network"><a class="link" href="#_social_network">Social network</a></h4>
<div class="paragraph">
<p><a href="https://en.wikipedia.org/wiki/Social_network">Social network</a> is a theoretical construct useful in the social sciences to study relationships between individuals, groups, organizations, or even entire societies.
An axiom of the social network approach to understanding social interaction is that social phenomena should be primarily conceived and investigated through the properties of relationships between and within nodes, instead of the properties of these nodes themselves.
Precisely because many different types of relations, singular or in combination, form these network configurations, network analytics are useful to a broad range of research enterprises.</p>
</div>
<div class="paragraph">
<p><a href="https://en.wikipedia.org/wiki/Social_network_analysis">Social network analysis</a> is the process of investigating social structures through the use of networks and graph theory.
It characterizes networked structures in terms of nodes (individual actors, people, or things within the network) and the ties, edges, or links (relationships or interactions) that connect them.
Examples of social structures commonly visualized through social network analysis include social media networks, memes spread, friendship and acquaintance networks, collaboration graphs, kinship, disease transmission.</p>
</div>
<div class="paragraph">
<p>Social network analysis has emerged as a key technique in modern sociology.
It has also gained a significant following in anthropology, biology, demography, communication studies, economics, geography, history, information science, organizational studies, political science, social psychology, development studies, sociolinguistics, and computer science.</p>
</div>
<div class="paragraph">
<p>Yelp’s friendship network is an <em>undirected</em> graph with <em>unweighted</em> friend relationships between users.
There are 507948 users with no friends. They will be ignored in our analysis.</p>
</div>
<div class="sect4">
<h5 id="_global_graph_statistics"><a class="link" href="#_global_graph_statistics">Global graph statistics:</a></h5>
<div class="paragraph">
<p>Nodes : 8981389</p>
</div>
<div class="paragraph">
<p>Relationships : 35444850</p>
</div>
<div class="paragraph">
<p>Weakly connected components : 18512</p>
</div>
<div class="paragraph">
<p>Nodes in largest WCC : 8938630</p>
</div>
<div class="paragraph">
<p>Edges in largest WCC : 35420520</p>
</div>
<div class="paragraph">
<p>Triangle count :</p>
</div>
<div class="paragraph">
<p>Average clustering coefficient :</p>
</div>
<div class="paragraph">
<p>Graph diameter (longest shortest path):</p>
</div>
</div>
<div class="sect4">
<h5 id="_local_graph_statistics"><a class="link" href="#_local_graph_statistics">Local graph statistics:</a></h5>
<div class="listingblock">
<div class="title">Use apoc to calculate local statistics</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">MATCH (u:User)
RETURN avg(apoc.node.degree(u,'FRIEND')) as average_friends,
stdev(apoc.node.degree(u,'FRIEND')) as stdev_friends,
max(apoc.node.degree(u,'FRIEND')) as max_friends,
min(apoc.node.degree(u,'FRIEND')) as min_friends</code></pre>
</div>
</div>
<div class="paragraph">
<p>Average number of friends : 7.47</p>
</div>
<div class="paragraph">
<p>Standard deviation of friends : 46.96</p>
</div>
<div class="paragraph">
<p>Minimum count of friends : 1</p>
</div>
<div class="paragraph">
<p>Maximum count of friends : 14995</p>
</div>
<div class="paragraph">
<p>Prior work:</p>
</div>
<div class="ulist">
<ul>
<li>
<p><a href="http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_From_Social_Network_Data.pdf" class="bare">http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_From_Social_Network_Data.pdf</a></p>
</li>
<li>
<p><a href="https://arxiv.org/pdf/1512.06915.pdf" class="bare">https://arxiv.org/pdf/1512.06915.pdf</a></p>
</li>
<li>
<p><a href="http://trust.sce.ntu.edu.sg/wit-ec16/paper/davoust.pdf" class="bare">http://trust.sce.ntu.edu.sg/wit-ec16/paper/davoust.pdf</a></p>
</li>
</ul>
</div>
</div>
</div>
<div class="sect3">
<h4 id="_projecting_a_review_co_occurence_graph"><a class="link" href="#_projecting_a_review_co_occurence_graph">Projecting a review co-occurence graph</a></h4>
<div class="paragraph">
<p>We can try to find which businesses are often reviewed by same users by inferring a <a href="https://en.wikipedia.org/wiki/Co-occurrence_networks">co-occurence network</a> between them.
By way of definition, co-occurrence networks are the collective interconnection of nodes based on their paired presence within a specified domain.
Our network is generated by connecting pairs of businesses using a set of criteria defining co-occurrence.</p>
</div>
<div class="paragraph">
<p>The co-occurence criteria for this network is that any pair of businesses must have at least 5 common reviewers.
We save the count of common reviewers as a property of the relationship that will be used as a weight in community detection analysis.
Inferred graph is <em>undirected</em>, as changing the direction of the relationships does not imply any semantic difference.
We will limit our network to those businesses, that have more than 10 reviews and project a co-occurent relationship between businesses.</p>
</div>
<div class="listingblock">
<div class="title">Project a review co-occurence between businesses</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate('
MATCH (b1:Business)
WHERE size((b1)<-[:REVIEWS]->()) > 10 AND b1.city="Las Vegas"
RETURN b1
','
MATCH (b1)<-[:REVIEWS]-(r1)
MATCH (r1)<-[:WROTE]-(u)
MATCH (u)-[:WROTE]->(r2)
MATCH (r2)-[:REVIEWS]->(b2)
WHERE id(b1) < id(b2) AND b2.city="Las Vegas"
WITH b1, b2, COUNT(*) AS weight where weight > 5
MERGE (b1)-[cr:CO_OCCURENT_REVIEWS]-(b2)
ON CREATE SET cr.weight = weight
',{batchSize: 1});</code></pre>
</div>
</div>
<div class="paragraph">
<p>Prior work:</p>
</div>
</div>
<div class="sect3">
<h4 id="_projecting_a_review_similarity_graph"><a class="link" href="#_projecting_a_review_similarity_graph">Projecting a review similarity graph</a></h4>
<div class="paragraph">
<p>We can try to find similar groups of users by projecting a review similiarity network between them.
The idea is to start with users that have more than 10 reviews and find all pairs of users who have reviewed more than 10 common businesses.
We do this to filter out users with not enough data.
We could do something similar to filter out users who have reviewed every business (probably bot or bored).
Once we find pairs of users we calculate their similarity of reviews using cosine similarity and only create a relationship if cosine similarity is greater than 0, sometimes also called hard similarity.
We do this so we do not end up with complete graph, where every pair of users is connected.
Most community detection algorithms perform poorly in a complete graph.
Cosine similarity between pairs of users is saved as a property of relationship and can be used as a weight in graph algorithms.
Projected graph is modeled <em>undirected</em> as the direction of the relationship have no semantic value.</p>
</div>
<div class="paragraph">
<p>Projecting a review similarity graph is often used in recommendations. We calculate who are similar users based on review ratings, so we can recommend to a user what similar users liked.</p>
</div>
<div class="listingblock">
<div class="title">Create a review similarity graph</div>
<div class="content">
<pre class="highlight"><code class="language-cypher" data-lang="cypher">CALL apoc.periodic.iterate(
"MATCH (p1:User) WHERE size((p1)-[:WROTE]->()) > 5 RETURN p1",
"
MATCH (p1)-[:WROTE]->(r1)-->()<--(r2)<-[:WROTE]-(p2)
WHERE id(p1) < id(p2) AND size((p2)-[:WROTE]->()) > 10
WITH p1,p2,count(*) as coop, collect(r1.stars) as s1, collect(r2.stars) as s2 where coop > 10
WITH p1,p2, apoc.algo.cosineSimilarity(s1,s2) as cosineSimilarity WHERE cosineSimilarity > 0
MERGE (p1)-[s:SIMILAR_REVIEWS]-(p2) SET s.weight = cosineSimilarity"
, {batchSize:100, parallel:false,iterateList:true});</code></pre>
</div>
</div>
<div class="paragraph">
<p>Prior work:</p>
</div>
<div class="ulist">
<ul>
<li>
<p><a href="http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_Using_User_Friendship_Network_Information.pdf" class="bare">http://snap.stanford.edu/class/cs224w-2015/projects_2015/Predicting_Yelp_Ratings_Using_User_Friendship_Network_Information.pdf</a></p>
</li>
<li>
<p><a href="http://snap.stanford.edu/class/cs224w-2013/projects2013/cs224w-038-final.pdf" class="bare">http://snap.stanford.edu/class/cs224w-2013/projects2013/cs224w-038-final.pdf</a></p>
</li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div class="sect1">
<h2 id="_overview_of_algorithm_procedures"><a class="link" href="#_overview_of_algorithm_procedures">Overview of Algorithm Procedures</a></h2>
<div class="sectionbody">
<table id="table-all" class="tableblock frame-all grid-all spread">
</table>
</div>
</div>
<div class="sect1">
<h2 id="_algorithms_2"><a class="link" href="#_algorithms_2">Algorithms</a></h2>
<div class="sectionbody">
<div class="paragraph">
<p>Graph algorithms are used to compute metrics for graphs, nodes or relationships.</p>
</div>
<div class="paragraph">
<p>They can provide insights on relevant entities (centralities, ranking) in the graph or inherent structures like communities (community-detection, graph-partitioning, clustering).</p>
</div>
<div class="paragraph">
<p>Many of them are iterative aproaches that frequently traverse the graph for the computation using random walks, breadth-first- or depth-first searches or pattern matching.</p>
</div>
<div class="paragraph">
<p>Due to the exponential growth of possible paths with increasing distance many of the approaches are also of a high algorithmic complexity.</p>
</div>
<div class="paragraph">
<p>Fortunately some optimized algorithms exist that utilize certain structures of the graph, memoize of already explored parts and if possible parallelize operations.
Whenever possible we tried to apply these optimizations.</p>
</div>
<div class="sect2">
<h3 id="_community_detection_triangle_counting_clustering_coefficient"><a class="link" href="#_community_detection_triangle_counting_clustering_coefficient">Community detection: Triangle Counting / Clustering Coefficient</a></h3>
<div class="paragraph">
<p>Triangle counting is a community detection graph algorithm which is used to determine the number of triangles passing through each node in the graph. A node is part of a triangle when it has two linked nodes with an relationship between.
The triangle is a three-node subgraph, where every two nodes are connected.[1]</p>
</div>
<div class="sect3">
<h4 id="_history_explanation"><a class="link" href="#_history_explanation">History, Explanation</a></h4>
<div class="paragraph">
<p>Counting the number of triangles in a graph is a fundamental problem with various applications.
The problem has been studied before from a theoretic point of view.
It can be seen as a special case of counting given length cycles.
On the other hand, counting triangles is a basic issue in network analysis.
Due to the increasing interest in analyzing large networks like the Internet, the WWW or social networks, the computation of network indices based on counting triangles has become an often used tool in network analysis.
For example, the so-called clustering coefficient is frequently quoted as an important index for measuring the concentration of clusters in graphs respectively its tendency to decompose into communities.
The local clustering coefficient of a node v is defined as the likeliness that two neighbors u and w of v are also connected, while the clustering coefficient of a graph is just the normalized sum of the clustering coefficient of its nodes.
Accordingly, its computation involves counting the number of triangles.
Similarly the transitivity coefficient of a graph, which is just three times the number of triangles divided by the number of triples (paths of length two) in the graph is sometimes considered.[2]</p>
</div>
</div>
<div class="sect3">
<h4 id="_when_to_use_it_use_cases"><a class="link" href="#_when_to_use_it_use_cases">When to use it / use-cases</a></h4>