forked from blender/blender-addons
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mesh_bsurfaces.py
4554 lines (3694 loc) · 200 KB
/
mesh_bsurfaces.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "Bsurfaces GPL Edition",
"author": "Eclectiel, Vladimir Spivak (cwolf3d)",
"version": (1, 8, 0),
"blender": (2, 80, 0),
"location": "View3D EditMode > Sidebar > Edit Tab",
"description": "Modeling and retopology tool",
"doc_url": "{BLENDER_MANUAL_URL}/addons/mesh/bsurfaces.html",
"category": "Mesh",
}
import bpy
import bmesh
from bpy_extras import object_utils
import operator
from mathutils import Matrix, Vector
from mathutils.geometry import (
intersect_line_line,
intersect_point_line,
)
from math import (
degrees,
pi,
sqrt,
)
from bpy.props import (
BoolProperty,
FloatProperty,
IntProperty,
StringProperty,
PointerProperty,
EnumProperty,
FloatVectorProperty,
)
from bpy.types import (
Operator,
Panel,
PropertyGroup,
AddonPreferences,
)
# ----------------------------
# GLOBAL
global_shade_smooth = False
global_mesh_object = ""
global_gpencil_object = ""
global_curve_object = ""
# ----------------------------
# Panels
class VIEW3D_PT_tools_SURFSK_mesh(Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_category = 'Edit'
bl_label = "Bsurfaces"
def draw(self, context):
layout = self.layout
bs = context.scene.bsurfaces
col = layout.column(align=True)
row = layout.row()
row.separator()
col.operator("mesh.surfsk_init", text="Initialize (Add BSurface mesh)")
col.operator("mesh.surfsk_add_modifiers", text="Add Mirror and others modifiers")
col.label(text="Mesh of BSurface:")
col.prop(bs, "SURFSK_mesh", text="")
if bs.SURFSK_mesh != None:
try: mesh_object = bs.SURFSK_mesh
except: pass
try: col.prop(mesh_object.data.materials[0], "diffuse_color")
except: pass
try: col.prop(mesh_object.modifiers['Shrinkwrap'], "offset")
except: pass
try: col.prop(mesh_object, "show_in_front")
except: pass
try: col.prop(bs, "SURFSK_shade_smooth")
except: pass
try: col.prop(mesh_object, "show_wire")
except: pass
col.label(text="Guide strokes:")
col.row().prop(bs, "SURFSK_guide", expand=True)
if bs.SURFSK_guide == 'GPencil':
col.prop(bs, "SURFSK_gpencil", text="")
col.separator()
if bs.SURFSK_guide == 'Curve':
col.prop(bs, "SURFSK_curve", text="")
col.separator()
col.separator()
col.operator("mesh.surfsk_add_surface", text="Add Surface")
col.operator("mesh.surfsk_edit_surface", text="Edit Surface")
col.separator()
if bs.SURFSK_guide == 'GPencil':
col.operator("gpencil.surfsk_add_strokes", text="Add Strokes")
col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes")
col.separator()
col.operator("gpencil.surfsk_strokes_to_curves", text="Strokes to curves")
if bs.SURFSK_guide == 'Annotation':
col.operator("gpencil.surfsk_add_annotation", text="Add Annotation")
col.separator()
col.operator("gpencil.surfsk_annotations_to_curves", text="Annotation to curves")
if bs.SURFSK_guide == 'Curve':
col.operator("curve.surfsk_edit_curve", text="Edit curve")
col.separator()
col.label(text="Initial settings:")
col.prop(bs, "SURFSK_edges_U")
col.prop(bs, "SURFSK_edges_V")
col.prop(bs, "SURFSK_cyclic_cross")
col.prop(bs, "SURFSK_cyclic_follow")
col.prop(bs, "SURFSK_loops_on_strokes")
col.prop(bs, "SURFSK_automatic_join")
col.prop(bs, "SURFSK_keep_strokes")
class VIEW3D_PT_tools_SURFSK_curve(Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'UI'
bl_context = "curve_edit"
bl_category = 'Edit'
bl_label = "Bsurfaces"
@classmethod
def poll(cls, context):
return context.active_object
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
row = layout.row()
row.separator()
col.operator("curve.surfsk_first_points", text="Set First Points")
col.operator("curve.switch_direction", text="Switch Direction")
col.operator("curve.surfsk_reorder_splines", text="Reorder Splines")
# ----------------------------
# Returns the type of strokes used
def get_strokes_type(context):
strokes_type = "NO_STROKES"
strokes_num = 0
# Check if they are annotation
if context.scene.bsurfaces.SURFSK_guide == 'Annotation':
try:
strokes = bpy.context.annotation_data.layers.active.active_frame.strokes
strokes_num = len(strokes)
if strokes_num > 0:
strokes_type = "GP_ANNOTATION"
except:
strokes_type = "NO_STROKES"
# Check if they are grease pencil
if context.scene.bsurfaces.SURFSK_guide == 'GPencil':
try:
global global_gpencil_object
gpencil = bpy.data.objects[global_gpencil_object]
strokes = gpencil.data.layers.active.active_frame.strokes
strokes_num = len(strokes)
if strokes_num > 0:
strokes_type = "GP_STROKES"
except:
strokes_type = "NO_STROKES"
# Check if they are curves, if there aren't grease pencil strokes
if context.scene.bsurfaces.SURFSK_guide == 'Curve':
try:
global global_curve_object
ob = bpy.data.objects[global_curve_object]
if ob.type == "CURVE":
strokes_type = "EXTERNAL_CURVE"
strokes_num = len(ob.data.splines)
# Check if there is any non-bezier spline
for i in range(len(ob.data.splines)):
if ob.data.splines[i].type != "BEZIER":
strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES"
break
else:
strokes_type = "EXTERNAL_NO_CURVE"
except:
strokes_type = "NO_STROKES"
# Check if they are mesh
try:
global global_mesh_object
self.main_object = bpy.data.objects[global_mesh_object]
total_vert_sel = len([v for v in self.main_object.data.vertices if v.select])
# Check if there is a single stroke without any selection in the object
if strokes_num == 1 and total_vert_sel == 0:
if strokes_type == "EXTERNAL_CURVE":
strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION"
elif strokes_type == "GP_STROKES":
strokes_type = "SINGLE_GP_STROKE_NO_SELECTION"
if strokes_num == 0 and total_vert_sel > 0:
strokes_type = "SELECTION_ALONE"
except:
pass
return strokes_type
# ----------------------------
# Surface generator operator
class MESH_OT_SURFSK_add_surface(Operator):
bl_idname = "mesh.surfsk_add_surface"
bl_label = "Bsurfaces add surface"
bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges"
bl_options = {'REGISTER', 'UNDO'}
is_crosshatch: BoolProperty(
default=False
)
is_fill_faces: BoolProperty(
default=False
)
selection_U_exists: BoolProperty(
default=False
)
selection_V_exists: BoolProperty(
default=False
)
selection_U2_exists: BoolProperty(
default=False
)
selection_V2_exists: BoolProperty(
default=False
)
selection_V_is_closed: BoolProperty(
default=False
)
selection_U_is_closed: BoolProperty(
default=False
)
selection_V2_is_closed: BoolProperty(
default=False
)
selection_U2_is_closed: BoolProperty(
default=False
)
edges_U: IntProperty(
name="Cross",
description="Number of face-loops crossing the strokes",
default=1,
min=1,
max=200
)
edges_V: IntProperty(
name="Follow",
description="Number of face-loops following the strokes",
default=1,
min=1,
max=200
)
cyclic_cross: BoolProperty(
name="Cyclic Cross",
description="Make cyclic the face-loops crossing the strokes",
default=False
)
cyclic_follow: BoolProperty(
name="Cyclic Follow",
description="Make cyclic the face-loops following the strokes",
default=False
)
loops_on_strokes: BoolProperty(
name="Loops on strokes",
description="Make the loops match the paths of the strokes",
default=False
)
automatic_join: BoolProperty(
name="Automatic join",
description="Join automatically vertices of either surfaces generated "
"by crosshatching, or from the borders of closed shapes",
default=False
)
join_stretch_factor: FloatProperty(
name="Stretch",
description="Amount of stretching or shrinking allowed for "
"edges when joining vertices automatically",
default=1,
min=0,
max=3,
subtype='FACTOR'
)
keep_strokes: BoolProperty(
name="Keep strokes",
description="Keeps the sketched strokes or curves after adding the surface",
default=False
)
strokes_type: StringProperty()
initial_global_undo_state: BoolProperty()
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
row = layout.row()
if not self.is_fill_faces:
row.separator()
if not self.is_crosshatch:
if not self.selection_U_exists:
col.prop(self, "edges_U")
row.separator()
if not self.selection_V_exists:
col.prop(self, "edges_V")
row.separator()
row.separator()
if not self.selection_U_exists:
if not (
(self.selection_V_exists and not self.selection_V_is_closed) or
(self.selection_V2_exists and not self.selection_V2_is_closed)
):
col.prop(self, "cyclic_cross")
if not self.selection_V_exists:
if not (
(self.selection_U_exists and not self.selection_U_is_closed) or
(self.selection_U2_exists and not self.selection_U2_is_closed)
):
col.prop(self, "cyclic_follow")
col.prop(self, "loops_on_strokes")
col.prop(self, "automatic_join")
if self.automatic_join:
row.separator()
col.separator()
row.separator()
col.prop(self, "join_stretch_factor")
col.prop(self, "keep_strokes")
# Get an ordered list of a chain of vertices
def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx,
first_vert_idx, middle_vertex_idx, closing_vert_idx):
# Order selected vertices.
verts_ordered = []
if closing_vert_idx is not None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
verts_ordered.append(ob.data.vertices[first_vert_idx])
prev_v = first_vert_idx
prev_ed = None
finish_while = False
while True:
edges_non_matched = 0
for i in all_selected_edges_idx:
if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and \
ob.data.edges[i].vertices[1] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]])
prev_v = ob.data.edges[i].vertices[1]
prev_ed = ob.data.edges[i]
elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and \
ob.data.edges[i].vertices[0] in all_selected_verts_idx:
verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]])
prev_v = ob.data.edges[i].vertices[0]
prev_ed = ob.data.edges[i]
else:
edges_non_matched += 1
if edges_non_matched == len(all_selected_edges_idx):
finish_while = True
if finish_while:
break
if closing_vert_idx is not None:
verts_ordered.append(ob.data.vertices[closing_vert_idx])
if middle_vertex_idx is not None:
verts_ordered.append(ob.data.vertices[middle_vertex_idx])
verts_ordered.reverse()
return tuple(verts_ordered)
# Calculates length of a chain of points.
def get_chain_length(self, object, verts_ordered):
matrix = object.matrix_world
edges_lengths = []
edges_lengths_sum = 0
for i in range(0, len(verts_ordered)):
if i == 0:
prev_v_co = matrix @ verts_ordered[i].co
else:
v_co = matrix @ verts_ordered[i].co
v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]]
edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))
edges_lengths.append(edge_length)
edges_lengths_sum += edge_length
prev_v_co = v_co
return edges_lengths, edges_lengths_sum
# Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
edges_proportions = []
if use_boundaries:
verts_count = 1
for l in edges_lengths:
edges_proportions.append(l / edges_lengths_sum)
verts_count += 1
else:
verts_count = 1
for _n in range(0, fixed_edges_num):
edges_proportions.append(1 / fixed_edges_num)
verts_count += 1
return edges_proportions
# Calculates the angle between two pairs of points in space
def orientation_difference(self, points_A_co, points_B_co):
# each parameter should be a list with two elements,
# and each element should be a x,y,z coordinate
vec_A = points_A_co[0] - points_A_co[1]
vec_B = points_B_co[0] - points_B_co[1]
angle = vec_A.angle(vec_B)
if angle > 0.5 * pi:
angle = abs(angle - pi)
return angle
# Calculate the which vert of verts_idx list is the nearest one
# to the point_co coordinates, and the distance
def shortest_distance(self, object, point_co, verts_idx):
matrix = object.matrix_world
for i in range(0, len(verts_idx)):
dist = (point_co - matrix @ object.data.vertices[verts_idx[i]].co).length
if i == 0:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
if dist < prev_dist:
prev_dist = dist
nearest_vert_idx = verts_idx[i]
shortest_dist = dist
return nearest_vert_idx, shortest_dist
# Returns the index of the opposite vert tip in a chain, given a vert tip index
# as parameter, and a multidimentional list with all pairs of tips
def opposite_tip(self, vert_tip_idx, all_chains_tips_idx):
opposite_vert_tip_idx = None
for i in range(0, len(all_chains_tips_idx)):
if vert_tip_idx == all_chains_tips_idx[i][0]:
opposite_vert_tip_idx = all_chains_tips_idx[i][1]
if vert_tip_idx == all_chains_tips_idx[i][1]:
opposite_vert_tip_idx = all_chains_tips_idx[i][0]
return opposite_vert_tip_idx
# Simplifies a spline and returns the new points coordinates
def simplify_spline(self, spline_coords, segments_num):
simplified_spline = []
points_between_segments = round(len(spline_coords) / segments_num)
simplified_spline.append(spline_coords[0])
for i in range(1, segments_num):
simplified_spline.append(spline_coords[i * points_between_segments])
simplified_spline.append(spline_coords[len(spline_coords) - 1])
return simplified_spline
# Returns a list with the coords of the points distributed over the splines
# passed to this method according to the proportions parameter
def distribute_pts(self, surface_splines, proportions):
# Calculate the length of each final surface spline
surface_splines_lengths = []
surface_splines_parsed = []
for sp_idx in range(0, len(surface_splines)):
# Calculate spline length
surface_splines_lengths.append(0)
for i in range(0, len(surface_splines[sp_idx].bezier_points)):
if i == 0:
prev_p = surface_splines[sp_idx].bezier_points[i]
else:
p = surface_splines[sp_idx].bezier_points[i]
edge_length = (prev_p.co - p.co).length
surface_splines_lengths[sp_idx] += edge_length
prev_p = p
# Calculate vertex positions with appropriate edge proportions, and ordered, for each spline
for sp_idx in range(0, len(surface_splines)):
surface_splines_parsed.append([])
surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co)
prev_p_co = surface_splines[sp_idx].bezier_points[0].co
p_idx = 0
for prop_idx in range(len(proportions) - 1):
target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx]
partial_segment_length = 0
finish_while = False
while True:
# if not it'll pass the p_idx as an index below and crash
if p_idx < len(surface_splines[sp_idx].bezier_points):
p_co = surface_splines[sp_idx].bezier_points[p_idx].co
new_dist = (prev_p_co - p_co).length
# The new distance that could have the partial segment if
# it is still shorter than the target length
potential_segment_length = partial_segment_length + new_dist
# If the potential is still shorter, keep adding
if potential_segment_length < target_length:
partial_segment_length = potential_segment_length
p_idx += 1
prev_p_co = p_co
# If the potential is longer than the target, calculate the target
# (a point between the last two points), and assign
elif potential_segment_length > target_length:
remaining_dist = target_length - partial_segment_length
vec = p_co - prev_p_co
vec.normalize()
intermediate_co = prev_p_co + (vec * remaining_dist)
surface_splines_parsed[sp_idx].append(intermediate_co)
partial_segment_length += remaining_dist
prev_p_co = intermediate_co
finish_while = True
# If the potential is equal to the target, assign
elif potential_segment_length == target_length:
surface_splines_parsed[sp_idx].append(p_co)
prev_p_co = p_co
finish_while = True
if finish_while:
break
# last point of the spline
surface_splines_parsed[sp_idx].append(
surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co
)
return surface_splines_parsed
# Counts the number of faces that belong to each edge
def edge_face_count(self, ob):
ed_keys_count_dict = {}
for face in ob.data.polygons:
for ed_keys in face.edge_keys:
if ed_keys not in ed_keys_count_dict:
ed_keys_count_dict[ed_keys] = 1
else:
ed_keys_count_dict[ed_keys] += 1
edge_face_count = []
for i in range(len(ob.data.edges)):
edge_face_count.append(0)
for i in range(len(ob.data.edges)):
ed = ob.data.edges[i]
v1 = ed.vertices[0]
v2 = ed.vertices[1]
if (v1, v2) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v1, v2)]
elif (v2, v1) in ed_keys_count_dict:
edge_face_count[i] = ed_keys_count_dict[(v2, v1)]
return edge_face_count
# Fills with faces all the selected vertices which form empty triangles or quads
def fill_with_faces(self, object):
all_selected_verts_count = self.main_object_selected_verts_count
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
# Calculate average length of selected edges
all_selected_verts = []
original_sel_edges_count = 0
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
coords = []
coords.append(object.data.vertices[ed.vertices[0]].co)
coords.append(object.data.vertices[ed.vertices[1]].co)
original_sel_edges_count += 1
if not ed.vertices[0] in all_selected_verts:
all_selected_verts.append(ed.vertices[0])
if not ed.vertices[1] in all_selected_verts:
all_selected_verts.append(ed.vertices[1])
tuple(all_selected_verts)
# Check if there is any edge selected. If not, interrupt the script
if original_sel_edges_count == 0 and all_selected_verts_count > 0:
return 0
# Get all edges connected to selected verts
all_edges_around_sel_verts = []
edges_connected_to_sel_verts = {}
verts_connected_to_every_vert = {}
for ed_idx in range(len(object.data.edges)):
ed = object.data.edges[ed_idx]
include_edge = False
if ed.vertices[0] in all_selected_verts:
if not ed.vertices[0] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[0]] = []
edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx)
include_edge = True
if ed.vertices[1] in all_selected_verts:
if not ed.vertices[1] in edges_connected_to_sel_verts:
edges_connected_to_sel_verts[ed.vertices[1]] = []
edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx)
include_edge = True
if include_edge is True:
all_edges_around_sel_verts.append(ed_idx)
# Get all connected verts to each vert
if not ed.vertices[0] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[0]] = []
if not ed.vertices[1] in verts_connected_to_every_vert:
verts_connected_to_every_vert[ed.vertices[1]] = []
verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1])
verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0])
# Get all verts connected to faces
all_verts_part_of_faces = []
all_edges_faces_count = []
all_edges_faces_count += self.edge_face_count(object)
# Get only the selected edges that have faces attached.
count_faces_of_edges_around_sel_verts = {}
selected_verts_with_faces = []
for ed_idx in all_edges_around_sel_verts:
count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx]
if all_edges_faces_count[ed_idx] > 0:
ed = object.data.edges[ed_idx]
if not ed.vertices[0] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[0])
if not ed.vertices[1] in selected_verts_with_faces:
selected_verts_with_faces.append(ed.vertices[1])
all_verts_part_of_faces.append(ed.vertices[0])
all_verts_part_of_faces.append(ed.vertices[1])
tuple(selected_verts_with_faces)
# Discard unneeded verts from calculations
participating_verts = []
movable_verts = []
for v_idx in all_selected_verts:
vert_has_edges_with_one_face = False
# Check if the actual vert has at least one edge connected to only one face
for ed_idx in edges_connected_to_sel_verts[v_idx]:
if count_faces_of_edges_around_sel_verts[ed_idx] == 1:
vert_has_edges_with_one_face = True
# If the vert has two or less edges connected and the vert is not part of any face.
# Or the vert is part of any face and at least one of
# the connected edges has only one face attached to it.
if (len(edges_connected_to_sel_verts[v_idx]) == 2 and
v_idx not in all_verts_part_of_faces) or \
len(edges_connected_to_sel_verts[v_idx]) == 1 or \
(v_idx in all_verts_part_of_faces and
vert_has_edges_with_one_face):
participating_verts.append(v_idx)
if v_idx not in all_verts_part_of_faces:
movable_verts.append(v_idx)
# Remove from movable verts list those that are part of closed geometry (ie: triangles, quads)
for mv_idx in movable_verts:
freeze_vert = False
mv_connected_verts = verts_connected_to_every_vert[mv_idx]
for actual_v_idx in all_selected_verts:
count_shared_neighbors = 0
checked_verts = []
for mv_conn_v_idx in mv_connected_verts:
if mv_idx != actual_v_idx:
if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and \
mv_conn_v_idx not in checked_verts:
count_shared_neighbors += 1
checked_verts.append(mv_conn_v_idx)
if actual_v_idx in mv_connected_verts:
freeze_vert = True
break
if count_shared_neighbors == 2:
freeze_vert = True
break
if freeze_vert:
break
if freeze_vert:
movable_verts.remove(mv_idx)
# Calculate merge distance for participating verts
shortest_edge_length = None
for ed in object.data.edges:
if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts:
v1 = object.data.vertices[ed.vertices[0]]
v2 = object.data.vertices[ed.vertices[1]]
length = (v1.co - v2.co).length
if shortest_edge_length is None:
shortest_edge_length = length
else:
if length < shortest_edge_length:
shortest_edge_length = length
if shortest_edge_length is not None:
edges_merge_distance = shortest_edge_length * 0.5
else:
edges_merge_distance = 0
# Get together the verts near enough. They will be merged later
remaining_verts = []
remaining_verts += participating_verts
for v1_idx in participating_verts:
if v1_idx in remaining_verts and v1_idx in movable_verts:
verts_to_merge = []
coords_verts_to_merge = {}
verts_to_merge.append(v1_idx)
v1_co = object.data.vertices[v1_idx].co
coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2])
for v2_idx in remaining_verts:
if v1_idx != v2_idx:
v2_co = object.data.vertices[v2_idx].co
dist = (v1_co - v2_co).length
if dist <= edges_merge_distance: # Add the verts which are near enough
verts_to_merge.append(v2_idx)
coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2])
for vm_idx in verts_to_merge:
remaining_verts.remove(vm_idx)
if len(verts_to_merge) > 1:
# Calculate middle point of the verts to merge.
sum_x_co = 0
sum_y_co = 0
sum_z_co = 0
movable_verts_to_merge_count = 0
for i in range(len(verts_to_merge)):
if verts_to_merge[i] in movable_verts:
v_co = object.data.vertices[verts_to_merge[i]].co
sum_x_co += v_co[0]
sum_y_co += v_co[1]
sum_z_co += v_co[2]
movable_verts_to_merge_count += 1
middle_point_co = [
sum_x_co / movable_verts_to_merge_count,
sum_y_co / movable_verts_to_merge_count,
sum_z_co / movable_verts_to_merge_count
]
# Check if any vert to be merged is not movable
shortest_dist = None
are_verts_not_movable = False
verts_not_movable = []
for v_merge_idx in verts_to_merge:
if v_merge_idx in participating_verts and v_merge_idx not in movable_verts:
are_verts_not_movable = True
verts_not_movable.append(v_merge_idx)
if are_verts_not_movable:
# Get the vert connected to faces, that is nearest to
# the middle point of the movable verts
shortest_dist = None
for vcf_idx in verts_not_movable:
dist = abs((object.data.vertices[vcf_idx].co -
Vector(middle_point_co)).length)
if shortest_dist is None:
shortest_dist = dist
nearest_vert_idx = vcf_idx
else:
if dist < shortest_dist:
shortest_dist = dist
nearest_vert_idx = vcf_idx
coords = object.data.vertices[nearest_vert_idx].co
target_point_co = [coords[0], coords[1], coords[2]]
else:
target_point_co = middle_point_co
# Move verts to merge to the middle position
for v_merge_idx in verts_to_merge:
if v_merge_idx in movable_verts: # Only move the verts that are not part of faces
object.data.vertices[v_merge_idx].co[0] = target_point_co[0]
object.data.vertices[v_merge_idx].co[1] = target_point_co[1]
object.data.vertices[v_merge_idx].co[2] = target_point_co[2]
# Perform "Remove Doubles" to weld all the disconnected verts
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.remove_doubles(threshold=0.0001)
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
# Get all the definitive selected edges, after weldding
selected_edges = []
edges_per_vert = {} # Number of faces of each selected edge
for ed in object.data.edges:
if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
selected_edges.append(ed.index)
# Save all the edges that belong to each vertex.
if not ed.vertices[0] in edges_per_vert:
edges_per_vert[ed.vertices[0]] = []
if not ed.vertices[1] in edges_per_vert:
edges_per_vert[ed.vertices[1]] = []
edges_per_vert[ed.vertices[0]].append(ed.index)
edges_per_vert[ed.vertices[1]].append(ed.index)
# Check if all the edges connected to each vert have two faces attached to them.
# To discard them later and make calculations faster
a = []
a += self.edge_face_count(object)
tuple(a)
verts_surrounded_by_faces = {}
for v_idx in edges_per_vert:
edges_with_two_faces_count = 0
for ed_idx in edges_per_vert[v_idx]:
if a[ed_idx] == 2:
edges_with_two_faces_count += 1
if edges_with_two_faces_count == len(edges_per_vert[v_idx]):
verts_surrounded_by_faces[v_idx] = True
else:
verts_surrounded_by_faces[v_idx] = False
# Get all the selected vertices
selected_verts_idx = []
for v in object.data.vertices:
if v.select:
selected_verts_idx.append(v.index)
# Get all the faces of the object
all_object_faces_verts_idx = []
for face in object.data.polygons:
face_verts = []
face_verts.append(face.vertices[0])
face_verts.append(face.vertices[1])
face_verts.append(face.vertices[2])
if len(face.vertices) == 4:
face_verts.append(face.vertices[3])
all_object_faces_verts_idx.append(face_verts)
# Deselect all vertices
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')
# Make a dictionary with the verts related to each vert
related_key_verts = {}
for ed_idx in selected_edges:
ed = object.data.edges[ed_idx]
if not verts_surrounded_by_faces[ed.vertices[0]]:
if not ed.vertices[0] in related_key_verts:
related_key_verts[ed.vertices[0]] = []
if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
related_key_verts[ed.vertices[0]].append(ed.vertices[1])
if not verts_surrounded_by_faces[ed.vertices[1]]:
if not ed.vertices[1] in related_key_verts:
related_key_verts[ed.vertices[1]] = []
if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
related_key_verts[ed.vertices[1]].append(ed.vertices[0])
# Get groups of verts forming each face
faces_verts_idx = []
for v1 in related_key_verts: # verts-1 ....
for v2 in related_key_verts: # verts-2
if v1 != v2:
related_verts_in_common = []
v2_in_rel_v1 = False
v1_in_rel_v2 = False
for rel_v1 in related_key_verts[v1]:
# Check if related verts of verts-1 are related verts of verts-2
if rel_v1 in related_key_verts[v2]:
related_verts_in_common.append(rel_v1)
if v2 in related_key_verts[v1]:
v2_in_rel_v1 = True
if v1 in related_key_verts[v2]:
v1_in_rel_v2 = True
repeated_face = False
# If two verts have two related verts in common, they form a quad
if len(related_verts_in_common) == 2:
# Check if the face is already saved
all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
for f_verts in all_faces_to_check_idx:
repeated_verts = 0
if len(f_verts) == 4:
if v1 in f_verts:
repeated_verts += 1
if v2 in f_verts:
repeated_verts += 1
if related_verts_in_common[0] in f_verts:
repeated_verts += 1
if related_verts_in_common[1] in f_verts:
repeated_verts += 1
if repeated_verts == len(f_verts):
repeated_face = True
break