-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine.cpp
254 lines (202 loc) · 9.39 KB
/
engine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include "engine.hpp"
YoloInferencer::YoloInferencer(std::wstring& modelPath, const char* logid, const char* provider)
: env_(ORT_LOGGING_LEVEL_WARNING, logid) {
// Set session options
Ort::SessionOptions sessionOptions;
if (strcmp(provider, "CUDA") == 0) {
OrtCUDAProviderOptions cudaOption;
sessionOptions.AppendExecutionProvider_CUDA(cudaOption);
}
session_ = Ort::Session(env_, modelPath.c_str(), sessionOptions);
// Aquire input names
std::vector<Ort::AllocatedStringPtr> inputNodeNameAllocatedStrings;
Ort::AllocatorWithDefaultOptions input_names_allocator;
auto inputNodesNum = session_.GetInputCount();
for (int i = 0; i < inputNodesNum; i++) {
auto input_name = session_.GetInputNameAllocated(i, input_names_allocator);
inputNodeNameAllocatedStrings.push_back(std::move(input_name));
inputNames_.push_back(inputNodeNameAllocatedStrings.back().get());
}
// Convert input names to cstr
for (const std::string& name : inputNames_) {
inputNamesCStr_.push_back(name.c_str());
}
// Aquire output names
std::vector<Ort::AllocatedStringPtr> outputNodeNameAllocatedStrings;
Ort::AllocatorWithDefaultOptions output_names_allocator;
auto outputNodesNum = session_.GetOutputCount();
for (int i = 0; i < outputNodesNum; i++)
{
auto output_name = session_.GetOutputNameAllocated(i, output_names_allocator);
outputNodeNameAllocatedStrings.push_back(std::move(output_name));
outputNames_.push_back(outputNodeNameAllocatedStrings.back().get());
}
// Convert output names to cstr
for (const std::string& name : outputNames_) {
outputNamesCStr_.push_back(name.c_str());
}
// Aquire model metadata
model_metadata = session_.GetModelMetadata();
Ort::AllocatorWithDefaultOptions metadata_allocator;
std::vector<Ort::AllocatedStringPtr> metadataAllocatedKeys = model_metadata.GetCustomMetadataMapKeysAllocated(metadata_allocator);
std::vector<std::string> metadata_keys;
metadata_keys.reserve(metadataAllocatedKeys.size());
for (const Ort::AllocatedStringPtr& allocatedString : metadataAllocatedKeys) {
metadata_keys.emplace_back(allocatedString.get());
}
// Parse metadata
for (const std::string& key : metadata_keys) {
Ort::AllocatedStringPtr metadata_value = model_metadata.LookupCustomMetadataMapAllocated(key.c_str(), metadata_allocator);
if (metadata_value != nullptr) {
auto raw_metadata_value = metadata_value.get();
metadata[key] = std::string(raw_metadata_value);
}
}
// Find the input size of the model
auto imgsz_item = metadata.find("imgsz");
if (imgsz_item != metadata.end()) {
// parse it and convert to int iterable
std::vector<int> imgsz = convertStringVectorToInts(parseVectorString(imgsz_item->second));
if (imgsz_.empty()) {
imgsz_ = imgsz;
}
}
else {
std::cerr << "Warning: Cannot get imgsz value from metadata" << std::endl;
}
// For yolo this is normally 32 but get it anyway
auto stride_item = metadata.find("stride");
if (stride_item != metadata.end()) {
// parse it and convert to int iterable
int stride = std::stoi(stride_item->second);
if (stride_ == -1) {
stride_ = stride;
}
}
else {
std::cerr << "Warning: Cannot get stride value from metadata" << std::endl;
}
// For the names of the classes
auto names_item = metadata.find("names");
if (names_item != metadata.end()) {
// parse it and convert to int iterable
std::unordered_map<int, std::string> names = parseNames(names_item->second);
std::cout << "***Names from metadata***" << std::endl;
for (const auto& pair : names) {
std::cout << "Key: " << pair.first << ", Value: " << pair.second << std::endl;
}
// set it here:
if (names_.empty()) {
names_ = names;
}
}
else {
std::cerr << "Warning: Cannot get names value from metadata" << std::endl;
}
// Determine the task (We want detect)
auto task_item = metadata.find("task");
if (task_item != metadata.end()) {
std::string task = std::string(task_item->second);
if (task_.empty()) {
task_ = task;
}
}
else {
std::cerr << "Warning: Cannot get task value from metadata" << std::endl;
}
// Aquire number of classes
if (nc_ == -1 && names_.size() > 0) {
nc_ = names_.size();
}
else {
std::cerr << "Warning: Cannot get nc value from metadata (probably names wasn't set)" << std::endl;
}
// Setup the desired input shape
if (!imgsz_.empty() && inputTensorShape_.empty())
{
inputTensorShape_ = { 1, ch_, imgsz_[0], imgsz_[1] };
}
// Setup the CV resizer
if (!imgsz_.empty())
{
cvSize_ = cv::Size(imgsz_[1], imgsz_[0]);
}
}
// Destructor for the class
YoloInferencer::~YoloInferencer() {
// The Ort::Session and other Ort:: objects will automatically release resources upon destruction
// due to their RAII design.
}
// This function does the preprocessing of the image and returns the tensor
std::vector<Ort::Value> YoloInferencer::preprocess(cv::Mat& frame) {
// This isn't actually used until the postprocess function
// So if u multithread in the future, this will have to move
rawImgSize_ = frame.size();
cv::Mat coloured_frame;
cv::cvtColor(frame, coloured_frame, cv::COLOR_BGR2RGB); // Convert to the RGB color space (I think this is correct but dont quote me)
const bool auto_ = false;
const bool scalefill_ = false;
cv::Mat letterbox_image = letterbox(coloured_frame, cvSize_, cv::Scalar(), auto_, scalefill_, true, stride_);
std::vector<float> blob = fill_blob(letterbox_image, inputTensorShape_);
int64_t inputTensorSize = vector_product(inputTensorShape_);
inputTensorValues_.resize(inputTensorSize); // Use a member variable to keep it in scope
std::copy(blob.begin(), blob.begin() + inputTensorSize, inputTensorValues_.begin());
std::vector<Ort::Value> inputTensors;
Ort::MemoryInfo memoryInfo = Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtArenaAllocator, OrtMemType::OrtMemTypeDefault);
inputTensors.push_back(Ort::Value::CreateTensor<float>(memoryInfo, inputTensorValues_.data(), inputTensorSize, inputTensorShape_.data(), inputTensorShape_.size()));
return inputTensors;
}
// This function does the forward pass and returns the tensor
std::vector<Ort::Value> YoloInferencer::forward(std::vector<Ort::Value>& inputTensors) {
return session_.Run(Ort::RunOptions{ nullptr }, inputNamesCStr_.data(), inputTensors.data(), inputNamesCStr_.size(), outputNamesCStr_.data(), outputNamesCStr_.size());
}
// This function does the postprocessing of the output and returns the detections
std::vector<Detection> YoloInferencer::postprocess(std::vector<Ort::Value>& outputTensors, float conf_threshold, float iou_threshold) {
// ngl have this shit is voodoo but it works thanks again @FourierMourier from https://github.com/FourierMourier/yolov8-onnx-cpp
float* data = outputTensors[0].GetTensorMutableData<float>();
std::vector<int64_t> outputShape = outputTensors[0].GetTensorTypeAndShapeInfo().GetShape();
cv::Mat output0 = cv::Mat(cv::Size((int)outputShape[2], (int)outputShape[1]), CV_32F, data).t(); // [bs, features, preds_num]=>[bs, preds_num, features]
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
int data_width = nc_ + 4;
int rows = output0.rows;
float* pdata = (float*)output0.data;
for (int i = 0; i < rows; ++i) {
cv::Mat scores(1, nc_, CV_32FC1, pdata + 4);
double max_conf;
cv::Point class_id;
minMaxLoc(scores, nullptr, &max_conf, nullptr, &class_id);
if (max_conf > conf_threshold) {
class_ids.push_back(class_id.x);
confidences.push_back((float)max_conf);
float out_w = pdata[2];
float out_h = pdata[3];
float out_left = std::max((pdata[0] - 0.5f * out_w), 0.0f);
float out_top = std::max((pdata[1] - 0.5f * out_h), 0.0f);
cv::Rect_<float> bbox = cv::Rect_<float>(out_left, out_top, (out_w + 0.5), (out_h + 0.5));
cv::Rect_<float> scaled_bbox = scale_boxes(cvSize_, bbox, rawImgSize_);
boxes.push_back(scaled_bbox);
}
pdata += data_width;
}
std::vector<int> nms_result;
cv::dnn::NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, nms_result);
std::vector<Detection> detections;
for (int idx : nms_result) {
boxes[idx] &= cv::Rect(0, 0, rawImgSize_.width, rawImgSize_.height);
Detection detection;
detection.class_id = class_ids[idx];
detection.confidence = confidences[idx];
detection.box = boxes[idx];
detections.push_back(detection);
}
return detections;
}
// This function does the whole inference, and is publicly accessible, acting as a main
std::vector<Detection> YoloInferencer::infer(cv::Mat& frame, float conf_threshold, float iou_threshold) {
std::vector<Ort::Value> inputTensors = preprocess(frame);
std::vector<Ort::Value> outputTensors = forward(inputTensors);
std::vector<Detection> detections = postprocess(outputTensors, conf_threshold, iou_threshold);
return detections;
}