-
Notifications
You must be signed in to change notification settings - Fork 3
/
lorenz_attractor.py
executable file
·213 lines (179 loc) · 10.4 KB
/
lorenz_attractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2020 Salesforce Research (Junwen Bai, Weiran Wang)
# Licensed under the Apache License, Version 2.0 (the "License")
import sys, os
import pdb
sys.path.append(".")
sys.path.append("..")
import numpy as np
from sklearn.manifold import TSNE
from distutils.util import strtobool
from dapc.dapc import DAPC
from dapc.dapc import fit_dapc
from dapc.utils import _context_concat, parsegpuid
from dapc.data_gen import gen_nonlinear_noisy_lorenz, gen_lorenz_data
from dapc.data_process import match, split, chunk_long_seq, smoothen
from dapc.solver import LIN, DNN, KERNEL
from dapc.plotting import plot_figs
import torch
from torch.utils.tensorboard import SummaryWriter
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--obj", default="det", type=str,
choices=["det", "cpc", "vae"],
help="objective function for representation learning, det (deterministic), cpc, or vae")
parser.add_argument("--fdim", default=3, help="Dimensionality of features", type=int)
parser.add_argument("--T", default=4, help="Time steps for estimating PI", type=int)
parser.add_argument("--ortho_lambda", default=0.0, help="Regularization parameter for orthogonality", type=float)
parser.add_argument("--recon_lambda", default=0.0, help="Regularization parameter for reconstruction", type=float)
parser.add_argument("--rate_lambda", default=0.0, help="Regularization parameter for latent space matching", type=float)
parser.add_argument("--snr_val", default=1.0, help="snr val", type=float)
parser.add_argument("--lr", default=1e-3, help="Learning rate", type=float)
parser.add_argument("--dropout", default=0.0, help="Dropout probability of networks.", type=float)
parser.add_argument("--split_rate", default=0.82, help="split rate", type=float)
parser.add_argument("--batchsize", default=20, help="Number of sequences in each minibatch", type=int)
parser.add_argument("--encoder_type", default="lin", type=str, choices=["lin", "transformer", "dnn", "gru", "lstm", "bgru", "blstm"])
parser.add_argument("--base_encoder_type", default="lin", type=str, choices=["lin", "dnn", "gru", "lstm", "bgru", "blstm"])
parser.add_argument("--epochs", default=10, help="Number of training epochs", type=int)
parser.add_argument('--masked_recon', default=False, type=strtobool, help='Whether to use masked reconstruction loss')
parser.add_argument("--gpuid", default="0", help="ID of gpu device to be used", type=str)
parser.add_argument("--seed", default=0, help="Random seed", type=int)
return parser
def create_writer_name(writer_path):
if not os.path.exists(writer_path):
return writer_path
cnt = 1
while os.path.exists(writer_path+"_"+str(cnt)):
cnt += 1
return writer_path+"_"+str(cnt)
def main(args):
parser = get_parser()
parser = DAPC.add_arguments(parser)
args = parser.parse_args(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Handle multiple gpu issues.
gpuid = args.gpuid
gpulist = parsegpuid(gpuid)
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(x) for x in gpulist])
numGPUs = len(gpulist)
print("Using %d gpus, CUDA_VISIBLE_DEVICES=%s" % (numGPUs, os.environ["CUDA_VISIBLE_DEVICES"]))
T = args.T
fdim = args.fdim
encoder_name = args.encoder_type
params = 'obj={}_encoder={}_split={}_fdim={}_context={}_T={}_lr={}_bs={}_dropout={}_rate-lambda={}_ortho-lambda={}_recon-lambda={}_seed={}'.format(
args.obj, encoder_name, args.split_rate, args.fdim, args.input_context, args.T, args.lr, args.batchsize, args.dropout, args.rate_lambda, args.ortho_lambda, args.recon_lambda, args.seed)
if args.obj == "vae":
params = params + "_priorpi={}_dimpi={}_{}_{}_{}_{}".format(args.use_prior_pi, args.use_dim_pi, args.vae_alpha, args.vae_beta, args.vae_gamma, args.vae_zeta)
print(params)
idim = 30 # lift projection dim
noise_dim = 7 # noisify raw DCA
split_rate = args.split_rate # train/valid split
snr_vals = [0.3, 1.0, 5.0] # signal-to-noise ratios
num_samples = 10000 # samples to collect from the lorenz system
print("Generating ground truth dynamics ...")
X_dynamics = gen_lorenz_data(num_samples) # 10000 * 3
noisy_model = DNN(X_dynamics.shape[1], idim, dropout=0.5) # DNN lift projection: 3 -> 30 for d-DCA
use_gpu = True
if use_gpu:
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
dca_recons = []
dapc_recons = []
r2_vals = np.zeros((len(snr_vals), 2)) # obtain R2 scores for DCA and dDCA
for snr_idx, snr in enumerate(snr_vals):
print("Generating noisy data with snr=%.2f ..." % snr)
X_clean, X_noisy = gen_nonlinear_noisy_lorenz(idim, T, snr, X_dynamics=X_dynamics, noisy_model=noisy_model, seed=args.seed)
X_noisy = X_noisy - X_noisy.mean(axis=0)
X_clean_train, X_clean_val = split(X_clean, split_rate)
X_noisy_train, X_noisy_val = split(X_noisy, split_rate)
X_dyn_train, X_dyn_val = split(X_dynamics, split_rate)
if not os.path.exists("runs"):
os.mkdir("runs")
writer = SummaryWriter(create_writer_name('runs/dapc_{}'.format(params)))
chunk_size = 500
X_train_seqs, L_train = chunk_long_seq(X_noisy_train, 30, chunk_size)
X_valid_seqs, L_valid = chunk_long_seq(X_noisy_val, 30, chunk_size)
X_clean_seqs, L_clean = chunk_long_seq(X_clean_val, 30, chunk_size)
X_dyn_seqs, L_dyn = chunk_long_seq(X_dyn_val, 30, chunk_size)
# 0:500 test, 1000:1500 valid
X_match = torch.from_numpy(_context_concat(X_noisy_val[1000:1500], 0)).float().to(device)
Y_match = X_dyn_val[1000:1500]
# Linear DCA
print("Training {}".format(args.base_encoder_type))
if args.base_encoder_type != "lin":
dca_model = DAPC(args.obj, idim, fdim, T, encoder_type=args.base_encoder_type,
ortho_lambda=args.ortho_lambda, recon_lambda=args.recon_lambda,
dropout=args.dropout, masked_recon=args.masked_recon,
args=args, device=device)
else:
dca_model = DAPC("dca", idim, fdim, T, encoder_type="lin",
ortho_lambda=10.0, recon_lambda=0.0,
dropout=0.0, masked_recon=False,
args=args)
dca_model = fit_dapc(dca_model, X_train_seqs, L_train, X_valid_seqs[:1], L_valid[:1], writer, args.lr, use_gpu,
batch_size=args.batchsize, max_epochs=args.epochs, device=device, snapshot="lin_dca.cpt", X_match=X_match, Y_match=Y_match, use_writer=False)
X_dca = dca_model.encode(
torch.from_numpy(_context_concat(X_noisy_val[:500], dca_model.input_context)).float().to(device,
dtype=dca_model.dtype)).cpu().numpy()
if X_dca.shape[1] > 3:
X_dca = TSNE(n_components=3).fit_transform(X_dca)
# deep DCA
print("Training {}".format(encoder_name))
dapc_model = DAPC(args.obj, idim, fdim, T, encoder_type=args.encoder_type,
ortho_lambda=args.ortho_lambda, recon_lambda=args.recon_lambda,
dropout=args.dropout, masked_recon=args.masked_recon,
args=args, device=device)
dapc_model = fit_dapc(dapc_model, X_train_seqs, L_train, X_valid_seqs, L_valid, writer, args.lr, use_gpu,
batch_size=args.batchsize, max_epochs=args.epochs, device=device, snapshot=params + ".cpt", X_match=X_match, Y_match=Y_match)
X_dapc = dapc_model.encode(
torch.from_numpy(_context_concat(X_noisy_val[:500], dapc_model.input_context)).float().to(device,
dtype=dapc_model.dtype)).cpu().numpy()
if X_dapc.shape[1] > 3:
X_dapc = TSNE(n_components=3).fit_transform(X_dapc)
print(np.matmul((X_dapc - X_dapc.mean(0)).T, (X_dapc - X_dapc.mean(0))) / X_dapc.shape[0])
if not os.path.exists("pngs"):
os.mkdir("pngs")
if dapc_model.obj == "vae":
ax = sns.heatmap(dapc_model.post_cov.detach().cpu().numpy(), linewidth=0.05)
plt.savefig("pngs/post_cov_heat_{}.png".format(params))
plt.clf()
ax = sns.heatmap(dapc_model.cov.detach().cpu().numpy(), linewidth=0.05)
plt.savefig("pngs/cov_heat_{}.png".format(params))
else:
ax = sns.heatmap(dapc_model.cov.detach().cpu().numpy(), linewidth=0.05)
plt.savefig("pngs/post_cov_heat_{}.png".format(params))
# match DCA with ground-truth
if not os.path.exists("npys"):
os.mkdir("npys")
np.save("npys/dapc_bases_{}.npy".format(params), X_dapc)
print("Matching {}".format(args.base_encoder_type))
X_dca_recon, _ = match(X_dca, X_dyn_val[:500], 15000, device)
# match DAPC with ground-truth
print("Matching {}".format(encoder_name))
X_dapc_recon, _ = match(X_dapc, X_dyn_val[:500], 15000, device)
# R2 of dca
r2_dca = 1 - np.sum((X_dca_recon - X_dyn_val[:500]) ** 2) / np.sum(
(X_dyn_val[:500] - np.mean(X_dyn_val[:500], axis=0)) ** 2)
print("\nr2_dca:", r2_dca)
# R2 of dapc
r2_dapc = 1 - np.sum((X_dapc_recon - X_dyn_val[:500]) ** 2) / np.sum(
(X_dyn_val[:500] - np.mean(X_dyn_val[:500], axis=0)) ** 2)
print("r2_dapc:", r2_dapc)
# store R2's
r2_vals[snr_idx] = [r2_dca, r2_dapc]
# store reconstructed signals
dca_recons.append(X_dca_recon)
dapc_recons.append(X_dapc_recon)
if not os.path.exists("plots"):
os.mkdir("plots")
if not os.path.exists("plots/{}".format(params)):
os.mkdir("plots/{}".format(params))
plot_figs(dca_recons, dapc_recons, X_dyn_val[:500], X_clean_val[:500], X_noisy_val[:500], r2_vals, snr_vals, args.base_encoder_type,
encoder_name, "plots/{}".format(params))
if __name__ == "__main__":
main(sys.argv[1:])