forked from roxannef/microbe-networks
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcooccur_fum.R
133 lines (87 loc) · 4.32 KB
/
cooccur_fum.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
###Import information
pscooccur1 <- readRDS(file = "rds/pscooccur1.rds")
sd <- sample_data(pscooccur1)
otutab1.species <- otu_table(pscooccur1)
taxtab.species <- tax_table(pscooccur1)
taxtab.species.named <- tax_table(pscooccur1)
Fus_taxon <- c("Fungi","Ascomycota","Sordariomycetes","Hypocreales","Nectriaceae","Fusarium","verticillioides")
taxtab2 <- rbind(taxtab.species.named,"Fusarium_vertillioides"=Fus_taxon)
tax_table(pscooccur1) <- taxtab2
otutab1.species <- otu_table(pscooccur1)
otutab1.speciesfum <- matrix(otutab1.species)
rownames(otutab1.speciesfum) == rownames(taxtab2)
rownames(otutab1.speciesfum) == rownames(taxtab2)
pscooccur1_namedfus <- phyloseq(otu_table(otutab1.species, taxa_are_rows = TRUE),
tax_table(taxtab2),
sample_data(sd)
)
saveRDS(pscooccur1_namedfus, file = "rds/pscooccur1_namedfus.rds")
###Change to presence absence
fus_pa <- transform_sample_counts(pscooccur1_namedfus,function(x)1*(x>0))
###Run the cooccur function (warning, can take like 40 minutes)
cooccur.species <- cooccur(mat = otu_table(fus_pa),
type = "spp_site",
thresh = TRUE,
spp_names = TRUE)
saveRDS(cooccur.species, file = "rds/cooccur.species.rds")
###check to see the interactions with fusarium
fum.cooccur <- pair(cooccur.species, "Fusarium_vertillioides", all = TRUE)
summary(fum.cooccur, "Fusarium_vertillioides")
plot(fum.cooccur)
#####The only statistically significant one after adjusted p value - Limnobacter thioxidans
##Now looking to see if there are any that cooccur with fus amount
species_otu_pa <- transform_sample_counts(otutab1.species,function(x)1*(x>0))
otutab1.speciesfumamount <- rbind(otutab1.species, "Fusarium_vertillioides"= sd$log_avg_copies_fum)
pscooccur1_namedfusabundance <- phyloseq(otu_table(otutab1.speciesfumamount, taxa_are_rows = TRUE),
tax_table(taxtab2),
sample_data(sd)
)
cooccur.species.fusabundance <- cooccur(mat = otu_table(pscooccur1_namedfusabundance),
type = "spp_site",
thresh = TRUE,
spp_names = TRUE)
###############################
pscooccur1 <- readRDS(file = "rds/pscooccur1.rds")
sd <- sample_data(pscooccur1)
otutab1.species <- otu_table(pscooccur1)
taxtab.species <- tax_table(pscooccur1)
taxtab.species.named <- tax_table(pscooccur1)
Fus_taxon <- c("Fungi","Ascomycota","Sordariomycetes","Hypocreales","Nectriaceae","Fusarium","verticillioides")
taxtab2 <- rbind(taxtab.species.named,"Fusarium_vertillioides"=Fus_taxon)
tax_table(pscooccur1) <- taxtab2
otutab1.species <- otu_table(pscooccur1)
otutab1.speciesfum <- matrix(otutab1.species)
rownames(otutab1.speciesfum) == rownames(taxtab2)
rownames(otutab1.speciesfum) == rownames(taxtab2)
pscooccur1_namedfus <- phyloseq(otu_table(otutab1.species, taxa_are_rows = TRUE),
tax_table(taxtab2),
sample_data(sd)
)
saveRDS(pscooccur1_namedfus, file = "rds/pscooccur1_namedfus.rds")
###Change to presence absence
fus_pa <- transform_sample_counts(pscooccur1_namedfus,function(x)1*(x>0))assifier = .1,
# default value prob = "comb" #combinatory (comb) or hypergeometric (hyper)
#site_mask = "???"
#only_effects = TRUE,
#eff_standard = TRUE
)
summary(cooccur_16S.family)
plot(cooccur_16S.family)
saveRDS(cooccur_16S.family, file = "cooccur_16S.family.rds")
#Doing the same process for Genus:
#pscooccur.genus_pruned <- prune_taxa(taxa_sums(pscooccur.genus) > 600, pscooccur.genus)
pscooccur.genus_pruned_pa <- transform_sample_counts(pscooccur.genus,function(x)1*(x>0))
otutab.genus <- otu_table(pscooccur.genus_pruned_pa)
cooccur.genus_16S <- cooccur(mat = otutab.genus,
type = "spp_site",
thresh = TRUE,
spp_names = TRUE,
true_rand_classifier = .1, # default value
prob = "comb" #combinatory (comb) or hypergeometric (hyper)
#site_mask = "???"
#only_effects = TRUE,
#eff_standard = TRUE
)
summary(cooccur.genus_16S)
plot.cooccur(cooccur.genus_16S)
##