-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline.py
207 lines (164 loc) · 9.36 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import pickle
import random
import argparse
import sys
import os
from torch.utils.data import DataLoader
sys.path.append(os.getcwd())
from transformers import BertTokenizer, BertForMaskedLM, BertConfig
#from model.bert_layers import BertModel, BertForMaskedLM
from model.__main__module import *
from datetime import datetime
import torch
from dataloader import *
# from parallel
from tensorboardX import SummaryWriter
import torchvision.transforms as transforms
from tqdm import tqdm
from model.bert import Small_Bert
from model.bert_layers import Bert_For_Att_output, Bert_For_Att_output_MLM
from config import *
from sampling import *
parser = argparse.ArgumentParser()
parser.add_argument("--data_parallel", default='False', help="use data parallel", type=str)
parser.add_argument("--gpu_num", default='0', help="choose gpu number: 0, 1, 2, 3", type=int)
parser.add_argument("--model", default='tiny-bert', help="choose model architecture from: tiny-bert, mobile-bert, minilm ", type=str)
parser.add_argument("--pretrained", default='bert-base_uncased',
help="choose model pretrained weight from: bert-base-uncased, bert-large-uncased, roberta-base, roberta-large",
type=str)
#parser.add_argument("--size", default='312', help="choose model size from: 768, 1024", type=int)
parser.add_argument("--lr", default=5e-4, help="insert learning rate", type=float)
parser.add_argument("--weight_decay", default=0.01, help="insert weight decay", type=float)
parser.add_argument("--epochs", default=1000, help="insert epochs", type=int)
parser.add_argument("--batch_size", default=128, help="insert batch size", type=int)
parser.add_argument("--step_batch_size", default=128, help="insert step batch size", type=int)
parser.add_argument("--random_seed", default=16, help="insert step batch size", type=int)
args = parser.parse_args()
summary = SummaryWriter(comment = 'runs/Distillation_%s_%s'%(str(args.pretrained), str(args.random_seed)))
#device = torch.device(f'cuda:{args.gpu_num}' if torch.cuda.is_available() else 'cpu')
device = torch.device("cuda:0")
torch.cuda.set_device(device) # change allocation of current GPU
print('Current cuda device ', torch.cuda.current_device()) # check
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
#configuration = Bert_Small_Head_Config
#configuration = Bert_Tiny_Config
#configuration = Mini_LM_2_layer
configuration = Bert_Small_Head_6_Config
#configuration = Bert_Small_Head_4_Config
#configuration = Bert_Small_Head_2_Config
#configuration = Bert_6_layer
#configuration = Bert_Small_Head_Hidden_Config
def get_model(args, configuration):
if args.model.lower() == "minilm":
base_model = Bert_For_Att_output(configuration, True, None)
prediction_model = Bert_For_Att_output_MLM.from_pretrained("bert-base-uncased").to(device)
model = MINILM_Only(base_model, configuration).cuda()
elif args.model.lower() == "soft-distill":
base_model = Bert_For_Att_output(configuration, True, None)
prediction_model = Bert_For_Att_output_MLM.from_pretrained("bert-base-uncased").to(device)
model = Soft_Distill_Model_All(base_model, configuration).cuda()
return model, prediction_model
model, prediction_model = get_model(args, configuration)
#model_save_path = "save_model/baseline/2_layer_500000_tiny-bert.pt"
#model_save_path = "save_model/baseline/4_layer_400000_tiny-bert.pt"
#model.load_state_dict(torch.load(model_save_path, map_location = device))
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
print(args.random_seed)
scaler = torch.cuda.amp.GradScaler()
step = 1
iters = 1
# %load_ext tensorboard
# %tensorboard --logdir runs --port=8088
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta', 'LayerNorm']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
#optimizer = torch.optim.AdamW(optimizer_grouped_parameters, betas=(0.9, 0.98), eps=1e-6, lr=args.lr)
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, betas=(0.9, 0.999), eps=1e-6, lr=args.lr)
optimizer.zero_grad()
norm = transforms.Normalize(mean=torch.zeros(args.batch_size), std=torch.ones(args.batch_size))
prediction_model.requires_grad_(False)
softmax = nn.Softmax(-1)
path = "/home/user10/RTPP/data/origin/"
temp = []
for epoch in range(args.epochs):
Loss = 0
Distill_Loss = 0
PP_Loss = 0
Loss_len = 0
print("now %s epoch..." % str(epoch + 1))
for file in os.listdir(path):
#train_dataset = create_dataset_RTPP(str(file), tokenizer)
#train_dataset = create_dataset_RTPP_Allmask(str(file), tokenizer)
train_dataset= create_dataset_Electra(str(file), tokenizer, path)
#train_dataset = Origin_MLM_loader(str(file), tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size=args.step_batch_size, shuffle=True,
collate_fn=padded_sequence, drop_last=True, num_workers=5)
for batch in tqdm(train_dataloader, ncols = 100):
lm_embed, lm_label_embed, label_mask_, label_position = batch
for i in range(int(args.step_batch_size / args.batch_size)):
sub_lm_embed = lm_embed[i * args.batch_size:(i + 1) * args.batch_size]
sub_lm_label = lm_label_embed[i * args.batch_size:(i + 1) * args.batch_size]
sub_label_mask = label_mask_[i * args.batch_size:(i + 1) * args.batch_size]
sub_label_position = label_position[i * args.batch_size:(i + 1) * args.batch_size]
sub_batch = torch.LongTensor(sub_lm_embed).cuda()
sub_lm_label = torch.LongTensor(sub_lm_label).cuda()
sub_label_mask = torch.BoolTensor(sub_label_mask)
attention_mask_ = (sub_batch == tokenizer.pad_token_id)
zero_pad = torch.zeros(attention_mask_.size()).cuda()
_attention_mask_ = zero_pad.masked_fill(attention_mask_, 1)
with torch.cuda.amp.autocast():
outputs = prediction_model(sub_batch, attention_mask=_attention_mask_, output_hidden_states = True, output_attentions = True, return_dict = False)
t_logit = outputs[0]
t_hidden, t_att, t_value = outputs[-3:]
if args.model.lower() == "minilm":
distil_loss = model(sub_batch, _attention_mask_, t_hidden, t_att, t_value)
#distil_loss = torch.mean(distil_loss)
loss = distil_loss / (args.step_batch_size / args.batch_size)
Distill_Loss += distil_loss.item() / (args.step_batch_size / args.batch_size)
elif args.model.lower() == "tiny-bert":
t_logit = torch.softmax(t_logit[sub_label_mask == False], dim = -1)
distil_loss, mlm_loss = model(sub_batch, t_logit, sub_label_mask, _attention_mask_, t_hidden, t_att)
loss = (0.5 * distil_loss + 0.5 * mlm_loss) / (args.step_batch_size / args.batch_size)
Distill_Loss += distil_loss.item() / (args.step_batch_size / args.batch_size)
elif args.model.lower() == "soft-distill":
#soft_labels, sub_label_position = get_soft_label(outputs, sub_label_position, top_k = None)
#soft_labels, ret_indices, sub_label_position = get_soft_label(outputs, sub_label_position, top_k = 50)
soft_labels, ret_indices, sub_label_position = get_soft_label(outputs, sub_label_position, top_k = None)
#distil_loss = model(sub_batch, soft_labels, ret_indices, _attention_mask_)
distil_loss = model(sub_batch, soft_labels, _attention_mask_)
loss = distil_loss / (args.step_batch_size / args.batch_size)
Distill_Loss += distil_loss.item() / (args.step_batch_size / args.batch_size)
loss = loss.mean()
Loss += loss.item()
scaler.scale(loss).backward()
optimizer, lr = lr_scheduler(args.lr, optimizer, step, warmup_step=10000, max_step=1000000)
#optimizer, lr = lr_scheduler(args.lr, optimizer, step, warmup_step=4000, max_step = 400000)
iters += 1
# optimizer.step()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
step += 1
Loss_len += 1
if iters % 500 == 0:
summary.add_scalar('loss/loss_a', float(Loss / Loss_len), step)
summary.add_scalar("loss/disc_loss", float(PP_Loss/ Loss_len), step)
summary.add_scalar("loss/distill_loss", float(Distill_Loss / Loss_len), step)
summary.add_scalar("hyp_para/lr", float(lr), step)
Loss = 0
Loss_len = 0
Distill_Loss = 0
PP_Loss = 0
if iters % 100000 == 0:
PATH = './save_model/baseline/%s_%s_%s.pt' % (
str(args.pretrained), str(step), str(args.model))
print("save the model")
torch.save(model.state_dict(), PATH)
summary.close()