Ronny Bergmann
The recording and debugging features make it possible to record nearly any data during the iterations. This tutorial illustrates how to:
- record one value during the iterations;
- record multiple values during the iterations and access them afterwards;
- record within a subsolver
- define an own
RecordAction
to perform individual recordings.
Several predefined recordings exist, for example RecordCost
or RecordGradient
, if the problem the solver uses provides a gradient. For fields of the State
the recording can also be done RecordEntry
. For other recordings, for example more advanced computations before storing a value, an own RecordAction
can be defined.
We illustrate these using the gradient descent from the Get started: optimize! tutorial.
Here the focus is put on ways to investigate the behaviour during iterations by using Recording techniques.
Let’s first load the necessary packages.
using Manopt, Manifolds, Random, ManifoldDiff, LinearAlgebra
+using ManifoldDiff: grad_distance
+Random.seed!(42);
We generate data and define our cost and gradient:
Random.seed!(42)
+m = 30
+M = Sphere(m)
+n = 800
+σ = π / 8
+x = zeros(Float64, m + 1)
+x[2] = 1.0
+data = [exp(M, x, σ * rand(M; vector_at=x)) for i in 1:n]
+f(M, p) = sum(1 / (2 * n) * distance.(Ref(M), Ref(p), data) .^ 2)
+grad_f(M, p) = sum(1 / n * grad_distance.(Ref(M), data, Ref(p)))
grad_f (generic function with 1 method)
For the high level interfaces of the solvers, like gradient_descent
we have to set return_state
to true
to obtain the whole solver state and not only the resulting minimizer.
Then we can easily use the record=
option to add recorded values. This keyword accepts RecordAction
s as well as several symbols as shortcuts, for example :Cost
to record the cost, or if your options have a field f
, :f
would record that entry. An overview of the symbols that can be used is given here.
We first just record the cost after every iteration
R = gradient_descent(M, f, grad_f, data[1]; record=:Cost, return_state=true)
# Solver state for `Manopt.jl`s Gradient Descent
+After 58 iterations
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-8: reached
+Overall: reached
+This indicates convergence: Yes
+
+## Record
+(Iteration = RecordCost(),)
From the returned state, we see that the GradientDescentState
are encapsulated (decorated) within a RecordSolverState
.
For such a state, one can attach different recorders to some operations, currently to :Start
. :Stop
, and :Iteration
, where :Iteration
is the default when using the record=
keyword with a RecordAction
or a Symbol
as we just did. We can access all values recorded during the iterations by calling get_record(R, :Iteation)
or since this is the default even shorter
get_record(R)
58-element Vector{Float64}:
+ 0.6870172325261714
+ 0.6239221496686211
+ 0.5900244338953802
+ 0.569312079535616
+ 0.551804825865545
+ 0.5429045359832491
+ 0.5383847696671529
+ 0.5360322830268692
+ 0.5348144739486789
+ 0.5341773307679919
+ 0.5338452512001082
+ 0.5336712822308554
+ 0.533580331120935
+ ⋮
+ 0.5334801024530476
+ 0.5334801024530282
+ 0.5334801024530178
+ 0.5334801024530125
+ 0.5334801024530096
+ 0.5334801024530081
+ 0.5334801024530073
+ 0.5334801024530066
+ 0.5334801024530061
+ 0.5334801024530059
+ 0.5334801024530059
+ 0.5334801024530059
To record more than one value, you can pass an array of a mix of symbols and RecordAction
s which formally introduces RecordGroup
. Such a group records a tuple of values in every iteration:
R2 = gradient_descent(M, f, grad_f, data[1]; record=[:Iteration, :Cost], return_state=true)
# Solver state for `Manopt.jl`s Gradient Descent
+After 58 iterations
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-8: reached
+Overall: reached
+This indicates convergence: Yes
+
+## Record
+(Iteration = RecordGroup([RecordIteration(), RecordCost()]),)
Here, the symbol :Cost
is mapped to using the RecordCost
action. The same holds for :Iteration
obviously records the current iteration number i
. To access these you can first extract the group of records (that is where the :Iteration
s are recorded; note the plural) and then access the :Cost
““”
get_record_action(R2, :Iteration)
RecordGroup([RecordIteration(), RecordCost()])
Since iteration
is the default, we can also omit it here again. To access single recorded values, one can use
get_record_action(R2)[:Cost]
58-element Vector{Float64}:
+ 0.6870172325261714
+ 0.6239221496686211
+ 0.5900244338953802
+ 0.569312079535616
+ 0.551804825865545
+ 0.5429045359832491
+ 0.5383847696671529
+ 0.5360322830268692
+ 0.5348144739486789
+ 0.5341773307679919
+ 0.5338452512001082
+ 0.5336712822308554
+ 0.533580331120935
+ ⋮
+ 0.5334801024530476
+ 0.5334801024530282
+ 0.5334801024530178
+ 0.5334801024530125
+ 0.5334801024530096
+ 0.5334801024530081
+ 0.5334801024530073
+ 0.5334801024530066
+ 0.5334801024530061
+ 0.5334801024530059
+ 0.5334801024530059
+ 0.5334801024530059
This can be also done by using a the high level interface get_record
get_record(R2, :Iteration, :Cost)
58-element Vector{Float64}:
+ 0.6870172325261714
+ 0.6239221496686211
+ 0.5900244338953802
+ 0.569312079535616
+ 0.551804825865545
+ 0.5429045359832491
+ 0.5383847696671529
+ 0.5360322830268692
+ 0.5348144739486789
+ 0.5341773307679919
+ 0.5338452512001082
+ 0.5336712822308554
+ 0.533580331120935
+ ⋮
+ 0.5334801024530476
+ 0.5334801024530282
+ 0.5334801024530178
+ 0.5334801024530125
+ 0.5334801024530096
+ 0.5334801024530081
+ 0.5334801024530073
+ 0.5334801024530066
+ 0.5334801024530061
+ 0.5334801024530059
+ 0.5334801024530059
+ 0.5334801024530059
Note that the first symbol again refers to the point where we record (not to the thing we record). We can also pass a tuple as second argument to have our own order within the tuples returned. Switching the order of recorded cost and Iteration can be done using ““”
get_record(R2, :Iteration, (:Iteration, :Cost))
58-element Vector{Tuple{Int64, Float64}}:
+ (1, 0.6870172325261714)
+ (2, 0.6239221496686211)
+ (3, 0.5900244338953802)
+ (4, 0.569312079535616)
+ (5, 0.551804825865545)
+ (6, 0.5429045359832491)
+ (7, 0.5383847696671529)
+ (8, 0.5360322830268692)
+ (9, 0.5348144739486789)
+ (10, 0.5341773307679919)
+ (11, 0.5338452512001082)
+ (12, 0.5336712822308554)
+ (13, 0.533580331120935)
+ ⋮
+ (47, 0.5334801024530476)
+ (48, 0.5334801024530282)
+ (49, 0.5334801024530178)
+ (50, 0.5334801024530125)
+ (51, 0.5334801024530096)
+ (52, 0.5334801024530081)
+ (53, 0.5334801024530073)
+ (54, 0.5334801024530066)
+ (55, 0.5334801024530061)
+ (56, 0.5334801024530059)
+ (57, 0.5334801024530059)
+ (58, 0.5334801024530059)
To illustrate a complicated example let’s record:
- the iteration number, cost and gradient field, but only every sixth iteration;
- the iteration at which we stop.
We first generate the problem and the state, to also illustrate the low-level works when not using the high-level interface gradient_descent
.
p = DefaultManoptProblem(M, ManifoldGradientObjective(f, grad_f))
+s = GradientDescentState(
+ M;
+ p=copy(data[1]),
+ stopping_criterion=StopAfterIteration(200) | StopWhenGradientNormLess(10.0^-9),
+)
# Solver state for `Manopt.jl`s Gradient Descent
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-9: not reached
+Overall: not reached
+This indicates convergence: No
We now first build a RecordGroup
to group the three entries we want to record per iteration. We then put this into a RecordEvery
to only record this every sixth iteration
rI = RecordEvery(
+ RecordGroup([
+ RecordIteration() => :Iteration,
+ RecordCost() => :Cost,
+ RecordEntry(similar(data[1]), :X) => :Gradient,
+ ]),
+ 6,
+)
RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true)
where the notation as a pair with the symbol can be read as “Is accessible by”. The record=
keyword with the symbol :Iteration
is actually the same as we specified here for the first group entry. For recording the final iteration number
sI = RecordIteration()
RecordIteration()
We now combine both into the RecordSolverState
decorator. It acts completely the same as any AbstractManoptSolverState
but records something in every iteration additionally. This is stored in a dictionary of RecordAction
s, where :Iteration
is the action (here the only every sixth iteration group) and the sI
which is executed at stop.
Note that the keyword record=
in the high level interface gradient_descent
only would fill the :Iteration
symbol of said dictionary, but we could also pass pairs like in the following, that is in the form Symbol => RecordAction
into that keyword to obtain the same as in
r = RecordSolverState(s, Dict(:Iteration => rI, :Stop => sI))
# Solver state for `Manopt.jl`s Gradient Descent
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-9: not reached
+Overall: not reached
+This indicates convergence: No
+
+## Record
+(Iteration = RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true), Stop = RecordIteration())
We now call the solver
res = solve!(p, r)
# Solver state for `Manopt.jl`s Gradient Descent
+After 63 iterations
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-9: reached
+Overall: reached
+This indicates convergence: Yes
+
+## Record
+(Iteration = RecordEvery(RecordGroup([RecordIteration(), RecordCost(), RecordEntry(:X)]), 6, true), Stop = RecordIteration())
And we can look at the recorded value at :Stop
to see how many iterations were performed
get_record(res, :Stop)
1-element Vector{Int64}:
+ 63
and the other values during the iterations are
get_record(res, :Iteration, (:Iteration, :Cost))
10-element Vector{Tuple{Int64, Float64}}:
+ (6, 0.5429045359832491)
+ (12, 0.5336712822308554)
+ (18, 0.5334840986243338)
+ (24, 0.5334801877032023)
+ (30, 0.5334801043129838)
+ (36, 0.5334801024945817)
+ (42, 0.5334801024539585)
+ (48, 0.5334801024530282)
+ (54, 0.5334801024530066)
+ (60, 0.5334801024530057)
where the last tuple contains the names from the pairs when we generated the record group. So similarly we can use :Gradient
as specified before to access the recorded gradient.
One can also record from a subsolver. For that we need a problem that actually requires a subsolver. We take the constraint example from the How to print debug tutorial. Maybe read that part for more details on the problem
d = 4
+M2 = Sphere(d - 1)
+v0 = project(M2, [ones(2)..., zeros(d - 2)...])
+Z = v0 * v0'
+#Cost and gradient
+f2(M, p) = -tr(transpose(p) * Z * p) / 2
+grad_f2(M, p) = project(M, p, -transpose.(Z) * p / 2 - Z * p / 2)
+# Constraints
+g(M, p) = -p # now p ≥ 0
+mI = -Matrix{Float64}(I, d, d)
+# Vector of gradients of the constraint components
+grad_g(M, p) = [project(M, p, mI[:, i]) for i in 1:d]
+p0 = project(M2, [ones(2)..., zeros(d - 3)..., 0.1])
We directly start with recording the subsolvers Iteration. We can specify what to record in the subsolver using the sub_kwargs
keyword argument with a Symbol => value
pair. Here we specify to record the iteration and the cost in every subsolvers step.
Furthermore, we have to “collect” this recording after every sub solver run. This is done with the :Subsolver
keyword in the main record=
keyword.
s1 = exact_penalty_method(
+ M2,
+ f2,
+ grad_f2,
+ p0;
+ g = g,
+ grad_g = grad_g,
+ record = [:Iteration, :Cost, :Subsolver],
+ sub_kwargs = [:record => [:Iteration, :Cost]],
+ return_state=true,
+);
Then the first entry of the record contains the iterate, the (main solvers) cost, and the third entry is the recording of the subsolver.
get_record(s1)[1]
(1, -0.4733019623455375, [(1, -0.4288382393589549), (2, -0.43669534259556914), (3, -0.4374036673499917), (4, -0.43744087180862923)])
When adding a number to not record on every iteration, the :Subsolver
keyword of course still also only “copies over” the subsolver recordings when active. But one could avoid allocations on the other runs. This is done, by specifying the sub solver as :WhenActive
s2 = exact_penalty_method(
+ M2,
+ f2,
+ grad_f2,
+ p0;
+ g = g,
+ grad_g = grad_g,
+ record = [:Iteration, :Cost, :Subsolver, 25],
+ sub_kwargs = [:record => [:Iteration, :Cost, :WhenActive]],
+ return_state=true,
+);
Then
get_record(s2)
4-element Vector{Tuple{Int64, Float64, Vector{Tuple{Int64, Float64}}}}:
+ (25, -0.4994494108530985, [(1, -0.4991469152295235)])
+ (50, -0.49999564261147317, [(1, -0.49999366842932896)])
+ (75, -0.49999997420136083, [(1, -0.4999999614701454)])
+ (100, -0.4999999998337046, [(1, -0.49999999981081666)])
Finally, instead of recording iterations, we can also specify to record the stopping criterion and final cost by adding that to :Stop
of the sub solvers record. Then we can specify, as usual in a tuple, that the :Subsolver
should record :Stop
(by default it takes over :Iteration
)
s3 = exact_penalty_method(
+ M2,
+ f2,
+ grad_f2,
+ p0;
+ g = g,
+ grad_g = grad_g,
+ record = [:Iteration, :Cost, (:Subsolver, :Stop), 25],
+ sub_kwargs = [:record => [:Stop => [:Stop, :Cost]]],
+ return_state=true,
+);
Then the following displays also the reasons why each of the recorded subsolvers stopped and the corresponding cost
get_record(s3)
4-element Vector{Tuple{Int64, Float64, Vector{Tuple{String, Float64}}}}:
+ (25, -0.4994494108530985, [("The algorithm reached approximately critical point after 1 iterations; the gradient norm (0.00031307624887101047) is less than 0.001.\n", -0.4991469152295235)])
+ (50, -0.49999564261147317, [("The algorithm reached approximately critical point after 1 iterations; the gradient norm (0.0009767910400237622) is less than 0.001.\n", -0.49999366842932896)])
+ (75, -0.49999997420136083, [("The algorithm reached approximately critical point after 1 iterations; the gradient norm (0.0002239629119661262) is less than 0.001.\n", -0.4999999614701454)])
+ (100, -0.4999999998337046, [("The algorithm reached approximately critical point after 1 iterations; the gradient norm (3.8129640908105967e-6) is less than 0.001.\n", -0.49999999981081666)])
Let’s investigate where we want to count the number of function evaluations, again just to illustrate, since for the gradient this is just one evaluation per iteration. We first define a cost, that counts its own calls.
mutable struct MyCost{T}
+ data::T
+ count::Int
+end
+MyCost(data::T) where {T} = MyCost{T}(data, 0)
+function (c::MyCost)(M, x)
+ c.count += 1
+ return sum(1 / (2 * length(c.data)) * distance.(Ref(M), Ref(x), c.data) .^ 2)
+end
and we define an own, new RecordAction
, which is a functor, that is a struct that is also a function. The function we have to implement is similar to a single solver step in signature, since it might get called every iteration:
mutable struct RecordCount <: RecordAction
+ recorded_values::Vector{Int}
+ RecordCount() = new(Vector{Int}())
+end
+function (r::RecordCount)(p::AbstractManoptProblem, ::AbstractManoptSolverState, i)
+ if i > 0
+ push!(r.recorded_values, Manopt.get_cost_function(get_objective(p)).count)
+ elseif i < 0 # reset if negative
+ r.recorded_values = Vector{Int}()
+ end
+end
Now we can initialize the new cost and call the gradient descent. Note that this illustrates also the last use case since you can pass symbol-action pairs into the record=
array.
f3 = MyCost(data)
Now for the plain gradient descent, we have to modify the step (to a constant stepsize) and remove the default debug verification whether the cost increases (setting debug
to []
). We also only look at the first 20 iterations to keep this example small in recorded values. We call
R3 = gradient_descent(
+ M,
+ f3,
+ grad_f,
+ data[1];
+ record=[:Iteration => [
+ :Iteration,
+ RecordCount() => :Count,
+ :Cost],
+ ],
+ stepsize = ConstantLength(1.0),
+ stopping_criterion=StopAfterIteration(20),
+ debug=[],
+ return_state=true,
+)
# Solver state for `Manopt.jl`s Gradient Descent
+After 20 iterations
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ConstantLength(1.0; type=:relative)
+
+## Stopping criterion
+
+Max Iteration 20: reached
+This indicates convergence: No
+
+## Record
+(Iteration = RecordGroup([RecordIteration(), RecordCount([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]), RecordCost()]),)
For :Cost
we already learned how to access them, the => :Count
introduces an action to obtain the :Count
symbol as its access. We can again access the whole sets of records
get_record(R3)
20-element Vector{Tuple{Int64, Int64, Float64}}:
+ (1, 1, 0.5823814423113639)
+ (2, 2, 0.540804980234004)
+ (3, 3, 0.5345550944722898)
+ (4, 4, 0.5336375289938887)
+ (5, 5, 0.5335031591890169)
+ (6, 6, 0.5334834802310252)
+ (7, 7, 0.5334805973984544)
+ (8, 8, 0.5334801749902928)
+ (9, 9, 0.5334801130855078)
+ (10, 10, 0.5334801040117543)
+ (11, 11, 0.5334801026815558)
+ (12, 12, 0.5334801024865219)
+ (13, 13, 0.5334801024579218)
+ (14, 14, 0.5334801024537273)
+ (15, 15, 0.5334801024531121)
+ (16, 16, 0.5334801024530218)
+ (17, 17, 0.5334801024530087)
+ (18, 18, 0.5334801024530067)
+ (19, 19, 0.5334801024530065)
+ (20, 20, 0.5334801024530064)
this is equivalent to calling R[:Iteration]
. Note that since we introduced :Count
we can also access a single recorded value using
R3[:Iteration, :Count]
20-element Vector{Int64}:
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+ 10
+ 11
+ 12
+ 13
+ 14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
and we see that the cost function is called once per iteration.
If we use this counting cost and run the default gradient descent with Armijo line search, we can infer how many Armijo line search backtracks are preformed:
f4 = MyCost(data)
MyCost{Vector{Vector{Float64}}}([[-0.054658825167894595, -0.5592077846510423, -0.04738273828111257, -0.04682080720921302, 0.12279468849667038, 0.07171438895366239, -0.12930045409417057, -0.22102081626380404, -0.31805333254577767, 0.0065859500152017645 … -0.21999168261518043, 0.19570142227077295, 0.340909965798364, -0.0310802190082894, -0.04674431076254687, -0.006088297671169996, 0.01576037011323387, -0.14523596850249543, 0.14526158060820338, 0.1972125856685378], [-0.08192376929745249, -0.5097715132187676, -0.008339904915541005, 0.07289741328038676, 0.11422036270613797, -0.11546739299835748, 0.2296996932628472, 0.1490467170835958, -0.11124820565850364, -0.11790721606521781 … -0.16421249630470344, -0.2450575844467715, -0.07570080850379841, -0.07426218324072491, -0.026520181327346338, 0.11555341205250205, -0.0292955762365121, -0.09012096853677576, -0.23470556634911574, -0.026214242996704013], [-0.22951484264859257, -0.6083825348640186, 0.14273766477054015, -0.11947823367023377, 0.05984293499234536, 0.058820835498203126, 0.07577331705863266, 0.1632847202946857, 0.20244385489915745, 0.04389826920203656 … 0.3222365119325929, 0.009728730325524067, -0.12094785371632395, -0.36322323926212824, -0.0689253407939657, 0.23356953371702974, 0.23489531397909744, 0.078303336494718, -0.14272984135578806, 0.07844539956202407], [-0.0012588500237817606, -0.29958740415089763, 0.036738459489123514, 0.20567651907595125, -0.1131046432541904, -0.06032435985370224, 0.3366633723165895, -0.1694687746143405, -0.001987171245125281, 0.04933779858684409 … -0.2399584473006256, 0.19889267065775063, 0.22468755918787048, 0.1780090580180643, 0.023703860700539356, -0.10212737517121755, 0.03807004103115319, -0.20569120952458983, -0.03257704254233959, 0.06925473452536687], [-0.035534309946938375, -0.06645560787329002, 0.14823972268208874, -0.23913346587232426, 0.038347027875883496, 0.10453333143286662, 0.050933995140290705, -0.12319549375687473, 0.12956684644537844, -0.23540367869989412 … -0.41471772859912864, -0.1418984610380257, 0.0038321446836859334, 0.23655566917750157, -0.17500681300994742, -0.039189751036839374, -0.08687860620942896, -0.11509948162959047, 0.11378233994840942, 0.38739450723013735], [-0.3122539912469438, -0.3101935557860296, 0.1733113629107006, 0.08968593616209351, -0.1836344261367962, -0.06480023695256802, 0.18165070013886545, 0.19618275767992124, -0.07956460275570058, 0.0325997354656551 … 0.2845492418767769, 0.17406455870721682, -0.053101230371568706, -0.1382082812981627, 0.005830071475508364, 0.16739264037923055, 0.034365814374995335, 0.09107702398753297, -0.1877250428700409, 0.05116494897806923], [-0.04159442361185588, -0.7768029783272633, 0.06303616666722486, 0.08070518925253539, -0.07396265237309446, -0.06008109299719321, 0.07977141629715745, 0.019511027129056415, 0.08629917589924847, -0.11156298867318722 … 0.0792587504128044, -0.016444383900170008, -0.181746064577005, -0.01888129512990984, -0.13523922089388968, 0.11358102175659832, 0.07929049608459493, 0.1689565359083833, 0.07673657951723721, -0.1128480905648813], [-0.21221814304651335, -0.5031823821503253, 0.010326342133992458, -0.12438192100961257, 0.04004758695231872, 0.2280527500843805, -0.2096243232022162, -0.16564828762420294, -0.28325749481138984, 0.17033534605245823 … -0.13599096505924074, 0.28437770540525625, 0.08424426798544583, -0.1266207606984139, 0.04917635557603396, -0.00012608938533809706, -0.04283220254770056, -0.08771365647566572, 0.14750169103093985, 0.11601120086036351], [0.10683290707435536, -0.17680836277740156, 0.23767458301899405, 0.12011180867097299, -0.029404774462600154, 0.11522028383799933, -0.3318174480974519, -0.17859266746938374, 0.04352373642537759, 0.2530382802667988 … 0.08879861736692073, -0.004412506987801729, 0.19786810509925895, -0.1397104682727044, 0.09482328498485094, 0.05108149065160893, -0.14578343506951633, 0.3167479772660438, 0.10422673169182732, 0.21573150015891313], [-0.024895624707466164, -0.7473912016432697, -0.1392537238944721, -0.14948896791465557, -0.09765393283580377, 0.04413059403279867, -0.13865379004720355, -0.071032040283992, 0.15604054722246585, -0.10744260463413555 … -0.14748067081342833, -0.14743635071251024, 0.0643591937981352, 0.16138827697852615, -0.12656652133603935, -0.06463635704869083, 0.14329582429103488, -0.01113113793821713, 0.29295387893749997, 0.06774523575259782] … [0.011874845316569967, -0.6910596618389588, 0.21275741439477827, -0.014042545524367437, -0.07883613103495014, -0.0021900966696246776, -0.033836430464220496, 0.2925813113264835, -0.04718187201980008, 0.03949680289730036 … 0.0867736586603294, 0.0404682510051544, -0.24779813848587257, -0.28631514602877145, -0.07211767532456789, -0.15072898498180473, 0.017855923621826746, -0.09795357710255254, -0.14755229203084924, 0.1305005778855436], [0.013457629515450426, -0.3750353654626534, 0.12349883726772073, 0.3521803555005319, 0.2475921439420274, 0.006088649842999206, 0.31203183112392907, -0.036869203979483754, -0.07475746464056504, -0.029297797064479717 … 0.16867368684091563, -0.09450564983271922, -0.0587273302122711, -0.1326667940553803, -0.25530237980444614, 0.37556905374043376, 0.04922612067677609, 0.2605362549983866, -0.21871556587505667, -0.22915883767386164], [0.03295085436260177, -0.971861604433394, 0.034748713521512035, -0.0494065013245799, -0.01767479281403355, 0.0465459739459587, 0.007470494722096038, 0.003227960072276129, 0.0058328596338402365, -0.037591237446692356 … 0.03205152122876297, 0.11331109854742015, 0.03044900529526686, 0.017971704993311105, -0.009329252062960229, -0.02939354719650879, 0.022088835776251863, -0.02546111553658854, -0.0026257225461427582, 0.005702111697172774], [0.06968243992532257, -0.7119502191435176, -0.18136614593117445, -0.1695926215673451, 0.01725015359973796, -0.00694164951158388, -0.34621134287344574, 0.024709256792651912, -0.1632255805999673, -0.2158226433583082 … -0.14153772108081458, -0.11256850346909901, 0.045109821764180706, -0.1162754336222613, -0.13221711766357983, 0.005365354776191061, 0.012750671705879105, -0.018208207549835407, 0.12458753932455452, -0.31843587960340897], [-0.19830349374441875, -0.6086693423968884, 0.08552341811170468, 0.35781519334042255, 0.15790663648524367, 0.02712571268324985, 0.09855601327331667, -0.05840653973421127, -0.09546429767790429, -0.13414717696055448 … -0.0430935804718714, 0.2678584478951765, 0.08780994289014614, 0.01613469379498457, 0.0516187906322884, -0.07383067566731401, -0.1481272738354552, -0.010532317187265649, 0.06555344745952187, -0.1506167863762911], [-0.04347524125197773, -0.6327981074196994, -0.221116680035191, 0.0282207467940456, -0.0855024881522933, 0.12821801740178346, 0.1779499563280024, -0.10247384887512365, 0.0396432464100116, -0.0582580338112627 … 0.1253893207083573, 0.09628202269764763, 0.3165295473947355, -0.14915034201394833, -0.1376727867817772, -0.004153096613530293, 0.09277957650773738, 0.05917264554031624, -0.12230262590034507, -0.19655728521529914], [-0.10173946348675116, -0.6475660153977272, 0.1260284619729566, -0.11933160462857616, -0.04774310633937567, 0.09093928358804217, 0.041662676324043114, -0.1264739543938265, 0.09605293126911392, -0.16790474428001648 … -0.04056684573478108, 0.09351665120940456, 0.15259195558799882, 0.0009949298312580497, 0.09461980828206303, 0.3067004514287283, 0.16129258773733715, -0.18893664085007542, -0.1806865244492513, 0.029319680436405825], [-0.251780954320053, -0.39147463259941456, -0.24359579328578626, 0.30179309757665723, 0.21658893985206484, 0.12304585275893232, 0.28281133086451704, 0.029187615341955325, 0.03616243507191924, 0.029375588909979152 … -0.08071746662465404, -0.2176101928258658, 0.20944684921170825, 0.043033273425352715, -0.040505542460853576, 0.17935596149079197, -0.08454569418519972, 0.0545941597033932, 0.12471741052450099, -0.24314124407858329], [0.28156471341150974, -0.6708572780452595, -0.1410302363738465, -0.08322589397277698, -0.022772599832907418, -0.04447265789199677, -0.016448068022011157, -0.07490911512503738, 0.2778432295769144, -0.10191899088372378 … -0.057272155080983836, 0.12817478092201395, 0.04623814480781884, -0.12184190164369117, 0.1987855635987229, -0.14533603246124993, -0.16334072868597016, -0.052369977381939437, 0.014904286931394959, -0.2440882678882144], [0.12108727495744157, -0.714787344982596, 0.01632521838262752, 0.04437570556908449, -0.041199280304144284, 0.052984488452616, 0.03796520200156107, 0.2791785910964288, 0.11530429924056099, 0.12178223160398421 … -0.07621847481721669, 0.18353870423743013, -0.19066653731436745, -0.09423224997242206, 0.14596847781388494, -0.09747986927777111, 0.16041150122587072, -0.02296513951256738, 0.06786878373578588, 0.15296635978447756]], 0)
To not get too many entries let’s just look at the first 20 iterations again
R4 = gradient_descent(
+ M,
+ f4,
+ grad_f,
+ data[1];
+ record=[RecordCount(),],
+ return_state=true,
+)
# Solver state for `Manopt.jl`s Gradient Descent
+After 58 iterations
+
+## Parameters
+* retraction method: ExponentialRetraction()
+
+## Stepsize
+ArmijoLinesearch(;
+ initial_stepsize=1.0
+ retraction_method=ExponentialRetraction()
+ contraction_factor=0.95
+ sufficient_decrease=0.1
+)
+
+## Stopping criterion
+
+Stop When _one_ of the following are fulfilled:
+ Max Iteration 200: not reached
+ |grad f| < 1.0e-8: reached
+Overall: reached
+This indicates convergence: Yes
+
+## Record
+(Iteration = RecordCount([25, 29, 33, 37, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 229, 232, 237, 241, 245, 247, 249]),)
get_record(R4)
58-element Vector{Int64}:
+ 25
+ 29
+ 33
+ 37
+ 40
+ 44
+ 48
+ 52
+ 56
+ 60
+ 64
+ 68
+ 72
+ ⋮
+ 208
+ 212
+ 216
+ 220
+ 224
+ 229
+ 232
+ 237
+ 241
+ 245
+ 247
+ 249
We can see that the number of cost function calls varies, depending on how many line search backtrack steps were required to obtain a good stepsize.
This tutorial is cached. It was last run on the following package versions.
using Pkg
+Pkg.status()
Status `~/work/Manopt.jl/Manopt.jl/tutorials/Project.toml`
+ [6e4b80f9] BenchmarkTools v1.5.0
+⌅ [5ae59095] Colors v0.12.11
+ [31c24e10] Distributions v0.25.113
+ [26cc04aa] FiniteDifferences v0.12.32
+ [7073ff75] IJulia v1.26.0
+ [8ac3fa9e] LRUCache v1.6.1
+ [af67fdf4] ManifoldDiff v0.3.13
+ [1cead3c2] Manifolds v0.10.7
+ [3362f125] ManifoldsBase v0.15.22
+ [0fc0a36d] Manopt v0.5.3 `~/work/Manopt.jl/Manopt.jl`
+ [91a5bcdd] Plots v1.40.9
+ [731186ca] RecursiveArrayTools v3.27.4
+Info Packages marked with ⌅ have new versions available but compatibility constraints restrict them from upgrading. To see why use `status --outdated`
using Dates
+now()
2024-11-21T20:37:59.901