Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Introduce fill and fill! on Power manifolds. #190

Merged
merged 11 commits into from
May 19, 2024
6 changes: 6 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,12 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [0.15.10] 15/05/2024

### Added

* functions `fill(N, p)` and `fill!(N, P, p)` to fill values into a point on a power manifold `N`.
kellertuer marked this conversation as resolved.
Show resolved Hide resolved

## [0.15.9] 02/05/2024

### Added
Expand Down
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "ManifoldsBase"
uuid = "3362f125-f0bb-47a3-aa74-596ffd7ef2fb"
authors = ["Seth Axen <[email protected]>", "Mateusz Baran <[email protected]>", "Ronny Bergmann <[email protected]>", "Antoine Levitt <[email protected]>"]
version = "0.15.9"
version = "0.15.10"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
4 changes: 4 additions & 0 deletions src/ManifoldsBase.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ import Base:
copyto!,
angle,
eltype,
fill,
fill!,
isempty,
length,
similar,
Expand Down Expand Up @@ -1241,6 +1243,8 @@ export ×,
embed!,
embed_project,
embed_project!,
fill,
fill!,
geodesic,
geodesic!,
get_basis,
Expand Down
42 changes: 42 additions & 0 deletions src/PowerManifold.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,9 @@ can be used to nest manifold, i.e. `PowerManifold(M, NestedPowerRepresentation()
represents vectors of length 2 whose elements are vectors of length 3 of points on N
in a nested array representation.

The third signature `M^(...)` is equivalent to the first one, and hence either yields
a combination of power manifolds to _one_ larger power manifold, or an power manifold with the default representation.
kellertuer marked this conversation as resolved.
Show resolved Hide resolved

Since there is no default [`AbstractPowerRepresentation`](@ref) within this interface, the
`^` operator is only available for `PowerManifold`s and concatenates dimensions.

Expand Down Expand Up @@ -525,6 +528,45 @@ function exp!(M::PowerManifoldNestedReplacing, q, p, X)
return q
end

@doc raw"""
fill(p, M::AbstractPowerManifold)

Create a point on the [`AbstractPowerManifold`](@ref) `M`, where every entry is set to the
point `p`.

!!! note
while usually the manifold is a first argument in all functions in `ManifoldsBase.jl`,
we follow the signature of `fill`, where the power manifold serves are the size information.
"""
function fill(p, M::AbstractPowerManifold)
P = allocate_result(M, rand) # rand finds the right way to allocate our point usually
return fill!(P, p, M)
end

@doc raw"""
fill!(P, p, M::AbstractPowerManifold)

Fill a point `P` on the [`AbstractPowerManifold`](@ref) `M`, setting every entry to `p`.

!!! note
while usually the manifold is the first argument in all functions in `ManifoldsBase.jl`,
we follow the signature of `fill!`, where the power manifold serves are the size information.
"""
function fill!(P, p, M::PowerManifoldNestedReplacing)
for i in get_iterator(M)
P[M, i] = p
end
return P
end
function fill!(P, p, M::AbstractPowerManifold)
rep_size = representation_size(M.manifold)
for i in get_iterator(M)
copyto!(M.manifold, _write(M, rep_size, P, i), p)
end
return P
end


function get_basis(M::AbstractPowerManifold, p, B::AbstractBasis)
rep_size = representation_size(M.manifold)
vs = [get_basis(M.manifold, _read(M, rep_size, p, i), B) for i in get_iterator(M)]
Expand Down
58 changes: 56 additions & 2 deletions test/power.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,12 @@
using Test
using ManifoldsBase
using ManifoldsBase:
AbstractNumbers, ℝ, ℂ, NestedReplacingPowerRepresentation, VectorSpaceType
AbstractNumbers,
DefaultManifold,
ℝ,
ℂ,
NestedReplacingPowerRepresentation,
VectorSpaceType
using StaticArrays
using LinearAlgebra
using Random
Expand All @@ -24,6 +29,23 @@ end

struct TestArrayRepresentation <: AbstractPowerRepresentation end

const TestPowerManifoldMultidimensional =
AbstractPowerManifold{𝔽,<:AbstractManifold{𝔽},TestArrayRepresentation} where {𝔽}

function ManifoldsBase.representation_size(M::TestPowerManifoldMultidimensional)
return (representation_size(M.manifold)..., ManifoldsBase.get_parameter(M.size)...)
end

@inline function ManifoldsBase._write(
::TestPowerManifoldMultidimensional,
rep_size::Tuple,
x::AbstractArray,
i::Tuple,
)
return view(x, ManifoldsBase.rep_size_to_colons(rep_size)..., i...)
end


@testset "Power Manifold" begin

@testset "Power Manifold with a test representation" begin
Expand Down Expand Up @@ -334,7 +356,7 @@ struct TestArrayRepresentation <: AbstractPowerRepresentation end
@test norm(N, P, Z .- Zc) ≈ 0
end

@testset "Other stuff" begin
@testset "Curvature" begin
M1 = TestSphere(2)
@testset "Weingarten" begin
Mpr = PowerManifold(M1, NestedPowerRepresentation(), 2)
Expand Down Expand Up @@ -388,4 +410,36 @@ struct TestArrayRepresentation <: AbstractPowerRepresentation end
p = rand(N)
@test zero_vector(N, p) == 0 .* p
end

@testset "fill" begin
M = ManifoldsBase.DefaultManifold(3)
N = PowerManifold(M, NestedPowerRepresentation(), 2)
p = [1.0, 2.0, 3.0]
P1 = fill(p, N)
@test P1[N, 1] == p
@test P1[N, 2] == p
P2 = [zeros(3), zeros(3)]
fill!(P2, p, N)
@test P2[N, 1] == p
@test P2[N, 2] == p

M = ManifoldsBase.DefaultManifold(3)
NR = PowerManifold(M, NestedReplacingPowerRepresentation(), 2)
P1 = fill(p, NR)
@test P1[NR, 1] === p
@test P1[NR, 2] === p
P2 = [zeros(3), zeros(3)]
fill!(P2, p, NR)
@test P2[NR, 1] === p
@test P2[NR, 2] === p

NAR = PowerManifold(M, TestArrayRepresentation(), 2)
P1 = fill(p, NAR)
@test P1 isa Matrix{Float64}
@test P1 == [1.0 1.0; 2.0 2.0; 3.0 3.0]

P2 = similar(P1)
fill!(P2, p, NAR)
@test P2 == [1.0 1.0; 2.0 2.0; 3.0 3.0]
end
end
Loading