diff --git a/docs/src/tutorials/transition.md b/docs/src/tutorials/transition.md index 2adea227..847213bb 100644 --- a/docs/src/tutorials/transition.md +++ b/docs/src/tutorials/transition.md @@ -35,7 +35,7 @@ The list is alphabetical, but first lists types, then functions | `exp(G, g, X)` | `exp(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, X)` | the previous defaults whenever not agreeing with the invariant one can now be accessed on the internal manifold | | `exp_inv(G, g, X)` | [`exp`](@ref exp(G::LieGroup, g, X, t::Number))`(G, g, X)` | the exponential map invariant to the group operation is the default on Lie groups here | | `exp_lie(G, X)` | [`exp`](@ref exp(G::LieGroup, e::Identity, X, t::Number))`(G, `[`Identity`](@ref)`(G), X)` | the (matrix) exponential is now the one at the [`Identity`](@ref)`(G)`, since there it agrees with the invariant one | -| `invervse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. | +| `inverse_translate(G, g, h, c)` | [`inv_left_compose`](@ref)`(G, g, h)`, [`inv_right_compose`](@ref)`(G, g, h)` | compute ``g^{-1}∘h`` and ``g∘h^{-1}``, resp. | | `inverse_tranlsate_diff(G, g, h, X, LeftForwardAction())` | - | discontinued, use `diff_left_compose(G, inv(G,g), h)` | | `inverse_tranlsate_diff(G, g, h, X, RightBackwardAction())` | - | discontinued, use `diff_left_compose(G, h, inv(G,g))` | | `log(G, g, h)` | `log(`[`base_manifold`](@ref base_manifold(G::LieGroup))`(G), g, h)` | you can now access the previous defaults on the internal manifold whenever they do not agree with the invariant one |