-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
observability: add CPU time counter to tasks #47351
Comments
Prior art for getting cpu-time: JuliaCI/BenchmarkTools.jl#94 I think you could do this with bpftrace (or at least before we removed the task probe points.), or alternativly I would use Profile, which now has some meta-data in form of the cyclecount and threadid so you could post-process that. |
FWIW, the folks at CockroachDB just put up a PR adding this to Go: golang/go#51347 Design doc: https://github.com/cockroachdb/cockroach/blob/master/docs/RFCS/20220602_fine_grained_cpu_attribution.md#design There's a pretty thorough discussion at the bottom comparing it to other approaches they considered for this, which are pretty much the exact ones you recommended, Valentin — bpftrace and sampling profiler with task id labels. Blog post describing how they used it: https://www.cockroachlabs.com/blog/rubbing-control-theory/#33-integrated-cooperative-scheduling |
Close #47351 (builds on top of #48416) Adds two per-task metrics: - running time = amount of time the task was actually running (according to our scheduler). Note: currently inclusive of GC time, but would be good to be able to separate that out (in a future PR) - wall time = amount of time between the scheduler becoming aware of this task and the task entering a terminal state (i.e. done or failed). We record running time in `wait()`, where the scheduler stops running the task as well as in `yield(t)`, `yieldto(t)` and `throwto(t)`, which bypass the scheduler. Other places where a task stops running (for `Channel`, `ReentrantLock`, `Event`, `Timer` and `Semaphore` are all implemented in terms of `wait(Condition)`, which in turn calls `wait()`. `LibuvStream` similarly calls `wait()`. This should capture everything (albeit, slightly over-counting task CPU time by including any enqueuing work done before we hit `wait()`). The various metrics counters could be a separate inlined struct if we think that's a useful abstraction, but for now i've just put them directly in `jl_task_t`. They are all atomic, except the `metrics_enabled` flag itself (which we now have to check on task start/switch/done even if metrics are not enabled) which is set on task construction and marked `const` on the julia side. In future PRs we could add more per-task metrics, e.g. compilation time, GC time, allocations, potentially a wait-time breakdown (time waiting on locks, channels, in the scheduler run queue, etc.), potentially the number of yields. Perhaps in future there could be ways to enable this on a per-thread and per-task basis. And potentially in future these same timings could be used by `@time` (e.g. writing this same timing data to a ScopedValue like in #55103 but only for tasks lexically scoped to inside the `@time` block). Timings are off by default but can be turned on globally via starting Julia with `--task-metrics=yes` or calling `Base.Experimental.task_metrics(true)`. Metrics are collected for all tasks created when metrics are enabled. In other words, enabling/disabling timings via `Base.Experimental.task_metrics` does not affect existing `Task`s, only new `Task`s. The other new APIs are `Base.Experimental.task_running_time_ns(::Task)` and `Base.Experimental.task_wall_time_ns(::Task)` for retrieving the new metrics. These are safe to call on any task (including the current task, or a task running on another thread). All these are in `Base.Experimental` to give us room to change up the APIs as we add more metrics in future PRs (without worrying about release timelines). cc @NHDaly @kpamnany @d-netto --------- Co-authored-by: Pete Vilter <[email protected]> Co-authored-by: K Pamnany <[email protected]> Co-authored-by: Nathan Daly <[email protected]> Co-authored-by: Valentin Churavy <[email protected]>
🎉 |
Close JuliaLang#47351 (builds on top of JuliaLang#48416) Adds two per-task metrics: - running time = amount of time the task was actually running (according to our scheduler). Note: currently inclusive of GC time, but would be good to be able to separate that out (in a future PR) - wall time = amount of time between the scheduler becoming aware of this task and the task entering a terminal state (i.e. done or failed). We record running time in `wait()`, where the scheduler stops running the task as well as in `yield(t)`, `yieldto(t)` and `throwto(t)`, which bypass the scheduler. Other places where a task stops running (for `Channel`, `ReentrantLock`, `Event`, `Timer` and `Semaphore` are all implemented in terms of `wait(Condition)`, which in turn calls `wait()`. `LibuvStream` similarly calls `wait()`. This should capture everything (albeit, slightly over-counting task CPU time by including any enqueuing work done before we hit `wait()`). The various metrics counters could be a separate inlined struct if we think that's a useful abstraction, but for now i've just put them directly in `jl_task_t`. They are all atomic, except the `metrics_enabled` flag itself (which we now have to check on task start/switch/done even if metrics are not enabled) which is set on task construction and marked `const` on the julia side. In future PRs we could add more per-task metrics, e.g. compilation time, GC time, allocations, potentially a wait-time breakdown (time waiting on locks, channels, in the scheduler run queue, etc.), potentially the number of yields. Perhaps in future there could be ways to enable this on a per-thread and per-task basis. And potentially in future these same timings could be used by `@time` (e.g. writing this same timing data to a ScopedValue like in JuliaLang#55103 but only for tasks lexically scoped to inside the `@time` block). Timings are off by default but can be turned on globally via starting Julia with `--task-metrics=yes` or calling `Base.Experimental.task_metrics(true)`. Metrics are collected for all tasks created when metrics are enabled. In other words, enabling/disabling timings via `Base.Experimental.task_metrics` does not affect existing `Task`s, only new `Task`s. The other new APIs are `Base.Experimental.task_running_time_ns(::Task)` and `Base.Experimental.task_wall_time_ns(::Task)` for retrieving the new metrics. These are safe to call on any task (including the current task, or a task running on another thread). All these are in `Base.Experimental` to give us room to change up the APIs as we add more metrics in future PRs (without worrying about release timelines). cc @NHDaly @kpamnany @d-netto --------- Co-authored-by: Pete Vilter <[email protected]> Co-authored-by: K Pamnany <[email protected]> Co-authored-by: Nathan Daly <[email protected]> Co-authored-by: Valentin Churavy <[email protected]>
* Add per-task metrics (JuliaLang#56320) Close JuliaLang#47351 (builds on top of JuliaLang#48416) Adds two per-task metrics: - running time = amount of time the task was actually running (according to our scheduler). Note: currently inclusive of GC time, but would be good to be able to separate that out (in a future PR) - wall time = amount of time between the scheduler becoming aware of this task and the task entering a terminal state (i.e. done or failed). We record running time in `wait()`, where the scheduler stops running the task as well as in `yield(t)`, `yieldto(t)` and `throwto(t)`, which bypass the scheduler. Other places where a task stops running (for `Channel`, `ReentrantLock`, `Event`, `Timer` and `Semaphore` are all implemented in terms of `wait(Condition)`, which in turn calls `wait()`. `LibuvStream` similarly calls `wait()`. This should capture everything (albeit, slightly over-counting task CPU time by including any enqueuing work done before we hit `wait()`). The various metrics counters could be a separate inlined struct if we think that's a useful abstraction, but for now i've just put them directly in `jl_task_t`. They are all atomic, except the `metrics_enabled` flag itself (which we now have to check on task start/switch/done even if metrics are not enabled) which is set on task construction and marked `const` on the julia side. In future PRs we could add more per-task metrics, e.g. compilation time, GC time, allocations, potentially a wait-time breakdown (time waiting on locks, channels, in the scheduler run queue, etc.), potentially the number of yields. Perhaps in future there could be ways to enable this on a per-thread and per-task basis. And potentially in future these same timings could be used by `@time` (e.g. writing this same timing data to a ScopedValue like in JuliaLang#55103 but only for tasks lexically scoped to inside the `@time` block). Timings are off by default but can be turned on globally via starting Julia with `--task-metrics=yes` or calling `Base.Experimental.task_metrics(true)`. Metrics are collected for all tasks created when metrics are enabled. In other words, enabling/disabling timings via `Base.Experimental.task_metrics` does not affect existing `Task`s, only new `Task`s. The other new APIs are `Base.Experimental.task_running_time_ns(::Task)` and `Base.Experimental.task_wall_time_ns(::Task)` for retrieving the new metrics. These are safe to call on any task (including the current task, or a task running on another thread). All these are in `Base.Experimental` to give us room to change up the APIs as we add more metrics in future PRs (without worrying about release timelines). cc @NHDaly @kpamnany @d-netto --------- Co-authored-by: Pete Vilter <[email protected]> Co-authored-by: K Pamnany <[email protected]> Co-authored-by: Nathan Daly <[email protected]> Co-authored-by: Valentin Churavy <[email protected]> * Address review comments --------- Co-authored-by: Pete Vilter <[email protected]> Co-authored-by: K Pamnany <[email protected]> Co-authored-by: Nathan Daly <[email protected]> Co-authored-by: Valentin Churavy <[email protected]>
Problem
If you have spawned a lot of tasks competing for CPU cores, it's difficult to tell how much CPU time one has actually gotten over its lifetime, since
@time
measures wall clock time.What we want is something equivalent to the CPU Time counter in the OS-level activity monitor, but for individual tasks:
Proposed Solution
Add two counters to the Task struct: (forgive the crude pseudo code)
And then use them in the scheduler:
The counter could then be read from Julia "userspace":
…and then fed into other systems for logging / metrics, etc.
Alternatives
Task heritability
You might want to know how much time child tasks consumed as well. But I think this could be a problem left to Julia userspace, since it's possible to keep a tree of tasks and read these numbers off of them.
The text was updated successfully, but these errors were encountered: