diff --git a/Project.toml b/Project.toml index 43aa719e..cd063b8f 100644 --- a/Project.toml +++ b/Project.toml @@ -6,7 +6,7 @@ version = "0.8.4" [deps] IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" -Polyester = "f517fe37-dbe3-4b94-8317-1923a5111588" +FLoops = "cc61a311-1640-44b5-9fba-1b764f453329" ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" @@ -15,6 +15,7 @@ StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91" VectorizationBase = "3d5dd08c-fd9d-11e8-17fa-ed2836048c2f" [compat] +FLoops = "0.2" IterativeSolvers = "0.9" ProgressMeter = "1.2" SparsityOperators = "0.3, 0.4" diff --git a/src/RegularizedLeastSquares.jl b/src/RegularizedLeastSquares.jl index 1a8482b1..d4e1e684 100644 --- a/src/RegularizedLeastSquares.jl +++ b/src/RegularizedLeastSquares.jl @@ -9,7 +9,7 @@ using IterativeSolvers using Random using VectorizationBase using VectorizationBase: shufflevector, zstridedpointer -using Polyester +using FLoops #@reexport using SparsityOperators using SparsityOperators: normalOperator, opEye using ProgressMeter diff --git a/src/proximalMaps/ProxLLR.jl b/src/proximalMaps/ProxLLR.jl index 229eb634..7f8d2414 100644 --- a/src/proximalMaps/ProxLLR.jl +++ b/src/proximalMaps/ProxLLR.jl @@ -46,7 +46,7 @@ function proxLLR!( try BLAS.set_num_threads(1) xᴸᴸᴿ = [Array{T}(undef, prod(blockSize), K) for _ = 1:Threads.nthreads()] - @batch for i ∈ CartesianIndices(StepRange.(TI(0), blockSize, shape .- 1)) + @floop for i ∈ CartesianIndices(StepRange.(TI(0), blockSize, shape .- 1)) @views xᴸᴸᴿ[Threads.threadid()] .= reshape(xp[i.+block_idx, :], :, K) # threshold singular values SVDec = svd!(xᴸᴸᴿ[Threads.threadid()]) @@ -183,7 +183,7 @@ function proxLLROverlapping!( shift_idx = (Tuple(is)..., 0) xs = circshift(xp, shift_idx) - @batch for i ∈ CartesianIndices(StepRange.(TI(0), blockSize, shape .- 1)) + @floop for i ∈ CartesianIndices(StepRange.(TI(0), blockSize, shape .- 1)) @views xᴸᴸᴿ[Threads.threadid()] .= reshape(xs[i.+block_idx, :], :, K) # threshold singular values