diff --git a/test/testKaczmarz.jl b/test/testKaczmarz.jl index 8e9f256..a877069 100644 --- a/test/testKaczmarz.jl +++ b/test/testKaczmarz.jl @@ -50,11 +50,11 @@ Random.seed!(12345) # @show A, x, regMatrix # use regularization matrix - S = createLinearSolver(solver, arrayType(A), iterations=100, reg=[L2Regularization(arrayType(regMatrix))]) + S = createLinearSolver(Kaczmarz, arrayType(A), iterations=100, reg=[L2Regularization(arrayType(regMatrix))]) x_matrix = Array(solve!(S, arrayType(b))) # use standard reconstruction - S = createLinearSolver(solver, arrayType(A * Diagonal(1 ./ sqrt.(regMatrix))), reg = [L2Regularization(1.0)], iterations=100) + S = createLinearSolver(Kaczmarz, arrayType(A * Diagonal(1 ./ sqrt.(regMatrix))), reg = [L2Regularization(1.0)], iterations=100) x_approx = Array(solve!(S, arrayType(b))) ./ sqrt.(regMatrix) # test @@ -63,10 +63,10 @@ Random.seed!(12345) # Compare reg. matrix of equal elements to standard reco λ = rand() - S = createLinearSolver(solver, arrayType(A), iterations=100, reg=[L2Regularization(λ)]) + S = createLinearSolver(Kaczmarz, arrayType(A), iterations=100, reg=[L2Regularization(λ)]) x_standard = Array(solve!(S, arrayType(b))) - S = createLinearSolver(solver, arrayType(A), iterations=100, reg=[L2Regularization(fill(λ, N))]) + S = createLinearSolver(Kaczmarz, arrayType(A), iterations=100, reg=[L2Regularization(fill(λ, N))]) x_matrix = Array(solve!(S, arrayType(b))) @test isapprox(x_standard, x_matrix) end