forked from Yao-Shao/Waymo_Kitti_Adapter
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathadapter.py
678 lines (611 loc) · 27.8 KB
/
adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
import argparse
import os
import math
# import time
import numpy as np
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
import progressbar
from waymo_open_dataset.utils import range_image_utils
from waymo_open_dataset.utils import transform_utils
from waymo_open_dataset.utils import test_utils
from waymo_open_dataset.utils import box_utils
from waymo_open_dataset import dataset_pb2 as open_dataset
from adapter_lib import *
import pdb
############################Config###########################################
# path to waymo dataset "folder" (all .tfrecord files in that folder will
# be converted)
DATA_PATH = '/media/trail/harddrive/datasets/Waymo/original/validation'
# path to save kitti dataset
KITTI_PATH = '/media/trail/harddrive/datasets/Waymo/waymo/validation'
# location filter, use this to convert your preferred location
LOCATION_FILTER = False
LOCATION_NAME = ['location_sf']
# max indexing length
INDEX_LENGTH = 15
# as name
IMAGE_FORMAT = 'png'
# do not change
LABEL_PATH = KITTI_PATH + '/label_0'
LABEL_ALL_PATH = KITTI_PATH + '/label_all'
IMAGE_PATH = KITTI_PATH + '/image_0'
CALIB_PATH = KITTI_PATH + '/calib'
LIDAR_PATH = KITTI_PATH + '/velodyne'
IMG_CALIB_PATH = KITTI_PATH + '/img_calib'
###############################################################################
class Adapter:
def __init__(self):
self.__lidar_list = ['_FRONT', '_FRONT_RIGHT',
'_FRONT_LEFT', '_SIDE_RIGHT', '_SIDE_LEFT']
self.__type_list = ['UNKNOWN', 'VEHICLE',
'PEDESTRIAN', 'SIGN', 'CYCLIST']
self.__file_names = []
self.T_front_cam_to_ref = []
self.T_vehicle_to_front_cam = []
def cvt(self, args, folder, start_ind):
""" convert dataset from Waymo to KITTI
Args:
return:
"""
self.start_ind = start_ind
self.get_file_names(DATA_PATH + '/' + folder)
print("Converting ..." + folder)
self.create_folder(args.camera_type)
bar = progressbar.ProgressBar(maxval=len(self.__file_names) + 1,
widgets=[progressbar.Percentage(), ' ',
progressbar.Bar(
marker='>', left='[', right=']'), ' ',
progressbar.ETA()])
tf.enable_eager_execution()
file_num = 1
frame_num = 0
frame_name = self.start_ind
label_exists = False
print("start converting ...")
bar.start()
for file_idx, file_name in enumerate(self.__file_names):
print('File {}/{}'.format(file_idx, len(self.__file_names)))
dataset = tf.data.TFRecordDataset(file_name, compression_type='')
for data in dataset:
frame = open_dataset.Frame()
frame.ParseFromString(bytearray(data.numpy()))
if (frame_num % args.keyframe) == 0:
if LOCATION_FILTER == True and frame.context.stats.location not in LOCATION_NAME:
continue
if args.test == False:
label_exists = self.save_label(frame, frame_name, args.camera_type, False, True)
if args.test == label_exists:
frame_num += 1
continue
self.save_calib(frame, frame_name)
self.save_label(
frame, frame_name, args.camera_type)
self.save_image(frame, frame_name, args.camera_type)
self.save_lidar(frame, frame_name)
self.save_image_calib(frame, frame_name)
# print("image:{}\ncalib:{}\nlidar:{}\nlabel:{}\n".format(str(s1-e1),str(s2-e2),str(s3-e3),str(s4-e4)))
frame_name += 1
frame_num += 1
bar.update(file_num)
file_num += 1
bar.finish()
print("\nfinished ...")
return frame_name
def save_image(self, frame, frame_num, cam_type):
""" parse and save the images in png format
:param frame: open dataset frame proto
:param frame_num: the current frame number
:return:
"""
for img in frame.images:
if cam_type == 'all' or cam_type == str(img.name - 1):
img_path = IMAGE_PATH + '/' + \
str(frame_num).zfill(INDEX_LENGTH) + '.' + IMAGE_FORMAT
img = cv2.imdecode(np.frombuffer(
img.image, np.uint8), cv2.IMREAD_COLOR)
rgb_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
plt.imsave(img_path, rgb_img, format=IMAGE_FORMAT)
def save_calib(self, frame, frame_num, kitti_format=True):
""" parse and save the calibration data
:param frame: open dataset frame proto
:param frame_num: the current frame number
:return:
"""
fp_calib = open(CALIB_PATH + '/' +
str(frame_num).zfill(INDEX_LENGTH) + '.txt', 'w+')
self.T_front_cam_to_ref = np.array([
[0.0, -1.0, 0.0],
[0.0, 0.0, -1.0],
[1.0, 0.0, 0.0]
])
camera_calib = []
R0_rect = ["%e" % i for i in np.eye(3).flatten()]
Tr_velo_to_cam = []
calib_context = ''
for camera in frame.context.camera_calibrations:
tmp = np.array(camera.extrinsic.transform).reshape(4, 4)
tmp = self.cart_to_homo(self.T_front_cam_to_ref) @ np.linalg.inv(tmp)
Tr_velo_to_cam.append(["%e" % i for i in tmp[:3,:].reshape(12)])
for cam in frame.context.camera_calibrations:
tmp = np.zeros((3, 4))
tmp[0, 0] = cam.intrinsic[0]
tmp[1, 1] = cam.intrinsic[1]
tmp[0, 2] = cam.intrinsic[2]
tmp[1, 2] = cam.intrinsic[3]
tmp[2, 2] = 1
tmp = list(tmp.reshape(12))
tmp = ["%e" % i for i in tmp]
camera_calib.append(tmp)
T_front_cam_to_vehicle = np.array(frame.context.camera_calibrations[0].extrinsic.transform).reshape(4, 4)
self.T_vehicle_to_front_cam = np.linalg.inv(T_front_cam_to_vehicle)
for i in range(5):
calib_context += "P" + str(i) + ": " + \
" ".join(camera_calib[i]) + '\n'
calib_context += "R0_rect" + ": " + " ".join(R0_rect) + '\n'
for i in range(5):
calib_context += "Tr_velo_to_cam_" + \
str(i) + ": " + " ".join(Tr_velo_to_cam[i]) + '\n'
calib_context += "timestamp_micros: " + \
str(frame.timestamp_micros) + '\n'
calib_context += "context_name: " + str(frame.context.name) + '\n'
fp_calib.write(calib_context)
fp_calib.close()
def save_lidar(self, frame, frame_num):
""" parse and save the lidar data in psd format
:param frame: open dataset frame proto
:param frame_num: the current frame number
:return:
"""
range_images, range_image_top_pose = self.parse_range_image_and_camera_projection(
frame)
points, intensity = self.convert_range_image_to_point_cloud(
frame,
range_images,
range_image_top_pose)
points_all = np.concatenate(points, axis=0)
intensity_all = np.concatenate(intensity, axis=0)
point_cloud = np.column_stack((points_all, intensity_all))
pc_path = LIDAR_PATH + '/' + \
str(frame_num).zfill(INDEX_LENGTH) + '.bin'
point_cloud.tofile(pc_path)
def save_label(self, frame, frame_num, cam_type, kitti_format=False, check_label_exists = False):
""" parse and save the label data in .txt format
:param frame: open dataset frame proto
:param frame_num: the current frame number
:return:
"""
# get point cloud in the frame
range_images, range_image_top_pose = self.parse_range_image_and_camera_projection(
frame)
points, intensity = self.convert_range_image_to_point_cloud(
frame,
range_images,
range_image_top_pose)
points_all = tf.convert_to_tensor(
np.concatenate(points, axis=0), dtype=np.float32)
# preprocess bounding box data
id_to_bbox = dict()
id_to_name = dict()
for labels in frame.projected_lidar_labels:
name = labels.name
for label in labels.labels:
bbox = [label.box.center_x - label.box.length / 2, label.box.center_y - label.box.width / 2,
label.box.center_x + label.box.length / 2, label.box.center_y + label.box.width / 2]
id_to_bbox[label.id] = bbox
id_to_name[label.id] = name - 1
Tr_velo_to_cam = []
recorded_label = []
label_lines = ''
label_all_lines = ''
"""
if kitti_format:
for camera in frame.context.camera_calibrations:
tmp = np.array(camera.extrinsic.transform).reshape(4, 4)
tmp = np.linalg.inv(tmp)
axes_transformation = np.array([[0, -1, 0, 0],
[0, 0, -1, 0],
[1, 0, 0, 0],
[0, 0, 0, 1]])
tmp = np.matmul(axes_transformation, tmp)
Tr_velo_to_cam.append(tmp)
"""
for obj in frame.laser_labels:
# caculate bounding box
bounding_box = None
name = None
id = obj.id
for lidar in self.__lidar_list:
if id + lidar in id_to_bbox:
bounding_box = id_to_bbox.get(id + lidar)
name = str(id_to_name.get(id + lidar))
break
if bounding_box == None or name == None:
continue
box = tf.convert_to_tensor(
[obj.box.center_x, obj.box.center_y, obj.box.center_z, obj.box.length, obj.box.width, obj.box.height, obj.box.heading], dtype=np.float32)
box = tf.reshape(box, (1, 7))
num_points = box_utils.compute_num_points_in_box_3d(
points_all, box)
num_points = num_points.numpy()[0]
detection_difficulty = obj.detection_difficulty_level
my_type = self.__type_list[obj.type]
truncated = 0
occluded = 0
height = obj.box.height
width = obj.box.width
length = obj.box.length
x = obj.box.center_x
y = obj.box.center_y
z = obj.box.center_z - height/2
if check_label_exists == False:
pt_ref = self.cart_to_homo(self.T_front_cam_to_ref) @ self.T_vehicle_to_front_cam @ np.array([x,y,z,1]).reshape((4,1))
x, y, z, _ = pt_ref.flatten().tolist()
rotation_y = -obj.box.heading - np.pi/2
beta = math.atan2(x, z)
alpha = (rotation_y + beta - math.pi / 2) % (2 * math.pi)
# save the labels
line = my_type + ' {} {} {} {} {} {} {} {} {} {} {} {} {} {} {} {}\n'.format(round(truncated, 2),
occluded,
round(
alpha, 2),
round(
bounding_box[0], 2),
round(
bounding_box[1], 2),
round(
bounding_box[2], 2),
round(
bounding_box[3], 2),
round(
height, 2),
round(
width, 2),
round(
length, 2),
round(
x, 2),
round(
y, 2),
round(
z, 2),
round(
rotation_y, 2),
num_points,
detection_difficulty)
line_all = line[:-1] + ' ' + name + '\n'
# store the label
label_all_lines += line_all
if (name == cam_type):
label_lines += line
recorded_label.append(line)
if len(recorded_label) == 0:
return False
else:
fp_label_all = open(LABEL_ALL_PATH + '/' +
str(frame_num).zfill(INDEX_LENGTH) + '.txt', 'w+')
fp_label = open(LABEL_PATH + '/' +
str(frame_num).zfill(INDEX_LENGTH) + '.txt', 'w+')
fp_label.write(label_lines)
fp_label.close()
fp_label_all.write(label_all_lines)
fp_label_all.close()
return True
def save_image_calib(self, frame, frame_num):
fp_image_calib = open(IMG_CALIB_PATH + '/' +
str(frame_num).zfill(INDEX_LENGTH) + '.txt', 'w+')
camera_calib = []
pose = []
velocity = []
timestamp = []
shutter = []
trigger_time = []
readout_done_time = []
calib_context = ''
for camera in frame.images:
tmp = np.array(camera.pose.transform).reshape((16,))
pose.append(["%e" % i for i in tmp])
tmp = np.zeros(6)
tmp[0] = camera.velocity.v_x
tmp[1] = camera.velocity.v_y
tmp[2] = camera.velocity.v_z
tmp[3] = camera.velocity.w_x
tmp[4] = camera.velocity.w_y
tmp[5] = camera.velocity.w_z
velocity.append(["%e" % i for i in tmp])
timestamp.append(camera.pose_timestamp)
shutter.append(camera.shutter)
trigger_time.append(camera.camera_trigger_time)
readout_done_time.append(camera.camera_readout_done_time)
for i in range(5):
calib_context += "Pose_" + str(i) + ": " + \
" ".join(pose[i]) + '\n'
for i in range(5):
calib_context += "Velocity_" + str(i) + ": " + \
" ".join(velocity[i]) + '\n'
for i in range(5):
calib_context += "Timestamp_" + str(i) + ": " + \
" ".join(velocity[i]) + '\n'
for i in range(5):
calib_context += "Shutter_" + str(i) + ": " + \
" ".join(velocity[i]) + '\n'
for i in range(5):
calib_context += "Trigger_" + str(i) + ": " + \
" ".join(velocity[i]) + '\n'
for i in range(5):
calib_context += "Readout_" + str(i) + ": " + \
" ".join(velocity[i]) + '\n'
fp_image_calib.write(calib_context)
fp_image_calib.close()
def get_file_names(self, folder):
for i in os.listdir(folder):
if i.split('.')[-1] == 'tfrecord':
self.__file_names.append(folder + '/' + i)
def cart_to_homo(self, mat):
ret = np.eye(4)
if mat.shape == (3, 3):
ret[:3, :3] = mat
elif mat.shape == (3, 4):
ret[:3, :] = mat
else:
raise ValueError(mat.shape)
return ret
def create_folder(self, cam_type):
if not os.path.exists(KITTI_PATH):
os.mkdir(KITTI_PATH)
if not os.path.exists(CALIB_PATH):
os.mkdir(CALIB_PATH)
if not os.path.exists(LIDAR_PATH):
os.mkdir(LIDAR_PATH)
if not os.path.exists(LABEL_ALL_PATH):
os.mkdir(LABEL_ALL_PATH)
if not os.path.exists(IMG_CALIB_PATH):
os.mkdir(IMG_CALIB_PATH)
if not os.path.exists(IMAGE_PATH):
os.mkdir(IMAGE_PATH)
if not os.path.exists(LABEL_PATH):
os.mkdir(LABEL_PATH)
def extract_intensity(self, frame, range_images, lidar_num):
""" extract the intensity from the original range image
:param frame: open dataset frame proto
:param frame_num: the current frame number
:param lidar_num: the number of current lidar
:return:
"""
intensity_0 = np.array(range_images[lidar_num][0].data).reshape(-1, 4)
intensity_0 = intensity_0[:, 1]
intensity_1 = np.array(range_images[lidar_num][
1].data).reshape(-1, 4)[:, 1]
return intensity_0, intensity_1
def image_show(self, data, name, layout, cmap=None):
"""Show an image."""
plt.subplot(*layout)
plt.imshow(tf.image.decode_jpeg(data), cmap=cmap)
plt.title(name)
plt.grid(False)
plt.axis('off')
def parse_range_image_and_camera_projection(self, frame):
"""Parse range images and camera projections given a frame.
Args:
frame: open dataset frame proto
Returns:
range_images: A dict of {laser_name,
[range_image_first_return, range_image_second_return]}.
camera_projections: A dict of {laser_name,
[camera_projection_from_first_return,
camera_projection_from_second_return]}.
range_image_top_pose: range image pixel pose for top lidar.
"""
self.__range_images = {}
# camera_projections = {}
# range_image_top_pose = None
for laser in frame.lasers:
if len(laser.ri_return1.range_image_compressed) > 0:
range_image_str_tensor = tf.decode_compressed(
laser.ri_return1.range_image_compressed, 'ZLIB')
ri = open_dataset.MatrixFloat()
ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
self.__range_images[laser.name] = [ri]
if laser.name == open_dataset.LaserName.TOP:
range_image_top_pose_str_tensor = tf.decode_compressed(
laser.ri_return1.range_image_pose_compressed, 'ZLIB')
range_image_top_pose = open_dataset.MatrixFloat()
range_image_top_pose.ParseFromString(
bytearray(range_image_top_pose_str_tensor.numpy()))
# camera_projection_str_tensor = tf.decode_compressed(
# laser.ri_return1.camera_projection_compressed, 'ZLIB')
# cp = open_dataset.MatrixInt32()
# cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
# camera_projections[laser.name] = [cp]
if len(laser.ri_return2.range_image_compressed) > 0:
range_image_str_tensor = tf.decode_compressed(
laser.ri_return2.range_image_compressed, 'ZLIB')
ri = open_dataset.MatrixFloat()
ri.ParseFromString(bytearray(range_image_str_tensor.numpy()))
self.__range_images[laser.name].append(ri)
#
# camera_projection_str_tensor = tf.decode_compressed(
# laser.ri_return2.camera_projection_compressed, 'ZLIB')
# cp = open_dataset.MatrixInt32()
# cp.ParseFromString(bytearray(camera_projection_str_tensor.numpy()))
# camera_projections[laser.name].append(cp)
return self.__range_images, range_image_top_pose
def plot_range_image_helper(self, data, name, layout, vmin=0, vmax=1, cmap='gray'):
"""Plots range image.
Args:
data: range image data
name: the image title
layout: plt layout
vmin: minimum value of the passed data
vmax: maximum value of the passed data
cmap: color map
"""
plt.subplot(*layout)
plt.imshow(data, cmap=cmap, vmin=vmin, vmax=vmax)
plt.title(name)
plt.grid(False)
plt.axis('off')
def get_range_image(self, laser_name, return_index):
"""Returns range image given a laser name and its return index."""
return self.__range_images[laser_name][return_index]
def show_range_image(self, range_image, layout_index_start=1):
"""Shows range image.
Args:
range_image: the range image data from a given lidar of type MatrixFloat.
layout_index_start: layout offset
"""
range_image_tensor = tf.convert_to_tensor(range_image.data)
range_image_tensor = tf.reshape(
range_image_tensor, range_image.shape.dims)
lidar_image_mask = tf.greater_equal(range_image_tensor, 0)
range_image_tensor = tf.where(lidar_image_mask, range_image_tensor,
tf.ones_like(range_image_tensor) * 1e10)
range_image_range = range_image_tensor[..., 0]
range_image_intensity = range_image_tensor[..., 1]
range_image_elongation = range_image_tensor[..., 2]
self.plot_range_image_helper(range_image_range.numpy(), 'range',
[8, 1, layout_index_start], vmax=75, cmap='gray')
self.plot_range_image_helper(range_image_intensity.numpy(), 'intensity',
[8, 1, layout_index_start + 1], vmax=1.5, cmap='gray')
self.plot_range_image_helper(range_image_elongation.numpy(), 'elongation',
[8, 1, layout_index_start + 2], vmax=1.5, cmap='gray')
def convert_range_image_to_point_cloud(self, frame, range_images, range_image_top_pose, ri_index=0):
"""Convert range images to point cloud.
Args:
frame: open dataset frame
range_images: A dict of {laser_name,
[range_image_first_return, range_image_second_return]}.
camera_projections: A dict of {laser_name,
[camera_projection_from_first_return,
camera_projection_from_second_return]}.
range_image_top_pose: range image pixel pose for top lidar.
ri_index: 0 for the first return, 1 for the second return.
Returns:
points: {[N, 3]} list of 3d lidar points of length 5 (number of lidars).
cp_points: {[N, 6]} list of camera projections of length 5
(number of lidars).
intensity: {[N, 1]} list of intensity of length 5 (number of lidars).
"""
calibrations = sorted(
frame.context.laser_calibrations, key=lambda c: c.name)
# lasers = sorted(frame.lasers, key=lambda laser: laser.name)
points = []
# cp_points = []
intensity = []
frame_pose = tf.convert_to_tensor(
np.reshape(np.array(frame.pose.transform), [4, 4]))
# [H, W, 6]
range_image_top_pose_tensor = tf.reshape(
tf.convert_to_tensor(range_image_top_pose.data),
range_image_top_pose.shape.dims)
# [H, W, 3, 3]
range_image_top_pose_tensor_rotation = transform_utils.get_rotation_matrix(
range_image_top_pose_tensor[...,
0], range_image_top_pose_tensor[..., 1],
range_image_top_pose_tensor[..., 2])
range_image_top_pose_tensor_translation = range_image_top_pose_tensor[
..., 3:]
range_image_top_pose_tensor = transform_utils.get_transform(
range_image_top_pose_tensor_rotation,
range_image_top_pose_tensor_translation)
for c in calibrations:
range_image = range_images[c.name][ri_index]
if len(c.beam_inclinations) == 0:
beam_inclinations = range_image_utils.compute_inclination(
tf.constant([c.beam_inclination_min,
c.beam_inclination_max]),
height=range_image.shape.dims[0])
else:
beam_inclinations = tf.constant(c.beam_inclinations)
beam_inclinations = tf.reverse(beam_inclinations, axis=[-1])
extrinsic = np.reshape(np.array(c.extrinsic.transform), [4, 4])
range_image_tensor = tf.reshape(
tf.convert_to_tensor(range_image.data), range_image.shape.dims)
pixel_pose_local = None
frame_pose_local = None
if c.name == open_dataset.LaserName.TOP:
pixel_pose_local = range_image_top_pose_tensor
pixel_pose_local = tf.expand_dims(pixel_pose_local, axis=0)
frame_pose_local = tf.expand_dims(frame_pose, axis=0)
range_image_mask = range_image_tensor[..., 0] > 0
range_image_cartesian = range_image_utils.extract_point_cloud_from_range_image(
tf.expand_dims(range_image_tensor[..., 0], axis=0),
tf.expand_dims(extrinsic, axis=0),
tf.expand_dims(tf.convert_to_tensor(
beam_inclinations), axis=0),
pixel_pose=pixel_pose_local,
frame_pose=frame_pose_local)
range_image_cartesian = tf.squeeze(range_image_cartesian, axis=0)
points_tensor = tf.gather_nd(range_image_cartesian,
tf.where(range_image_mask))
intensity_tensor = tf.gather_nd(range_image_tensor,
tf.where(range_image_mask))
# cp = camera_projections[c.name][0]
# cp_tensor = tf.reshape(tf.convert_to_tensor(cp.data), cp.shape.dims)
# cp_points_tensor = tf.gather_nd(cp_tensor, tf.where(range_image_mask))
points.append(points_tensor.numpy())
# cp_points.append(cp_points_tensor.numpy())
intensity.append(intensity_tensor.numpy()[:, 1])
return points, intensity
def rgba(self, r):
"""Generates a color based on range.
Args:
r: the range value of a given point.
Returns:
The color for a given range
"""
c = plt.get_cmap('jet')((r % 20.0) / 20.0)
c = list(c)
c[-1] = 0.5 # alpha
return c
def plot_image(self, camera_image):
"""Plot a cmaera image."""
plt.figure(figsize=(20, 12))
plt.imshow(tf.image.decode_jpeg(camera_image.image))
plt.grid("off")
def plot_points_on_image(self, projected_points, camera_image, rgba_func, point_size=5.0):
"""Plots points on a camera image.
Args:
projected_points: [N, 3] numpy array. The inner dims are
[camera_x, camera_y, range].
camera_image: jpeg encoded camera image.
rgba_func: a function that generates a color from a range value.
point_size: the point size.
"""
self.plot_image(camera_image)
xs = []
ys = []
colors = []
for point in projected_points:
xs.append(point[0]) # width, col
ys.append(point[1]) # height, row
colors.append(rgba_func(point[2]))
plt.scatter(xs, ys, c=colors, s=point_size, edgecolors="none")
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Save Waymo dataset into Kitti format')
parser.add_argument('--keyframe',
type=int,
default=10,
help='Saves every specified # of scenes. Default is 1 and the program saves every scene')
parser.add_argument('--camera_type',
type=str,
default="0",
help='Select camera views to save. Input argument from 0 to 4 or all')
parser.add_argument('--start_ind',
type=int,
default=0,
help='File number starts counting from this index')
parser.add_argument('--test',
type=bool,
default=False,
help='if true, does not save any ground truth data')
args = parser.parse_args()
start_ind = args.start_ind
path, dirs, files = next(os.walk(DATA_PATH))
dirs.sort()
for directory in dirs:
adapter = Adapter()
last_ind = adapter.cvt(args, directory, start_ind)
start_ind = last_ind