forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 26.tex
575 lines (485 loc) · 46.1 KB
/
Lecture 26.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
\documentclass[11pt,table]{article}
% DEFINE COMMANDS
\usepackage{NotesTeX}
\usepackage[font=small,labelfont=bf]{caption}
\usepackage{enumerate}
\usepackage{amsmath,amssymb,amscd,amsfonts}
\usepackage{xcolor}
\usepackage{color}
\usepackage{tikz}
\usepackage{tikz-cd}
\tikzcdset{every label/.append style = {font = \small}}
\tikzcdset{row sep/normal=3.5em}
\tikzcdset{column sep/normal=3.5em}
\usetikzlibrary{matrix}
\usetikzlibrary{decorations.markings,calc,shapes}
\usetikzlibrary{positioning}
\usepackage{graphicx}
\usepackage{empheq}
\usepackage{physics}
\usepackage{siunitx}
\usepackage{tensor}
\usepackage{multicol}
\usepackage{youngtab}
\usepackage{cancel}
\usepackage{caption}
\usepackage{graphicx}
\usepackage{subcaption}
\usepackage{hyperref}
% added by Jingtian Shi
\usepackage{indentfirst}
\usepackage{cases}
\usepackage{bbm}
\usepackage{esvect}
\usepackage{accents}
\newcommand{\ut}[1]{\underaccent{\tilde}{#1}}
\renewcommand{\vec}[1]{\ut{#1}}
% % % % % % % % % % % % % % % % % % % % % % %
\title{{\Huge General Relativity}\\{\Large{Class 26 --- March 30, 2020}}} %replace with class number
\author{Gina Chen}
\emailAdd{[email protected]} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
\part{Spherically Symmetric Spacetimes}
We want to solve for the metric inside or outside of some spherically symmetric distribution of matter, where $\tensor{T}{_\mu_\nu} \neq 0$ inside and $\tensor{T}{_\mu_\nu} = 0$ outside. Given such a $\tensor{T}{_\mu_\nu}$, the goal is to solve Einstein's equation, $\tensor{G}{_\mu_\nu} = 8\pi \tensor{T}{_\mu_\nu}$, in both regions.
In the future, we will cover the case where the interior region is a perfect fluid, but for now, let's start with vacuum -- the region where $\tensor{T}{_\mu_\nu} = 0$. Physically, this answers the following question: What is the spacetime curvature outside of an object (\textit{e.g.} a star) that is approximately spherically symmetric?
\section{What does it mean for a spacetime to be spherically symmetric?}
The first step in this process is selecting our coordinates in a way that makes the problem as easy as possible to solve (a common theme in solving Einstein's equations). We want to take advantage of the spherical symmetry, so we'd like to choose some $\theta, \phi$ coordinates on spheres to simplify $\tensor{g}{_\mu_\nu}$. In order to do that we'll need to define what we mean by spheres and spherical symmetry.
Spherical symmetry means we have three Killing vector fields: $\vv{R}, \vv{S}$, and $\vv{T}$, the Killing vectors of a two-sphere (see: Homework 5, Problem 1). These vectors must obey the following commutation relations:
\[ [\vv{R},\vv{S}] = \vv{T} \]
\[ [\vv{S},\vv{T}] = \vv{R} \]
\[ [\vv{T},\vv{R}] = \vv{S} \]
Remember that if we flow in the direction of a Killing vector field, the metric remains the same. So the first thing we will do is \textbf{foliate} our spacetime into spheres. Consider a point $P$ in the spacetime. Take every flow along $\vv{R}, \vv{S}$, and $\vv{T}$, and trace out all the points that you can reach using those 3 vector fields. We find that these points trace out a sphere, $S_P$. Now consider another point $Q$. It will sit on its own sphere, $S_Q$, where every point on that sphere can be reached from $Q$ by moving along the Killing vector fields.
\begin{figure}[h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,300); %set diagram left start at 0, and has height of 300
%Shape: Circle [id:dp5262521343433131]
\draw [line width=0.75] (6.24,101.25) .. controls (6.24,61.9) and (38.14,30) .. (77.49,30) .. controls (116.84,30) and (148.74,61.9) .. (148.74,101.25) .. controls (148.74,140.6) and (116.84,172.5) .. (77.49,172.5) .. controls (38.14,172.5) and (6.24,140.6) .. (6.24,101.25) -- cycle ;
%Shape: Ellipse [id:dp02956999111479397]
\draw [dash pattern={on 4.5pt off 4.5pt}][line width=0.75] (77.01,30) .. controls (88.06,29.96) and (97.12,61.83) .. (97.25,101.18) .. controls (97.38,140.53) and (88.53,172.46) .. (77.49,172.5) .. controls (66.44,172.54) and (57.38,140.67) .. (57.25,101.32) .. controls (57.12,61.97) and (65.97,30.04) .. (77.01,30) -- cycle ;
%Shape: Circle [id:dp15450295714515128]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (81.13,30) .. controls (81.13,27.86) and (79.39,26.13) .. (77.25,26.13) .. controls (75.11,26.13) and (73.38,27.86) .. (73.38,30) .. controls (73.38,32.14) and (75.11,33.88) .. (77.25,33.88) .. controls (79.39,33.88) and (81.13,32.14) .. (81.13,30) -- cycle ;
%Shape: Circle [id:dp7226268564806799]
\draw (30,100.78) .. controls (30,74.71) and (51.14,53.57) .. (77.22,53.57) .. controls (103.29,53.57) and (124.43,74.71) .. (124.43,100.78) .. controls (124.43,126.86) and (103.29,148) .. (77.22,148) .. controls (51.14,148) and (30,126.86) .. (30,100.78) -- cycle ;
%Shape: Circle [id:dp4278345279124127]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (108.13,62) .. controls (108.13,59.86) and (106.39,58.13) .. (104.25,58.13) .. controls (102.11,58.13) and (100.38,59.86) .. (100.38,62) .. controls (100.38,64.14) and (102.11,65.88) .. (104.25,65.88) .. controls (106.39,65.88) and (108.13,64.14) .. (108.13,62) -- cycle ;
%Curve Lines [id:da5685234022247485]
\draw (126.42,78.71) .. controls (236.7,69.46) and (99.46,91.92) .. (194.5,84) ;
\draw [shift={(123,79)}, rotate = 355.09] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Ellipse [id:dp7006336525690615]
\draw [dash pattern={on 4.5pt off 4.5pt}][line width=0.75] (148.74,104.89) .. controls (148.77,115.93) and (116.9,124.99) .. (77.55,125.12) .. controls (38.2,125.25) and (6.27,116.41) .. (6.24,105.36) .. controls (6.2,94.31) and (38.07,85.25) .. (77.42,85.12) .. controls (116.77,84.99) and (148.7,93.84) .. (148.74,104.89) -- cycle ;
%Curve Lines [id:da7130464884226269]
\draw [line width=1.5] (58.93,72.7) .. controls (61.18,52.1) and (66.28,31.87) .. (77.49,30) ;
\draw [shift={(58.5,77)}, rotate = 275.19] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (11.61,-5.58) -- (0,0) -- (11.61,5.58) -- cycle ;
% Text Node
\draw (73,7.4) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (112,48.4) node [anchor=north west][inner sep=0.75pt] {$Q$};
% Text Node
\draw (199,74.4) node [anchor=north west][inner sep=0.75pt] {$S_{Q}$};
% Text Node
\draw (124,159.4) node [anchor=north west][inner sep=0.75pt] {$S_{P}$};
\end{tikzpicture}
\caption{Moving $P$ along the three Killing vector fields produces the sphere $S_P$, where $\tensor{g}{_\mu_\nu}$ is the same for every point on that sphere. Similarly, moving the point $Q$ along the Killing vector fields produces the sphere $S_Q$.}
\label{fig:spheres}
\end{figure}
For every point in the spacetime, that point defines a sphere. In this way, we can foliate the spacetime by spheres. In other words, the spacetime can be described as a series of nested spheres.\sn{Not every point needs to sit on a sphere. For example, the origin in flat space doesn't sit on the surface of a sphere. If we try to flow the origin along the Killing vector fields, the rotations wouldn't move the origin.}
If we select the usual coordinates, $\theta$, $\phi$ on each sphere, then we can write
\[ \begin{pmatrix}
g_{\theta\theta} & g_{\theta\phi} \\
g_{\phi\theta} & g_{\phi\phi} \\
\end{pmatrix}
= r(a,b) \begin{pmatrix}
1 & 0 \\
0 & \sin^2(\phi) \\
\end{pmatrix} \]
where $r(a,b)$ is some radial function that depends on some time and distance coordinates.
\section{What's next?}
From here, we'd like to place the spheres in terms of the other coordinates and simplify the metric as much as possible. The goal is to ``line up'' the spheres so that we know how $\theta$ and $\phi$ vary across them. Then we can write the metric as follows:
\begin{equation}\label{eq:metric}
ds^2 = g_{aa}da^2 + 2g_{ab}dadb + g_{bb}db^2 + r(a,b)^2d\Omega^2
\end{equation}
where $d\Omega$ is the usual metric of the 2-sphere.\sn{The second term of Equation \ref{eq:metric} is technically $g_{ab}(dadb + dbda)$, where $dadb$ and $dbda$ are outer products and are, strictly speaking, not the same thing. This statement is an abuse of notation, but we will ignore that for now.}
Eventually, $a$ and $b$ are going to be our time and radial coordinates. Note that $b$ doesn't have to be the actual radius of each sphere.
Additionally, we will choose a certain transform from $(a,b) \to (t,r)$, where $r$ is actually the radius of the sphere. We will have enough coordinate freedom that
\begin{equation}\label{eq:spherical}
ds^2 = g_{tt}dt^2 + g_{rr}dr^2 + r^2d\Omega^2
\end{equation}
where $g_{tt}$ and $g_{rr}$ are both functions of $t$ and $r$. This is a powerful simplification! We can reduce \textit{any} spherically symmetric spacetime into solving for $g_{tt}(t,r)$ and $g_{rr}(t,r)$ using Einstein's equation and a specific $\tensor{T}{_\mu_\nu}$.
\section{Lining up our spheres}
Currently, we have a coordinate system $(\theta, \phi)$ on each sphere. How do we tie a particular $\theta_0$ on one sphere to a $\theta_0$ on another sphere?
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,163); %set diagram left start at 0, and has height of 163
%Shape: Circle [id:dp30024719108628894]
\draw [line width=0.75] (1.24,72.25) .. controls (1.24,32.9) and (33.14,1) .. (72.49,1) .. controls (111.84,1) and (143.74,32.9) .. (143.74,72.25) .. controls (143.74,111.6) and (111.84,143.5) .. (72.49,143.5) .. controls (33.14,143.5) and (1.24,111.6) .. (1.24,72.25) -- cycle ;
%Shape: Circle [id:dp18028604713897378]
\draw (25.27,72.25) .. controls (25.27,46.17) and (46.41,25.03) .. (72.49,25.03) .. controls (98.56,25.03) and (119.7,46.17) .. (119.7,72.25) .. controls (119.7,98.33) and (98.56,119.47) .. (72.49,119.47) .. controls (46.41,119.47) and (25.27,98.33) .. (25.27,72.25) -- cycle ;
%Shape: Circle [id:dp11910134787309201]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (126.13,22) .. controls (126.13,19.86) and (124.39,18.13) .. (122.25,18.13) .. controls (120.11,18.13) and (118.38,19.86) .. (118.38,22) .. controls (118.38,24.14) and (120.11,25.88) .. (122.25,25.88) .. controls (124.39,25.88) and (126.13,24.14) .. (126.13,22) -- cycle ;
%Shape: Circle [id:dp6825760761390711]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (112.13,42) .. controls (112.13,39.86) and (110.39,38.13) .. (108.25,38.13) .. controls (106.11,38.13) and (104.38,39.86) .. (104.38,42) .. controls (104.38,44.14) and (106.11,45.88) .. (108.25,45.88) .. controls (110.39,45.88) and (112.13,44.14) .. (112.13,42) -- cycle ;
% Text Node
\draw (131,8.4) node [anchor=north west][inner sep=0.75pt] {$\theta _{0}$};
% Text Node
\draw (86,42.4) node [anchor=north west][inner sep=0.75pt] {$\theta _{0}$};
\end{tikzpicture}
\caption{How do we line up the two $\theta_0$ so that the coordinate distance between these two points is a different time or space?}
\label{fig:lineup}
\end{figure}
There are many ways to do this. Various rotations of each sphere will cause our coordinates to shear with respect to each other. We would like to eliminate this shearing and line up the spheres in a way that simplifies the metric even more.
\newpage
Right now, our metric has the following form:
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,163); %set diagram left start at 0, and has height of 163
%Rounded Rect [id:dp9152961441690106]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (81,33.6) .. controls (81,27.19) and (86.19,22) .. (92.6,22) -- (145.9,22) .. controls (152.31,22) and (157.5,27.19) .. (157.5,33.6) -- (157.5,68.4) .. controls (157.5,74.81) and (152.31,80) .. (145.9,80) -- (92.6,80) .. controls (86.19,80) and (81,74.81) .. (81,68.4) -- cycle ;
%Rounded Rect [id:dp025551523836803147]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (161.5,95.6) .. controls (161.5,89.19) and (166.69,84) .. (173.1,84) -- (226.4,84) .. controls (232.81,84) and (238,89.19) .. (238,95.6) -- (238,130.4) .. controls (238,136.81) and (232.81,142) .. (226.4,142) -- (173.1,142) .. controls (166.69,142) and (161.5,136.81) .. (161.5,130.4) -- cycle ;
%Rounded Rect [id:dp5686630594023176]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (161.5,33.6) .. controls (161.5,27.19) and (166.69,22) .. (173.1,22) -- (226.4,22) .. controls (232.81,22) and (238,27.19) .. (238,33.6) -- (238,68.4) .. controls (238,74.81) and (232.81,80) .. (226.4,80) -- (173.1,80) .. controls (166.69,80) and (161.5,74.81) .. (161.5,68.4) -- cycle ;
%Rounded Rect [id:dp2537296823816999]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (81,95.6) .. controls (81,89.19) and (86.19,84) .. (92.6,84) -- (145.9,84) .. controls (152.31,84) and (157.5,89.19) .. (157.5,95.6) -- (157.5,130.4) .. controls (157.5,136.81) and (152.31,142) .. (145.9,142) -- (92.6,142) .. controls (86.19,142) and (81,136.81) .. (81,130.4) -- cycle ;
% Text Node
\draw (14,72.4) node [anchor=north west][inner sep=0.75pt] {$g_{\mu \nu } =$};
% Text Node
\draw (61,31.4) node [anchor=north west][inner sep=0.75pt] {$a$};
% Text Node
\draw (60,57.4) node [anchor=north west][inner sep=0.75pt] {$b$};
% Text Node
\draw (59,92.4) node [anchor=north west][inner sep=0.75pt] {$\theta $};
% Text Node
\draw (60,114.4) node [anchor=north west][inner sep=0.75pt] {$\phi $};
% Text Node
\draw (179,103.4) node [anchor=north west][inner sep=0.75pt] {$r^{2} d\Omega ^{2}$};
\end{tikzpicture}
\end{figure}
where we've defined the elements in the red boxes, but the elements in the blue boxes, the cross terms, are still not necessarily zero. We would like to orient our spheres in such a way that all of these cross terms are zero.
Consider a particular point $P$ on sphere $S_P$ and the possible rotations of that sphere. There is a rotation, $R_P$, that leaves $P$ unchanged. Now consider the tangent space $T_P$.There is a subspace of vectors in the tangent space, $T_P$, that rotate into each other under the rotation $R_P$. There is a separate 2-dimensional subspace of $T_P$, that we'll call $V_P$, that remains unchanged (see Figure \ref{fig:rotation}).
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.75,xscale=.75]
%uncomment if require: \path (0,305); %set diagram left start at 0, and has height of 305
%Shape: Circle [id:dp22948041466618352]
\draw [line width=0.75] (64.24,164.19) .. controls (64.24,124.8) and (96.16,92.87) .. (135.55,92.87) .. controls (174.93,92.87) and (206.86,124.8) .. (206.86,164.19) .. controls (206.86,203.57) and (174.93,235.5) .. (135.55,235.5) .. controls (96.16,235.5) and (64.24,203.57) .. (64.24,164.19) -- cycle ;
%Straight Lines [id:da2902359407466264]
\draw [dash pattern={on 4.5pt off 4.5pt}] (135.49,47) -- (135.49,281) ;
%Curve Lines [id:da30516396490546205]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (129.5,261) .. controls (88.34,276.68) and (182.6,276.99) .. (143.09,261.94) ;
\draw [shift={(140.5,261)}, rotate = 379.18] [fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Circle [id:dp018497056022325875]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (139.42,92.87) .. controls (139.42,90.73) and (137.69,89) .. (135.55,89) .. controls (133.41,89) and (131.67,90.73) .. (131.67,92.87) .. controls (131.67,95.01) and (133.41,96.75) .. (135.55,96.75) .. controls (137.69,96.75) and (139.42,95.01) .. (139.42,92.87) -- cycle ;
%Shape: Parallelogram [id:dp45295877051260724]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (83.15,65.5) -- (266.55,65.5) -- (187.95,120.25) -- (4.55,120.25) -- cycle ;
%Shape: Parallelogram [id:dp9429396510382679]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (108.1,62.68) -- (108.1,180.96) -- (162.99,123.07) -- (162.99,4.79) -- cycle ;
%Straight Lines [id:da5401896038442613]
\draw (135.55,92.87) -- (166.85,109.59) ;
\draw [shift={(169.5,111)}, rotate = 208.1] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da3832167757759517]
\draw [dash pattern={on 0.84pt off 2.51pt}] (139.42,92.87) -- (175.51,90.22) ;
\draw [shift={(178.5,90)}, rotate = 535.79] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Curve Lines [id:da6685921783445326]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (175.5,113) .. controls (197.01,113.94) and (197.53,105.25) .. (189.33,94.31) ;
\draw [shift={(187.5,92)}, rotate = 410.19] [fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Curve Lines [id:da11395200374519421]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (129.5,109) .. controls (88.34,124.68) and (182.6,124.99) .. (143.09,109.94) ;
\draw [shift={(140.5,109)}, rotate = 379.18] [fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da5767953655887361]
\draw (135.55,92.87) -- (135.55,132) ;
\draw [shift={(135.55,135)}, rotate = 270] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
% Text Node
\draw (143,276.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$R_{P}$};
% Text Node
\draw (62,210.4) node [anchor=north west][inner sep=0.75pt] {$S_{P}$};
% Text Node
\draw (120,75.4) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (170,40.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,opacity=1 ] {$T_{P}$};
\end{tikzpicture}
\caption{The point $P$ is invariant under rotation $R_P$. A vector in $T_P$ is rotated into another vector in $T_P$ and another vector is unchanged.}
\label{fig:rotation}
\end{figure}
Now consider another point $Q$ on a different sphere that is also invariant under $R_P$. Then there is a geodesic between $P$ and $Q$ that is also unchanged by this rotation (see Figure \ref{fig:geodesic}).
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.75,xscale=.75]
%uncomment if require: \path (0,304); %set diagram left start at 0, and has height of 304
%Shape: Parallelogram [id:dp2174766573568001]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (90.1,62.68) -- (90.1,180.96) -- (144.99,123.07) -- (144.99,4.79) -- cycle ;
%Shape: Circle [id:dp8240448416865427]
\draw [line width=0.75] (46.24,164.19) .. controls (46.24,124.8) and (78.16,92.87) .. (117.55,92.87) .. controls (156.93,92.87) and (188.86,124.8) .. (188.86,164.19) .. controls (188.86,203.57) and (156.93,235.5) .. (117.55,235.5) .. controls (78.16,235.5) and (46.24,203.57) .. (46.24,164.19) -- cycle ;
%Straight Lines [id:da7879500191046807]
\draw [dash pattern={on 4.5pt off 4.5pt}] (117.49,47) -- (117.49,281) ;
%Curve Lines [id:da5924127758114353]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ] (111.5,261) .. controls (70.34,276.68) and (164.6,276.99) .. (125.09,261.94) ;
\draw [shift={(122.5,261)}, rotate = 379.18] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Arc [id:dp9475099180290631]
\draw [draw opacity=0] (15.45,66.9) .. controls (35.28,50.11) and (73.57,38.69) .. (117.55,38.61) .. controls (161.58,38.54) and (199.9,49.85) .. (219.71,66.6) -- (117.55,92.87) -- cycle ; \draw (15.45,66.9) .. controls (35.28,50.11) and (73.57,38.69) .. (117.55,38.61) .. controls (161.58,38.54) and (199.9,49.85) .. (219.71,66.6) ;
%Straight Lines [id:da7232564999456332]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][line width=1.5] (117.55,38) -- (117.55,92.87) ;
%Shape: Circle [id:dp5485145642027835]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (121.42,38) .. controls (121.42,35.86) and (119.69,34.13) .. (117.55,34.13) .. controls (115.41,34.13) and (113.67,35.86) .. (113.67,38) .. controls (113.67,40.14) and (115.41,41.88) .. (117.55,41.88) .. controls (119.69,41.88) and (121.42,40.14) .. (121.42,38) -- cycle ;
%Shape: Circle [id:dp4001064563381498]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (121.42,92.87) .. controls (121.42,90.73) and (119.69,89) .. (117.55,89) .. controls (115.41,89) and (113.67,90.73) .. (113.67,92.87) .. controls (113.67,95.01) and (115.41,96.75) .. (117.55,96.75) .. controls (119.69,96.75) and (121.42,95.01) .. (121.42,92.87) -- cycle ;
% Text Node
\draw (125,276.4) node [anchor=north west][inner sep=0.75pt] {$R_{P}$};
% Text Node
\draw (44,210.4) node [anchor=north west][inner sep=0.75pt] {$S_{P}$};
% Text Node
\draw (96,71.4) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (139,131.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,opacity=1 ] {$V_{P}$};
% Text Node
\draw (17,30.4) node [anchor=north west][inner sep=0.75pt] {$S_{Q}$};
% Text Node
\draw (100,15.4) node [anchor=north west][inner sep=0.75pt] {$Q$};
\end{tikzpicture}
\caption{The geodesic between $P$ and $Q$ is tangent to $V_P$ and invariant under $R_P$.}
\label{fig:geodesic}
\end{figure}
From this we can conclude that there is a set of points in $\mathcal{M}$ that can be reached by geodesics with tangents in $V_P$.
\section{Another visualization}
Another way to visualize this is to draw our sphere with one of the angular coordinates suppressed so that we can see the two coordinates orthogonal to the sphere. Define $O_P$ as the set of points reached by geodesics with tangents in $V_P$. $O_P$ is then invariant under $R_P$.
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,187); %set diagram left start at 0, and has height of 187
%Shape: Circle [id:dp6372095108322378]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (254.38,79) .. controls (254.38,76.86) and (252.64,75.13) .. (250.5,75.13) .. controls (248.36,75.13) and (246.63,76.86) .. (246.63,79) .. controls (246.63,81.14) and (248.36,82.88) .. (250.5,82.88) .. controls (252.64,82.88) and (254.38,81.14) .. (254.38,79) -- cycle ;
%Shape: Circle [id:dp4455259589976639]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (266.38,135) .. controls (266.38,132.86) and (264.64,131.13) .. (262.5,131.13) .. controls (260.36,131.13) and (258.63,132.86) .. (258.63,135) .. controls (258.63,137.14) and (260.36,138.88) .. (262.5,138.88) .. controls (264.64,138.88) and (266.38,137.14) .. (266.38,135) -- cycle ;
%Shape: Circle [id:dp29553862889868765]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (218.38,160) .. controls (218.38,157.86) and (216.64,156.13) .. (214.5,156.13) .. controls (212.36,156.13) and (210.63,157.86) .. (210.63,160) .. controls (210.63,162.14) and (212.36,163.88) .. (214.5,163.88) .. controls (216.64,163.88) and (218.38,162.14) .. (218.38,160) -- cycle ;
%Straight Lines [id:da9801505114841584]
\draw (171.25,112) -- (212.49,157.77) ;
\draw [shift={(214.5,160)}, rotate = 227.98] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Rounded Rect [id:dp46014376374894606]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (169,70.3) .. controls (169,55.77) and (180.77,44) .. (195.3,44) -- (274.2,44) .. controls (288.73,44) and (300.5,55.77) .. (300.5,70.3) -- (300.5,154.7) .. controls (300.5,169.23) and (288.73,181) .. (274.2,181) -- (195.3,181) .. controls (180.77,181) and (169,169.23) .. (169,154.7) -- cycle ;
%Straight Lines [id:da13577106691752405]
\draw (79,112) -- (79,5) ;
\draw [shift={(79,3)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da952614181442567]
\draw (79,112) -- (197.5,112) ;
\draw [shift={(199.5,112)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da3570195090692969]
\draw (131.5,76) -- (3.65,162.88) ;
\draw [shift={(2,164)}, rotate = 325.8] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Ellipse [id:dp07644752144948863]
\draw (108.63,112) .. controls (108.63,102.34) and (122.34,94.5) .. (139.25,94.5) .. controls (156.16,94.5) and (169.88,102.34) .. (169.88,112) .. controls (169.88,121.66) and (156.16,129.5) .. (139.25,129.5) .. controls (122.34,129.5) and (108.63,121.66) .. (108.63,112) -- cycle ;
%Rounded Rect [id:dp15612920283731446]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (169.88,85.58) .. controls (169.88,79.46) and (174.83,74.5) .. (180.95,74.5) -- (214.18,74.5) .. controls (220.29,74.5) and (225.25,79.46) .. (225.25,85.58) -- (225.25,138.43) .. controls (225.25,144.54) and (220.29,149.5) .. (214.18,149.5) -- (180.95,149.5) .. controls (174.83,149.5) and (169.88,144.54) .. (169.88,138.43) -- cycle ;
%Straight Lines [id:da05658076062880979]
\draw (171.25,112) -- (247.73,80.15) ;
\draw [shift={(250.5,79)}, rotate = 517.39] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da9159989009359304]
\draw (171.25,112) -- (259.59,134.27) ;
\draw [shift={(262.5,135)}, rotate = 194.15] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da5166271124498585]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ] (171.25,112) -- (194.73,102.16) ;
\draw [shift={(197.5,101)}, rotate = 517.26] [fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da22239158674567427]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ] (171.25,112) -- (198.6,119.23) ;
\draw [shift={(201.5,120)}, rotate = 194.81] [fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da3058657522959711]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ] (171.25,112) -- (190.87,133.77) ;
\draw [shift={(192.88,136)}, rotate = 227.98] [fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Circle [id:dp31034792782728604]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (175.13,112) .. controls (175.13,109.86) and (173.39,108.13) .. (171.25,108.13) .. controls (169.11,108.13) and (167.38,109.86) .. (167.38,112) .. controls (167.38,114.14) and (169.11,115.88) .. (171.25,115.88) .. controls (173.39,115.88) and (175.13,114.14) .. (175.13,112) -- cycle ;
%Shape: Boxed Bezier Curve [id:dp4209556198846489]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ] (105.5,109.06) .. controls (93.05,77.79) and (92.74,148.88) .. (104.57,119.89) ;
\draw [shift={(105.5,117.46)}, rotate = 469.98] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
% Text Node
\draw (141.25,132.9) node [anchor=north west][inner sep=0.75pt] {$S_{P}$};
% Text Node
\draw (187,51.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,opacity=1 ] {$V_{P}$};
% Text Node
\draw (173.25,119.28) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (245,20.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$O_{P}$};
% Text Node
\draw (80,123.4) node [anchor=north west][inner sep=0.75pt] {$R_{P}$};
\end{tikzpicture}
\caption{With one angular coordinate suppressed, $S_P$ looks like a circle. The blue arrows represent vectors in $V_P$. $O_P$ is the set of points reached by geodesics with tangents in $V_P$.}
\label{fig:suppressed}
\end{figure}
Figure \ref{fig:q} shows a point $Q$ in $O_P$ and its sphere $S_Q$. This sphere might be at a different time and place.
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,187); %set diagram left start at 0, and has height of 187
%Shape: Circle [id:dp9838488417141364]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (254.38,79) .. controls (254.38,76.86) and (252.64,75.13) .. (250.5,75.13) .. controls (248.36,75.13) and (246.63,76.86) .. (246.63,79) .. controls (246.63,81.14) and (248.36,82.88) .. (250.5,82.88) .. controls (252.64,82.88) and (254.38,81.14) .. (254.38,79) -- cycle ;
%Shape: Circle [id:dp5121793793810674]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (266.38,135) .. controls (266.38,132.86) and (264.64,131.13) .. (262.5,131.13) .. controls (260.36,131.13) and (258.63,132.86) .. (258.63,135) .. controls (258.63,137.14) and (260.36,138.88) .. (262.5,138.88) .. controls (264.64,138.88) and (266.38,137.14) .. (266.38,135) -- cycle ;
%Shape: Circle [id:dp3036405097098702]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ] (218.38,160) .. controls (218.38,157.86) and (216.64,156.13) .. (214.5,156.13) .. controls (212.36,156.13) and (210.63,157.86) .. (210.63,160) .. controls (210.63,162.14) and (212.36,163.88) .. (214.5,163.88) .. controls (216.64,163.88) and (218.38,162.14) .. (218.38,160) -- cycle ;
%Straight Lines [id:da7600702104223496]
\draw (171.25,112) -- (212.49,157.77) ;
\draw [shift={(214.5,160)}, rotate = 227.98] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Rounded Rect [id:dp0011664104615844995]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (169,70.3) .. controls (169,55.77) and (180.77,44) .. (195.3,44) -- (274.2,44) .. controls (288.73,44) and (300.5,55.77) .. (300.5,70.3) -- (300.5,154.7) .. controls (300.5,169.23) and (288.73,181) .. (274.2,181) -- (195.3,181) .. controls (180.77,181) and (169,169.23) .. (169,154.7) -- cycle ;
%Straight Lines [id:da2222301933142432]
\draw (79,112) -- (79,5) ;
\draw [shift={(79,3)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da8846516436041796]
\draw (79,112) -- (197.5,112) ;
\draw [shift={(199.5,112)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da5658860552376952]
\draw (131.5,76) -- (3.65,162.88) ;
\draw [shift={(2,164)}, rotate = 325.8] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Shape: Ellipse [id:dp45540368845104484]
\draw (108.63,112) .. controls (108.63,103.16) and (122.34,96) .. (139.25,96) .. controls (156.16,96) and (169.88,103.16) .. (169.88,112) .. controls (169.88,120.84) and (156.16,128) .. (139.25,128) .. controls (122.34,128) and (108.63,120.84) .. (108.63,112) -- cycle ;
%Straight Lines [id:da006332923317055261]
\draw (171.25,112) -- (247.73,80.15) ;
\draw [shift={(250.5,79)}, rotate = 517.39] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da1990001421085421]
\draw (171.25,112) -- (259.59,134.27) ;
\draw [shift={(262.5,135)}, rotate = 194.15] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Circle [id:dp35887053515914746]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (175.13,112) .. controls (175.13,109.86) and (173.39,108.13) .. (171.25,108.13) .. controls (169.11,108.13) and (167.38,109.86) .. (167.38,112) .. controls (167.38,114.14) and (169.11,115.88) .. (171.25,115.88) .. controls (173.39,115.88) and (175.13,114.14) .. (175.13,112) -- cycle ;
%Shape: Boxed Bezier Curve [id:dp8995096291555098]
\draw [color={rgb, 255:red, 0; green, 0; blue, 0 } ,draw opacity=1 ] (105.5,109.06) .. controls (93.05,77.79) and (92.74,148.88) .. (104.57,119.89) ;
\draw [shift={(105.5,117.46)}, rotate = 469.98] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Ellipse [id:dp6720903457885754]
\draw (30,79) .. controls (30,72.77) and (79.36,67.72) .. (140.25,67.72) .. controls (201.14,67.72) and (250.5,72.77) .. (250.5,79) .. controls (250.5,85.23) and (201.14,90.28) .. (140.25,90.28) .. controls (79.36,90.28) and (30,85.23) .. (30,79) -- cycle ;
% Text Node
\draw (141.25,131.4) node [anchor=north west][inner sep=0.75pt] {$S_{P}$};
% Text Node
\draw (173.25,119.28) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (245,20.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$O_{P}$};
% Text Node
\draw (80,123.4) node [anchor=north west][inner sep=0.75pt] {$R_{P}$};
% Text Node
\draw (260,66.4) node [anchor=north west][inner sep=0.75pt] {$Q$};
% Text Node
\draw (130,45.4) node [anchor=north west][inner sep=0.75pt] {$S_{Q}$};
\end{tikzpicture}
\caption{$S_Q$ might be at a different time or place.}
\label{fig:q}
\end{figure}
Now imagine moving an affine distance $\lambda = 1$ along tangents in $V_p$ to get to each point in $O_P$. We can do this by selecting two independent vectors in $V_P$, $\vv{Y}$ and $\vv{Z}$. Each point in $O_P$ can be reached by $a\vv{Y} + b\vv{Z}$, where $a$ and $b$ are some constants. Note that one of $\vv{Y}$ and $\vv{Z}$ is timelike, and the other is spacelike. We will define $\vv{Y}$ to be the timelike vector.
For some set $a$ and $b$, to get further along in the $a\vv{Y} + b\vv{Z}$ direction (moving the same affine distance $\lambda = 1$), we will need to choose a different $(a,b)$ pair. Define each of these points to have the same $\theta$ and $\phi$ coordinates as $P$: $(\theta_P, \phi_P)$.
\begin{figure}[!h]
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,140); %set diagram left start at 0, and has height of 140
%Straight Lines [id:da6192593748390516]
\draw (52,70) -- (167.5,26) ;
\draw [shift={(167.5,26)}, rotate = 339.15] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (0, 0) circle [x radius= 3.35, y radius= 3.35] ;
%Shape: Rectangle [id:dp5094683981364003]
\draw (52,13) -- (250.5,13) -- (250.5,127) -- (52,127) -- cycle ;
%Straight Lines [id:da6301834917384648]
\draw (52,70) -- (98.5,70) ;
\draw [shift={(101.5,70)}, rotate = 180] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Straight Lines [id:da9862090033894702]
\draw (52,70) -- (52,32) ;
\draw [shift={(52,29)}, rotate = 450] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Arc [id:dp7671281305617261]
\draw [draw opacity=0] (7.03,91.1) .. controls (34.52,85.68) and (51.5,78.23) .. (51.5,70) .. controls (51.5,61.76) and (34.48,54.3) .. (6.93,48.88) -- (-102.25,70) -- cycle ; \draw (7.03,91.1) .. controls (34.52,85.68) and (51.5,78.23) .. (51.5,70) .. controls (51.5,61.76) and (34.48,54.3) .. (6.93,48.88) ;
%Shape: Circle [id:dp39506315697356653]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (55.88,70) .. controls (55.88,67.86) and (54.14,66.13) .. (52,66.13) .. controls (49.86,66.13) and (48.13,67.86) .. (48.13,70) .. controls (48.13,72.14) and (49.86,73.88) .. (52,73.88) .. controls (54.14,73.88) and (55.88,72.14) .. (55.88,70) -- cycle ;
%Straight Lines [id:da8029712252567158]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ] (52,70) -- (138.7,37.07) ;
\draw [shift={(141.5,36)}, rotate = 519.2] [fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=1 ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
% Text Node
\draw (259,9.4) node [anchor=north west][inner sep=0.75pt] {$O_{P}$};
% Text Node
\draw (78.75,73.4) node [anchor=north west][inner sep=0.75pt] {$\vec{Z}$};
% Text Node
\draw (59,21.4) node [anchor=north west][inner sep=0.75pt] {$\vec{Y}$};
% Text Node
\draw (33,62.4) node [anchor=north west][inner sep=0.75pt] {$P$};
% Text Node
\draw (175.5,17.4) node [anchor=north west][inner sep=0.75pt] {$( a,b)$};
% Text Node
\draw (113.75,46.4) node [anchor=north west][inner sep=0.75pt] [color={rgb, 255:red, 208; green, 2; blue, 27 } ,opacity=1 ] {$a\vec{Y} +b\vec{Z}$};
\end{tikzpicture}
\caption{Assigning coordinates $(a,b)$ to each point in $O_P$. Each of these points has angular coordinates $(\theta_P,\phi_P)$.}
\label{fig:newcoord}
\end{figure}
We can repeat this process for each fixed $(\theta, \phi)$ pair on $S_P$.
Notice that $\vv{\partial_\theta}$ is a tangent to a curve described by $x^\mu = (a_0, b_0, \theta, \phi_0)$, and $\vv{\partial_a}$ is tangent to a curve $x^\mu = (a, b_0, \theta_0, \phi_0)$.
This means that $\vv{\partial_\theta} \cdot \vv{\partial_a} = 0$, so $\vec{g}(\vv{\partial_\theta}, \vv{\partial_a}) = g_{a\theta} = 0$.
Equivalently, $\vv{\partial_\theta} = \tensor{\delta}{_\theta^\mu} \vv{\partial_\mu}$ and $\vv{\partial_a} = \tensor{\delta}{_a^\mu} \vv{\partial_\mu}$.
Therefore, $g_{\mu\nu} \tensor{\delta}{_a^\mu} \tensor{\delta}{_\theta^\nu} = g_{a\theta} = 0$
Similarly,
\[ g_{a\theta} = g_{a\phi} = g_{b\theta} = g_{b\phi} = 0 \]
So we have successfully set the cross terms (in blue) of the metric to zero!
\begin{figure}[!h]
\centering
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,163); %set diagram left start at 0, and has height of 163
%Rounded Rect [id:dp3402002127095296]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (81,33.6) .. controls (81,27.19) and (86.19,22) .. (92.6,22) -- (145.9,22) .. controls (152.31,22) and (157.5,27.19) .. (157.5,33.6) -- (157.5,68.4) .. controls (157.5,74.81) and (152.31,80) .. (145.9,80) -- (92.6,80) .. controls (86.19,80) and (81,74.81) .. (81,68.4) -- cycle ;
%Rounded Rect [id:dp22852699605929394]
\draw [color={rgb, 255:red, 208; green, 2; blue, 27 } ,draw opacity=1 ][fill={rgb, 255:red, 208; green, 2; blue, 27 } ,fill opacity=0.15 ] (161.5,95.6) .. controls (161.5,89.19) and (166.69,84) .. (173.1,84) -- (226.4,84) .. controls (232.81,84) and (238,89.19) .. (238,95.6) -- (238,130.4) .. controls (238,136.81) and (232.81,142) .. (226.4,142) -- (173.1,142) .. controls (166.69,142) and (161.5,136.81) .. (161.5,130.4) -- cycle ;
%Rounded Rect [id:dp08051806364347058]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (161.5,33.6) .. controls (161.5,27.19) and (166.69,22) .. (173.1,22) -- (226.4,22) .. controls (232.81,22) and (238,27.19) .. (238,33.6) -- (238,68.4) .. controls (238,74.81) and (232.81,80) .. (226.4,80) -- (173.1,80) .. controls (166.69,80) and (161.5,74.81) .. (161.5,68.4) -- cycle ;
%Rounded Rect [id:dp1626107728745949]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][fill={rgb, 255:red, 74; green, 144; blue, 226 } ,fill opacity=0.15 ] (81,95.6) .. controls (81,89.19) and (86.19,84) .. (92.6,84) -- (145.9,84) .. controls (152.31,84) and (157.5,89.19) .. (157.5,95.6) -- (157.5,130.4) .. controls (157.5,136.81) and (152.31,142) .. (145.9,142) -- (92.6,142) .. controls (86.19,142) and (81,136.81) .. (81,130.4) -- cycle ;
% Text Node
\draw (14,72.4) node [anchor=north west][inner sep=0.75pt] {$g_{\mu \nu } =$};
% Text Node
\draw (61,31.4) node [anchor=north west][inner sep=0.75pt] {$a$};
% Text Node
\draw (60,57.4) node [anchor=north west][inner sep=0.75pt] {$b$};
% Text Node
\draw (59,92.4) node [anchor=north west][inner sep=0.75pt] {$\theta $};
% Text Node
\draw (60,114.4) node [anchor=north west][inner sep=0.75pt] {$\phi $};
% Text Node
\draw (179,103.4) node [anchor=north west][inner sep=0.75pt] {$r^{2} d\Omega ^{2}$};
% Text Node
\draw (195,42.4) node [anchor=north west][inner sep=0.75pt] {$0$};
% Text Node
\draw (114,103.4) node [anchor=north west][inner sep=0.75pt] {$0$};
\end{tikzpicture}
\end{figure}
Now all that's left is to simplify the remaining two blocks (in red).
\section{Simplifying the metric (choosing $a$ and $b$)}
For now, we'll pick the most natural choice: using $r$ as our $b$ coordinate.\sn{This is not always the most useful choice!}
This means that in the $r^2d\Omega^2$ block of the metric, $r^2$ is no longer a function of two coordinates, it's just one of the coordinates, $r$, which we can find by taking the circumference of the sphere and dividing by $2\pi$ (like we did with the Schwarzchild spacetime).
The bottom right block is greatly simplified already!\sn{This relies on the assumption that $\nabla_\mu r \neq 0$, which will be the case for all spacetimes we cover in this class.}
Now we would like to choose a new coordinate $t(a,r)$ that simplifies the remaining block as much as possible. We would like to set
\begin{equation}\label{eq:block1}
g_{aa}da^2 + 2g_{ar}dadr + g_{rr}dr^2 = fdt^2 + hdr^2
\end{equation}
for some functions $f(t,r)$ and $h(t,r)$ with some clever choice of $t$.
Since $t$ is a function of $a$ and $r$, we can expand $dt^2$ as follows:
\begin{equation}\label{eq:dt2}
dt^2 = (\partial_a t)^2 da^2 + 2(\partial_a t)(\partial_r t)dadr + (\partial_r t)^2 dr^2
\end{equation}
We can plug Equation \ref{eq:dt2} into Equation \ref{eq:block1} and match the differentials to get the following three equations:
\begin{equation}\label{eq:da2}
f(\partial_a t)^2 = g_{aa}
\end{equation}
\begin{equation}\label{eq:dadr}
f(\partial_a t)(\partial_r t) = g_{ar}
\end{equation}
\begin{equation}\label{eq:dr2}
f(\partial_r t)^2 + h = g_{rr}
\end{equation}
For a known $g_{aa}$, $g_{ar}$, and $g_{rr}$, we now have three equations and three unknowns: $t$, $f$, and $h$.\sn{We will assume that $t(a,r)$ is invertible so that we can write $f$ and $h$ as functions of $a$ and $r$.}
These can, in principle, be solved, and we can use the resulting $t$ as a coordinate. Note that we haven't actually solved for $g_{aa}$, $g_{ar}$, and $g_{rr}$, so we can't solve for $t$ now, but it's possible to do! This reduces the metric down to:\sn{This $f$ is an arbitrary function, \textbf{not} the same as the $f$ we used for the Schwarzchild metric. In fact, if this was the Schwarzchild metric, it would be exactly the negative of the $f$ we used then.}
\begin{equation}\label{eq:finalmetric}
ds^2 = fdt^2 + hdr^2 + r^2d\Omega^2
\end{equation}
So for a spherically symmetric distribution of matter, we've reduced solving for $g_{\mu\nu}$ down to solving for two unknown functions ($f$ and $h$) of two variables ($t$ and $r$). This may still be very difficult! But we've simplified the problem a lot.
As an aside, something that is often helpful is parameterizing $f$ and $h$ such that they never change signs. In this case, we'll want to assume $f$ is negative definite and $h$ is positive definite:
\begin{equation}\label{eq:f}
f = -e^{2\alpha(t,r)}
\end{equation}
\begin{equation}\label{eq:h}
h = e^{2\beta(t,r)}
\end{equation}
These choices are also convenient because we often get derivatives of the metric function divided by the metric function, which cancels out the exponential terms.
Next class, we'll plug these all into Einstein's equations and see what we get!
\end{document}