forked from aaronbzimmerman/PHY-387M
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLecture 2.tex
1116 lines (827 loc) · 84.4 KB
/
Lecture 2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%\documentclass[prd,nofootinbib,floatfix,12pt,notitlepage,eqsecnum]{revtex4-1}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\documentclass[11pt]{article}
\usepackage{NotesTeX} %/Path/to/package should be replaced with package location
\usepackage{lipsum}
\usepackage{tensor}
\usepackage{graphicx,wrapfig,float,slashed,subcaption,bbold,bm}
\usepackage{amsmath,mathtools,amssymb,epsfig,graphicx,xcolor}
\usepackage{epstopdf}
\epstopdfsetup{update}
\usepackage{ragged2e}
\usepackage{mciteplus}
\usepackage[many]{tcolorbox}
\usepackage{pgfplots}
\pgfplotsset{compat=1.5.1}
\usepackage{tikz}
\usetikzlibrary{babel}
\tikzset{>=latex}
\usepackage{hyperref}
\newcommand{\bs}{\textbackslash}
\newcommand{\nc}{\newcommand}
\nc{\non}{\nonumber}
\nc{\noi}{\noindent}
\nc{\barx}{\bar{x}}
%
\nc{\hsp}{\hspace{0.5cm}}
\nc{\lsp}{\hspace{1cm}}
\nc{\Lsp}{\hspace{2cm}}
\nc{\LLsp}{\lsp\lsp}
\nc{\lra}{\longrightarrow}
\nc{\p}{\prime}
\nc{\sgn}{\text{sgn}}
\nc{\ph}{\varphi}
\nc{\beq}{\begin{equation}} \nc{\eeq}{\end{equation}}
\nc{\bea}{\begin{eqnarray}} \nc{\eea}{\end{eqnarray}}
\nc{\baa}{\begin{array}} \nc{\eaa}{\end{array}}
\nc{\bit}{\begin{itemize}} \nc{\eit}{\end{itemize}}
\nc{\ben}{\begin{enumerate}} \nc{\een}{\end{enumerate}}
\nc{\bce}{\begin{center}} \nc{\ece}{\end{center}}
\nc{\bpm}{\begin{pmatrix}} \nc{\epm}{\end{pmatrix}}
\nc{\bvt}{\begin{verbatim}} \nc{\evt}{\end{verbatim}}
\makeatletter
\renewcommand*\env@matrix[1][\arraystretch]{%
\edef\arraystretch{#1}%
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{*\c@MaxMatrixCols c}}
\makeatother
\makeatletter
\RenewDocumentCommand\sidenotetext{ o o +m }{%
\IfNoValueOrEmptyTF{#1}{%
\@sidenotes@placemarginal{#2}{\textsuperscript{\thesidenote}{}~\footnotesize#3}%
\refstepcounter{sidenote}%
}{%
\@sidenotes@placemarginal{#2}{\textsuperscript{#1}~#3}%
}%
}
\makeatother
\newtcolorbox{sidebox}[1][]{
breakable,
freelance,
title=#1,
colback=white,
colbacktitle=white,
coltitle=black,
fonttitle=\bfseries,
bottomrule=0pt,
boxrule=0pt,
colframe=white,
overlay unbroken and first={
\draw[red!75!black,line width=3pt]
([xshift=5pt]frame.north west) --
(frame.north west) --
(frame.south west);
\draw[red!75!black,line width=3pt]
([xshift=-5pt]frame.north east) --
(frame.north east) --
(frame.south east);
},
overlay unbroken app={
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south west) --
([xshift=5pt]frame.south west);
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south east) --
([xshift=-5pt]frame.south east);
},
overlay middle and last={
\draw[red!75!black,line width=3pt]
(frame.north west) --
(frame.south west);
\draw[red!75!black,line width=3pt]
(frame.north east) --
(frame.south east);
},
overlay last app={
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south west) --
([xshift=5pt]frame.south west);
\draw[red!75!black,line width=3pt,line cap=rect]
(frame.south east) --
([xshift=-5pt]frame.south east);
},
}
\title{{\Huge General Relativity}\\{\Large{Class 2 -- January 25, 2020}}} %replace with class number
\author{Niral Desai}
\emailAdd{[email protected]} %replace with your email
\begin{document}
\maketitle
\flushbottom
\newpage
\pagestyle{fancynotes}
\part{The Invariant Measure}
\section{Worldlines and Space-Time Intervals}
As a reminder, objects traverse the $x-t$ plane along worldlines, as in Figure~\ref{worldlines}.
%be honest, you're looking at this source code because these figures look amazing and I'm great at LaTeX
%To make these figures yourself, check mathcha.io/editor online
%Drag-and-drop elements of figures, add text in LaTeX format, edit properties of lines, even insert outside graphics into the image, and then automatically convert it into tikzpicture formatting to copy and paste into documents.
\begin{figure}[h!]
\begin{centering}
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,235); %set diagram left start at 0, and has height of 235
%Shape: Axis 2D [id:dp7424481064978348]
\draw [color={rgb, 255:red, 73; green, 135; blue, 206 } ,draw opacity=1 ][line width=1.5] (41,177) -- (493.18,177)(78.84,16) -- (78.84,199) (486.18,172) -- (493.18,177) -- (486.18,182) (73.84,23) -- (78.84,16) -- (83.84,23) (109.84,172) -- (109.84,182)(140.84,172) -- (140.84,182)(171.84,172) -- (171.84,182)(202.84,172) -- (202.84,182)(233.84,172) -- (233.84,182)(264.84,172) -- (264.84,182)(295.84,172) -- (295.84,182)(326.84,172) -- (326.84,182)(357.84,172) -- (357.84,182)(388.84,172) -- (388.84,182)(419.84,172) -- (419.84,182)(450.84,172) -- (450.84,182)(47.84,172) -- (47.84,182)(73.84,146) -- (83.84,146)(73.84,115) -- (83.84,115)(73.84,84) -- (83.84,84)(73.84,53) -- (83.84,53) ;
\draw ;
%Straight Lines [id:da7586148203180403]
\draw (100,176.91) -- (100,20.91) ;
\draw [shift={(100,18.91)}, rotate = 450] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da9950367820547812]
\draw (194,175.91) -- (270.61,21.7) ;
\draw [shift={(271.5,19.91)}, rotate = 476.42] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Curve Lines [id:da9801045387977201]
\draw (338,177) .. controls (385.03,140.28) and (377.65,45.82) .. (418.25,25.5) ;
\draw [shift={(419.5,24.91)}, rotate = 515.6600000000001] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da34455387126620085]
\draw (364.91,68.91) -- (383,87) ;
%Straight Lines [id:da8170852008927387]
\draw (382.91,86.91) -- (401,105) ;
%Straight Lines [id:da7182190710548226]
\draw (380.91,88.91) -- (401.91,67.91) ;
%Straight Lines [id:da22702674424923996]
\draw (382.91,86.91) -- (364.81,105) ;
%Shape: Ellipse [id:dp8061664419436927]
\draw (364.91,68.29) .. controls (364.91,65.32) and (372.87,62.91) .. (382.7,62.91) .. controls (392.53,62.91) and (400.5,65.32) .. (400.5,68.29) .. controls (400.5,71.27) and (392.53,73.68) .. (382.7,73.68) .. controls (372.87,73.68) and (364.91,71.27) .. (364.91,68.29) -- cycle ;
%Shape: Ellipse [id:dp5306938233069816]
\draw (365.41,105) .. controls (365.41,102.02) and (373.37,99.61) .. (383.2,99.61) .. controls (393.03,99.61) and (401,102.02) .. (401,105) .. controls (401,107.98) and (393.03,110.39) .. (383.2,110.39) .. controls (373.37,110.39) and (365.41,107.98) .. (365.41,105) -- cycle ;
% Text Node
\draw (141,31) node [align=left] {Stationary \\Observer};
% Text Node
\draw (309,30) node [align=left] {Moving\\Observer};
% Text Node
\draw (443,86) node [align=left] {Light Cone};
% Text Node
\draw (70,15) node [align=left] {$\displaystyle t$};
% Text Node
\draw (506.16,175) node [align=left] {$\displaystyle x$};
\end{tikzpicture}
\caption{Worldlines of various kinds of objects.}
\label{worldlines}
\end{centering}
\end{figure}
The worldline of an object is specified by four functions of a monotonic parameter $\lambda$: \beq
\begin{aligned}
&t(\lambda) \qquad \qquad \qquad x(\lambda) \\
&y(\lambda) \qquad \qquad \qquad z(\lambda)
\end{aligned}
\eeq
$\lambda$ defines how far along the curve a space-time point of interest is, analogously to how in elementary Newtonian mechanics, for a projectile traveling through the air, time $t$ defines points along the curve.
More interesting than individual points, though, are intervals between a pair of space-time points. Space-time intervals are classified in three ways, shown in Figure~\ref{intervals}. The dashed line indicates the light cone (the $45$-degree line in the $x-t$ plane), and point $P$ is at the origin.
\begin{figure}[h!]
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-1,xscale=1]
%uncomment if require: \path (0,237.90625); %set diagram left start at 0, and has height of 237.90625
%Shape: Axis 2D [id:dp305668412263558]
\draw [color={rgb, 255:red, 73; green, 135; blue, 206 } ,draw opacity=1 ][line width=1.5] (41,177) -- (247.5,177)(58.28,16) -- (58.28,199) (240.5,172) -- (247.5,177) -- (240.5,182) (53.28,23) -- (58.28,16) -- (63.28,23) (89.28,172) -- (89.28,182)(120.28,172) -- (120.28,182)(151.28,172) -- (151.28,182)(182.28,172) -- (182.28,182)(213.28,172) -- (213.28,182)(53.28,146) -- (63.28,146)(53.28,115) -- (63.28,115)(53.28,84) -- (63.28,84)(53.28,53) -- (63.28,53) ;
\draw ;
%Straight Lines [id:da6464169617013535]
\draw [dash pattern={on 4.5pt off 4.5pt}] (58.28,177) -- (219.37,15.91) ;
%Straight Lines [id:da2901967373400349]
\draw (142.5,15.91) -- (58.28,177) ;
%Straight Lines [id:da7643065806536191]
\draw (220.5,85.91) -- (58.28,177) ;
%Shape: Circle [id:dp274570429316763]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (194,98.45) .. controls (194,96.49) and (195.59,94.91) .. (197.55,94.91) .. controls (199.51,94.91) and (201.09,96.49) .. (201.09,98.45) .. controls (201.09,100.41) and (199.51,102) .. (197.55,102) .. controls (195.59,102) and (194,100.41) .. (194,98.45) -- cycle ;
%Shape: Circle [id:dp1601325154954496]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (187,44.45) .. controls (187,42.49) and (188.59,40.91) .. (190.55,40.91) .. controls (192.51,40.91) and (194.09,42.49) .. (194.09,44.45) .. controls (194.09,46.41) and (192.51,48) .. (190.55,48) .. controls (188.59,48) and (187,46.41) .. (187,44.45) -- cycle ;
%Shape: Circle [id:dp4294221558673572]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (129,35.45) .. controls (129,33.49) and (130.59,31.91) .. (132.55,31.91) .. controls (134.51,31.91) and (136.09,33.49) .. (136.09,35.45) .. controls (136.09,37.41) and (134.51,39) .. (132.55,39) .. controls (130.59,39) and (129,37.41) .. (129,35.45) -- cycle ;
%Shape: Brace [id:dp3683096722801864]
\draw (46,35.91) .. controls (41.33,35.91) and (39,38.24) .. (39,42.91) -- (39,95.41) .. controls (39,102.08) and (36.67,105.41) .. (32,105.41) .. controls (36.67,105.41) and (39,108.74) .. (39,115.41)(39,112.41) -- (39,167.91) .. controls (39,172.58) and (41.33,174.91) .. (46,174.91) ;
%Shape: Brace [id:dp34226721207715616]
\draw (59,187.91) .. controls (59,192.58) and (61.33,194.91) .. (66,194.91) -- (84.75,194.91) .. controls (91.42,194.91) and (94.75,197.24) .. (94.75,201.91) .. controls (94.75,197.24) and (98.08,194.91) .. (104.75,194.91)(101.75,194.91) -- (123.5,194.91) .. controls (128.17,194.91) and (130.5,192.58) .. (130.5,187.91) ;
% Text Node
\draw (120,139) node [align=left] {$ $};
% Text Node
\draw (50,167) node [align=left] {$\displaystyle \mathcal{P}$};
% Text Node
\draw (121,29) node [align=left] {$\displaystyle Q$};
% Text Node
\draw (236,93) node [align=left] {$ $};
% Text Node
\draw (203,49) node [align=left] {$\displaystyle \mathcal{R}$};
% Text Node
\draw (211,107) node [align=left] {$\displaystyle \mathcal{S}$};
% Text Node
\draw (48,15) node [align=left] {$\displaystyle t$};
% Text Node
\draw (260,175) node [align=left] {$\displaystyle x$};
% Text Node
\draw (17,103) node [align=left] {$\displaystyle \Delta t_{Q}$};
% Text Node
\draw (97,207.91) node [align=left] {$\displaystyle \Delta x_{Q}$};
\end{tikzpicture}
\caption{3 different kinds of spacetime intervals: $\overline{PQ}$, $\overline{PR}$, and $\overline{PS}$. Also shown are the changes in $x$ and $t$ along the interval $\overline{PQ}$, as an example.}
\label{intervals}
\end{figure}
We can measure the changes $\Delta t, \Delta x, \Delta y,$ and $\Delta z$ along each spacetime axis, and then define a special quantity called the space-time interval $\Delta s$:
\beq
(\Delta s)^2 \equiv - (\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 + (\Delta z)^2
\label{s}
\eeq Since the $\Delta t$ term in Equation~\ref{s} has the opposite sign as the others, there are three potential scenarios, each represented by a line in Figure~\ref{intervals}.
\begin{enumerate}
\item $(\Delta s)^2 < 0$: This interval is said to be timelike separated, and it can be physically traversed by observers. An example of such an interval is $\overline{PQ}$ in Figure~\ref{intervals}, since along this interval it is clear that $\Delta t_Q > \Delta x_Q$. Note the similarity of this line to the line in Figure~\ref{worldlines} indicating the worldine of a moving observer.
\item $(\Delta s)^2 > 0$: The interval is called spacelike separated. It cannot be traversed by an observer moving with speed less than or equal to $c$. Line segment $\overline{PS}$ is an example of a spacelike separated interval.
\item $(\Delta s)^2 = 0$: The interval is called lightlike separated (or null), and it can only be traversed by light or other massless particles.
\end{enumerate}
\section{Minkowski Space}
We can write Equation~\ref{s} more compactly by defining the "Minkowski Metric," which can be written as a matrix in the following form: \beq
\eta_{\mu \nu} \equiv \begin{pmatrix}[1.1]
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\label{minkowski}
\eeq $\mu$ labeling the row index and $\nu$ labeling the column.
Consequently, we simply exploit the Einstein Notation defined in the previous set of notes to write:
\beq
(\Delta s)^2 = \eta_{\mu \nu} \, \Delta x^\mu \, \Delta x^\nu
\label{smink}
\eeq
Writing this out explicitly,
\beq
(\Delta s)^2 = \eta_{00} (\Delta x^0)^2 + \eta_{11} (\Delta x^1)^2 + \eta_{22} (\Delta x^2)^2 + \eta_{33} (\Delta x^3)^2
\label{sminkexpl}
\eeq or as an equation of vector-matrix multiplication with the column vector of Equation 4.2 of the Lecture 1 notes $ x^\mu = \begin{pmatrix} \Delta t \\ \Delta x \\ \Delta y \\ \Delta z
\end{pmatrix}$, row vector $(x^\mu)^\top = \big(\Delta t , \Delta x , \Delta y , \Delta z \big)$, and matrix $\boldsymbol{\eta}$,
\beq
(\Delta s)^2 = \big(\Delta t , \Delta x , \Delta y , \Delta z \big) \bigg(\; \boldsymbol{\eta} \; \bigg) \begin{pmatrix} \Delta t \\ \Delta x \\ \Delta y \\ \Delta z
\end{pmatrix}
\label{sminkmat}
\eeq
The Minkowski metric greatly simplifies many of the equations we will encounter in relativity.
\part{Invariance of $(\Delta s)^2$}
\section{Proof of Invariance of Spacetime Intervals}
Consider two observers $\mathcal{O}$ and $\mathcal{O'}$, with $\mathcal{O'}$ moving with velocity $\vec{v}$ relative to $\mathcal{O}$. For simplicity, we again take $\vec{v}$ to be entirely in the y-direction.
Suppose some events $P$ and $Q$ occur, and each observer wishes to measure the time delay and spatial separation of these events, as well as the interval $\Delta s$ between them. A schematic diagram is shown in Figure~\ref{inv_s}. We will now show that while the distances and time delays between the events may be different, $\Delta s$ is invariant between different inertial reference frames.
\begin{figure}[h!]
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Straight Lines [id:da8276754749256345]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=1.5] (214.5,169) -- (134.25,280.56) (203.6,194.42) -- (193.86,187.42)(187.84,216.34) -- (178.1,209.33)(172.07,238.26) -- (162.33,231.25)(156.31,260.18) -- (146.56,253.17)(140.54,282.1) -- (130.8,275.09) ;
\draw [shift={(132.5,283)}, rotate = 305.73] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=1.5] (14.21,-6.37) .. controls (9.04,-2.99) and (4.3,-0.87) .. (0,0) .. controls (4.3,0.87) and (9.04,2.99) .. (14.21,6.37) ;
%Shape: Axis 2D [id:dp08126670984788031]
\draw [color={rgb, 255:red, 73; green, 135; blue, 206 } ,draw opacity=1 ][line width=1.5] (186,183) -- (392.5,183)(203.28,22) -- (203.28,205) (385.5,178) -- (392.5,183) -- (385.5,188) (198.28,29) -- (203.28,22) -- (208.28,29) (234.28,178) -- (234.28,188)(265.28,178) -- (265.28,188)(296.28,178) -- (296.28,188)(327.28,178) -- (327.28,188)(358.28,178) -- (358.28,188)(198.28,152) -- (208.28,152)(198.28,121) -- (208.28,121)(198.28,90) -- (208.28,90)(198.28,59) -- (208.28,59) ;
\draw ;
%Straight Lines [id:da6203670862847463]
\draw (156.38,30.87) -- (203.28,183) ;
\draw [shift={(155.5,28)}, rotate = 72.87] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Circle [id:dp9456910453828753]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (200.28,183) .. controls (200.28,181.04) and (201.87,179.45) .. (203.83,179.45) .. controls (205.79,179.45) and (207.37,181.04) .. (207.37,183) .. controls (207.37,184.96) and (205.79,186.55) .. (203.83,186.55) .. controls (201.87,186.55) and (200.28,184.96) .. (200.28,183) -- cycle ;
%Shape: Circle [id:dp9509477167045406]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (294.5,72) .. controls (294.5,70.04) and (296.09,68.45) .. (298.05,68.45) .. controls (300.01,68.45) and (301.59,70.04) .. (301.59,72) .. controls (301.59,73.96) and (300.01,75.55) .. (298.05,75.55) .. controls (296.09,75.55) and (294.5,73.96) .. (294.5,72) -- cycle ;
%Shape: Brace [id:dp03303337521607341]
\draw (209.5,182) .. controls (214.17,182) and (216.5,179.67) .. (216.5,175) -- (216.5,137.5) .. controls (216.5,130.83) and (218.83,127.5) .. (223.5,127.5) .. controls (218.83,127.5) and (216.5,124.17) .. (216.5,117.5)(216.5,120.5) -- (216.5,80) .. controls (216.5,75.33) and (214.17,73) .. (209.5,73) ;
%Shape: Brace [id:dp21733591549583187]
\draw (299.5,178.91) .. controls (299.5,174.24) and (297.17,171.91) .. (292.5,171.91) -- (263,171.91) .. controls (256.33,171.91) and (253,169.58) .. (253,164.91) .. controls (253,169.58) and (249.67,171.91) .. (243,171.91)(246,171.91) -- (213.5,171.91) .. controls (208.83,171.91) and (206.5,174.24) .. (206.5,178.91) ;
%Straight Lines [id:da660468886962585]
\draw (203.28,183) -- (295.5,73) ;
%Straight Lines [id:da3058506209671932]
\draw [dash pattern={on 0.84pt off 2.51pt}] (299.05,73) -- (299.05,244) ;
%Straight Lines [id:da9430000180059959]
\draw [dash pattern={on 4.5pt off 4.5pt}] (203.83,183) -- (299.05,244) ;
%Shape: Brace [id:dp2473331740340401]
\draw (192.5,180) .. controls (188.67,177.34) and (185.42,177.92) .. (182.76,181.75) -- (171.96,197.29) .. controls (168.15,202.76) and (164.33,204.17) .. (160.5,201.51) .. controls (164.33,204.17) and (164.35,208.24) .. (160.54,213.72)(162.25,211.25) -- (149.74,229.25) .. controls (147.08,233.08) and (147.67,236.33) .. (151.5,239) ;
% Text Node
\draw (207,196) node [align=left] {$\displaystyle \mathcal{P}$};
% Text Node
\draw (314,63) node [align=left] {$\displaystyle Q$};
% Text Node
\draw (193,21) node [align=left] {$\displaystyle t$};
% Text Node
\draw (405,181) node [align=left] {$\displaystyle y$};
% Text Node
\draw (234,125) node [align=left] {$\displaystyle \Delta t$};
% Text Node
\draw (252,152.91) node [align=left] {$\displaystyle \Delta y$};
% Text Node
\draw (149,30) node [align=left] {$\displaystyle t$'};
% Text Node
\draw (215,18) node [align=left] {$\displaystyle \mathcal{O}$};
% Text Node
\draw (168,26) node [align=left] {$\displaystyle \mathcal{O} '$};
% Text Node
\draw (123,277) node [align=left] {$\displaystyle x$};
% Text Node
\draw (151,194.91) node [align=left] {$\displaystyle \Delta x$};
\end{tikzpicture}
\caption{Two events P and Q as measured by observer $\mathcal{O}$, and the worldline of observer $\mathcal{O'}$ (still in the $x-t$ plane). The dashed line is the interval's projection on the $x-y$ plane. Note that these axes have shifted perspective as compared to the previous diagrams, so that $x$ now points out of the page.}
\label{inv_s}
\end{figure}
To measure the distances between events, we use light rays because their locations on space-time graphs are always the same -- at a $45^\circ$ angle (this is a consequence of the speed of light being the same in every frame).
We can control the path of a light ray with carefully placed mirrors along parts of the light cone where we want the light ray to travel. Let us place a mirror at a location so that a light ray moves from point P to the mirror and then bounces to Q. The angle of reflection in the $x-y$ plane is $\alpha$. Such a diagram is shown in Figure~\ref{mirror1}.
\begin{figure}[h!]
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Straight Lines [id:da9494350226062716]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (203.83,183) .. controls (204.6,180.77) and (206.1,180.05) .. (208.33,180.82) .. controls (210.56,181.59) and (212.06,180.87) .. (212.83,178.64) .. controls (213.6,176.41) and (215.1,175.69) .. (217.33,176.47) .. controls (219.56,177.24) and (221.06,176.52) .. (221.83,174.29) .. controls (222.6,172.06) and (224.1,171.34) .. (226.33,172.11) .. controls (228.56,172.88) and (230.06,172.16) .. (230.83,169.93) .. controls (231.6,167.7) and (233.1,166.98) .. (235.33,167.76) .. controls (237.56,168.53) and (239.06,167.81) .. (239.83,165.58) .. controls (240.6,163.35) and (242.1,162.63) .. (244.33,163.4) .. controls (246.56,164.17) and (248.06,163.45) .. (248.84,161.22) .. controls (249.61,158.99) and (251.11,158.27) .. (253.34,159.05) .. controls (255.57,159.82) and (257.07,159.1) .. (257.84,156.87) .. controls (258.61,154.64) and (260.11,153.92) .. (262.34,154.69) .. controls (264.57,155.46) and (266.07,154.74) .. (266.84,152.51) .. controls (267.61,150.28) and (269.11,149.56) .. (271.34,150.33) .. controls (273.57,151.11) and (275.07,150.39) .. (275.84,148.16) .. controls (276.61,145.93) and (278.11,145.21) .. (280.34,145.98) .. controls (282.57,146.75) and (284.07,146.03) .. (284.84,143.8) .. controls (285.61,141.57) and (287.11,140.85) .. (289.34,141.62) .. controls (291.57,142.4) and (293.07,141.68) .. (293.84,139.45) .. controls (294.61,137.22) and (296.11,136.5) .. (298.34,137.27) .. controls (300.57,138.04) and (302.07,137.32) .. (302.85,135.09) .. controls (303.62,132.86) and (305.12,132.14) .. (307.35,132.91) -- (307.6,132.79) -- (314.8,129.31) ;
\draw [shift={(317.5,128)}, rotate = 514.1800000000001] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da7581825810428611]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (317.5,128) .. controls (315.37,126.99) and (314.8,125.42) .. (315.81,123.29) .. controls (316.82,121.16) and (316.25,119.59) .. (314.12,118.59) .. controls (311.99,117.58) and (311.43,116.01) .. (312.44,113.88) .. controls (313.45,111.75) and (312.88,110.18) .. (310.75,109.17) .. controls (308.62,108.17) and (308.05,106.6) .. (309.06,104.47) .. controls (310.07,102.34) and (309.5,100.77) .. (307.37,99.76) .. controls (305.24,98.75) and (304.67,97.18) .. (305.68,95.05) .. controls (306.69,92.92) and (306.13,91.36) .. (304,90.35) -- (302.76,86.9) -- (300.06,79.37) ;
\draw [shift={(299.05,76.55)}, rotate = 430.27] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da9007571954817275]
\draw [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=1.5] (214.5,169) -- (134.25,280.56) (203.6,194.42) -- (193.86,187.42)(187.84,216.34) -- (178.1,209.33)(172.07,238.26) -- (162.33,231.25)(156.31,260.18) -- (146.56,253.17)(140.54,282.1) -- (130.8,275.09) ;
\draw [shift={(132.5,283)}, rotate = 305.73] [color={rgb, 255:red, 74; green, 144; blue, 226 } ,draw opacity=1 ][line width=1.5] (14.21,-6.37) .. controls (9.04,-2.99) and (4.3,-0.87) .. (0,0) .. controls (4.3,0.87) and (9.04,2.99) .. (14.21,6.37) ;
%Shape: Axis 2D [id:dp17443576451254783]
\draw [color={rgb, 255:red, 73; green, 135; blue, 206 } ,draw opacity=1 ][line width=1.5] (186,183) -- (392.5,183)(203.28,22) -- (203.28,205) (385.5,178) -- (392.5,183) -- (385.5,188) (198.28,29) -- (203.28,22) -- (208.28,29) (234.28,178) -- (234.28,188)(265.28,178) -- (265.28,188)(296.28,178) -- (296.28,188)(327.28,178) -- (327.28,188)(358.28,178) -- (358.28,188)(198.28,152) -- (208.28,152)(198.28,121) -- (208.28,121)(198.28,90) -- (208.28,90)(198.28,59) -- (208.28,59) ;
\draw ;
%Shape: Circle [id:dp3508886341135449]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (200.28,183) .. controls (200.28,181.04) and (201.87,179.45) .. (203.83,179.45) .. controls (205.79,179.45) and (207.37,181.04) .. (207.37,183) .. controls (207.37,184.96) and (205.79,186.55) .. (203.83,186.55) .. controls (201.87,186.55) and (200.28,184.96) .. (200.28,183) -- cycle ;
%Shape: Circle [id:dp21044900151758394]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (295.5,73) .. controls (295.5,71.04) and (297.09,69.45) .. (299.05,69.45) .. controls (301.01,69.45) and (302.59,71.04) .. (302.59,73) .. controls (302.59,74.96) and (301.01,76.55) .. (299.05,76.55) .. controls (297.09,76.55) and (295.5,74.96) .. (295.5,73) -- cycle ;
%Straight Lines [id:da9075727791620916]
\draw (203.28,183) -- (295.5,73) ;
%Straight Lines [id:da5841127763389591]
\draw [dash pattern={on 0.84pt off 2.51pt}] (299.05,73) -- (299.05,244) ;
%Straight Lines [id:da4905999900239695]
\draw [dash pattern={on 4.5pt off 4.5pt}] (203.83,183) -- (299.05,244) ;
%Straight Lines [id:da21567992457799456]
\draw (156.38,30.87) -- (203.28,183) ;
\draw [shift={(155.5,28)}, rotate = 72.87] [fill={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.08] [draw opacity=0] (8.93,-4.29) -- (0,0) -- (8.93,4.29) -- cycle ;
%Shape: Parallelogram [id:dp651969637300376]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (314.43,108.19) -- (335.74,103.34) -- (320.57,147.81) -- (299.26,152.66) -- cycle ;
%Shape: Arc [id:dp004235831037150195]
\draw [draw opacity=0] (231.78,168.62) .. controls (235.78,171.9) and (237.86,177.07) .. (236.8,182.57) .. controls (235.48,189.47) and (229.63,194.79) .. (222.69,196.1) -- (220.4,180.73) -- cycle ; \draw (231.78,168.62) .. controls (235.78,171.9) and (237.86,177.07) .. (236.8,182.57) .. controls (235.48,189.47) and (229.63,194.79) .. (222.69,196.1) ;
% Text Node
\draw (211,205) node [align=left] {$\displaystyle \mathcal{P}$};
% Text Node
\draw (314,63) node [align=left] {$\displaystyle Q$};
% Text Node
\draw (381,99) node [align=left] {$ $};
% Text Node
\draw (193,21) node [align=left] {$\displaystyle t$};
% Text Node
\draw (405,181) node [align=left] {$\displaystyle y$};
% Text Node
\draw (215,18) node [align=left] {$\displaystyle \mathcal{O}$};
% Text Node
\draw (123,277) node [align=left] {$\displaystyle x$};
% Text Node
\draw (354,127) node [align=left] {Mirror};
% Text Node
\draw (149,39) node [align=left] {$\displaystyle t$'};
% Text Node
\draw (168,26) node [align=left] {$\displaystyle \mathcal{O} '$};
% Text Node
\draw (244,194) node [align=left] {45$\displaystyle ^{\circ }$};
\end{tikzpicture}
\caption{Propagation of a light ray (in red wiggling line) from point P to Q via reflection from a mirror.}
\label{mirror1}
\end{figure}
Consider now just the $x-y$ projection of this light ray, sketched in Figure~\ref{mirror2}. The angle of incidence to the mirror is $\alpha$, and by the well-known Law of Reflection, the reflection angle is also $\alpha$.
From the diagram, we can easily read off the light ray's total distance traveled in the x-direction as $\Delta x$ and in the y-direction as $h+ (h-\Delta y)$. The time required for the light ray to travel this amount is labeled $\Delta t$, and can be solved for shortly.
\begin{figure}[h!]
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Straight Lines [id:da36455565985335814]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (203.5,182.89) .. controls (203.33,180.54) and (204.43,179.28) .. (206.78,179.11) .. controls (209.13,178.95) and (210.23,177.69) .. (210.06,175.34) .. controls (209.89,172.99) and (210.98,171.73) .. (213.33,171.56) .. controls (215.68,171.4) and (216.78,170.14) .. (216.61,167.79) .. controls (216.44,165.44) and (217.54,164.18) .. (219.89,164.01) .. controls (222.24,163.84) and (223.34,162.58) .. (223.17,160.23) .. controls (223,157.88) and (224.09,156.63) .. (226.44,156.46) .. controls (228.79,156.29) and (229.89,155.03) .. (229.72,152.68) .. controls (229.55,150.33) and (230.65,149.07) .. (233,148.91) .. controls (235.35,148.74) and (236.45,147.48) .. (236.28,145.13) .. controls (236.11,142.78) and (237.21,141.52) .. (239.56,141.36) .. controls (241.91,141.19) and (243,139.93) .. (242.83,137.58) .. controls (242.66,135.23) and (243.76,133.97) .. (246.11,133.8) .. controls (248.46,133.64) and (249.56,132.38) .. (249.39,130.03) .. controls (249.22,127.68) and (250.32,126.42) .. (252.67,126.25) .. controls (255.02,126.08) and (256.11,124.83) .. (255.94,122.48) .. controls (255.77,120.13) and (256.87,118.87) .. (259.22,118.7) .. controls (261.57,118.53) and (262.67,117.27) .. (262.5,114.92) .. controls (262.33,112.57) and (263.43,111.31) .. (265.78,111.15) .. controls (268.13,110.98) and (269.23,109.72) .. (269.06,107.37) .. controls (268.89,105.02) and (269.98,103.77) .. (272.33,103.6) .. controls (274.68,103.43) and (275.78,102.17) .. (275.61,99.82) .. controls (275.44,97.47) and (276.54,96.21) .. (278.89,96.05) .. controls (281.24,95.88) and (282.34,94.62) .. (282.17,92.27) .. controls (282,89.92) and (283.09,88.66) .. (285.44,88.49) .. controls (287.79,88.33) and (288.89,87.07) .. (288.72,84.72) .. controls (288.55,82.37) and (289.65,81.11) .. (292,80.94) .. controls (294.35,80.78) and (295.45,79.52) .. (295.28,77.17) .. controls (295.11,74.82) and (296.2,73.56) .. (298.55,73.39) .. controls (300.9,73.23) and (302,71.97) .. (301.83,69.62) .. controls (301.66,67.27) and (302.76,66.01) .. (305.11,65.84) .. controls (307.46,65.67) and (308.56,64.41) .. (308.39,62.06) .. controls (308.22,59.71) and (309.32,58.45) .. (311.67,58.29) -- (314.57,54.95) -- (319.81,48.9) ;
\draw [shift={(321.78,46.64)}, rotate = 490.96] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da16817630207825296]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (321.78,46.64) .. controls (324.07,46.08) and (325.49,46.94) .. (326.05,49.23) .. controls (326.62,51.52) and (328.04,52.38) .. (330.33,51.82) .. controls (332.62,51.26) and (334.04,52.12) .. (334.61,54.41) .. controls (335.17,56.7) and (336.59,57.56) .. (338.88,57) .. controls (341.17,56.44) and (342.59,57.3) .. (343.16,59.59) .. controls (343.73,61.88) and (345.15,62.74) .. (347.44,62.18) .. controls (349.73,61.62) and (351.16,62.49) .. (351.71,64.78) -- (355.36,66.99) -- (362.21,71.13) ;
\draw [shift={(364.77,72.69)}, rotate = 211.21] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Shape: Axis 2D [id:dp6535056270706749]
\draw [color={rgb, 255:red, 73; green, 135; blue, 206 } ,draw opacity=1 ][line width=1.5] (186,183) -- (392.5,183)(203.28,22) -- (203.28,205) (385.5,178) -- (392.5,183) -- (385.5,188) (198.28,29) -- (203.28,22) -- (208.28,29) (234.28,178) -- (234.28,188)(265.28,178) -- (265.28,188)(296.28,178) -- (296.28,188)(327.28,178) -- (327.28,188)(358.28,178) -- (358.28,188)(198.28,152) -- (208.28,152)(198.28,121) -- (208.28,121)(198.28,90) -- (208.28,90)(198.28,59) -- (208.28,59) ;
\draw ;
%Shape: Circle [id:dp8552343221378937]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (200.28,183) .. controls (200.28,181.04) and (201.87,179.45) .. (203.83,179.45) .. controls (205.79,179.45) and (207.37,181.04) .. (207.37,183) .. controls (207.37,184.96) and (205.79,186.55) .. (203.83,186.55) .. controls (201.87,186.55) and (200.28,184.96) .. (200.28,183) -- cycle ;
%Straight Lines [id:da5063005091976327]
\draw (203.28,182.89) -- (364.77,72.69) ;
%Shape: Parallelogram [id:dp978215533235341]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (284.9,51.31) -- (274.51,43.45) -- (358.65,41.97) -- (369.05,49.83) -- cycle ;
%Shape: Ellipse [id:dp8465608585817961]
\draw [fill={rgb, 255:red, 0; green, 0; blue, 0 } ,fill opacity=1 ] (360.98,72.24) .. controls (360.98,70.28) and (362.68,68.69) .. (364.77,68.69) .. controls (366.87,68.69) and (368.56,70.28) .. (368.56,72.24) .. controls (368.56,74.2) and (366.87,75.79) .. (364.77,75.79) .. controls (362.68,75.79) and (360.98,74.2) .. (360.98,72.24) -- cycle ;
%Straight Lines [id:da7212813545531227]
\draw [dash pattern={on 4.5pt off 4.5pt}] (323.71,46.64) -- (323.71,86) ;
%Shape: Arc [id:dp8732872732226287]
\draw [draw opacity=0] (336.46,56.31) .. controls (335.44,58.72) and (333.74,60.88) .. (331.38,62.53) .. controls (328.92,64.25) and (326.06,65.19) .. (323.13,65.39) -- (320.9,49.77) -- cycle ; \draw (336.46,56.31) .. controls (335.44,58.72) and (333.74,60.88) .. (331.38,62.53) .. controls (328.92,64.25) and (326.06,65.19) .. (323.13,65.39) ;
%Shape: Arc [id:dp903029591672244]
\draw [draw opacity=0] (323.87,72.59) .. controls (320.69,71.93) and (317.65,70.38) .. (315.08,67.92) .. controls (312.39,65.34) and (310.55,62.09) .. (309.6,58.58) -- (328.05,52.09) -- cycle ; \draw (323.87,72.59) .. controls (320.69,71.93) and (317.65,70.38) .. (315.08,67.92) .. controls (312.39,65.34) and (310.55,62.09) .. (309.6,58.58) ;
%Shape: Brace [id:dp9219084565833189]
\draw (180,53) .. controls (175.33,53) and (173,55.33) .. (173,60) -- (173,108.5) .. controls (173,115.17) and (170.67,118.5) .. (166,118.5) .. controls (170.67,118.5) and (173,121.83) .. (173,128.5)(173,125.5) -- (173,177) .. controls (173,181.67) and (175.33,184) .. (180,184) ;
%Shape: Brace [id:dp232442639060507]
\draw (204,208) .. controls (204,212.67) and (206.33,215) .. (211,215) -- (273.75,215) .. controls (280.42,215) and (283.75,217.33) .. (283.75,222) .. controls (283.75,217.33) and (287.08,215) .. (293.75,215)(290.75,215) -- (356.5,215) .. controls (361.17,215) and (363.5,212.67) .. (363.5,208) ;
%Shape: Brace [id:dp49829432158649345]
\draw (413,181) .. controls (417.67,181) and (420,178.67) .. (420,174) -- (420,137) .. controls (420,130.33) and (422.33,127) .. (427,127) .. controls (422.33,127) and (420,123.67) .. (420,117)(420,120) -- (420,80) .. controls (420,75.33) and (417.67,73) .. (413,73) ;
%Shape: Brace [id:dp9113194227194905]
\draw (402,73) .. controls (405.71,73) and (407.56,71.15) .. (407.56,67.44) -- (407.56,67.44) .. controls (407.56,62.15) and (409.41,59.5) .. (413.12,59.5) .. controls (409.41,59.5) and (407.56,56.85) .. (407.56,51.56)(407.56,53.94) -- (407.56,51.56) .. controls (407.56,47.85) and (405.71,46) .. (402,46) ;
% Text Node
\draw (211,196) node [align=left] {$\displaystyle \mathcal{P}$};
% Text Node
\draw (383.66,66.67) node [align=left] {$\displaystyle Q$};
% Text Node
\draw (201,11) node [align=left] {$\displaystyle y$};
% Text Node
\draw (405,182) node [align=left] {$\displaystyle x$};
% Text Node
\draw (307.76,17.59) node [align=left] {Mirror};
% Text Node
\draw (313,75.02) node [align=left] {$\displaystyle \alpha $};
% Text Node
\draw (332,73.02) node [align=left] {$\displaystyle \alpha $};
% Text Node
\draw (158,116) node [align=left] {$\displaystyle h$};
% Text Node
\draw (284,235) node [align=left] {$\displaystyle \Delta x$};
% Text Node
\draw (441,125) node [align=left] {$\displaystyle \Delta y$};
% Text Node
\draw (439,59) node [align=left] {$\displaystyle h-\Delta y$};
\end{tikzpicture}
\caption{$x-y$ projection of the light ray's path from Figure~\ref{mirror1}.}
\label{mirror2}
\end{figure}
Light rays travel along null intervals, and so for the light ray, we can just substitute the distances measured above into the expression for calculating the length of a lightlike separated interval, Equation~\ref{s} with the condition that $\Delta s = 0$:
\beq
\begin{aligned}
& 0 = -(\Delta t)^2 + (\Delta x)^2 + (h+h-\Delta y)^2 \\
& \Rightarrow (\Delta t)^2 = (\Delta x)^2 + (2h - \Delta y)^2
\end{aligned}
\label{lightinterval}
\eeq
This is the time difference between P and Q as measured by $\mathcal{O}$. Equivalently, it is the time required for light to traverse a path from P to Q.
Let us now measure $\Delta s$ in the $\mathcal{O}$ frame. This is done simply by substituting the above expression for the $\Delta t$ into Equation~\ref{s}, along with the measured $\Delta x$ and $\Delta y$:
\beq
\begin{aligned}
(\Delta s)^2 &= -[(\Delta x)^2 + (2h - \Delta y)^2] + (\Delta x^2) + (\Delta y)^2 \\
& = (\Delta y)^2 - (2h - \Delta y)^2
\end{aligned}
\label{Ointerval}
\eeq
Note that this interval is timelike, since the right hand side of Equation~\ref{Ointerval} is $<0$.
In a new frame, Figure~\ref{mirror2} would look essentially the same, except with every distance and angle labeled with a prime. There is an additional caveat; the angles $\alpha$ denoting the angles of incidence and reflection when the light ray strikes the mirror may in general be different angles $\alpha_I'$ and $\alpha_R'$.
In order to show that $\Delta s$ is invariant between these two frames, we must prove two lemmas:
\begin{enumerate}
\item $\alpha_I' = \alpha_R'$, i.e. that the Law of Reflection still holds, and
\item $\Delta y' = \Delta y$ and $h' = h$, i.e. that distances perpendicular to the relative velocity $\vec{v}$ of frames $\mathcal{O}$ and $\mathcal{O'}$ do not transform.
\end{enumerate}
These are easy to show with simple thought experiments and the strict principle of relativity -- that events which occur in one frame must also occur in all other frames.
\begin{sidebox}[Lemma 1]
Consider two mirrors bouncing light between each other continuously, as in Figure~\ref{mirror3}a. The light moves perpendicular to the mirrors. Each time light strikes a mirror is an event.
In a new frame moving with respect to the rest frame of the mirrors, the light appears to be bouncing against each mirror at an angle, since the mirrors themselves are apparently moving in this frame. This is shown in Figure~\ref{mirror3}b. In particular, the rays strike a mirror at some angle $\alpha_{I}'$ and are reflected at $\alpha_{R}'$.
If $\alpha_{I}' \neq \alpha_{R}'$, then this implies that the light ray's path is not symmetric up and down. As a consequence, the light ray emitted from the bottom mirror will reflect from the top mirror and strike the bottom mirror again in a different spot than where it was emitted. The result is that the light ray would "drift" off of the mirror slowly in this moving frame, while it does not in the rest frame.
This contradiction is not tolerable; the events seen in one frame must also occur in the other by the principle of relativity. Hence it must be the case that $\alpha{I}' \neq \alpha{R}'$ in all frames, and so the Law of Reflection holds.
\end{sidebox}
\begin{figure}[t!]
\centering
\begin{subfigure}[t]{0.45\linewidth}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Straight Lines [id:da24248507832497057]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (315.78,153.64) .. controls (314.11,151.97) and (314.11,150.31) .. (315.78,148.64) .. controls (317.45,146.97) and (317.45,145.31) .. (315.78,143.64) .. controls (314.11,141.97) and (314.11,140.31) .. (315.78,138.64) .. controls (317.45,136.97) and (317.45,135.31) .. (315.78,133.64) .. controls (314.11,131.97) and (314.11,130.31) .. (315.78,128.64) .. controls (317.45,126.97) and (317.45,125.31) .. (315.78,123.64) .. controls (314.11,121.97) and (314.11,120.31) .. (315.78,118.64) .. controls (317.45,116.97) and (317.45,115.31) .. (315.78,113.64) .. controls (314.11,111.97) and (314.11,110.31) .. (315.78,108.64) .. controls (317.45,106.97) and (317.45,105.31) .. (315.78,103.64) .. controls (314.11,101.97) and (314.11,100.31) .. (315.78,98.64) .. controls (317.45,96.97) and (317.45,95.31) .. (315.78,93.64) .. controls (314.11,91.97) and (314.11,90.31) .. (315.78,88.64) .. controls (317.45,86.97) and (317.45,85.31) .. (315.78,83.64) .. controls (314.11,81.97) and (314.11,80.31) .. (315.78,78.64) .. controls (317.45,76.97) and (317.45,75.31) .. (315.78,73.64) .. controls (314.11,71.97) and (314.11,70.31) .. (315.78,68.64) .. controls (317.45,66.97) and (317.45,65.31) .. (315.78,63.64) -- (315.78,59.02) -- (315.78,51.02) ;
\draw [shift={(315.78,48.02)}, rotate = 450] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da5664703361793721]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (326.78,46.64) .. controls (328.45,48.31) and (328.45,49.97) .. (326.78,51.64) .. controls (325.11,53.31) and (325.11,54.97) .. (326.78,56.64) .. controls (328.45,58.31) and (328.45,59.97) .. (326.78,61.64) .. controls (325.11,63.31) and (325.11,64.97) .. (326.78,66.64) .. controls (328.45,68.31) and (328.45,69.97) .. (326.78,71.64) .. controls (325.11,73.31) and (325.11,74.97) .. (326.78,76.64) .. controls (328.45,78.31) and (328.45,79.97) .. (326.78,81.64) .. controls (325.11,83.31) and (325.11,84.97) .. (326.78,86.64) .. controls (328.45,88.31) and (328.45,89.97) .. (326.78,91.64) .. controls (325.11,93.31) and (325.11,94.97) .. (326.78,96.64) .. controls (328.45,98.31) and (328.45,99.97) .. (326.78,101.64) .. controls (325.11,103.31) and (325.11,104.97) .. (326.78,106.64) .. controls (328.45,108.31) and (328.45,109.97) .. (326.78,111.64) .. controls (325.11,113.31) and (325.11,114.97) .. (326.78,116.64) .. controls (328.45,118.31) and (328.45,119.97) .. (326.78,121.64) .. controls (325.11,123.31) and (325.11,124.97) .. (326.78,126.64) .. controls (328.45,128.31) and (328.45,129.97) .. (326.78,131.64) .. controls (325.11,133.31) and (325.11,134.97) .. (326.78,136.64) .. controls (328.45,138.31) and (328.45,139.97) .. (326.78,141.64) -- (326.78,143.02) -- (326.78,151.02) ;
\draw [shift={(326.78,154.02)}, rotate = 270] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Shape: Parallelogram [id:dp6374544736822019]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (284.9,51.31) -- (274.51,43.45) -- (358.65,41.97) -- (369.05,49.83) -- cycle ;
%Shape: Parallelogram [id:dp06929544235754515]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (281.9,158.31) -- (271.51,150.45) -- (355.65,148.97) -- (366.05,156.83) -- cycle ;
\end{tikzpicture}
\caption{Thought experiment bouncing light rays between mirrors.}
\end{subfigure}
\qquad
\begin{subfigure}[t]{0.45\linewidth}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Straight Lines [id:da30853539264163365]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (184.78,157.64) .. controls (184.42,155.31) and (185.41,153.96) .. (187.74,153.61) .. controls (190.07,153.25) and (191.05,151.91) .. (190.7,149.58) .. controls (190.34,147.25) and (191.32,145.91) .. (193.65,145.55) .. controls (195.98,145.19) and (196.96,143.85) .. (196.61,141.52) .. controls (196.26,139.19) and (197.24,137.85) .. (199.57,137.49) .. controls (201.9,137.13) and (202.89,135.78) .. (202.53,133.45) .. controls (202.18,131.12) and (203.16,129.78) .. (205.49,129.42) .. controls (207.82,129.06) and (208.8,127.72) .. (208.45,125.39) .. controls (208.09,123.06) and (209.07,121.72) .. (211.4,121.36) .. controls (213.73,121) and (214.71,119.66) .. (214.36,117.33) .. controls (214.01,115) and (214.99,113.66) .. (217.32,113.3) .. controls (219.65,112.94) and (220.63,111.6) .. (220.28,109.27) .. controls (219.93,106.94) and (220.91,105.6) .. (223.24,105.24) .. controls (225.57,104.88) and (226.55,103.54) .. (226.2,101.21) .. controls (225.84,98.88) and (226.82,97.54) .. (229.15,97.18) .. controls (231.48,96.82) and (232.46,95.48) .. (232.11,93.15) .. controls (231.76,90.82) and (232.74,89.48) .. (235.07,89.12) .. controls (237.4,88.76) and (238.39,87.41) .. (238.03,85.08) .. controls (237.68,82.75) and (238.66,81.41) .. (240.99,81.05) .. controls (243.32,80.69) and (244.3,79.35) .. (243.95,77.02) .. controls (243.6,74.69) and (244.58,73.35) .. (246.91,72.99) .. controls (249.24,72.63) and (250.22,71.29) .. (249.86,68.96) .. controls (249.51,66.63) and (250.49,65.29) .. (252.82,64.93) .. controls (255.15,64.57) and (256.13,63.23) .. (255.78,60.9) -- (258.27,57.51) -- (263,51.06) ;
\draw [shift={(264.78,48.64)}, rotate = 486.28] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da651790824445525]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (264.78,48.64) .. controls (267.12,48.89) and (268.16,50.19) .. (267.91,52.54) .. controls (267.66,54.89) and (268.7,56.18) .. (271.05,56.43) .. controls (273.39,56.69) and (274.43,57.99) .. (274.18,60.33) .. controls (273.93,62.68) and (274.97,63.97) .. (277.32,64.22) .. controls (279.66,64.48) and (280.7,65.78) .. (280.45,68.12) .. controls (280.2,70.46) and (281.24,71.76) .. (283.58,72.01) .. controls (285.93,72.26) and (286.97,73.56) .. (286.72,75.91) .. controls (286.47,78.25) and (287.51,79.55) .. (289.85,79.8) .. controls (292.2,80.05) and (293.24,81.35) .. (292.99,83.7) .. controls (292.74,86.04) and (293.78,87.34) .. (296.12,87.6) .. controls (298.47,87.85) and (299.51,89.14) .. (299.26,91.49) .. controls (299.01,93.83) and (300.05,95.13) .. (302.39,95.39) .. controls (304.73,95.64) and (305.77,96.94) .. (305.52,99.28) .. controls (305.27,101.63) and (306.31,102.93) .. (308.66,103.18) .. controls (311,103.43) and (312.04,104.73) .. (311.79,107.07) .. controls (311.54,109.42) and (312.58,110.72) .. (314.93,110.97) .. controls (317.27,111.23) and (318.31,112.53) .. (318.06,114.87) .. controls (317.81,117.22) and (318.85,118.51) .. (321.2,118.76) .. controls (323.54,119.02) and (324.58,120.32) .. (324.33,122.66) .. controls (324.08,125) and (325.12,126.3) .. (327.46,126.55) .. controls (329.81,126.8) and (330.85,128.1) .. (330.6,130.45) .. controls (330.35,132.79) and (331.39,134.09) .. (333.73,134.34) .. controls (336.08,134.59) and (337.12,135.89) .. (336.87,138.24) .. controls (336.62,140.58) and (337.66,141.88) .. (340,142.14) .. controls (342.35,142.39) and (343.39,143.68) .. (343.14,146.03) -- (345.88,149.45) -- (350.9,155.68) ;
\draw [shift={(352.78,158.02)}, rotate = 231.18] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Shape: Parallelogram [id:dp35373648380097755]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (227.9,53.31) -- (217.51,45.45) -- (301.65,43.97) -- (312.05,51.83) -- cycle ;
%Shape: Parallelogram [id:dp723902019214397]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (147.9,162.31) -- (137.51,154.45) -- (221.65,152.97) -- (232.05,160.83) -- cycle ;
%Shape: Parallelogram [id:dp579143474020132]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (317.9,161.69) -- (307.51,153.82) -- (391.65,152.34) -- (402.05,160.21) -- cycle ;
%Shape: Parallelogram [id:dp7762198970376433]
\draw [fill={rgb, 255:red, 231; green, 231; blue, 231 } ,fill opacity=0.67 ] (393.9,53.31) -- (383.51,45.45) -- (467.65,43.97) -- (478.05,51.83) -- cycle ;
%Straight Lines [id:da1892052709651828]
\draw [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (350.78,157.64) .. controls (350.42,155.31) and (351.41,153.96) .. (353.74,153.61) .. controls (356.07,153.25) and (357.05,151.91) .. (356.7,149.58) .. controls (356.34,147.25) and (357.32,145.91) .. (359.65,145.55) .. controls (361.98,145.19) and (362.96,143.85) .. (362.61,141.52) .. controls (362.26,139.19) and (363.24,137.85) .. (365.57,137.49) .. controls (367.9,137.13) and (368.89,135.78) .. (368.53,133.45) .. controls (368.18,131.12) and (369.16,129.78) .. (371.49,129.42) .. controls (373.82,129.06) and (374.8,127.72) .. (374.45,125.39) .. controls (374.09,123.06) and (375.07,121.72) .. (377.4,121.36) .. controls (379.73,121) and (380.71,119.66) .. (380.36,117.33) .. controls (380.01,115) and (380.99,113.66) .. (383.32,113.3) .. controls (385.65,112.94) and (386.63,111.6) .. (386.28,109.27) .. controls (385.93,106.94) and (386.91,105.6) .. (389.24,105.24) .. controls (391.57,104.88) and (392.55,103.54) .. (392.2,101.21) .. controls (391.84,98.88) and (392.82,97.54) .. (395.15,97.18) .. controls (397.48,96.82) and (398.46,95.48) .. (398.11,93.15) .. controls (397.76,90.82) and (398.74,89.48) .. (401.07,89.12) .. controls (403.4,88.76) and (404.39,87.41) .. (404.03,85.08) .. controls (403.68,82.75) and (404.66,81.41) .. (406.99,81.05) .. controls (409.32,80.69) and (410.3,79.35) .. (409.95,77.02) .. controls (409.6,74.69) and (410.58,73.35) .. (412.91,72.99) .. controls (415.24,72.63) and (416.22,71.29) .. (415.86,68.96) .. controls (415.51,66.63) and (416.49,65.29) .. (418.82,64.93) .. controls (421.15,64.57) and (422.13,63.23) .. (421.78,60.9) -- (424.27,57.51) -- (429,51.06) ;
\draw [shift={(430.78,48.64)}, rotate = 486.28] [color={rgb, 255:red, 240; green, 0; blue, 0 } ,draw opacity=1 ][line width=1.5] (14.21,-4.28) .. controls (9.04,-1.82) and (4.3,-0.39) .. (0,0) .. controls (4.3,0.39) and (9.04,1.82) .. (14.21,4.28) ;
%Straight Lines [id:da7759457471770823]
\draw [dash pattern={on 4.5pt off 4.5pt}] (264.78,48.64) -- (264.78,101.02) ;
%Shape: Arc [id:dp9668414920314963]
\draw [draw opacity=0] (265.98,80.91) .. controls (262.76,80.58) and (259.58,79.35) .. (256.77,77.16) .. controls (253.82,74.87) and (251.67,71.83) .. (250.36,68.43) -- (268.05,60.09) -- cycle ; \draw (265.98,80.91) .. controls (262.76,80.58) and (259.58,79.35) .. (256.77,77.16) .. controls (253.82,74.87) and (251.67,71.83) .. (250.36,68.43) ;
%Shape: Arc [id:dp32971833998280875]
\draw [draw opacity=0] (287.1,78.29) .. controls (284.78,81.74) and (281.48,84.61) .. (277.31,86.48) .. controls (272.94,88.44) and (268.2,89.05) .. (263.57,88.49) -- (264.75,63.44) -- cycle ; \draw (287.1,78.29) .. controls (284.78,81.74) and (281.48,84.61) .. (277.31,86.48) .. controls (272.94,88.44) and (268.2,89.05) .. (263.57,88.49) ;
% Text Node
\draw (253,90) node [align=left] {$\displaystyle \alpha _{I} '$};
% Text Node
\draw (281,93) node [align=left] {$\displaystyle \alpha _{R} '$};
\end{tikzpicture}
\caption{The same experiment as in Figure~\ref{mirror3}a, but in a moving frame.}
\end{subfigure}
\caption{}
\label{mirror3}
\end{figure}
\begin{sidebox}[Lemma 2]
Consider an experiment where two hollow tubes of precisely the same radius are exactly aligned horizontally along their central axes. These tubes move toward each other and collide at the exact same velocity, as in Figure~\ref{cyl}. The collision is an event which happens, so all observers must see it at some location in time and space.
First, as an aside, by cylindrical symmetry of both the tubes and the relative velocity vector $\vec{v}$ between the two frames, any transformation to distances which happen in directions perpendicular to $\vec{v}$ must by cylindrically symmetric as well. In other words, no perpendicular directions to $\vec{v}$ are "preferred" to change in a special way relative to the others.
In the rest frame of one of the cylinders, we may in general observe the other cylinder to have a different shape. Suppose that this second cylinder stretched perpendicularly to the relative velocity of the cylinders, i.e. that the other cylinder expands or shrinks, so that the cylinder's radii has changed.
In this case, the two cylinder now have different radii. This means that their rims will not collide when the cylinders move toward each other. However, this means different events are occurring in different frames, which clearly violates the principle of relativity.
Consequently, the radii of the cylinders may not change between such a relativistic transformation, and all distances perpendicular to the relative velocity of two frames are preserved in transforming from one of the frames to the other.
\end{sidebox}
\begin{figure}[h]
\centering
\begin{subfigure}[t]{0.45\linewidth}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Shape: Can [id:dp12353151642329996]
\draw (141,138) -- (89,138) .. controls (84.03,138) and (80,124.57) .. (80,108) .. controls (80,91.43) and (84.03,78) .. (89,78) -- (141,78) .. controls (145.97,78) and (150,91.43) .. (150,108) .. controls (150,124.57) and (145.97,138) .. (141,138) .. controls (136.03,138) and (132,124.57) .. (132,108) .. controls (132,91.43) and (136.03,78) .. (141,78) ;
%Shape: Can [id:dp8700266421811906]
\draw (336,138) -- (284,138) .. controls (279.03,138) and (275,124.57) .. (275,108) .. controls (275,91.43) and (279.03,78) .. (284,78) -- (336,78) .. controls (340.97,78) and (345,91.43) .. (345,108) .. controls (345,124.57) and (340.97,138) .. (336,138) .. controls (331.03,138) and (327,124.57) .. (327,108) .. controls (327,91.43) and (331.03,78) .. (336,78) ;
%Straight Lines [id:da6741344517921886]
\draw (141,111) -- (180.5,111) ;
\draw [shift={(182.5,111)}, rotate = 180] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-3.29) .. controls (6.95,-1.4) and (3.31,-0.3) .. (0,0) .. controls (3.31,0.3) and (6.95,1.4) .. (10.93,3.29) ;
%Straight Lines [id:da3744733231893391]
\draw (238,111) -- (275,111) ;
\draw [shift={(236,111)}, rotate = 0] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9);
\end{tikzpicture}
\caption{Two identical hollow tubes exactly in alignment and moving toward each other, so that they collide when the rims of the tubes touch.}
\end{subfigure}
\qquad
\begin{subfigure}[t]{0.45\linewidth}
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.8,xscale=.8]
%uncomment if require: \path (0,301); %set diagram left start at 0, and has height of 301
%Shape: Can [id:dp7569599162808271]
\draw (141,138) -- (89,138) .. controls (84.03,138) and (80,124.57) .. (80,108) .. controls (80,91.43) and (84.03,78) .. (89,78) -- (141,78) .. controls (145.97,78) and (150,91.43) .. (150,108) .. controls (150,124.57) and (145.97,138) .. (141,138) .. controls (136.03,138) and (132,124.57) .. (132,108) .. controls (132,91.43) and (136.03,78) .. (141,78) ;
%Shape: Can [id:dp16420703944467996]
\draw (305.48,128) -- (279.5,128) .. controls (277.01,128) and (275,121.29) .. (275,113.01) .. controls (275,104.73) and (277.01,98.02) .. (279.5,98.02) -- (305.48,98.02) .. controls (307.97,98.02) and (309.98,104.73) .. (309.98,113.01) .. controls (309.98,121.29) and (307.97,128) .. (305.48,128) .. controls (303,128) and (300.99,121.29) .. (300.99,113.01) .. controls (300.99,104.73) and (303,98.02) .. (305.48,98.02) ;
%Straight Lines [id:da3996944750743705]
\draw (197.5,111) -- (275,111) ;
\draw [shift={(195.5,111)}, rotate = 0] [color={rgb, 255:red, 0; green, 0; blue, 0 } ][line width=0.75] (10.93,-4.9) .. controls (6.95,-2.3) and (3.31,-0.67) .. (0,0) .. controls (3.31,0.67) and (6.95,2.3) .. (10.93,4.9) ;
\end{tikzpicture}
\caption{The same experiment as in Figure~\ref{mirror3} in the frame of the left cylinder, but assuming that the radii of the cylinders may change in different frames.}
\end{subfigure}
\caption{}
\label{cyl}
\end{figure}
With these lemmas proven, we can return to the problem at hand, finding the spacetime interval $\Delta s$ between two events P and Q.
The lemmas we proved indicate that the analogous diagram to Figure~\ref{mirror2} is identical, with where we need to only replace $\Delta x$ with $\Delta x'$ and $\alpha$ with $\alpha'$; $h$ and $\Delta y$ do not transform.
The spatial and and time intervals between P and Q measured in the $\mathcal{O'}$ frame are given by $(\Delta x')^2, (\Delta y')^2, (\Delta t')^2$. However, in this frame, we can perform the same light-beam experiment shown in Figures~\ref{mirror1} and~\ref{mirror2} to measure what the apparent elapsed time $\Delta t'$ is between events P and Q. Since the diagrams are analogous, the result will also be precisely analogous to Equation~\ref{lightinterval}:
\beq
(\Delta t')^2 = (\Delta x')^2 + (2h - \Delta y)^2
\label{lightinterval2}
\eeq
As a result, the space-time interval between these events calculated in the $\mathcal{O'}$ frame is calculated the same way as in the $\mathcal{O}$ frame:
\beq
\Rightarrow \Rightarrow (\Delta s')^2 = (\Delta y)^2 - (2h - \Delta y)^2 = (\Delta s)^2
\label{deltas2}
\eeq
For this reason, $\Delta s$ is often called the "invariant distance" between events.
\section{Relativistic Transformations of Coordinate Systems}
We can be slightly more precise about what we mean by "coordinate system" in the earlier discussions by introducing the idea of the "light clock."
Imagine a regular lattice of several clocks through which we regularly shine beams of light from one to the other to synchronize the clocks appropriately. The ticks of these clocks then denote tick marks along a "time axis," forming a 4-dimensional lattice of coordinates in space and time. An example of such a coordinate system is shown in Figure~\ref{clocks}.
%This next picture will knock your clocks off.
\begin{figure}[]
\centering
\tikzset{every picture/.style={line width=0.75pt}} %set default line width to 0.75pt
\begin{tikzpicture}[x=0.75pt,y=0.75pt,yscale=-.7,xscale=.7]
%uncomment if require: \path (0,316.015625); %set diagram left start at 0, and has height of 316.015625
%Shape: Axis 2D [id:dp8320298567254818]
\draw [line width=2.25] (52,278.85) -- (328.5,278.85)(79.65,30) -- (79.65,306.5) (321.5,273.85) -- (328.5,278.85) -- (321.5,283.85) (74.65,37) -- (79.65,30) -- (84.65,37) (99.65,273.85) -- (99.65,283.85)(119.65,273.85) -- (119.65,283.85)(139.65,273.85) -- (139.65,283.85)(159.65,273.85) -- (159.65,283.85)(179.65,273.85) -- (179.65,283.85)(199.65,273.85) -- (199.65,283.85)(219.65,273.85) -- (219.65,283.85)(239.65,273.85) -- (239.65,283.85)(259.65,273.85) -- (259.65,283.85)(279.65,273.85) -- (279.65,283.85)(299.65,273.85) -- (299.65,283.85)(59.65,273.85) -- (59.65,283.85)(74.65,258.85) -- (84.65,258.85)(74.65,238.85) -- (84.65,238.85)(74.65,218.85) -- (84.65,218.85)(74.65,198.85) -- (84.65,198.85)(74.65,178.85) -- (84.65,178.85)(74.65,158.85) -- (84.65,158.85)(74.65,138.85) -- (84.65,138.85)(74.65,118.85) -- (84.65,118.85)(74.65,98.85) -- (84.65,98.85)(74.65,78.85) -- (84.65,78.85)(74.65,58.85) -- (84.65,58.85)(74.65,298.85) -- (84.65,298.85) ;
\draw ;
%Shape: Grid [id:dp7052936952182616]
\draw [draw opacity=0] (80,39) -- (320.5,39) -- (320.5,278.02) -- (80,278.02) -- cycle ; \draw (80,39) -- (80,278.02)(120,39) -- (120,278.02)(160,39) -- (160,278.02)(200,39) -- (200,278.02)(240,39) -- (240,278.02)(280,39) -- (280,278.02)(320,39) -- (320,278.02) ; \draw (80,39) -- (320.5,39)(80,79) -- (320.5,79)(80,119) -- (320.5,119)(80,159) -- (320.5,159)(80,199) -- (320.5,199)(80,239) -- (320.5,239) ; \draw ;
%Shape: Circle [id:dp38734123820868094]
\draw [fill={rgb, 255:red, 38; green, 49; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (104.02,239.51) .. controls (104.02,230.95) and (110.95,224.02) .. (119.51,224.02) .. controls (128.06,224.02) and (135,230.95) .. (135,239.51) .. controls (135,248.06) and (128.06,255) .. (119.51,255) .. controls (110.95,255) and (104.02,248.06) .. (104.02,239.51) -- cycle ;
%Straight Lines [id:da3732415907025304]
\draw (119.51,239.51) -- (125.39,245.39) ;
%Straight Lines [id:da17723096254318582]
\draw (119.51,239.51) -- (122.92,227.74) ;
%Shape: Circle [id:dp873232004038208]
\draw [fill={rgb, 255:red, 38; green, 49; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (104.02,199.51) .. controls (104.02,190.95) and (110.95,184.02) .. (119.51,184.02) .. controls (128.06,184.02) and (135,190.95) .. (135,199.51) .. controls (135,208.06) and (128.06,215) .. (119.51,215) .. controls (110.95,215) and (104.02,208.06) .. (104.02,199.51) -- cycle ;
%Straight Lines [id:da7618067591473634]
\draw (119.51,199.51) -- (125.39,205.39) ;
%Straight Lines [id:da141757157056144]
\draw (119.51,199.51) -- (122.92,187.74) ;
%Shape: Circle [id:dp8675033778358052]
\draw [fill={rgb, 255:red, 38; green, 49; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (104.02,159.51) .. controls (104.02,150.95) and (110.95,144.02) .. (119.51,144.02) .. controls (128.06,144.02) and (135,150.95) .. (135,159.51) .. controls (135,168.06) and (128.06,175) .. (119.51,175) .. controls (110.95,175) and (104.02,168.06) .. (104.02,159.51) -- cycle ;
%Straight Lines [id:da9804659465251155]
\draw (119.51,159.51) -- (125.39,165.39) ;
%Straight Lines [id:da5452434641745356]
\draw (119.51,159.51) -- (122.92,147.74) ;
%Shape: Circle [id:dp9721469925645583]
\draw [fill={rgb, 255:red, 38; green, 49; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (104.02,118.51) .. controls (104.02,109.95) and (110.95,103.02) .. (119.51,103.02) .. controls (128.06,103.02) and (135,109.95) .. (135,118.51) .. controls (135,127.06) and (128.06,134) .. (119.51,134) .. controls (110.95,134) and (104.02,127.06) .. (104.02,118.51) -- cycle ;
%Straight Lines [id:da6970543195572318]
\draw (119.51,118.51) -- (125.39,124.39) ;
%Straight Lines [id:da6768314714271062]
\draw (119.51,118.51) -- (122.92,106.74) ;
%Shape: Circle [id:dp039174000093122885]
\draw [fill={rgb, 255:red, 38; green, 49; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (104.02,79.51) .. controls (104.02,70.95) and (110.95,64.02) .. (119.51,64.02) .. controls (128.06,64.02) and (135,70.95) .. (135,79.51) .. controls (135,88.06) and (128.06,95) .. (119.51,95) .. controls (110.95,95) and (104.02,88.06) .. (104.02,79.51) -- cycle ;
%Straight Lines [id:da11687388360325834]
\draw (119.51,79.51) -- (125.39,85.39) ;
%Straight Lines [id:da8423448504470252]
\draw (119.51,79.51) -- (122.92,67.74) ;
%Shape: Circle [id:dp8349016851012061]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ][line width=1.5] (143.02,239.51) .. controls (143.02,230.95) and (149.95,224.02) .. (158.51,224.02) .. controls (167.06,224.02) and (174,230.95) .. (174,239.51) .. controls (174,248.06) and (167.06,255) .. (158.51,255) .. controls (149.95,255) and (143.02,248.06) .. (143.02,239.51) -- cycle ;
%Straight Lines [id:da6621681195035165]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,239.51) -- (164.39,245.39) ;
%Straight Lines [id:da7898027552573206]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,239.51) -- (161.92,227.74) ;
%Shape: Circle [id:dp10884946662111705]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ][line width=1.5] (143.02,199.51) .. controls (143.02,190.95) and (149.95,184.02) .. (158.51,184.02) .. controls (167.06,184.02) and (174,190.95) .. (174,199.51) .. controls (174,208.06) and (167.06,215) .. (158.51,215) .. controls (149.95,215) and (143.02,208.06) .. (143.02,199.51) -- cycle ;
%Straight Lines [id:da10152117274299166]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,199.51) -- (164.39,205.39) ;
%Straight Lines [id:da3365345392519721]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,199.51) -- (161.92,187.74) ;
%Shape: Circle [id:dp4393360754347859]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ][line width=1.5] (143.02,159.51) .. controls (143.02,150.95) and (149.95,144.02) .. (158.51,144.02) .. controls (167.06,144.02) and (174,150.95) .. (174,159.51) .. controls (174,168.06) and (167.06,175) .. (158.51,175) .. controls (149.95,175) and (143.02,168.06) .. (143.02,159.51) -- cycle ;
%Straight Lines [id:da3012692959779113]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,159.51) -- (164.39,165.39) ;
%Straight Lines [id:da652471733482952]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,159.51) -- (161.92,147.74) ;
%Shape: Circle [id:dp46520116100665954]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ][line width=1.5] (143.02,118.51) .. controls (143.02,109.95) and (149.95,103.02) .. (158.51,103.02) .. controls (167.06,103.02) and (174,109.95) .. (174,118.51) .. controls (174,127.06) and (167.06,134) .. (158.51,134) .. controls (149.95,134) and (143.02,127.06) .. (143.02,118.51) -- cycle ;
%Straight Lines [id:da8062709901225151]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,118.51) -- (164.39,124.39) ;
%Straight Lines [id:da0667928049399722]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,118.51) -- (161.92,106.74) ;
%Shape: Circle [id:dp7323864705001355]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ][line width=1.5] (143.02,79.51) .. controls (143.02,70.95) and (149.95,64.02) .. (158.51,64.02) .. controls (167.06,64.02) and (174,70.95) .. (174,79.51) .. controls (174,88.06) and (167.06,95) .. (158.51,95) .. controls (149.95,95) and (143.02,88.06) .. (143.02,79.51) -- cycle ;
%Straight Lines [id:da1758849907010962]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,79.51) -- (164.39,85.39) ;
%Straight Lines [id:da1475934627006137]
\draw [fill={rgb, 255:red, 38; green, 226; blue, 88 } ,fill opacity=0.52 ] (158.51,79.51) -- (161.92,67.74) ;
%Shape: Circle [id:dp2973304779282464]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (184.02,239.51) .. controls (184.02,230.95) and (190.95,224.02) .. (199.51,224.02) .. controls (208.06,224.02) and (215,230.95) .. (215,239.51) .. controls (215,248.06) and (208.06,255) .. (199.51,255) .. controls (190.95,255) and (184.02,248.06) .. (184.02,239.51) -- cycle ;
%Straight Lines [id:da8317754653147911]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,239.51) -- (205.39,245.39) ;
%Straight Lines [id:da6533894835558924]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,239.51) -- (202.92,227.74) ;
%Shape: Circle [id:dp2728648400916611]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (184.02,199.51) .. controls (184.02,190.95) and (190.95,184.02) .. (199.51,184.02) .. controls (208.06,184.02) and (215,190.95) .. (215,199.51) .. controls (215,208.06) and (208.06,215) .. (199.51,215) .. controls (190.95,215) and (184.02,208.06) .. (184.02,199.51) -- cycle ;
%Straight Lines [id:da8968791276768493]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,199.51) -- (205.39,205.39) ;
%Straight Lines [id:da25953374905517523]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,199.51) -- (202.92,187.74) ;
%Shape: Circle [id:dp9112029788049025]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (184.02,159.51) .. controls (184.02,150.95) and (190.95,144.02) .. (199.51,144.02) .. controls (208.06,144.02) and (215,150.95) .. (215,159.51) .. controls (215,168.06) and (208.06,175) .. (199.51,175) .. controls (190.95,175) and (184.02,168.06) .. (184.02,159.51) -- cycle ;
%Straight Lines [id:da33590920557155113]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,159.51) -- (205.39,165.39) ;
%Straight Lines [id:da018757906028804783]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,159.51) -- (202.92,147.74) ;
%Shape: Circle [id:dp8444932967751029]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (184.02,118.51) .. controls (184.02,109.95) and (190.95,103.02) .. (199.51,103.02) .. controls (208.06,103.02) and (215,109.95) .. (215,118.51) .. controls (215,127.06) and (208.06,134) .. (199.51,134) .. controls (190.95,134) and (184.02,127.06) .. (184.02,118.51) -- cycle ;
%Straight Lines [id:da8972976025324482]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,118.51) -- (205.39,124.39) ;
%Straight Lines [id:da4366407777457908]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,118.51) -- (202.92,106.74) ;
%Shape: Circle [id:dp1573888010003901]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (184.02,79.51) .. controls (184.02,70.95) and (190.95,64.02) .. (199.51,64.02) .. controls (208.06,64.02) and (215,70.95) .. (215,79.51) .. controls (215,88.06) and (208.06,95) .. (199.51,95) .. controls (190.95,95) and (184.02,88.06) .. (184.02,79.51) -- cycle ;
%Straight Lines [id:da1745429895519901]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,79.51) -- (205.39,85.39) ;
%Straight Lines [id:da0038044471824529857]
\draw [fill={rgb, 255:red, 226; green, 222; blue, 38 } ,fill opacity=0.52 ] (199.51,79.51) -- (202.92,67.74) ;
%Shape: Circle [id:dp6109097098749161]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (224.02,239.51) .. controls (224.02,230.95) and (230.95,224.02) .. (239.51,224.02) .. controls (248.06,224.02) and (255,230.95) .. (255,239.51) .. controls (255,248.06) and (248.06,255) .. (239.51,255) .. controls (230.95,255) and (224.02,248.06) .. (224.02,239.51) -- cycle ;
%Straight Lines [id:da8684255659566533]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,239.51) -- (245.39,245.39) ;
%Straight Lines [id:da3111128870233295]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,239.51) -- (242.92,227.74) ;
%Shape: Circle [id:dp895812673048862]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (224.02,199.51) .. controls (224.02,190.95) and (230.95,184.02) .. (239.51,184.02) .. controls (248.06,184.02) and (255,190.95) .. (255,199.51) .. controls (255,208.06) and (248.06,215) .. (239.51,215) .. controls (230.95,215) and (224.02,208.06) .. (224.02,199.51) -- cycle ;
%Straight Lines [id:da7426578601311411]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,199.51) -- (245.39,205.39) ;
%Straight Lines [id:da05245749192703464]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,199.51) -- (242.92,187.74) ;
%Shape: Circle [id:dp1662236006644433]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (224.02,159.51) .. controls (224.02,150.95) and (230.95,144.02) .. (239.51,144.02) .. controls (248.06,144.02) and (255,150.95) .. (255,159.51) .. controls (255,168.06) and (248.06,175) .. (239.51,175) .. controls (230.95,175) and (224.02,168.06) .. (224.02,159.51) -- cycle ;
%Straight Lines [id:da8180742842782056]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,159.51) -- (245.39,165.39) ;
%Straight Lines [id:da5552502226863436]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,159.51) -- (242.92,147.74) ;
%Shape: Circle [id:dp0574963686871397]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (224.02,118.51) .. controls (224.02,109.95) and (230.95,103.02) .. (239.51,103.02) .. controls (248.06,103.02) and (255,109.95) .. (255,118.51) .. controls (255,127.06) and (248.06,134) .. (239.51,134) .. controls (230.95,134) and (224.02,127.06) .. (224.02,118.51) -- cycle ;
%Straight Lines [id:da3801133115640045]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,118.51) -- (245.39,124.39) ;
%Straight Lines [id:da735697725616032]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,118.51) -- (242.92,106.74) ;
%Shape: Circle [id:dp6350603608552863]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ][line width=1.5] (224.02,79.51) .. controls (224.02,70.95) and (230.95,64.02) .. (239.51,64.02) .. controls (248.06,64.02) and (255,70.95) .. (255,79.51) .. controls (255,88.06) and (248.06,95) .. (239.51,95) .. controls (230.95,95) and (224.02,88.06) .. (224.02,79.51) -- cycle ;
%Straight Lines [id:da44497521306269716]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,79.51) -- (245.39,85.39) ;
%Straight Lines [id:da05523179348068297]
\draw [fill={rgb, 255:red, 226; green, 84; blue, 38 } ,fill opacity=0.52 ] (239.51,79.51) -- (242.92,67.74) ;
%Shape: Circle [id:dp589347739210266]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (265.02,239.51) .. controls (265.02,230.95) and (271.95,224.02) .. (280.51,224.02) .. controls (289.06,224.02) and (296,230.95) .. (296,239.51) .. controls (296,248.06) and (289.06,255) .. (280.51,255) .. controls (271.95,255) and (265.02,248.06) .. (265.02,239.51) -- cycle ;
%Straight Lines [id:da703408996991262]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,239.51) -- (286.39,245.39) ;
%Straight Lines [id:da2820745012649821]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,239.51) -- (283.92,227.74) ;
%Shape: Circle [id:dp32266673000310164]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (265.02,199.51) .. controls (265.02,190.95) and (271.95,184.02) .. (280.51,184.02) .. controls (289.06,184.02) and (296,190.95) .. (296,199.51) .. controls (296,208.06) and (289.06,215) .. (280.51,215) .. controls (271.95,215) and (265.02,208.06) .. (265.02,199.51) -- cycle ;
%Straight Lines [id:da47743267024712543]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,199.51) -- (286.39,205.39) ;
%Straight Lines [id:da43884960980205245]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,199.51) -- (283.92,187.74) ;
%Shape: Circle [id:dp8321954733447465]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ][line width=1.5] (265.02,159.51) .. controls (265.02,150.95) and (271.95,144.02) .. (280.51,144.02) .. controls (289.06,144.02) and (296,150.95) .. (296,159.51) .. controls (296,168.06) and (289.06,175) .. (280.51,175) .. controls (271.95,175) and (265.02,168.06) .. (265.02,159.51) -- cycle ;
%Straight Lines [id:da1312586631417545]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,159.51) -- (286.39,165.39) ;
%Straight Lines [id:da1533682140646997]
\draw [fill={rgb, 255:red, 158; green, 38; blue, 226 } ,fill opacity=0.52 ] (280.51,159.51) -- (283.92,147.74) ;
%Shape: Circle [id:dp30846840059798164]