forked from mathurinm/github-assignment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_sklearn_questions.py
31 lines (22 loc) · 1.07 KB
/
test_sklearn_questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# ##################################################
# YOU SHOULD NOT TOUCH THIS FILE !
# ##################################################
from sklearn.utils.estimator_checks import check_estimator
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn_questions import OneNearestNeighbor
from numpy.testing import assert_array_equal
def test_one_nearest_neighbor_check_estimator():
check_estimator(OneNearestNeighbor())
def test_one_nearest_neighbor_match_sklearn():
X, y = make_classification(n_samples=200, n_features=20,
random_state=42)
X_train, X_test, y_train, y_test = \
train_test_split(X, y, random_state=42)
knn = KNeighborsClassifier(n_neighbors=1)
y_pred_sk = knn.fit(X_train, y_train).predict(X_test)
onn = OneNearestNeighbor()
y_pred_me = onn.fit(X_train, y_train).predict(X_test)
assert_array_equal(y_pred_me, y_pred_sk)
assert onn.score(X_test, y_test) == knn.score(X_test, y_test)