forked from hp240920/Traffic-Light-Detection-System
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
109 lines (94 loc) · 3.93 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import matplotlib.image as mpimg
import numpy as np
import os
from lif_model import lif
import matplotlib.pyplot as plot
from lif_model import count_spikes
def validate(weights):
path_img = ['Validating_set/Red', 'Validating_set/Green', 'Validating_set/Yellow']
color = 0
correct = 0
incorrect = 0
for paths in path_img:
for path, dirs, files in os.walk(paths):
for f in files:
filename = os.path.join(path, f)
img1 = mpimg.imread(filename)
R = img1[:, :, 0]
G = img1[:, :, 1]
# R-> 0 , G-> 1, Y-> 2
pixel_arr = np.append(np.reshape(R, [1, 100]), np.reshape(G, [1, 100]))
# pixel_arr = np.append(pixel_arr, np.reshape(B, [1, 100]))
output = weights.dot(np.transpose(pixel_arr))
current_output = np.argmax(output)
if current_output == color:
correct += 1
else:
incorrect += 1
# print(count)
color += 1
# print(color)
# print(correct, incorrect)
return correct / (correct + incorrect)
if __name__ == '__main__':
corr_constant = 0.1
accuracies = np.zeros(351)
weights = np.zeros([3, 200])
neuron = lif()
max_spike_rate = 25
raster_data_input = np.zeros([200, 1004])
raster_data_output = np.zeros([3, 1004])
path_img = ['Mix_imgs']
color = 0
iteration = 0
print(validate(weights))
for paths in path_img:
for path, dirs, files in os.walk(paths):
for f in files:
if iteration > 350:
break
filename = os.path.join(path, f)
print(filename)
img1 = mpimg.imread(filename)
R = img1[:, :, 0]
G = img1[:, :, 1]
B = img1[:, :, 2]
# R-> 0 , G-> 1, Y-> 2
pixel_arr = np.append(np.reshape(R, [1, 100]), np.reshape(G, [1, 100]))
# pixel_arr = np.append(pixel_arr, np.reshape(B, [1, 100]))
# print(count)
pixel_count = 0
color = int(f[-5])
for pixel in pixel_arr:
pre_syn_current = pixel
neuron.threshold = 0.2
neuron.I = pre_syn_current
pre_rate = count_spikes(neuron) / max_spike_rate # between 0 and 1
# if pre_rate > 0:
# raster_data_input[pixel_count][iteration] = iteration
for i in range(3):
current = weights[i].dot(np.transpose(pixel_arr))
# print(current)
neuron.I = current
neuron.threshold = 10
post_rate = count_spikes(neuron) / max_spike_rate # between 0 and 1
# if post_rate > 0:
# raster_data_output[i][iteration] = iteration
if i == color:
post_rate = 1
weights[i][pixel_count] += pre_rate * post_rate * corr_constant
else:
weights[i][pixel_count] -= pre_rate * post_rate * corr_constant
pixel_count += 1
accu = validate(weights)
accuracies[iteration] = accu
print(accu)
iteration += 1
color += 1
print("Accuracy")
print(validate(weights))
# print(weights)
np.save('accuracies_0.1', accuracies)
# np.save('raster_input_0.7_time_{}'.format(corr_constant), raster_data_input)
# np.save('raster_output_0.7_time_{}'.format(corr_constant), raster_data_output)
# np.save('weights_0.7_raster_red_{}'.format(corr_constant),weights)